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ARTICLE

Dense and accurate whole-chromosome
haplotyping of individual genomes
David Porubsky1,8, Shilpa Garg2,3,4, Ashley D. Sanders5,6, Jan O. Korbel 5, Victor Guryev1,

Peter M. Lansdorp1,6,7 & Tobias Marschall 2,3

The diploid nature of the human genome is neglected in many analyses done today, where a

genome is perceived as a set of unphased variants with respect to a reference genome. This

lack of haplotype-level analyses can be explained by a lack of methods that can produce

dense and accurate chromosome-length haplotypes at reasonable costs. Here we introduce

an integrative phasing strategy that combines global, but sparse haplotypes obtained from

strand-specific single-cell sequencing (Strand-seq) with dense, yet local, haplotype infor-

mation available through long-read or linked-read sequencing. We provide comprehensive

guidance on the required sequencing depths and reliably assign more than 95% of alleles

(NA12878) to their parental haplotypes using as few as 10 Strand-seq libraries in combi-

nation with 10-fold coverage PacBio data or, alternatively, 10X Genomics linked-read

sequencing data. We conclude that the combination of Strand-seq with different technologies

represents an attractive solution to chart the genetic variation of diploid genomes.
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Human genomes are diploid and possess two copies of each
chromosome—one paternal and one maternal copy. At
the DNA sequence level, these two homologous copies

differ at a number of loci along each chromosome. Such het-
erozygous variants include single nucleotide variants (SNVs),
short indels, as well as larger structural variants such as deletions,
duplications, or inversions that change the copy number or
orientation of segments of the genome. Discriminating and
phasing alleles to their respective parental homolog is valuable in
many areas of human genetics. For instance, resolving haplotype
structure is required to track inheritance in human pedigrees and
populations1, map regions of meiotic recombination2,3, identify
variant-disease associations4, detect instances of compound het-
erozygosity, and study allele-specific events like DNA methylation
or gene expression5. In particular, long-range haplotype infor-
mation is needed to systematically study epistatic interactions
between variants in enhancers and variants in their target genes
or their promotors. This is critical as many variants that have
been linked to traits in genome-wide association studies reside in
(super) enhancers6 and enhancer-specific variants can show
epistatic effects among one another7, as well as with their target
genes that are beyond the reach of linkage disequilibrium8. To
better understand these epistatic interactions, we must move
beyond merely locating variant alleles and additionally study their
functional relationships over long distances. Constructing
genome-wide chromosome-length haplotypes is therefore the
clear next step to build a more complete picture of genome
architecture and function.

Currently, methods used to chart the unique variation of
individual human genomes rely largely on second- and third-
generation DNA sequencing and can include specialized

experimental protocols9–13. Sequencing technologies sample the
human genome in the form of relatively short molecules (reads)
and every read that spans at least two heterozygous variants can
essentially be considered as a “mini haplotype” that can be
assembled into longer haplotype segments by partially over-
lapping reads spanning the same variable locus4. To this end,
haplotype-informative reads need to be partitioned into two
disjoint sets that represent the two haplotypes. This process,
however, is complicated by errors in sequencing as well as
genotyping. For these reasons, assembling haplotypes directly
from sequencing data is computationally challenging, and the
resulting optimization problems are provenly hard14,15.
Notwithstanding, a number of computational approaches for
read-based phasing have recently been developed16 and,
particularly, progress on fixed-parameter tractable algorithms has
enabled solving read-based phasing in practice17–19, for instance
through the implementations available in the software package
WhatsHap20. Beyond phasing reads aligned to a reference
genome, various approaches for haplotype-resolved de novo
assembly have been explored21–25.

