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Computational Lipidomics of the Neuronal Plasma
Membrane
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and Felice C. Lightstone1,*
1Biosciences and Biotechnology Division, Physical and Life Sciences Directorate; 2Center for Applied Scientific Computing (CASC),
Computational Directorate, Lawrence Livermore National Laboratory, Livermore, California; and 3Groningen Biomolecular Science and
Biotechnology Institute and the Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands

ABSTRACT Membrane lipid composition varies greatly within submembrane compartments, different organelle membranes,
and also between cells of different cell stage, cell and tissue types, and organisms. Environmental factors (such as diet) also
influence membrane composition. The membrane lipid composition is tightly regulated by the cell, maintaining a homeostasis
that, if disrupted, can impair cell function and lead to disease. This is especially pronounced in the brain, where defects in lipid
regulation are linked to various neurological diseases. The tightly regulated diversity raises questions on how complex changes
in composition affect overall bilayer properties, dynamics, and lipid organization of cellular membranes. Here, we utilize recent
advances in computational power and molecular dynamics force fields to develop and test a realistically complex human brain
plasma membrane (PM) lipid model and extend previous work on an idealized, ‘‘average’’ mammalian PM. The PMs showed
both striking similarities, despite significantly different lipid composition, and interesting differences. The main differences
in composition (higher cholesterol concentration and increased tail unsaturation in brain PM) appear to have opposite, yet
complementary, influences on many bilayer properties. Both mixtures exhibit a range of dynamic lipid lateral inhomogeneities
(‘‘domains’’). The domains can be small and transient or larger and more persistent and can correlate between the leaflets
depending on lipid mixture, Brain or Average, as well as on the extent of bilayer undulations.

INTRODUCTION

Cellular membranes are complex assemblies of lipids and
proteins that separate cellular compartments, as well as
the cell interior from the outside environment. A typical
plasma membrane (PM) contains hundreds of different lipid
species that are actively regulated by the cell (1,2). The
diverse set of lipids can regulate protein function through
specific lipid-protein interactions and through general
bilayer-protein interaction (i.e., changes in bilayer proper-
ties) (3–5). Additionally, lipids are non-uniformly distrib-
uted within the membrane plane (6,7) and are thought to
reside close to a critical point (8), where large fluctuations
in regions (domains) of locally increased/depleted lipid
content are to be expected. The lipid segregation can further
modulate membrane proteins, affecting local concentra-
tions, aggregation, and trafficking (9,10). On one hand, lipid

compositions vary significantly within a cell between the
membranes of its different organelles and submembrane
compartments (1,11–13), and between different cells, PM
lipid composition differs by organism, cell stage, environ-
mental factors, and cell and tissue types (14–18). On
the other hand, altered lipid composition is linked to
many diseases, e.g., cancers, HIV, diabetes, atherosclerosis,
cardiovascular disease, and Alzheimer’s disease (9,19,20).

The brain, in particular, appears to be especially suscepti-
ble to disease states that are enhanced or accelerated by lipid
composition (21–23). For instance, specific phosphatidylino-
sitolphosphate (PIP) lipids are involved in regulation of
aspects of neuronal cell function, and PIP lipid imbalances
have been linked to a number of major neurological diseases
(23). Indeed, PIPs themselves can modulate ion flux through
PM ion channels (24,25) by direct interaction with the ion
channels or by modulating membrane charge. Moreover,
these neuronal membrane lipids can influence both the
function and localization of proteins within the PM of the
neuron and, in effect, regulate synaptic throughput (22).

These lipid differences raise questions as to how
complex changes in composition affect overall bilayer
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properties, dynamics, and lipid organization of cellular
membranes. Studying lipid structural heterogeneity is
challenging because of the lack of experimental methods
suitable for measuring nanoscale assemblies of soft
bilayers and living cells in the required spatiotemporal
resolution. Computational modeling has emerged as a
powerful alternative method and has become indispensable
for exploring dynamic biomembranes and lipids at
the molecular level (26). The use of coarse-grained (CG)
molecular dynamics simulations has increased the
accessible length- and timescales (27) compared to all-
atom simulations. At the CG resolution, a number of atoms
are combined into functional groups, decreasing the
number of particles in the system and smoothing the
energy landscape. The smoother energy landscape allows
for larger integration time steps and often leads to faster
effective dynamics. CG methods neglect some of the
atomistic degrees of freedom, losing accuracy, and are
therefore not applicable to all problems. Currently at the
CG resolution, multi-component membranes can be
modeled that approach the complexity of realistic cell
membranes (28–36).

