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Review

Tutorial: Correction of shifts in single-stage LC-MS(/MS) data
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h i g h l i g h t s g r a p h i c a l a b s t r a c t

� Single-stage LC-MS data (MS1 map)
should be comparable for accurate
quantification.

� Comparable MS1 maps can be accu-
rately corrected with single mono-
tonic function.

� Monotonic and non-monotonic shifts
exist jointly between MS1 maps.

� Monotonic shift can be corrected,
non-monotonic shift cannot be
corrected.

� Non-monotonic shift affects the
quality of quantitative LC-MS(/MS)
pre-processing.
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a b s t r a c t

Label-free LC-MS(/MS) provides accurate quantitative profiling of proteins and metabolites in complex
biological samples such as cell lines, tissues and body fluids. A label-free experiment consists of several
LC-MS(/MS) chromatograms that might be acquired over several days, across multiple laboratories using
different instruments. Single-stage part (MS1 map) of the LC-MS(/MS) contains quantitative information
on all compounds that can be detected by LC-MS(/MS) and is the data of choice used by quantitative LC-
MS(/MS) data pre-processing workflows. Differences in experimental conditions and fluctuation of
analytical parameters influence the overall quality of the MS1 maps and are factors hampering
comparative statistical analyses and data interpretation. The quality of the obtained MS1 maps can be
assessed based on changes in the two separation dimensions (retention time, mass-to-charge ratio) and
the readout (ion intensity) of MS1 maps. In this tutorial we discuss two types of changes, monotonic and
non-monotonic shifts, which may occur in the two separation dimensions and the readout of MS1 map.
Monotonic shifts of MS1 maps can be corrected, while non-monotonic ones can only be assessed but not
corrected, since correction would require precise modelling of the underlying physicochemical effects,
which would require additional parameters and analysis. We discuss reasons for monotonic and non-
monotonic shifts in the two separation dimensions and readout of MS1 maps, as well as algorithms
that can be used to correct monotonic or to assess the extent non-monotonic shifts. Relation of non-
monotonic shift with peak elution order inversion and orthogonality as defined in analytical chemis-
try is discussed. We aim this tutorial for data generator and evaluators scientists who aim to known the
condition and approaches to produce and pre-processed comparable MS1 maps.
© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Over the past decade LC-MS(/MS) technology has been routinely
used in proteomics and metabolomics laboratories to analyse
complex biological samples [1,2]. However, to understand system
level perturbations and molecular mechanisms of biological events
and diseases, quantitative values of biomolecules are required to
determine which compounds show differential levels between
sample groups [3e6].

The non-fragmented single-stage part (MS1) of LC-MS(/MS)
data is described with two separation dimensions such as mass to
charge ratio (m/z) and retention time (rt) and one readout (ion
intensity iin), which data is considered as second order tensor ob-
tained from second order analytical instrument (Fig. 1) [7]. MS1
data contains signals from all compounds that can be detected by
an LC-MS(/MS) system and is the signal of choice used by label-free
quantification approach[8,10,11]. MS1 signal is used for quantifi-
cation for stable-isotope chemical labelling methods, which pro-
vide sample specific signal in MS1 domain such as stable isotope
labelling by amino acids in cell culture (SILAC) [12], isotope-coded
affinity tags (ICAT) [13] and isotope-coded protein labelling (ICPL)
[14]. In ideal case, rt and m/z coordinates of one compound would
not differ in MS1 maps facilitating the identification of MS1 signal

of identical compounds using these coordinates independently to
their identification status and intensity of compounds in multiple
MS1 maps. However, these coordinates in the MS1 maps are not
constant and are subject to variation. Examples for these variations
include those correctable by a single monotonic function and those
that are not correctable by such a function. These variabilities in
conjunction with local compound density and other signal pro-
cessing parameters such as the presence of chemical and electronic
noise should be taken into account by the quantitative LC-MS(/MS)
data pre-processing workflow to provide accurate quantitative ta-
bles with columns (or rows) corresponding to samples and rows (or
columns) to compounds, which data are used subsequently for
statistical evaluation. The iin readout may include variations for
example as a result of differences in the injected sample amount
due to variation in the quantity of all or of a subset of compounds
varying in intensity in one batch. Also, ion suppression effects may
reduce or increase the iin readout value of the compounds affected
by it. These variations affect the quality of the quantitative table
obtained upon LC-MS(/MS) pre-processing and ultimately the sta-
tistical outcome of biomarker discovery or differential expression
analysis.

The minimal MS1 data pre-processing workflow includes only
modules for peak detection and matching and assumes no shift in
the rt and m/z dimensions and in the iin readout of MS1 data
(Fig. 2a). Typical quantitative MS1 LC-MS(/MS) data pre-processing
(Fig. 2b) consists of modules for data format conversion, raw data
resampling in retention time and m/z dimensions, denoising,
correction for background ion intensity, peak detection and quan-
tification followed by correction of shifts occurring in each of the rt
and m/z dimensions and the iin readout of the MS1 data. Algo-
rithms, which corrects for shifts in the rt domain are named
retention time alignment methods, algorithms that correct shifts in
the m/z domain are called mass (re)calibration and algorithms that
corrects “shifts” in the iin readout are classified as normalisation
approaches. The term “shift” in the iin readout cannot be inter-
preted similarly to the separation dimensions, but similar phe-
nomena can be observed e.g. when total amount of injected sample
differs. Correction of “shifts” can be treated mathematically simi-
larly to those of separation dimensions. The final step after
correction of shifts in the two separation dimensions of MS1 is the
peak matching step, which identifies the MS1 information of
identical compounds in multiple LC-MS(/MS) chromatograms
based onm/z and rt coordinates, bymatching based on an identified
peptide sequence or based on the similarity between MS/MS
spectra in data-dependent acquired LC-MS/MS data. All these steps

Abbreviations

AMT Accurate Mass Tag
CE Capillary electrophoresis
CODA Component Detection Algorithm
COW Correlation Optimized Warping
DTW Dynamic Time Warping
GC�GC 2 dimensional gas chromatography
GC-MS Gas chromatography coupled to mass spectrometry
ICAT isotope-coded affinity tags
ICPL Isotope-Coded Protein Labelling
MS1 single stage part of LC-MS(/MS) data
(s)PTW (semi)Parametric Time Warping
SILAC Stable Isotope Labelling by Amino acids in Cell

culture
SIMA SImultaneous Multiple Alignment
SPC Spectral Counting
TIC Total Ion Chromatograms
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are required prior to statistical evaluation and are implemented in
automated data pre-processing pipelines [15e20]. One of the most
critical steps is the accurate correction of shifts in the rt and m/z
dimensions and in the iin readout of MS1 maps. Improper correc-
tion of shifts may lead to inaccurately matched peaks and to
quantification bias which may ultimately lead to inappropriate
conclusions after the statistical analysis. Presence of such error is
often only recognized much later during experimental validation of
the original biomarker discovery results contributing to irrepro-
ducibility of biological and preclinical studies and leading to loss of
analysis time, research effort and resources [21].