However, all approaches to reconstruct haplotypes from
sequencing reads, be it reference-based or reference-free, come
with the intrinsic limitation that the distance between subsequent
heterozygous markers can be larger than the read length itself.
While long-read sequencing (such as PacBio SMRT26 and Oxford
NanoPore MinION27), or linked-read data (such as those
provided by 10X Genomics28) help to mitigate this issue, these
technologies fail to phase over longer stretches of homozygosity,
repeat-rich areas including segmental duplications, and cen-
tromeres. Thus, specialized techniques that enable homologous
chromosomes to be discriminated are required to physically

Experimental
phasing

SNV density
Cost/labor

Read-based
phasing

SNV density
Cost/labor

Chromosome 1 example 

Heterozygous alleles
Centromere
Unknown phase

Homozygosity region

Gene
Enhancer

0.0

0.1

0.2

0.3

PacBio only 10xGen only Illumina only StrandS only

%
 o

f s
w

itc
h 

er
ro

rs

0

25

50

75

100

PacBio only 10xGen only Illumina only StrandS only

57.6%77.8%97.2%98.8%

0.13% 0.3% 0.32%0.025%

Length of the longest haplotype (bp) :
PacBio       -  1711716 bp
10xGen      -   8582136 bp  
Strand-seq -  248671482 bp

Illumina
only

PacBio
only

10xGen
only

StrandS
only

0.06% 30,204

1927

199

1

1.25%

4.66%

57.6%

0 1

10
0

10
,0

0020 40 60

SNVs in the
largest segm. 

# of phased
segments

Illumina      -  15994 bp

%
 o

f c
ov

er
ed

 b
en

ch
m

ar
k 

S
N

V
s

a b

c d

Fig. 1 Phasing efficacy of read-based and experimental phasing approaches using chromosome 1 as an example. a Two homologous chromosomes are
shown (blue and black). Experimental phasing approaches like Strand-seq can connect heterozygous alleles along whole chromosomes, however, at higher
costs (time and labor) and lower density of captured alleles. In contrast, read-based phasing can deliver high-density haplotypes, but only short haplotype
segments are assembled with an unknown phase between them. b Barplot showing the percentage of phased variants, for each sequencing technology,
from the total number of reference SNVs (Illumina platinum haplotypes). c Graphical summary of phased haplotype segments for Illumina, PacBio, 10X
Genomics, and Strand-seq phasing shown for chromosome 1. Each haplotype segment is colored in a different color with the longest haplotype colored in
red. Side bar graph reports the percentage of SNVs phased in the longest haplotype segment. d Accuracy of each independent phasing approach measured
as the percentage of switch errors in comparison to benchmark haplotypes
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connect alleles across whole chromosomes3,29,30. As an
alternative to whole-chromosome separation, chromatin capture
(Hi-C) methods31 can be employed to infer long-range haplotype
information, based on the assumption that a chromosome will be
cross-linked to itself more often than to its homolog13. Recently,
Hi-C data have been used in combination with other sequencing
methods for long-range phasing32,33. However, it has been shown
that to generate a reliable long-range haplotype scaffold, relatively
high sequence coverage (ideally ~90-fold) is needed to reduce bias
caused by crosslinks between non-homologous chromosomes32.
In particular, because these haplotypes need to be inferred
statistically, the probability that two heterozygous variants
are correctly phased relative to each other deteriorates with
increasing chromosomal distances.

Here, we introduce a strategy to obtain dense and global
haplotypes that span centromeres, homozygosity regions, and
genome assembly gaps, while keeping error rates, costs, and labor
at minimum. To this end, we harness the long-range phasing
information provided by single-cell template strand sequencing
(Strand-seq)34,35. Strand-seq is an effective method to assemble
highly accurate chromosome-length haplotypes, albeit with lower
density of phased alleles in comparison to read-based phasing9.
Unlike other haplotyping methods, Strand-seq by design distin-
guishes parental homologs based on the directionality of single-
stranded DNA. Therefore, Strand-seq is able to deliver global
haplotypes, and its capability to correctly phase two variants with
respect to each other does not depend on their distance. To fully
exploit this advantage, while at the same time generating dense
haplotypes that contain virtually all heterozygous SNVs, we
designed a novel unified statistical framework to combine Strand-
seq data with short-read, long-read, or linked-read sequencing
data. Previously, Strand-seq data were used for phasing on its
own, resulting in global yet sparse haplotypes9. We demonstrate
how the long-range phase information inherent to Strand-seq
data can be leveraged to bridge phased segments obtained from
Illumina, PacBio, or 10X Genomics sequencing data into con-
tiguous and global haplotypes that span whole chromosomes. We
further offer extensive experimental guidance on favorable com-
binations of the number of used Strand-seq libraries and the
depth of PacBio or Illumina coverage, and thus enable con-
siderable reductions in costs and labor—yielding a novel,
affordable, and scalable approach for reconstruction of haplotype-
resolved individual genomes.