Here, we developed a realistically complex model of a hu-
man ‘‘brain-like’’ PM and extend previous work on the ideal-
ized, ‘‘average’’ mammalian PM (28). Our results show both
striking similarities and differences between the Brain and
Average PM mixtures. Despite significant changes in lipid
composition, the biggest contributors—increased cholesterol

concentration and increased tail unsaturation in the brain—
appear to act complementary to each other. The differences
effectively influence the membrane in opposite directions,
yet with similar magnitudes, leading to many overall bilayer
properties being comparable. Both mixtures exhibit a range
of lipid lateral in homogeneities, or domains. The domains
are dynamic, and sizes fluctuate, and their size and correlation
across the leaflets differ in the Average PM compared to the
Brain and with the level of bilayer undulations.

MATERIALS AND METHODS

Neuronal PM composition

The Brain composition represents an idealized lipid composition of

human brain tissue or, more specifically, a ‘‘typical’’ human neuronal

PM mixture. Although several different membrane compositions exist

for specific cells and cell regions within the brain (12–14), the relative

dearth of available data made it more prudent to construct a model that

possessed the general properties of membranes found within the brain.

To capture a typical Brain PM composition, we derived a consensus

from a number of studies that performed lipidomic measurements of

neurons and brain tissue (37–49). Using the idealized mammalian

PM mixture (28) as a reference, we adjusted percentages of lipid head-

group types and tail distributions based on the overall trends reported

for brain tissue extractions and PM isolations that differed from the

idealized mammalian PM (see Supporting Materials and Methods for

details). An overview of the Brain and the Average compositions is

given in Fig. 1, and the specific lipid types used, their ratio in the

outer/inner leaflets, and the lipid counts in the simulations are listed

in Table S1.
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FIGURE 1 PM lipid distributions. Pie charts with

the overall distribution of the main lipid headgroups

and level of tail unsaturation in the outer/inner

leaflet, as well as snapshots of the outer/inner leaflet

of the simulations after 80 ms, are shown for the

Average (A) and Brain membranes (B). The lipids

in the snapshots are colored as follows: PC, blue;

PE, cyan; SM, gray; PS, green; glycolipids (Glyco),

red; PI, pink; PA, white; PIPs, magenta; CER, ice

blue; Lyso, orange; DAG, brown; and cholesterol,

yellow.
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Force field

The simulations were performed using the Martini CG model (50,51). Most

of the lipid force fields used were described in Ingólfsson et al. (28),

including the PIP and ganglioside (GM) parameters, originally described

in López et al. (52), and the improved cholesterol model (53). Control

simulations using GMs with newly optimized clustering behavior (54)

were also performed. Parameters for new Martini lipids were constructed

according to the standard Martini 2.0 lipid building blocks and rules

(50,51), as previously described (28,55). The details of the lipid force fields

used are given in the Supporting Materials and Methods; all the lipid force

fields, including the ones generated for this study, can be found at the

Martini portal: http://www.cgmartini.nl.

Simulations

All the simulations were run using the GROMACS 4.6 simulation package

(56), following the same setup described in Ingólfsson et al. (28). In short, a

time step of 20 fs was used for all production runs with the standard Martini

cutoffs, the same parameter set as denoted ‘‘common’’ in de Jong et al. (57).

Each simulation contains �20,000 lipids (or �6000 for smaller control

simulations) with >15 CG waters per lipid (one CG water representing

four water molecules), counterions, and 150 mM NaCl; the exact lipid

composition in each simulation is listed in Table S1. Membranes were

constructed using the bilayer builder insane (55). For each bilayer mixture,

the number of lipids in the inner/outer leaflet was adjusted based on an

independent bilayer simulation with symmetrical composition of each

leaflet (both leaflets being outer or inner). This process was iterated with

changes in the cholesterol outer/inner leaflet distribution until the initial

cholesterol distribution did not drift with time; i.e., the cholesterol distribu-

tion was allowed to adjust to its chemical potential in each leaflet, as

detailed in the Supporting Materials and Methods and in Ingólfsson et al.