In this tutorial, we focus on the LC-MS(/MS) analysis conditions,
which results in comparable MS1 LC-MS(/MS) maps and on algo-
rithms which are able to accurately pre-process the obtained MS1
maps. This paper restricts the discussion of LC-MS(/MS) pre-pro-
cessing with respect to sources of variability, variability assessment
and their correction approaches used between MS1 maps of LC-
MS(/MS) data. Special attention is devoted to discuss the physico-
chemical origins and algorithmic treatment of correctable (mono-
tonic) and non-correctable non-monotonic shifts in m/z and rt
separation dimensions, and in the iin quantitative readout. This
tutorial is aimed for experimental scientists planning molecular
profiling experiments, aiming to generateMS1 data that can be pre-
processed accurately, as well for bioinformaticians, who are
developing new algorithms for LC-MS(/MS) data pre-processing
and quality control.

2. Accurate alignment of single-stage LC-MS(/MS) data

2.1. Definitions and statements

In order to avoid confusion and facilitate the reading of the
article we define here terms that will be used throughout the
manuscript. Single-stage LC-MS(/MS) or MS1 dimensions:
dimension definition is used both for the separation (rt orm/z) and
for the readout (iin) variables of MS1 map. Monotonic shifts:
monotonic shifts are differences (fluctuations) of values in one of
the rt and m/z dimensions or in the iin readout of MS1 map pair of
the same compounds (for rt and m/z dimensions) or the same
compounds with the same quantity (iin readout) that can be

corrected using a monotonic function. Non-monotonic shifts: is
the differences (fluctuation) of values in one of the rt and m/z di-
mensions or in iin readout of MS1map pair of the same compounds
(for rt and m/z dimensions) or the same compounds with the same
quantity (iin readout), which remains after correction with mono-
tonic shift. Monotonic and non-monotonic shifts are always defined
in the same dimension (or readout) of MS1 map pairs i.e. between
m/z, rt or iin. Orthogonality: Orthogonality has many definitions in
different science disciplines. In mathematics, algebra defines
orthogonality of two vectors, which have dot product of zero. More
general definition of orthogonality relates to synonyms such as
independence, non-correlated or non-overlapping properties.
Analytical chemistry uses the term orthogonality to measure the
similarities and differences of two separation systems e.g. in liquid
chromatography. Camenzuli et al. defines the orthogonality mea-
sure of two chromatographic separations as characteristics, which
describes the degree of independence of two separation systems
[22]. Gilar et al. provided similar but more practical definition of
orthogonality as characteristics, which defines orthogonality as the
joint peak capacity of two chromatographic system evaluated by
occupancy percentage of bins with the same compound in the
complete peak capacity space [23]. The analytical chemistry defi-
nition of orthogonality allow to interpret smaller and larger
orthogonality differently from the algebraic binary definition,
where two vector are either orthogonal or not. There are different
metrics for orthogonality reported in the literature of analytical
chemistry [22e25] and each of them refer to the fraction of area
occupied by common compounds in the separation space of two
chromatographic systems. These metrics can take values between
0 and 1, where 0 means two equivalent, and 1 reflects two fully
independent separation systems. Since orthogonality is assessed
using the common compounds therefore its value is dependent not
only from the separation dimensions, but also from chemical space
of the analysed compounds. We interpret orthogonality following
the analytical chemistry's definition.

2.2. Conditions for correcting shifts

MS1 data has two separation dimensions (m/z and rt) and one
readout (iin) as described in the introduction. Quantitative

Fig. 1. The rt and m/z dimensions and iin readout of a single-stage LC-MS data (MS1 map). The dimensions are mass-to-charge ratio (m/z), retention time (rt) and ion intensity
(iin) readout. Chromatographic pairs can show monotonic shift and non-monotonic shift with orthogonality component, where monotonic shift can be corrected, while the
remaining non-monotonic shifts including orthogonality determines the uncertainty to find corresponding peaks in the chromatograms using rt andm/z dimensions. Orthogonality
in iin readout leads to statistical bias and increase false discovery in statistical differential analysis.
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information of compounds in MS1 data is represented as 3-
dimensional Gaussian (or Lorentzian) peaks, where iin is the
extent of the peak while rt and m/z represent the location of the
peak maxima. The distinction between iin readout and them/z and
rt dimensions is reflected by the role of these variables. m/z and rt
characterise the peak capacity of the analytical system and are
related to the physicochemical properties of a compound, while the
quantity of a compound is expressed in the iin readout, which is the
main interest of the subsequent quantitative statistical analysis.
Algorithms correcting for shifts are generally applied to LC-MS(/
MS) chromatographic pairs, but some approaches perform align-
ment of the complete dataset in one step such as the Continuous
Profile Model [26,27]. This method assumes one common under-
lying molecular profile, to which all chromatograms are aligned
using a hiddenMarkovmodel [26]. In pairwise alignment, generally
the MS1 coordinate of the raw data or feature list in one chro-
matogram (often called sample chromatogram) is corrected to the
other non-altered chromatogram considered to be the reference. In
this tutorial we discuss pairwise alignment of MS1 maps

approaches but similar conditions apply for methods that align the
complete data set in one step. Shifts in two separation dimensions
and readout of MS1 map may occur, and these shifts have a phys-
icochemical and/or instrumental cause or originate as error of LC-
MS(/MS) data pre-processing. In rt and m/z dimensions and in the
iin readout of MS1 map, monotonic shifts can be corrected when
the following conditions are met:

1. Sample chromatograms should contain common compounds for
alignment in the m/z and rt dimension, while for normalization
(correction in the iin readout) the samples should contain
common compounds with the same quantity in the chromato-
graphic pairs.

2. The alignment algorithm should identify an adequate number of
common peaks accurately for alignment in rt and m/z di-
mensions, while the iin readout (normalisation) should identify
common compounds that are present in the same quantity in
sufficient numbers and in sufficient distribution in the range of
interest, which allows accurate alignment.

Fig. 2. Scheme of a) minimal and b) optimal label-free MS1 data pre-processing workflows. Two modules are required for minimal workflow, which includes peak detection/
quantification modules (green) and module that matches the corresponding peaks across multiple chromatograms (purple). The minimal module assumes no monotonic shift and
orthogonality in rt, m/z dimensions and iin readout. The optimal workflow implements modules for correction to monotonic shifts in the rt and m/z separation dimensions and in
the iin readout of MS1 map corresponding to time alignment (correction in rt), to mass (re)calibration (correction in m/z) and to normalization (correction to iin). Other modules
such as noise, data reduction, and resampling are additional modules of the workflow. Although not present in current pipelines, orthogonality assessment and modelling module
e.g. by use of retention time prediction or feature decharging algorithms may add additional precision for LC-MS(/MS) data pre-processing workflow. The result of LC-MS(/MS) pre-
processing is a quantitative table of compounds detected in multiple chromatograms serving as input for differential statistical analysis. Scheme b) was adopted from Christin et al.
[39]. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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3. Common compounds should follow the same order in both
chromatograms for m/z and rt dimensions. In iin readout, the
order of ion intensity of the common compounds present in the
same quantity should be the same in the two chromatograms.