Results
Experimental design and data set description. To explore a new
integrative phasing strategy, with the aim of obtaining dense and
accurate chromosome-length haplotypes, we used sequencing
data available for a well-studied individual (NA12878). The
NA12878 genome has been extensively sequenced using multiple
technologies, providing high-coverage public sources of sequence
information (see “Methods” section). In this study, we focused on
read-based phasing data generated from Illumina short-read
sequencing and PacBio technology, as they represent current
standards for short- and long-read sequencing, respectively
(Illumina short-read sequencing is for simplicity referred to as
“Illumina data”). The Illumina data set was sequenced to an
average depth of 41.1× coverage with a median insert size of
433 bp, and the PacBio data set was sequenced to 45.8× coverage
with an average read length of ~4.4 kb (Supplementary Table 1).
In addition, we evaluated the performance of 10X Genomics, an
emergent linked-read technology. Since none of these technolo-
gies alone provides chromosome-length haplotype information,
we additionally incorporated single-cell Strand-seq data9, which
has the capacity to scaffold haplotype information obtained from

other data types (Fig. 1a). Here, we used 134 single-cell libraries
sequenced to an average depth of 0.037× coverage per library
using a paired-end sequencing protocol (see “Methods” section
and Supplementary Table 2). To evaluate the phasing accuracy of
haplotypes reported in this study, we used the publicly available
Illumina platinum haplotypes generated for the same individual
(NA12878) as a “reference” standard (see “Methods” section).
NA12878 “reference haplotypes” were completed by genetic
haplotyping using highly accurate genotypes from 17 individuals
of a three-generation pedigree36, which renders it an ideal gold-
standard set for haplotype comparisons. We confirmed that sites
and genotypes are in very good agreement with Genome in a
Bottle calls (Supplementary Note 1). However, it should be noted
that, due to stemming from short reads, this SNV set most likely
lacks some variants at repetitive or complex genomic loci (e.g.,
recent segmental duplications).

Phasing performance of individual technologies. To indepen-
dently assess the phasing performance of each technology, we
assembled haplotypes directly from sequencing reads (Illumina or
PacBio) using WhatsHap (see “Methods” section). The main
advantage of this algorithm is that it solves the minimum error
correction (MEC) problem optimally with a runtime that scales
linearly in the number of variants (alleles) and is independent of
the read length. Therefore, it performs well with short-read
technologies (Illumina) and is especially suited for use with long
reads (PacBio, Oxford NanoPore). 10X Genomics haplotype
segments were assembled by the vendor using the 10X Long-
Ranger pipeline. To phase multiple Strand-seq libraries, we have
developed a new phasing algorithm, implemented in the R
package StrandPhaseR (see “Methods” section and Supplemen-
tary Fig. 1). In comparison to our previously published phasing
algorithm9, the current algorithm is provided as an easy to use R
package and implements a more robust heuristic approach to
solve the MEC problem for Strand-seq data. The haplotypes
generated by each technology (i.e., Illumina, PacBio, 10X Geno-
mics, and Strand-seq) were compared to the Illumina platinum
reference haplotypes to establish the density, completeness, and
accuracy of the phased blocks delivered by each platform inde-
pendently. For a more streamlined exposition, we focus on results
obtained for chromosome 1 in the following analysis and present
numbers aggregated across all chromosomes in a concluding
discussion.