(28). For the main simulations, large membrane undulations were restricted

using weak position restraints on selected lipids in the outer leaflet (see

Supporting Materials and Methods). Additional simulations with 10-fold

weaker restraints and no restraints were also run. The temperature and

pressure were controlled using the velocity rescaling thermostat (58)

(at 310 K, with tT ¼ 1.0 ps) and the Parrinello-Rahman barostat (59)

(1 bar semi-isotropic pressure, with tp ¼ 5.0 ps). Each membrane was

simulated for 80 ms, corresponding to 320 ms of effective time, if accounting

for the �4-fold faster diffusion at the Martini CG level (51). All analysis

was done either with respect to time or averaging over the last 2–10 ms

of each simulation, as indicated. The analysis was carried out partly using

tools provided in the GROMACS package and partly by custom tools

written in Python and Cþþ, to perform bilayer surface construction and

topological analysis (60,61), as well as using the MDAnalysis package

(62) and lipid-flow analysis methods (63), as described in the Supporting

Materials and Methods.

RESULTS AND DISCUSSION

An idealized neuronal PM mixture was constructed
(Brain; see Materials and Methods) and compared to the
average mammalian PM mixture from Ingólfsson et al.
(28) (Average). To compare the physical properties of the
different PM lipid mixtures, large lipid patches (�20,000
lipids) of both lipid mixtures were simulated for 80 ms using
the Martini CG force field (50,51) and their properties were
analyzed. Note that bilayer undulations were suppressed in
these systems to facilitate the analysis and to be representa-
tive of real membranes that are constrained by both the cyto-
skeletal network and the presence of membrane proteins.

Fig. 1 shows an overview of the main lipid headgroup and
tail saturation distributions for both mixtures, as well as snap-
shots of the outer and inner leaflets after 80 ms. More detailed
snapshots of the headgroups and tails are shown in Fig. S1
and a time-lapse sequence of the headgroups in Movie S1.

Global membrane properties; similar but different

Common properties of the two mixtures are listed in Table 1.
Comparing the lipid composition of the two PM mixtures
(Fig. 1 A and Table S1), the biggest differences are the
significantly higher cholesterol content in the Brain,
44.5% compared to 30% in the Average PM, and the
increased amount of polyunsaturated tails in Brain (on
average, each lipid tail in the Brain has 1.27 double bonds
compared to 1.05 in the Average PM). Because cholesterol
is known to flip-flop between the leaflets within the time
frame of the simulations, the cholesterol in both mixtures

TABLE 1 Membrane Properties

Average Brain

Outer Inner Outer Inner

Average number of

unsaturations per tail

0.77 1.32 0.90 1.63

Cholesterol fraction 0.54 0.46 0.51 0.49

Average area per

lipid (nm2)a
0.513 0.553 0.460 0.485

Average sn-1 tail orderb 0.435 0.430 0.487 0.444

Average sn-2 tail orderb 0.374 0.301 0.391 0.224

Average pos#3 tail orderb 0.412 0.349 0.445 0.301

Average diffusion

ratesc (10�7 cm2/s)

3.1 5 0.3 4.3 5 0.3 1.6 5 0.2 2.8 5 0.2

Average bilayer normal

deviationsd
13.07 5 0.01 23.36 5 0.09

Bilayer thickness (nm) 4.109 5 0.001 4.057 5 0.002

Flip-flop ratese (106 s�1)

CHOL 7.290 5 0.018 4.820 5 0.004

DAG 7.662 5 0.049 2.800 5 0.074

CER 0.027 5 0.006 0.015 5 0.005

aThe average area per lipid (Al) for the outer/inner leaflets was estimated in

separate symmetrical simulations. SE values for Al are �0.001 nm2.
bLipid tail order was evaluated using the lipid tail order parameter (S). Flip-

flopping lipids were excluded and averages weighted based on lipid counts

in the respective leaflets. Either all bonds in the sn-1/sn-2 tails were aver-

aged or the tail bond at position 3 was averaged between the tails. The

weighted SE �0.002. Tail order parameters for each lipid class are

reported in Table S3.
cThe weighted average of the lipid lateral diffusion coefficients (D) for all

lipids that don’t flip-flop. Note that lipid diffusion coefficients are reported

as is, and no correction is applied for overestimates due to the larger

effective simulation speed of CG simulations (51) or underestimates due

to the periodically bound finite system sizes (79). All diffusion values are

reported in Table S2.
dAverage bilayer normal deviations are the average angle between the

bilayer normal and the z-axis for each lipid (from the fitted bilayer surfaces)