It is important to note that accurate single monotonic correction
function applied to all compound cannot be derived if one or more
of these conditions are not met. It is the common compounds (in rt
and m/z dimension) and the common compounds that are present
in the same quantity (in iin readout) in the two chromatograms that
convey the information, that should be used to derive the single

monotonic correction function. After obtaining the correction
function, all rt, m/z and iin values of the other compounds will be
corrected with the derived correction function. The requirement
that common compounds should have the same quantity in the two
chromatograms for alignment in iin is due to the fact that detector
response and ion suppression/competition effects may be different
at different concentration ranges. In fact the condition of having the
same compounds in the same quantity can be seen to be too
restrictive compared to requirement of known quantity. However,
in iin readout the signal of compounds may be affected by the other
compounds present e.g. due to ion-supression, while this coupling

Fig. 3. Monotonic and non-monotonic shifts in MS1 data. Mixing of monotonic (red line) and non-monotonic shifts in the scatter plot of the retention time of identified peptides
(blue dots) matched based on agreement of the identified primary amino acid sequence. The data originate from same trypsin digested porcine cerebrospinal fluid sample analysed
in two different laboratories using different eluent programs and LC-MS/MS platforms (QTOF and Orbitrap). The upper plot shows the original retention time of peptides, which
includes perturbations that are due to monotonic and non-monotonic shift in the liquid chromatography separation. The lower left plot shows the monotonic retention time
correction function, which can be used to remove correctable monotonic shift from the raw data. The lower right plot shows the scatter plot of the retention time of identified
peptides after correction with monotonic retention time correction function. The remaining fluctuation of peptides reflect the non-monotonic shift, which includes orthogonality of
the liquid chromatography separation and shows the uncertainty to found corresponding compounds based on rt and m/z coordinates in other chromatograms. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Orthogonality results in considerable mismatching of LC-MS(/MS) peaks. a) shows a scatter plot of retention times of peptides matched based on agreement of peptide
sequence (blue dots) in two chromatograms acquired with two different LC-MS/MS platforms, in the different laboratories under different gradient programs (same data is pre-
sented in Fig. 3). The monotonic retention time correction function is shown as a red solid line. The maximal deviation of peptides from the monotonic correction function obtained
with robust kernel density approach and between laboratories is shown with red dashed line (red D). Green dashed line and greed “d” label shows the maximal deviation of

V. Mitra et al. / Analytica Chimica Acta 999 (2018) 37e5342



is negligible in the rt andm/z dimensions, i.e. the influence of other
compounds on the rt and m/z of one particular compound in the
sample is limited. Using compounds with known but different
quantities in the two chromatograms would result in compounds
that are in different concentration ranges and their values could be
affected by different detector response and/or ion suppression.

When the second condition is not met, common compounds or
compounds with the same quantity are present in the two chro-
matograms, but the correction algorithm is unable to find them in
sufficient number, density and accuracy to perform accurate
correction. Beside the numbers of common compounds and com-
mon compounds with the same quantity, the distribution of them
along the full measured range is important as well. If there are
domains with no or low number of common compounds or com-
pounds with the same quantity present, then information for
monotonic shift correction is lacking at these locations and local
misalignment may occur. In highly complex proteomics samples,
common compounds and compounds with the same quantity are
present in sufficient number and density across the full measured
range. This may be challenging however for lower complexity
metabolomics data. Typical examples of lack of information is at the
beginning or end of the chromatogramwhere no compounds elute.
Other important aspect is the accuracy of the alignment algorithm
to select the common compound or the compound present with
same quantity. If mismatched compounds or noise is present with
large extent, then correction algorithm may be inaccurate. When
the third point is not met, the common compounds or compounds
with the same quantity are mixed-up and the exact location or
quantity of a compound cannot be exactly determined in the other
chromatogram by deriving a single monotonic correction function.

2.3. Distinction between monotonic and non-monotonic shifts and
orthogonality

Correctable shift should be monotonic since any deviation from
monotonicity would lead to a break the one-to-one correspon-
dence of coordinate transformation. Monotonicity of shifts also
ensures the mathematical inversion of the shift correcting function,
which in fact inverses the role of sample and reference in the
aligned chromatographic pairs. Monotonic and non-monotonic
shifts have a different physicochemical origins and should be
algorithmically treated differently. Monotonic shifts can be cor-
rected, but non-monotonic one not unless the physicochemical
process that leads to non-monotonic shift can be fully modelled. It
is important to note that monotonic shift should be corrected with
single monotonic function generally applied to all compounds in
MS1 maps. Correction for non-monotonic shift requires compound
specific monotonic correction function obtained from precise
modelling of retention mechanisms or intensity changes of com-
pounds. The application of a monotonic function to a group of
signals is rare, but one example is provided later when individual
monotonic function is applied for each m/z channel of MS1 map to
correct small fluctuation in ion trap data caused by charge repul-
sion. Assessment of monotonic and non-monotonic shifts are per-
formed using only compounds that are present in both

chromatograms (common compounds) and using common com-
pounds that are present with the same quantity in the two chro-
matograms in iin readout.

Non-monotonic shift may have two components. One compo-
nent is related to data pre-processing errors such as to determine
compound signal location in MS1 map (m/z and rt dimensions) or
compound quantification (iin readout). The second is related to
elution order inversion of common compounds and therefore can
be interpreted as the analytical chemistry definition of orthogo-
nality. The metric to calculate orthogonality should be calculated
after correction for monotonic shift and will inevitably contain the
data pre-processing error. Comparable MS1maps without the need
for complex modelling of orthogonality can be therefore obtained
for MS1 map pairs, which includes only monotonic shift and non-
monotonic shifts with data pre-processing error component.

Publications so far discuss separately alignment (correctable
monotonic shift) and assessment of orthogonality in LC-MS(/MS)
(and GC-MS or CE-MS) data. For example orthogonality is consid-
ered absent when it comes to design of retention time alignment
algorithm even the existence of elution order i.e. presence of small
orthogonality was recognised in multiple articles [28,29]. However,
it is obvious that the two phenomena may be present to a different
extent in various datasets, and may influence the performance of
monotonic shift correction and orthogonality assessment algo-
rithms. Orthogonality in the literature was related solely to the
retention time domain and was not mentioned for the m/z
dimension or in the iin readout of MS1 map [22e25]. With
correction of single monotonic function, we separate monotonic
shift from non-monotonic ones, which may have orthogonality
component. Fig. 3 shows a pair of chromatograms of the same
complex proteomics sample that shows non-linear monotonic
shifts mixed with orthogonality and non-monotonic shift due to
data pre-processing error. The figure also shows the monotonic
retention time correction function and the non-monotonic shift
after correcting for monotonic shift with a single monotonic func-
tion applied to all compounds.