We found both PacBio and 10X Genomics technologies
capable to phase nearly the complete set of variants listed in
the reference haplotypes (98.8 and 97.2%, respectively), whereas
Illumina alone phased only 77.8% and Strand-seq only 57.6% of
the reference SNVs (Fig. 1b). Note that for 10X Genomics data,
we used the variant set discovered, genotyped, and phased by
10X’ LongRanger software and hence variants not discovered
decrease our estimate of completeness. The comparatively low
percentage for Strand-seq can be explained by the relatively low
sequencing coverage employed, combined with a slight uneven-
ness in genomic coverage (Supplementary Fig. 2). For all
technologies except Strand-seq, only short-range haplotypes were
assembled using the read-based phasing, with a limited number
of alleles phased per haplotype segment (Fig. 1c). For instance, we
found >30,000 unconnected haplotype segments assembled from
Illumina data, with the largest segment of 16 kb (median ~500 bp)
harboring only 0.06% of the phased variants. This is because
heterozygous variants that are further apart than the length of the
sequenced DNA fragments cannot be connected, resulting in
multiple disjoint haplotype segments with an unknown phase
between them. Improvements were achieved using longer
sequencing reads from PacBio technology, which effectively
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decreased the number of phased haplotype segments (1927) and
increased their size; the largest segment of 1.7 Mb (median
~21 kb) containing 1.25% of all SNVs on chromosome 1 (Fig. 1c).
10X Genomics produced even longer haplotype segments than
both Illumina and PacBio data. The largest haplotype segment
contained almost 5% of the heterozygous SNVs and spanned
more than 8.5 Mb (median ~241 kb). Still, the haplotypes of
chromosome 1 came in 199 disconnected segments and, hence,
an end-to-end phasing was not achieved (Fig. 1c). That is, the
linked reads from 10X Genomics were not able to connect distant
heterozygous sites, for instance at centromeres, genome assembly
gaps, or regions of low heterozygosity (Fig. 1a). This is in contrast
to the global, albeit sparse, haplotypes produced by Strand-seq.
Although the completeness of Strand-seq haplotypes was lower
compared to the other technologies, all phased variants were
placed into a single haplotype segment spanning the entire length
of chromosome 1 (Fig. 1b, c).

Finally, we assessed the accuracy of each technology by
calculating the extent of switch errors in comparison to the
reference haplotypes. High-phasing accuracy of each technology
was exemplified by the low percentage (<0.4%) of switch errors
(Fig. 1d) with PacBio and 10X Genomics being the most accurate.

Since no single-phasing technology was sufficient to generate
both global and dense haplotypes, we explored integrative
phasing approaches that combine global, sparse haplotyping as
afforded by Strand-seq technology with local high-density
haplotypes from read-based phasing.

Integrative global phasing strategy. To generate more complete
and dense haplotypes, we sought to establish a novel and inte-
grative phasing approach using a combination of Strand-seq data
with other data types. That is, we aim to enrich the sparse
yet global phasing from Strand-seq using the dense haplotype
information provided by Illumina, PacBio, or 10X Genomics.
However, integrating phase information across platforms poses a
non-trivial statistical and algorithmic challenge, which we
resolved by treating the sparse Strand-seq haplotypes generated
by StrandPhaseR as one row in the fragment matrix processed by
WhatsHap (see “Methods” section). The other rows correspond
to sequencing reads (PacBio, Illumina) or pre-assembled haplo-
type segments (10X Genomics) (see “Methods” section). This
allows, for the first time, for integrative phasing by solving the
corresponding optimization problem (weighted MEC) optimally
(Fig. 2). We performed extensive experiments to demonstrate that
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Patterson et al. 2015). a The columns of the matrix represent 34 heterozygous variants (SNVs). Continuous stretches of zeros and ones indicate alleles
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c Final haplotypes are exported for both groups of optimally partitioned reads
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this approach enables excellent results in practice, as we describe
in the following section.

To discover the most beneficial combinations of Strand-seq
with Illumina or PacBio data, we explored combinations of
variable numbers of Strand-seq libraries together with increasing
depths of sequencing reads. To this end, we downsampled the

number of Strand-seq libraries used in the analysis by randomly
selecting subsets of libraries (5, 10, 20, 40, 60, 80, 100, or 120)
from the original (N= 134) data set. Similarly, we randomly
downsampled the sequencing reads from the Illumina and PacBio
data sets to a lower genomic coverage (2, 3, 4, 5, 10, 15, 25, and
30-fold). We applied our integrative phasing strategy to all pairs
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of downsampled Strand-seq libraries and the downsampled
PacBio/Illumina data sets to assess the completeness (i.e., % of
phased SNVs), contiguity (length of the largest haplotype
segment), and accuracy (agreement with the “reference” stan-
dard) of each assembled haplotype.