to the z-axes. Average over all lipids and the last 2 ms of the simulations

(5 SE, estimated using block averaging).
eFlip-flop rates (5 SE) were measured as described in (28). For details on

all calculated properties, see Supporting Materials and Methods.
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was allowed to redistribute between the leaflets based on its
chemical potential (see Supporting Material for details). In
both mixtures, cholesterol preferentially localizes in the
outer leaflet, but the emerging cholesterol asymmetry is
much lower in the Brain (�1%) than in the Average PM
(�5%). The bilayer average thickness (phosphate to phos-
phate distance) is comparable between the PMs (4.11 nm
for the Average and 4.06 nm for the Brain, with SE
<0.002). The density profiles along the box z-direction
(Fig. 2) show similar peak locations. The Brain PM, despite
having the same type of restraints on large-scale undula-
tions, undulates more locally, leading to broader density dis-
tributions. Fitting the bilayer surfaces and measuring the
average bilayer normal (all lipids over the last 2 ms) devia-
tion from the z-axes, the Brain mixture deviates�80% more
than the Average mixture (Table 1). Additionally, the Brain
PM has more cholesterol in the middle of the bilayer
(Fig. 2), consistent with previous simulations and experi-
ments showing higher preference for cholesterol in the
bilayer center in more polyunsaturated bilayers (64). How
much more depends somewhat on how you define being
in the bilayer middle. Considering cholesterols within

0.8 nm of the bilayer center as in the middle, the Brain
PM has 13% of the cholesterols in the middle compared
to 7% in the Average, or �75% more.

Tail order was evaluated for all lipid types (Table S2).
The tail order varies considerably due to their different
headgroup and tail characteristics, but also based on the
lipid location in the outer/inner leaflet or in the Average
or Brain mixtures. In combination with the higher
cholesterol content, the outer leaflets of both PMs contain
lipids with somewhat longer and more saturated tails
(Table S1), leading to higher tail order in the outer than
in the inner leaflets (Table 1). For the Brain PM, the
higher cholesterol content acts to increase the overall
tail order, whereas the higher level of tail unsaturation
acts to decrease the tail order. These two effects mostly
balance out, with the overall tail order nearly the same
in the Brain and the Average PMs (with an average tail or-
der of 0.385 in the Average mixture and 0.386 in the
Brain). However, if we look at the tail order in the outer
and inner leaflets separately, there is a significant differ-
ence (Table 1). The Brain outer leaflet is more ordered
than the Average outer leaflet, whereas the inner leaflet
of the Brain is less ordered than the inner leaflet in the
Average mixture. The increased tail order in the outer
leaflet with respect to the inner leaflet is 11% for the
Average and 31% for the Brain. Note that cholesterols
influence the packing of other lipids but are not included
in the tail order calculations themselves, as they do not
contain fatty acid tails; cholesterol is mostly rigid, and
given its significantly higher concentration in the Brain
PM, the hydrocarbon core of the Brain PM is more
‘‘ordered’’ than that of the Average PM.

Lipid diffusion was also evaluated for each lipid type
(Table S3). Just as with the tail order, lipid diffusion rates
vary between the different lipid species, as well as their
locations in the outer/inner leaflet and membrane type.
Lipids in the more ordered outer leaflets diffuse slower
than in the less ordered inner leaflets (Table 1), and the
difference between the outer/inner leaflet diffusion rates
is higher in the Brain than in the Average, in line with
the larger difference in tail order. The overall lipid
diffusion is �40% slower in the Brain compared to the
Average, even though the combined tail order is similar.
This is presumably due to the higher cholesterol content
in the Brain.

At the timescale of these simulations, cholesterol, diacyl-
glycerol (DAG), and ceramide (CER) lipids flip-flop be-
tween the leaflets. The flip-flop rates are shown in Table 1,
and similar to the lipid diffusion, lipid flip-flop is somewhat
slower in the Brain. Previous simulation work showed a
steep reduction in cholesterol flip-flop rate with increased
cholesterol content and an increase in polyunsaturated
bilayers (65). The effects of the �15% increase in choles-
terol content between the Brain and Average appear to be
mostly compensated with an increase in the level of tail
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unsaturation, resulting in only a modest reduction in flip-
flop rates, �35% for cholesterol.