Since orthogonality cannot be corrected without accurate
modelling andwithout knowing the identity of the peak in theMS1
data it has as consequence that either rt or m/z coordinates of a
compound cannot be predicted precisely in other LC-MS data,
while in the iin readout the normalisation will have limited preci-
sion. Fig. 4a shows a scatterplot of retention time of identical
peptides in two chromatograms that were obtainedwith analysis of
the same sample using two different LC-MS/MS platforms and
gradient LC programs. Non-linear monotonic shift and orthogo-
nality is obviously visible on the plot. Alignment of the two chro-
matograms using monotonic best fitted retention time correction
function on the scatterplot using LOWESS regression constrained
for monotonicity results in accurate alignment of peaks that are
located on the correction function, while peaks far from this
function are misaligned (Fig. 4b and c). Orthogonality in this tuto-
rial is assumed to have a symmetric form around a mainmonotonic
trend, which is generally the case when the goal is to align datasets
corrected for non-monotonic shift with small orthogonality
component (i.e. strong correlation of rt of the same compounds in

peptides from the main monotonic retention time correction function in data that was acquired in the same laboratory using the same LC-MS/MS platform and the same eluent
program. The difference between red “D” and green “d” is related to the non-monotonic shift of the liquid chromatographic separation and shows the uncertainty to determine
corresponding peak locations in two different chromatograms. Peak pairs with red, blue and green circles in the black dashed box area are corresponding to the three peak pairs that
are used to illustrate the effect of peak elution order inversion in extracted ion chromatograms (EICs) in plots b and c after aligning one of the chromatograms to the other one. In
plot b), the chromatogram of laboratory 1 was aligned to the chromatogram of laboratory 2, while in plot c) the chromatogram of laboratory 2 was aligned to the chromatogram of
laboratory 1. Peptide LTLPQLEIR (green arrows) is located on the monotonic retention-time correction function, while the peptides DIAPTLTLYVGK (red arrows) and
VHQFFNVGLIQPGSVK (blue arrows) are located far from this function. Retention time alignment using a single monotonic retention time correction function provides well aligned
peaks for the first peptide (green traces). The two other peptides (red and blue arrows) suffer from considerable misalignment with retention time error close to the distance D due
to considerable orthogonality. The EICs are normalized to the highest peaks and the Y axis represent ion counts relative to the most abundant signal intensity. Figures adapted from
Mitra et al. [33]. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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the two chromatograms). This situation may be different when
orthogonality is large e.g. in case of optimisation of peak capacity in
multidimensional chromatography [22,30]. Another assumption
that we include in the discussion of monotonic and non-monotonic
shifts is that these shifts are independent between the two sepa-
ration dimensions of m/z, and rt, except for iin which lead to the
requirement of having the same compounds with the same quan-
tity present in chromatographic pairs. Interaction between rt and
m/z dimensions exist but their effect is generally small [31,32].

Orthogonality can be also considered between the rt and m/z
dimensions, and the iin readout of single MS1 map, however this
orthogonality is not related to the assessment of comparable MS1
maps and is therefore outside of the scope of this paper.

3. Shifts and orthogonality in single-stage LC-MS data

In this section the physicochemical origins of monotonic and
non-monotonic shifts in the rt, m/z dimensions and in the iin
readout along with algorithms that are used to correct for mono-
tonic shift or assess the degree of non-monotonic shifts is discussed
in detail. One pertinent problem relates to the definition of the term
“same compound” in multiple samples. A chemical compound can
be modified in different ways ranging from chemical modifications,
adduct formation, charge state differences, or can be present at
different degrees of dissimilarity when it comes to chemical and 3D
structures such as diastereomerisation, cis/trans isomerization,
structural (constitutional) isomers, chiral isomerisation and
conformation changes. Table 1 lists molecular variants and modi-
fications that describe how compounds in the same chemical
structure family can be discriminated in the rt and m/z dimensions
and in the iin readout of the MS1 map.

3.1. Retention time dimension

Physicochemical background. The dimension most prone for
shift and orthogonality is the chromatographic dimension. Multiple
factors may influence the elution time of a compound which may
result in non-linear retention time shifts between chromatograms,
such as slight changes in column/eluent temperature, slight
changes in eluent's pH, modification of the stationary phase surface
e.g. due to accumulation of the non-eluted components from pre-
viously analysed samples, degradation of the surface chemistry or
mechanical changes of the stationary phase due to high pressure
and slight changes in the solvent delivery and/or mixing system of
the liquid chromatography apparatus [9].

Within a quantitative profiling study, orthogonality of separa-
tion is a property that is attempted to be minimized since
orthogonality lowers the precision to predict the retention time of a
compound in different MS1 maps [33]. Orthogonality may have
different origins compared to monotonic shifts, such as those listed
as cause of non-linear monotonic shifts. For example, simple
change of the gradient program leads to slight orthogonality. The
reason of this orthogonality has been already described in the
linear solvent strength theory introduced by Snyder and his co-
workers in the 60's [34] and this effect was considered by other
researchers as well [35,36]. As a consequence, chromatograms ac-
quired with different gradient programs will show different de-
grees of orthogonality, which in turn determines the maximal
accuracy that can be achieved by retention time alignment using
single non-linear monotonic correcting function. It is therefore
important to consider for data generator and data evaluator sci-
entists, that the same LC column the same gradient program and
eluent composition should be used to obtain comparable MS1

maps. However these conditions are not sufficient in obtaining
comparable MS1maps, since it does not account of e.g. degradation
of the LC column nor in change of gradient delivery systems.

Monotonic shift correction algorithms. In the last two de-
cades multiple retention time correction algorithms were devel-
oped as part of label-free LC-MS(/MS) data pre-processing
workflows [19,33,37e50]. A comprehensive review by Smith et al.
[9] includes discussion of 50 open source retention time alignment
algorithms. Although several retention time alignment algorithms
exist, the general objective of every time alignment algorithm is to
first identify peaks (or signal) of the same compound in two (or
more) chromatograms and provide a retention time transformation
function, that corrects for monotonic retention time shifts and
aligns LC-MS(/MS) datasets. Retention time correction algorithms
can be classified inmany ways such as: i) type of data andMS1map
dimensions used for the alignment, such as using the completeMS1
map, total ion or base peak chromatograms, peak lists [39]; ii) if
alignment is performed pairwise or in one step and iii) type of
benefit or objective function used to measure similarity of the
chromatographic pair, which is used subsequently to derive
retention time correction function (e.g. sum of the squared ion
intensity distance of raw data, correlation of raw ion intensity or
sum of overlapping peak volume).