We found that the combination of Strand-seq haplotypes with
any of the other data types markedly increased the number of
variants that were phased in the largest haplotype segment, albeit
to differing degrees (Fig. 3a). Specifically, for the Illumina data,
we observed the completeness of each haplotype increased
gradually with the number of Strand-seq libraries used in the
experiment, whereas the depth of coverage of Illumina data had
only a minor but noticeable effect (Fig. 3a). In contrast, the
PacBio data showed a significant improvement in haplotype
completeness at 10-fold genomic coverage, regardless of the
number of Strand-seq libraries used (Fig. 3a, black arrowhead).
Similar results were seen when we combined Strand-seq with the
10X Genomics haplotypes (Fig. 3a). In all cases, integration of
Strand-seq phasing drastically improved the contiguity of the
haplotype spanning chromosome 1 (Fig. 3b). When combining
Illumina data with 40 Strand-seq libraries, >65% of the reference
variants could be phased accurately (Fig. 3b, black asterisk); 5497
haplotype segments (collectively representing 19.7% of the phased
SNVs), however, remained disconnected, even when integrating
the complete (N= 134) Strand-seq data set. These results confirm
that Illumina data are of limited utility for haplotype phasing.

In contrast, as few as 10 Strand-seq cells combined with 10-fold
PacBio coverage were sufficient to phase more than 95% of all
heterozygous SNVs into a single haplotype segment (Fig. 3b,
black asterisk), and merely five Strand-seq single-cell libraries
were required to connect all 10X Genomics haplotypes. However,
we recommend at least 10 Strand-seq libraries (Fig. 3b, black
asterisk) to ensure that at least one haplotype-informative (i.e.,
Watson–Crick type) cell exists for every chromosome with high
probability (p= 0.978). This global haplotyping was unique to
Strand-seq, as the combination of 10X Genomics with PacBio
reads proved inefficient to join locally phased segments (Fig. 3b).
That is, the added value of combining these two technologies is
limited as the haplotype segments tend to break at similar
locations.

Finally, we assessed the phasing accuracy of the assembled
haplotypes (the longest phased segment only) (Fig. 3c). Similar to
the completeness of the haplotype, the accuracy of Illumina
phasing gradually increased with sequencing depth and Strand-
seq library number, indicating that Illumina coverage of 30-fold
and higher is advisable (Fig. 3c). We further observed slightly
elevated switch error rates at lower PacBio depths, which
plateaued at 10-fold coverage (Fig. 3c, black arrowhead). This is
likely caused by allele uncertainty resulting from error-prone
PacBio reads, especially at lower sequencing depths. The lowest
switch error rate (<0.2%) was achieved by the combination of
Strand-seq with 10X Genomics data (Fig. 3c, right panel).

Switch error rates reflect local inaccuracies expressed by the
number of pairs of consecutive heterozygous variants that are
wrongly phased with respect to each other. These error rates are
not necessarily informative about global haplotype accuracy,

which largely depend on how switch errors are spatially
distributed (see “Methods” section and Supplementary Fig. 3a).
Note that one single switch error implies that all following alleles
(up to the next switch error) are assigned to the wrong haplotype.
Since our goal is to generate dense and global haplotypes, we
additionally report the Hamming error rate of the largest
haplotype segment in comparison to the reference haplotypes
(see “Methods” section and Supplementary Fig. 3b). Illumina
reads are highly accurate and therefore we observed lower impact
of sequencing depth on the global accuracy of the largest-phased
haplotypes (Fig. 3c, Hamming error rate). In contrast, PacBio
reads exhibited higher sequencing error rates, which
translated into higher switch error rates at low sequencing
depths. Using 10-fold PacBio coverage combined with at least 10
Strand-seq cells yielded highly accurate global haplotypes (Fig. 3c,
black arrowhead), while lower coverages led to markedly worse
results. Furthermore, the combination of Strand-seq with 10X
Genomics haplotypes yielded highly accurate global haplotypes,
already at the minimal amount of Strand-seq libraries (Fig. 3c,
right panel).