Lipid mixing and domain sizes

In both the Average and the Brain PMs, the different lipid
species are not homogeneously mixed in the bilayer plane.
Based on their mutual interactions, lipids preferentially
associate with other lipid species. At the ends of simulation
(80 ms) snapshots (Figs. 1 and S1), glycolipid domains
(red) can be seen in both PM mixtures; otherwise at that
resolution, the mixture appears random. The snapshots of
the lipid tails in Fig. S1 show preferential co-localization
of polyunsaturated tails in both membranes, with more
clusters of polyunsaturated tails in the Brain mixture,
though of a somewhat smaller size. This is consistent with
both mixtures having a significant fraction of polyunsatu-
rated tails, but with more unsaturation in the Brain than
the Average (Fig. 1; Table S1). In both mixtures, most of
the polyunsaturated tails are on lipids where the other tail
is saturated. The Brain mixture has a fraction where the
other tail is monounsaturated (�5% of total lipids), but
the Average mixture has a small fraction of lipids (�1.5%
of total lipids) with both tails polyunsaturated.

To quantify preferential lipid-lipid interactions, we calcu-
lated the enrichment/depletion of the different lipid head-
groups and linker types in their immediate neighborhood
(defined as <1.5 nm) (Fig. S2). The lipid-lipid interaction
profile for the Brain is very similar to the Average mixture,
which is described in Ingólfsson et al. (28); the main features
are domains of glycolipids in the outer leaflet and increased
self-association of PIPs in the inner leaflet. The glycolipid
domains can also be clearly seen by looking at the local lipid
mobility or variations in the bilayer thickness (Fig. S3).

Cholesterol density is used to define bilayer domains that
are enriched/depleted in cholesterol. Fig. 3 A shows the
cholesterol density of the outer and inner leaflets of the
last frame of the main Brain and Average PM simulations.
Regions of high density (red) and low density (blue) are
marked with contour lines (high density, black lines; low
density, white lines). As the absolute cholesterol concentra-
tion varies between the PMs and their leaflets, we selected
thresholds to define the high/low-density regions in each
layer that maximize the number of domains in that layer
(Fig. S4 A). Fig. S4 B shows the cumulative distribution
function (CDF) of domain sizes with varying thresholds,
demonstrating their sensitivity. Fig. 3 B shows domain
size histograms of outer-leaflet high-density regions in the
Brain and the Average mixtures. Histograms for the inner
leaflets and low-density regions are shown in Fig. S4 C.
Local cholesterol density fluctuates significantly in all
layers. In main simulations (2 kJ mol�1 nm�2 undulation
restraints), the Brain mixture has small and transient
cholesterol domains and the Average mixture has larger,
more persistent domains. Note that at this patch size

(�20,000 lipids), the buildup of larger domains in the
Average mixtures takes tens of microseconds (Fig. S4 D).
The size fluctuations are consistent with mixtures close to

FIGURE 3 Lipid domains. In-plane lateral redistribution of cholesterol

was used to track lipid patches of increased/decreased order for the outer/in-

ner leaflets in both the Average and Brain mixtures. (A) Cholesterol density

was mapped for each snapshot using a Gaussian filter and colored based on

regions of increased (red) or decreased (blue) average density. Thresholds

for high-density regions (black contour lines) and low-density regions (white

contour lines) were determined as the values that maximized the number of

domains in that layer (Fig. S4, A and B). (B) Histograms of domain ‘‘size,’’

in number of cholesterols for the high-density regions of the outer leaflet;

Fig. S4 C shows the same histograms for all other regions. (C) Cross correla-

tion between the cholesterol densities of the PM’s outer and inner leaflets,

shown for every 5 ns (dimmer lines) and averaged over 500 ns (bold lines).

Brain Plasma Membrane
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a critical point (66,67), and the smaller domain sizes in the
Brain mixture agree with the reduced phase separation
observed with increased cholesterol content in giant PM
vesicles (GPMVs) (68).