One of the most widely used algorithmic approach to derive the
correction function is dynamic time warping (DTW) [51] that
identifies the optimal retention time correspondence path. This
path can be obtained by minimizing the cumulative differences
between the LC-MS signal at different sampling points either using
peak lists [52], TIC [47] or the regions of MS1 maps [53].
Correlation-Optimized time Warping (COW) [54] performs
segment-wise stretching or shrinking of the retention time seg-
ments and uses a cumulative benefit function that maximizes
segment profile similarity such as correlation [54] or sum of over-
lapping peak volumes [55]. The combination of segments positions
that fit best the reference chromatogram is obtained using dynamic
programming. Christin et al. [45] combined COmponent Detection
Algorithm (CODA) with COW, which algorithm includes only in-
formation from LC-MS mass traces that contain low noise and
background and large number of high abundant peaks from the
sample and reference chromatograms. CODA implements a moving
window, to detect m/z traces in different retention time domains
with high quality peak content. Another algorithm called para-
metric and semi-parametric time warping ((s)PTW) uses fitted
polynomial as a warping function that minimize the profile abun-
dance differences between LC-MS chromatograms using TIC
[56e58] or combined CODA selectedmass traces [53]. OpenMS [59]
applies an affine transformation to the retention time coordinates
of sample feature list using linear regression on features obtained
with robust matching (pose clustering) of the rt and m/z
coordinates.

Commonly used time alignment methods either use centroid
peak lists or charge-state- and isotope-deconvoluted feature lists.
These lists are then used to model a retention time alignment
function based on retention time values of correspondences. Cor-
respondences could be defined as matched peak pairs within
certain rt andm/z coordinates or bins or matched landmark isotopic
features between datasets. However algorithms such as PEPPeR
[60], SuperHirn [18], IDEAL-Q [42] and LCMSWARP [61] use a
combination of isotopic feature detection andMS/MS identification
to enhance the “Landmark Matching” process prior to retention
time alignment. Many time alignment algorithms perform align-
ment pairwise, which poses the problem of reference selection. Star
type of alignment using one reference to which all other
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Table 1
Summary ofmolecular variants, which effects the definition of same compound (molecular entity). The table containsmolecular variants at various levels and presents howmolecular variants can be distinguished in the rt andm/
z dimensions and the iin readout of the MS1 LC-MS(/MS) data.

Type of modification/molecular
variant

Retention time (rt) dimension Mass-to-charge ratio (m/z) dimension Ion intensity (iin) readout

Chemical modifications
(covalent bond changes)

Difference can be expected, which extent is depending
form the type and size of the modification

Difference is expected if there is a change in
molecular mass of the target compound.

Chemical modification leads to differences
in ionisation properties, therefore same ion
intensity may express different amount of
compounds.

Same chemical but different
isotopic constitution

No difference in retention time, only slight difference is
expected when deuterium/hydrogen replacement occurs.

Difference should be observed when mass of the
intact ion changes.

No difference between members of this type
of compounds is to be expected.

Different charge state Certain eluent composition (e.g. pH) may influence charge
of the peak and therefore the retention time. The effect is
depending form the time scale of hydrogen exchange
and the pH.

In principle the charge states during liquid
chromatography influence the charge distribution
of the analytes in the MS. The same holds in changing
electrospray conditions such as voltage, application of
shearing gas (ionspray), different eluent or uses of
eluent modifiers etc).

Charge state differences in chromatography or
at the MS interface may influence the number
of formed ions and may provide different
detected response.

Adduct formation (Naþ, Kþ,
NH4

þ, Mg2þ, Ca2þ etc.)
May result in distinct peaks in the LC dimension. Results in distinct peaks if mass of the compound changes. Adduction formation may influence the competition

for charges and this could lead to different detector
response.

Diastereomers, cis/trans isomers Physicochemical property changes of the analyte may
result in different retention time.

Undistinguishable in this dimensions without
fragmentation.

Very small (mass defect) or no difference is to be expected.

Constitutional isomers May be resolved in chromatographic domain, but retention
time are expected to be close, except when 3D structure has
major changes.

Undistinguishable in this dimension without fragmentation. Expected to provide the same response.

Chirality May be distinguishable in this dimension in special condition
e.g. by using chiral counter ions or chiral stationary phases.

Undistinguishable in this dimension without fragmentation. Expected to provide the same response.

Conformational isomers May be resolved in chromatographic domain, but retention
time are expected to be close, except when 3D structure has
major changes.

Undistinguishable in this dimension without fragmentation. Expected to provide the same response.

V.M
itra

et
al./

A
nalytica

Chim
ica

A
cta

999
(2018)

37
e
53

45



chromatograms are aligned is suboptimal in alignment of large
dataset containing chromatograms with dissimilar molecular
composition. Voss et al. [52] developed the simultaneous multiple
alignment of LC-MS peak lists. This algorithm performs the pair-
wise matching of peak lists following a hierarchical-tree based
alignment of subsequent chromatographic pairs using peak list
similarity as sequence of alignments. Finally, the algorithm calcu-
lates a global retention time correction function using a multidi-
mensional kernel function and uses maximum likelihood
estimation to derive the common elution profile. It should be noted
that the assumption of the existence of a global retention time
profile of MS1 map set could be wrong e.g. in dataset that contains
chromatogram obtained with different gradient programs due to
orthogonality.

Many papers confuse time alignment with peak or feature
matching step and use the word “feature alignment” or “peak
alignment” for peak matching. The origin of this confusion may be
that retention time shift correction algorithms need information
from common compounds and one of the goals of shift correction
algorithms is to find them. However, the goal of shift correction
algorithms is not necessarily to find all common peaks (or signal of
common compounds) between chromatograms, but to find them in
a sufficient number, distribution and quality that allows to obtain a
single monotonic shift correction function. After correction of
shifts, the final peak matching algorithm is used to identify with
highest accuracy all corresponding peaks across multiple chro-
matograms. The monotonicity aspect of shift correction means that
the shift correction function cannot change the elution order of the
peaks and provides one-to-one correspondences between chro-
matograms, while peak matching should deal with the remaining
non-monotonic shift. The accuracy of the peak matching step will
be dependent on how close the algorithm should look for corre-
sponding partners in the two chromatograms, which distance will
be smaller in case of data that was successfully corrected for
monotonic shift compared to data where considerable monotonic
shift is present. Many algorithms combine time alignment and
feature matching in one module. PEPPeR, IDEAL-Q, SIMA [52],
LWBMatch [62] and algorithm developed by Wandy et al. [63]
which include grouping of peaks of related compounds are exam-
ples of algorithms which combine time alignment with peak
matching within a single module.