Taken together, these results illustrate that Strand-seq can be
used to phase existing sequence data and build dense, global and
highly accurate haplotypes. Indeed, we found our approach
highly efficient for genome-wide phasing (Fig. 4a). Using a
combination of 40 Strand-seq libraries with 30-fold Illumina
coverage, or 10 Strand-seq libraries with either 10-fold PacBio
coverage or the 10X Genomics haplotypes, we successfully
scaffolded chromosome-length haplotypes for every autosome
of NA12878. The completeness of the genome-wide haplotypes
measured for the largest haplotype segment reached 95.7 and
69.1% using PacBio and Illumina reads, respectively (Fig. 4a). We
further demonstrated the high accuracy of these haplotypes on
the local and global scales, which showed low switch (<0.45%)
and Hamming error (<0.99%) rates for both the PacBio and
Illumina combination (Fig. 4a). Whereas scaffolding the 10X
Genomic haplotypes produced the most accurate local haplotypes
(switch error rate of 0.05%), global performance suffered, and the
highest Hamming error rate (2.18%) was calculated for this
combination. Nevertheless, using Strand-seq to scaffold any of the
data sets remarkably improved the completeness, contiguity, and
accuracy of phasing for each chromosome, highlighting our
integrative phasing strategy as a robust method for building dense
and accurate whole-genome haplotypes (see “Data availability” to
access phased SNVs for NA12878 using integrative phasing
approach presented in this study).

Discussion
Strand-seq has been successfully prepared from a wide range of
cell types taken from various organisms9,34,37 and is currently
being adopted by an increasing number of researchers. The
integrative phasing strategy we introduce here paves the way to
leveraging Strand-seq to obtain chromosome-length, dense and
accurate haplotypes at a manageable cost and labor investment.
Based on the comprehensive evaluation presented above, we
recommend three different combinations of Strand-seq with a
complementary technology (Fig. 4b).

Fig. 3 Various combinations of Strand-seq and read-based phasing using chromosome 1 as an example. Plots show haplotype quality measures for various
combinations of Strand-seq cells (5, 10, 20, 40, 60, 80, 100, 120, 134) with selected coverage depths of Illumina or PacBio sequencing data (2, 3, 4, 5, 10,
15, 25, 30, >30-fold), or in combination with 10X Genomics haplotypes. a Assessment of the completeness of the largest haplotype segment as the % of
phased SNVs. b Assessment of the contiguity of the largest haplotype segment as the length of the largest haplotype segment. Every phased haplotype
segment is depicted as a different color, with the largest segment colored in red. Black asterisks point to a recommended depth of coverage of a given
technology in combination with Strand-seq. c Assessment of the accuracy of the largest haplotype segment as the level of agreement with the “reference”
standard. Black arrowheads highlight PacBio sequencing depth where accuracy of final haplotypes does not substantially improve.
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As one option, one can combine Strand-seq with standard
Illumina sequencing. Although the power of Illumina data for
phasing is limited, mainly due to short insert sizes and read
lengths, it still has some merit for adding variants to Strand-seq
haplotypes. This might be of interest to many researchers since
Illumina sequencing still constitutes the most common technol-
ogy and there is an abundance of Illumina sequence data cur-
rently available for many sample genomes. To completely phase
these pre-existing data, we recommend generating at least 40
Strand-seq libraries for the sample genome, which is sufficient to
phase >68% of all heterozygous variants genome-wide with good
accuracy (switch error 0.45%, Hamming error 0.99%), see Fig. 4a
and Supplementary Table 3.