As seen in Fig. 3 A, the cholesterol density in the Average
mixture is highly correlated between the leaflets, whereas
the Brain mixture does not show such correlations.
Fig. 3 C better depicts this, showing the cross correlation be-
tween the leaflets with time. In the Average mixture, the
leaflet correlation builds up at about the same timescale as
the larger domains form (Fig. S4 D), whereas in the Brain
mixture, the leaflet correlation stays somewhat anti-corre-
lated throughout the simulation. Averaging over the bilayer
area and the last 10 ms of the simulations, the cross correla-
tion is 0.45 5 0.01 and �0.14 5 0.01 in the Average and
Brain mixtures, respectively. Numerous mechanisms have
been proposed to drive leaflet coupling and domain registra-
tion, involving domain boundary line tension, inter-leaflet
surface tension, cholesterol flip-flopping, bilayer undulation,
local bilayer curvature, lipid curvature, and domain thickness
mismatch (69–72). Any speculation in complex lipid mix-
tures like these, where the local domain composition varies
and the boundaries are ill defined, is therefore troublesome;
but notably, more local undulations are observed in the Brain
mixture, where the asymmetry between leaflets (e.g., order,
diffusion, tail unsaturation) is higher.

To analyze the lateral velocities of lipid regions, we
used the lipid Flows methodology (63) (Fig. S5). As is to
be expected, with both the Brain and Average mixtures,
the regions of slower lateral lipid movement corresponded
to the higher-cholesterol-concentration domains, whereas
the faster-moving lipids were found in areas of lower
cholesterol concentration. The overall rates of lipid lateral
displacement (Fig. S5 A) were slower in the Brain mixture
than in the Average mixture. Again, this is consistent with
the fact that the Brain mixture contains significantly more
cholesterol. Furthermore, when calculating the leaflet corre-
lation function (the degree to which the lipid motions are
correlated between the leaflets, see Supporting Materials
and Methods), the Average mixture displays a very strong
correlation between both leaflets (Fig. S5 A, left images).
In contrast, the Brain mixture does not indicate a high
correlation of lipid motions between the leaflets. This is in
agreement with the previous cholesterol-density cross corre-
lation. Interestingly, when the smoothing of the trajectory is
averaged over a shorter temporal range (<20 ns), smaller
pockets of correlated lipid regions become apparent for the
Brain mixture (Fig. S5 B). These short-term correlated lipid
motions reiterate the presence of small, transient cholesterol
domains in the undulation-controlled Brain mixture.

Although bilayer undulations in cells are restricted due
to the presence of the underlying cytoskeleton network as
well as the high fraction of membrane proteins, it is of
interest to study how bilayer undulations couple to the lipid
organization and domain formation. As an initial explora-

tion of the effects of undulations, additional simulations
with either weaker or no restraints on undulations (0.2
and 0 kJ mol�1 nm�2 compared to 2 kJ mol�1 nm�2 in
the main simulations) were performed. These simulations
were started from the main Brain and Average PM simula-
tions at 75 ms and simulated for 5 ms. Fig. 4 A shows a side
view of the last frame of each simulation, demonstrating
the undulation amplitude. We quantified the undulations
by plotting the bilayer normal angle deviations with
respect to the membrane normal, averaged over the entire
membrane surface (Fig. 4 B). As expected, with weaker
or no undulation restraints the bilayer undulations increase.
At each level of restraint, the Brain mixture undulates more
than the Average, pointing toward a lower bending modulus
for the Brain membrane. Overall, the average bulk bilayer
properties are similar for the different levels of undulations,
e.g., the number of neighboring lipids showed no obvious
deviation in the weaker and no-restraints simulations
(see Fig. S2 for results on the main simulations and
Fig. S6 C for the undulating case). All lipid neighbor
enrichments/depletions changed by no more than 5%, i.e.,
no trends were observed with increasing curvature. The
longer-scale lipid domain behavior, however, does change
with different levels of undulations. Fig. 4 C shows the
size histogram of cholesterol-enriched domains in the outer
leaflet for the last 2 ms of each simulation (see Fig. S6 B) for
results on different parts of the simulations. (Note that in
Fig. 4 C, we plotted the cholesterol domain size and not
the number of cholesterols as in Fig. 3 B. The shape of
both curves is similar, compare Figs. 3 B and 4 C, black
and red curves. Remarkably, with increased undulations,
the domain sizes decrease in the Average mixture while
they increase in the Brain. The reason for this behavior is
unclear and requires more simulations at extended time-
scales to fully sample the coupling between domain sizes
and undulatory modes. A clear coupling can be appreciated
in the case of the glycolipids, which prefer regions of
high negative curvature of the outer membrane leaflet
(Fig. S6), consistent with previous simulation results (29).
Notably, the bilayers tend to bend at glycolipid domain
boundaries (Fig. S6 A), which may explain the growth of
the cholesterol domains observed in the Brain membrane
given the preferential co-localization of glycolipids and
cholesterol (Fig. S2).