Datasets with considerable peak elution order inversion
(orthogonality) was aligned by Bloemberg et al. [64] using mass-
trace optimized PTW. However, PTW does not change the elution
order of the peaks, since it derive monotonic retention time
correction function, and cannot deal properly with LC-MS(/MS)
pairs with significant elution order inversion. It is also obvious
that the retention mechanism of analytes/stationary phase that
lead to elution order inversion i.e. orthogonality in two chro-
matograms does not solely depend on the m/z of the compound,
but rather on other parameters and from complex retention
mechanism of the eluting compounds. This approach providing
different retention time correction function for different m/z traces
does not take into account peak elution order inversion within a
mass trace.

Non-monotonic shift assessment algorithms. Metrics to
measure the amplitude of orthogonality were solely developed for
retention time dimensions and was used to assess the difference
and similarity in chromatography systems. This assessment is
based on joint peak capacity in two-dimensional liquid (2D-LC) or
gas chromatography systems. The goal in 2D-LC is to maximise
orthogonality between the first and second separation dimensions
and concomitant peak capacity of the chromatographic system,

therefore those algorithms deal with large orthogonality. One of the
first metrics for orthogonality was introduced by Gilar et al. [23,65].
This metric measures the occupancy of bins of common peaks
determined based on identified peptide sequences in the retention
space of the two chromatograms. Recently Camenzuli et al. [22]
introduced a generic measure of orthogonality that uses spread of
peaks along 4 equations enclosing 45� of angle and crossing in the
middle of normalized retention time that range between values of
0 and 1. The latter approach is independent on the density distri-
bution of peaks providing an accurate measure of orthogonality.
Gilar et al. [24] compared 4 different measures of orthogonality
using binning of retention times (correlation coefficients, mutual
information, box-counting dimensionality, and surface fractional
coverage with different hulls) and concluded that except correla-
tion all orthogonality metrics are related to each other and are
suitable to optimise peak capacity in two dimensional chroma-
tography. Schure et al. [25] recently summarized the 20 metrics of
orthogonality and assessed their performance using 47 two-
dimensional LC chromatograms. This article pointed out that
there are many metrics to measure orthogonality. Principal
component analysis of the different orthogonality metrics shows
that despite the fact that the studied metrics are correlated they do
capture different aspects of the data. However so far there is no
approach published that assesses orthogonality at the lower end i.e.
small orthogonality between chromatographic separations. Devel-
oping metrics to measure small orthogonality is important, since
orthogonality causes uncertainty to predict where a compoundwill
elute in the other chromatogram and therefore determines the
search domain to look for corresponding peaks by the peak
matching algorithm using rt and m/z coordinates. Many peak
matching algorithms try to find corresponding peak at all cost by
allowing wide range to search for corresponding partners, which
implementation may lead to mismatched peaks and subsequent
statistical error. For this reason, we have developed an approach
that assesses the extent of non-monotonic shift corresponding to
the maximal retention time matching domain after alignment with
single monotonic function. The algorithm determines the uncer-
tainty region used to identify corresponding peaks in LC-MS(/MS)
chromatogram pair of interest and LC-MS(/MS) chromatogram pair
acquired subsequently in the same analyzis batch, where no peak
elution order occurs and compare these regions on the basis of
orthogonal residuals to assess the presence of peak elution order
inversion or orthogonality [33].

Orthogonality between chromatograms will also have an effect
on the accuracy of retention time normalisation algorithms such as
iRT [66,67] or RePLiCal [68], which use the standardized retention
time of reference standard set obtained with a standard mixture or
spiked QconCAT proteins. In this case orthogonality will decrease
the accuracy of normalised retention times or even may lead to
completely false results in case of mismatching the reference
standard peaks between chromatograms.

3.2. Mass to charge ratio dimension

The shifts in them/z dimensions are mainly monotonic and may
be caused e.g. by small change in temperature in the room where
the instrument is installed in case of high resolution Orbitrap and
time of flight mass analyzers or space-charge effect in case of low
resolution three dimensional ion trap mass analyser [39]. Due to
well-known physics of ion separation in theory no orthogonality in
m/z dimension could happen except for a charge state shift of
compounds, which may introduce orthogonality because the
different compounds depending on their charge affinity have
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different charge state distribution changes. Shifts of charge distri-
bution is unconventional, which happens at discrete m/z values,
compared to conventional shifts such as retention time shift, which
has continuously scale. During electrospray process, ionisation
parameters have a large influence on the charge distribution of
analytes. For example, ionspray combining electrospray with
pneumatic nebulisation used with normal or capillary LC column
results in more charges on the same analytes due to triboelectric
effect compared to electrospray ionisation regime. The effect of
charge is dependent from the chemical composition of analytes,
therefore its effect is different for the different analytes resulting in
orthogonality. Fig. 5 shows the considerable charge shift in MS1
map obtained with analysis of the same human blood sample
depleted from the 6 most abundant proteins on a LC-MS platforms
differing in the used LC column diameter, the injected sample
amount and electrospray ionisation type (ionspray and electro-
spray) [69]. No orthogonality measure was so far developed for the
m/z dimension, but “orthogonality” due to charge state shifts can be
corrected in compound lists by calculating the neutral mass of
compounds and summing up the intensity of the different charge
states. Other aspects of orthogonality may relate to adduct forma-
tion of the same analytes. Adduct formation is often taken into
account in untargeted label-free metabolomics LC-MS data pre-
processing workflows, and correction for them is performed by
summing up intensities that belongs to the different adduct forms
of the same metabolite. However, the detector response may be
dependent from m/z range and adducts may alter the ionisation
efficiency and therefore the measured signal for a given amount of
analytes. These changes in detector signal are generally not taken
into account when different types of ion signal are summed up in
current data pre-processing pipelines.