To build more complete haplotypes, we recommend combin-
ing Strand-seq with either PacBio or 10X Genomic technologies.
A minimum of 10-fold PacBio coverage coupled with 10 Strand-

seq libraries will phase >95% of heterozygous variants genome-
wide with excellent accuracy (switch error 0.25%, Hamming error
0.91%). Long-read sequencing has been demonstrated to be
particularly powerful for resolving structural variation38,39 and,
although not explored here, might hence be the best choice when
the resolution of haplotypes, structural variation, and repetitive
regions is desired. However, the cost of this platform is still
comparatively high. Therefore, until long-read technologies have
become standard practice, we recommend combining 10 Strand-
seq libraries with 10X Genomics technology. We found this
combination yielded the most complete (>98% heterozygous
variants genome-wide) haplotypes with the lowest switch error
rate (0.05%). We did observe a slightly increased Hamming error
rate (2.18%), however, which indicates that some genomic
intervals are placed on the wrong haplotype, most likely due to
switch errors in the pre-phased haplotype segments (produced by
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10X Genomics) used as input. Overall, combining Strand-seq
with 10X Genomics is the most cost-effective (in terms of time
and money) strategy to phase an individual genome at extra-
ordinary accuracy.

In this study, we used pre-phased 10X Genomics haplotype
segments because using the raw sparse linked-read data leads to
algorithmically challenging wMEC problem instances, which
presently cannot be solved optimally by WhatsHap. This implies
that variants that have not been discovered by LongRanger are
considered unphased (and hence decrease “completeness”) and
that the error rates can likely be improved further by solving the
combined instance resulting from Strand-seq and 10X Genomics
data. We therefore consider processing the 10X Genomics raw
data an important topic of future research.

In this paper, we focused on single individual haplotyping to
avoid the biases and limitations of reference-panel-based phasing
as well as the need to have access to genetic material of the
parents, which might not be available in all settings, including
clinical contexts. In cases when high-coverage sequencing data of
the parents are available, such data sets can be used to enhance
read-based phasing and provide long-range phase information40

(Supplementary Note 3).
Strand-seq relies on BrdU incorporation during DNA repli-

cation and its use is therefore restricted to dividing cells. To
provide long-range phase information for single samples
in situations where growing cells are not available, Hi-C can
constitute an alternative solution able to yield chromosome-
spanning haplotypes32. However, the required coverage, and
hence sequencing cost, is considerably higher for Hi-C than for
Strand-seq. While the 134 Strand-seq libraries we used here reach
a cumulative sequencing coverage of around 5×, markedly higher
coverages are needed for Hi-C32.

Our results demonstrate that dense and accurate chromosome-
length haplotypes can be generated at manageable costs. This
development brings haplotype-level analyses closer to a routine
practice, which can be a key for understanding disease pheno-
types. We emphasize that the strategy we present here works for
single individuals without relying on other family members or
statistical inference from haplotype reference panels. In contrast
to such population-based phasing approaches, the method we
advocate here allows insights into rare and de novo variants and
long-range epistatic effects.

Our future efforts will focus on de novo assembly of haplotype-
resolved genomes without the alignment to a reference genome.
This will provide us with true diploid representations of indivi-
dual genomes, which will have profound implications to study
variability of personal genomes in health and disease.

Methods
Publicly available data sets used in this study. Illumina reads42,43 were obtained
from 1000 Genome Project Consortium (http://ftp.1000genomes.ebi.ac.uk/vol1/
ftp/phase3/data/NA12878/high_coverage_alignment/). PacBio reads41 were
downloaded from Genome in a Bottle Consortium (GIAB) (http://ftp.trace.ncbi.
nlm.nih.gov/giab/ftp/data/NA12878/NA12878_PacBio_MtSinai/
sorted_final_merged.bam). Pre-assembled 10X Genomics haplotypes (produced on
the Chromium platform with Chromium Genome v1 reagents, sequenced on an
Illumina HiSeq X Ten and processed with LongRanger 2.1.0) were downloaded
from 10X Genomics website (https://support.10Xgenomics.com/genome-exome/
datasets/NA12878_WGS_210) and filtered for heterozygous and PASS filter SNVs.
Strand-seq libraries9 have been downloaded from the European Nucleotide Archive
(http://www.ebi.ac.uk/ena), accession number: PRJEB14185. Alternatively, aligned
Strand-seq data used in this study can be obtained from Zenodo (doi:10.5281/
zenodo.830278). As a gold standard, we downloaded pedigree-based haplotypes of
NA12878 released as part of the Illumina platinum genomes (Version: 2016-1.0
from 6 June 2016) (http://www.illumina.com/platinumgenomes/).