Additionally, after the Average PM model was published
(28), a few small updates to Martini lipid parameters were
made, as well as alternative parameters for the GM1 and
GM3 lipids (54) (see Supporting Materials and Methods),
and the effects of these changes were explored in smaller
control simulations for both mixtures (Fig. S7). The average
bilayer properties of the smaller alternative-parameter sys-
tems are very similar to those of the larger main simulations.
The biggest difference is in the reduced ganglioside clus-
tering using the recently modified version of the Martini
GM1 and GM3 ganglioside lipid parameters, optimized
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to better match the size of ganglioside clusters seen in atom-
istic simulations (54). As the smaller systems are not much
larger than the largest cholesterol domains above, analyzing
the cholesterol density using the same method was not
very informative, but qualitative comparison of spatial
two-dimensional cholesterol density maps averaged over
the last 200 ns of the simulations (Fig. S7 B) show larger,
more connected densities in Average PM than in the Brain
at this undulation level (2 kJ mol�1 nm�2 restraints).

CONCLUSIONS

We assembled a realistically complex lipid model of a
human neuronal PM (Brain), and despite significant differ-
ences in lipid composition (Fig. 1; Table S1), the overall
bilayer properties show striking similarities to the recently
published idealized mammalian plasma membrane
(Average) (28). The higher cholesterol content of the Brain
is balanced by more tail unsaturation, resulting in some
average bilayer properties being comparable to those of
the Average PM (see values for bilayer thickness and lipid

tail order, diffusion, flip-flop, and average neighbors in
Figs. 2 and S3; Tables 1, S2, and S3. Looking more closely,
there are marked differences; the cholesterol asymmetry
between the outer/inner leaflets is less pronounced in the
Brain (Table 1), presumably due to saturation of preferred
cholesterol lipid interactions; lipids in the Brain mixture
diffuse and flip-flop more slowly (Tables 1 and S2), and
the difference in properties between the outer and inner
leaflets is greater in the Brain. Possible future work could
involve exploring modulation of the cholesterol concentra-
tion or lipid tail unsaturation components independently.

Both mixtures are inhomogeneous and show significant
fluctuation in local lipid concentrations. Defining domains
as regions of high or low cholesterol density, we mapped
the size and leaflet correlations of these domains. In
the undulation-restrained simulations (2 kJ mol�1 nm�2

restraints), the Brain mixture has more cholesterol domains,
but they are smaller and transient, whereas in the Average
mixture, after considerable simulation time, larger persistent
domains emerge (Figs. 3 and4; Figs. S4 andS6). Interestingly,
on the same timescale as the emergence of larger cholesterol

A

B

C

FIGURE 4 Effects of bilayer undulations. Start-

ing from the main Brain and Average PM simula-

tions at 75 ms, simulations with 10-fold weaker

and no restraints on bilayer undulations (0.2 and

0 kJ mol�1 nm�2, respectively) were run for 5 ms.

(A) Side-view snapshots of the final structure of

each simulation. The lipids are colored according

to the same scheme as in Fig. 1. (B) The average

bilayer undulations with time are shown as the

average angle between the bilayer normal of each

lipid (from the fitted bilayer surfaces) and the

z-axis. (C) Size histograms of cholesterol-enriched

domains in the outer leaflet of each simulation.
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domains in the Average PM, the registration between the leaf-
lets goes up, whereas in the Brain, the leaflets rapidly become
somewhat anti-registered (Fig. 3; Fig. S5). However, the
domain size distribution turned out to be very sensitive to
the level of bilayer undulation (Fig. 4; Fig. S6). In particular,
for the Brain membrane, high-amplitude undulatory modes
are easily accessed, leading to coalescence of domains.

There are many interesting questions raised by the
marked differences and similarities between the PMs.
What is the acceptable range of changes in bilayer proper-
ties before cellular function is impaired? Are PM proteins
such as ion channels and neuroreceptors sensitive to the
presence of smaller, more transient, deregistered membrane
domains? Is the only function of high cholesterol content in
neurons to make the bilayers less permeable to ions, or are
there additional benefits? Despite huge leaps forward in the
fields of computational membrane studies, it is clear that in
terms of understanding the full complexity and adaptability
of cell-specific PMs, we have barely scratched the (highly
complicated!) surface.

SUPPORTING MATERIAL
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