Mass recalibration algorithms. Several algorithms were
developed to correct for monotonic shift in m/z, with the goal to
enhance mass accuracy, which becomes essential for modern high
resolution mass spectrometers. Space-charge effect in low resolu-
tion three dimensional ion trap instruments may cause shift in m/z
which stays monotonic within a mass spectrum. Space-charge

effect are caused by the presence of high abundant compounds
close in m/z to other ions that results in ion repulsion, which effect
may be particularly strong in ions trapped in three dimensional
space [70]. To correct for shifts inm/z domain, routine calibration of
themass spectrometers based on spiked internals standards [31,39]
or ubiquitous background ions and contaminants [71] are per-
formed at regular intervals of time or for each acquired mass
spectrum. The most widely used approach to device a single
monotonic mass shift correction function is based on regression
using polynomial function of 2e5�. Generally one monotonic
function is used for all MS spectra of the MS1 map, but it become
more common to use MS spectra specific monotonic corrections
function especially when calibrants are present in all spectra such
as co-infused compounds or background ions. Methods that utilise
prior knowledge of the sample being analysed in combination to
multidimensional non-parametric regression have shown to
decrease standard deviations of m/z errors by 1.8e3.7 fold [31].
Mass correction algorithm that takes part of bioinformatics toolbox
of Matlab (available from version R2007a) eliminates the mono-
tonic shift in m/z trace caused by space-charge effect by using
advanced data binning algorithms that synchronize all the spectra
in a dataset to a common mass/charge grid [72e74] (Fig. 6a and b).
Space charging effect influenced by the eluent and co-eluting
compound composition is strong in ion trap data, where the or-
der of peaks stays the same but the monotonic shift can differ be-
tween different m/z traces. This allows to use different monotonic
correction functions for individual m/z trace in contrast to rt do-
mains where single monotonic correction used for all mass trace
and compound is justified. Removal of mass measurement error is
not only required for MS1 data processing, but also for correction of
precursor mass error in the assignment of peptide identifications.
One way to correct monotonic shift in m/z dimension is to obtain
monotonic correction function for the difference between the
measured m/z of the precursor ion and the theoretical m/z of the
identified peptide (Fig. 6c) [75]. Petyuk et al. [31] have corrected
mass measurement errors for covariates of m/z, such as retention
time, ion intensity and other parameters using a multidimensional,

Fig. 5. Effect of charge state distribution in MS1 map. Image of an MS1 map of the same human serum depleted from the 6 most abundant proteins acquired with an Agilent ion
trap LC-MS platform using nanoLC integrated in a microfluidic device (image a) and using capillary LC (image b). nanoLC was operated with an eluent flow rate of 300 nl/min,
electrospray for peptide ionization and the injected sample amount was 5 pmol, while capillary LC analysis was performed using ionspray (electrospray enhanced with pneumatic
nebulisation), 20 ml/min of flow rate and the injected sample amount was 140 pmol. Pneumatic nebulisation in ionspray provides additional charging of peptides resulting in shift of
charge state of compounds, which effect can be different for the different peptides resulting in orthogonality in m/z dimension. Figure adapted from Horvatovich et al. [69].
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nonparametric regression model. Based on the results from the
study, the authors expected to reduce the number of false identi-
fications by 2e4 fold after correcting for mass measurement error
[31]. Lommen et al. [32] showed the dependency of mass error in
function of retention time and ion intensity and the correction for
these shifts allowed to reach sub ppm accuracy for steroid me-
tabolites in UHPLC-Orbitrap platform. These studies show that
minor interaction between MS1 dimensions exits and have effect
on the accuracy of pre-processed LC-MS(/MS) data.

3.3. Ion intensity readout

Experimental variability such as fluctuation of ionization effi-
ciency in complex samples e.g. due to ion suppression, changing
eluent composition, difference in electrospray interface and
parameter settings, and differences in sample preparation can in-
fluence quantified peptide/protein levels [76]. Ion suppression is a

source of orthogonality in LC-MS(/MS) data in iin readout, since
intensity of compounds may differ based on the composition of co-
eluting compounds [77]. Ion suppression is larger in ionspray
which combines electrospray with pneumatic nebulisation to
ionise compounds at high eluent flow rate. Pneumatic nebulisation
provides triboelectric effect which results in additional charging of
compounds depending on their charge affinity [69]. However, ion
suppression becomes less important at lower flow rate regimes
where electrospray only dominates and this effect disappears at
very low flow rates of a few nl/min [78]. In iin domain, methods
used to correct monotonic shifts are known as normalisation and
approach to assess orthogonality is unknown. When ion suppres-
sion effect is taken into consideration normalisation should be
performed using the same set of compounds that have the same
quantity in the two samples and have sufficiently even distribution
in the full dynamic range of the detector. The best practice is to use
an internal standard mixture for normalisation purpose, with

Fig. 6. Correction of monotonic shifts in m/z dimension of low resolution ion trap and high resolution Orbitrap LC-MS(/MS) data. Image representation of a raw ion trap MS1
LC-MS map, which shows the fluctuation of m/z due to space-charge effect in three-dimensional low resolution ion trap data (image a). This fluctuation results in small monotonic
shifts, which does not change the order of peaks in m/z dimension and therefore could be corrected with binning algorithms that synchronizes all spectrum in a LC-MS chro-
matogram to a common m/z grid (image b). Scatter plot of mass error (difference of measured precursorm/z and theoretical m/z calculated from the sequence of identified peptide),
showing non-linear monotonic shift and orthogonality in m/z dimension of high resolution Orbitrap LC-MS/MS data (plot c). Correction for monotonic shifts enhances the peptide
identification rate, which option is implemented in some data pre-processing workflows. Images a and b were obtained with and LCQ ion trap LC-MS platform analysing a mix of 7
proteins obtained from Sashimi data repository (file 7MIX_STD_110802_1 from http://sashimi.sourceforge.net/repository.html). Plot c was obtained from proteomics analysis of
HeLa cell using QExecutive Orbitrap LC-MS/MS platform and 1 h of gradient program.
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known absolute concentration of all analytes.
Normalisation approaches. The normalization step has the

aim to correct monotonic shifts in iin readout. Commonly applied
normalisation approaches use mean, median or some global fixed
value to correct constant shift in intensity in each sample [79].
Such normalisation methods remove systematic bias across
samples and assume that all peptides behave similarly and inde-
pendently of their abundances across multiple samples. Constant
value are often calculated from a set of unique peptides origi-
nating from known house-keeping proteins that are supposed to
be tightly regulated and to have similar concentration in biolog-
ical samples [80]. Global adjustment can correct for differences in
the amounts of material loaded on the LC-MS(/MS) system for
each sample, but cannot capture more complex (e.g., non-linear
and intensity-dependent) biases. LOWESS regression approach
applied in the ion intensity domain or quantile normalisation that
makes distribution of peaks intensity similar across multiple
samples [79,81] can correct for such non-linear bias [79], however
these approaches assume that the majority of the compounds are
the same and have very similar quantity across samples [76].
ANOVA and regression models can effectively remove systematic
differences when their sources are known [82]. In order to
normalise and model data obtained from varied sample groups,
such as disease versus control, a method called normalized
spectral index (SIN) was developed. SIN combines three MS
abundance features: peptide count, spectral count and fragment-
ion (MS/MS) intensity [83]. Most normalization methods used for
label-free proteomics data, such as normalisation to various cen-
tral tendencies (e.g. mean, median), LOWESS regression and
quantile normalization, have originated in microarray studies
[79,84]. Specific LC-MS(/MS) based data normalisation methods
have also been developed which applies probability based model
for imputing missing events in order to avoid severe biases due to
compounds present below the detection limit in the statistical
analysis [85]. All of the above described approaches do not change
the iin order of peaks originating from the same compounds that
have the same quantity in chromatograms i.e. they perform
monotonic transformations.

Improper normalisation may introduce bias in the statistical
analysis for example when one subclass of compound differs
considerably in one sample group while the remaining compounds
remains unchanged between samples (so-called non-closed data)
and normalisation is performed using a fixed value such as sum of
ion intensity, median fold change, sum of peptide-spectrum-
matches or injected sample amount (Fig. 7). This effect is called
size-effect and ratio based normalisation approach should be used
to avoid such error [86]. The application of pairwise normalisation
allowed to identify synergistic RAS and CIP2A signalling in HeLa
cells before and after phosphopeptide enrichment. In this dataset
there is a major shift in phosphopeptide composition before and
after phosphopeptide enrichment and before and after stimulation
of cells leading to major bias in statistical analysis of the phos-
phopeptide enriched samples without taking into account the
enrichment effect. The enrichment effect was corrected using
pairwise normalisation, which calculate a global factor using the
median ratio of phosphopeptides that are present in samples both
before and after phosphopeptide enrichment steps [87].

3.4. Order of correction for monotonic shift in rt and m/z
dimensions and iin readout of MS1 map pairs

Order of correction for monotonic shifts in the rt, m/z di-
mensions and in the iin readout and the position of these modules
in LC-MS(/MS) pre-processing workflows may influence the quality
of LC-MS(/MS) pre-processing. In general correction for monotonic
shift in m/z and rt dimensions should be made before peak
matching step, since peakmatching step require accurate rt andm/z
coordinate of compounds. Normalisation in iin readout is generally
performed after the peak matching step (Fig. 2). In general
orthogonality is rare inm/z dimension, therefore it is advantageous
to perform first mass recalibration before retention time alignment.
Many retention time alignment algorithms uses m/z of compounds
in peak list or in raw data, therefore this alignment order ensures
that more accurate m/z values are used to identify common com-
pounds, which drive the time alignment process.

Fig. 7. Principle of “effect size” using simulated data of three peaks and two sample groups (red and blue traces). Effect size occurs when one sample class has large changes of one
compound (first peak in blue traces) or part of the compounds only and the other peaks does not change (last two peaks in blue traces) compared to peaks in the other sample
group (all peaks in red traces) where the amount of these peaks stays the same. The original situation is shown in plot a), while normalized data using the total sum of peak area (or
compound quantity) results in lowering the fold change of the peak that has the major quantity change and introduces smaller fold changes in the two peaks that is present with the
same quantity. This type of normalization leads to error in subsequent differential statistical analysis. Figure adopted from Filzmoser et al. [86]. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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4. Conclusion

Monotonic and non-monotonic shifts were generally consid-
ered separately and orthogonality was exclusively considered in
retention time dimension. In this tutorial we have demonstrated
that these two types of shifts should be considered separately
along the rt and m/z dimensions and the iin readout of MS1 part
of label-free LC-MS(/MS) data. This has the benefit to assess the
quality of MS1 map in the rt and m/z dimensions and in the iin
readout with the same mathematical model (i.e. correctable
monotonic and non-correctable non monotonic shift). Accurate
quantification of multiple MS1 map is possible when monotonic
shift and non-monotonic shift due to LC-MS(/MS) pre-processing
error are present in an LC-MS(/MS) data set. It should be noted
that signals obtained with other separation methods and spec-
troscopy/spectrometry techniques suffer from similar problems
and there are many algorithms that can be adapted to accurately
align and pre-process LC-MS(/MS) data. It is obvious that mass
spectrometry coupled to other separation techniques such as
capillary electrophoresis (CE-MS) and gas chromatography (GC-
MS) present similar behaviours of monotonic and non-
monotonic shifts and orthogonality to those of LC-MS(/MS)
data. For example peak elution order inversion was reported in
GC-MS and GC�GC-MS data, which was obtained with different
acquisition parameters [88e91]. Signals in two-dimensional gel
electrophoresis, NIR or NMR shows joint presence of monotonic
and non-monotonic shifts with orthogonality component. One
example of algorithm that could be adopted to pre-process LC-
MS(/MS) is the generalized fuzzy Hough transform algorithm,
which has been used to process NMR spectra acquired in one
batch. This algorithm follows NMR signals that change gradually
resulting in peak elution order inversion in acquisition-time-
sorted NMR spectra [92]. Similar algorithm could be adapted to
model gradually changing of orthogonality in retention time in
LC-MS(/MS) data, which can be used to determine corresponding
peaks in datasets where gradual changes in retention time and
elution order occur.

Assessment of small orthogonality in LC-MS(/MS) data is
important when peak identity is transferred with accurate mass
and time tag approach (AMT). AMT uses solely the m/z and rt co-
ordinates of peaks and the increase of erroneous identification
transfer due to peak elution order inversion was demonstrated by
Tarasova et al. [35]. When orthogonality in the rt dimension is
present, the transfer of peak identity will suffer from uncertainty,
and may lead to false positives and negatives peak annotation.
Therefore, it is necessary to accurately assess the presence of
orthogonality between peptide identification in LC-MS/MS chro-
matograms. The extent of the orthogonality will determine the
accuracy of identification transfer from LC-MS/MS data to LC-MS(/
MS) data and will determine the quality of the annotated and
quantitative pre-processed MS1 LC-MS(/MS) maps.

In future more effort should be made to develop accurate
modelling of orthogonality in the rt and m/z dimensions and iin
readout of MS1 maps such as models used to predict accurately
retention time of peptides or metabolites. For example linear
solvent strength theory in liquid chromatography and three
dimensional structure of peptides were successfully used to pre-
dict retention time of peptides even when different linear elution
programs were used [36,93e95]. However, modelling comes with
more experimental effort and cost. For example, retention time
prediction of peptides measured with different linear gradient
programs and eluent flow rates require to measure peptide
standards in different conditions to parametrise properly the

retention time prediction model. Similar models should be
developed for example to simulate ion suppression process,
charge and adduct distribution changes of compounds in ionspray
or electrospray regimes. Accurate modelling of orthogonality
would reduce the effect of peak-elution order change which
determine the uncertainty to match peaks solely using m/z and rt
coordinates and will results in smaller analytical variance in iin
readout.

In many LC-MS(/MS) profiling studies the data is acquired in
one small analysis batch where orthogonality is absent or limited,
however orthogonality becomes important when data originate
from multiple batches/instruments or when data is acquired in
large batches, which will become more and more common in
future due to the need for large clinical proteomics and metab-
olomics studies. We also hope that our tutorial highlight the
importance to assess small orthogonality and that data generator
and evaluator users known the adverse consequences that
orthogonality can have on the outcome of quantitative LC-MS(/
MS) profiling studies.
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