StrandPhaseR pipeline. To build whole-genome haplotypes from Strand-seq data,
we developed a new sorting-based pipeline, called StrandPhaseR. StrandPhaseR
implements an improved phasing algorithm based on a binary sorting strategy of

two parallel matrices, storing haplotype information obtained from single-cell
Strand-seq libraries. The analysis pipeline takes as input aligned BAM (binary
alignment map) files from single cells, which were initially filtered for duplicate and
low mapping quality reads (mapq <10). Haplotype-informative WC regions were
localized in every Strand-seq library by counting the number of Crick (forward,
“+”) and Watson (reverse, “−”) reads in equally sized regions (default 1 Mb). We
used Fisher’s exact test to calculate the probability that a region contained
approximately equal numbers of Crick and Watson reads and agreed with the
expected 50:50 ratio of a WC region37. Alleles at variable positions (supplied as a
set of SNVs obtained from Illumina platinum haplotypes) were identified sepa-
rately for W and C reads in every informative region to generate low-density
single-cell haplotypes that are then sorted by the phasing algorithm. The partial
single-cell haplotypes are used to fill two matrices, where rows represent cells and
columns represent covered variable positions (SNVs) in any given cell (Supple-
mentary Fig. 1). Initially, one matrix stores all variable positions found within the
Watson templates, and a second matrix stores all variable positions found within
the Crick templates. Cells in the matrices are sorted in decreasing order based on
the number of covered variants (i.e., depth of coverage). Initially, a score of each
column is calculated as the sum of all covered variants minus the most abundant
variant. This represents the level of disagreement across all cells for the given SNV
in the column. The sum of scores for each column represents the overall score of
the matrix, and a lower matrix score represents a higher level of concordance
across all SNV positions. Once the score of both matrices is determined, all SNVs
in the first row (i.e., those belonging to the first cell) are swapped between the two
matrices. In essence, this exchanges the Watson and Crick template strands of the
cell within the matrix, to test whether there is a higher level of agreement across the
phased SNVs found for all the cells. To determine this, the matrix scores are
recalculated and if the scores are lower than the previous scores, the change is kept,
otherwise the change is reversed. The algorithm continues with the second row.
Again, the covered variants of the second cell are swapped between matrices, the
matrix score is recalculated and the decision to preserve or reverse the change is
made. This is repeated through all rows (cells) of the matrix, sorting the single-cell
haplotypes within both matrices to reduce the number of conflicting alleles within
each column. We repeated this sorting process twice, after which we did not
observe any further changes. The resulting haplotypes are reported as the con-
sensus allele found across all the cells for each column of the matrices. Ideally, there
is only one allele present for every variable site in each matrix, however sporadic
sequencing errors or cell-specific artefacts can introduce discrepancies. Lastly, any
missing alleles at heterozygous sites are rescued by searching within the “unin-
formative” reads (i.e., those from WW and CC regions) present in Strand-seq
libraries and filled in. The final consensus haplotypes are exported in a standar-
dized VCF format, with each variable position that has an assigned Phred quality
score and entropy value reflecting the confidence in the given allele. All phasing
steps of StrandPhaseR have been implemented into a single open-source R package
(see “Code availability”).

Downsampling of sequencing data. To assess different combinations of Strand-
seq libraries (w.r.t. number of single-cell libraries) with read data (w.r.t. depth of
coverage), we performed a systematic analysis of the phasing performance for
various subsets of each data set. To achieve this, we downsampled the original
publicly available data sets consisting of 134 single-cell Strand-seq libraries9, 45.8×
coverage long-read PacBio data41, and 41.1× coverage short-read Illumina
data42,43. To simulate Strand-seq data sets consisting of reduced numbers of single
cells, we randomly selected subsets of either 5, 10, 20, 40, 60, 80, 100, or 120
libraries from the original number of 134 libraries in the data set. Read data from
the PacBio and Illumina data sets were downsampled using Picard (picard-tools-
1.130) to meet a defined depth of coverage of either 2, 3, 5, 10, 15, 25, or 30-fold.
The downsampling was performed for five independent trials to account for
variability in downsampled data sets, and the average phasing performance across
all trials was reported (as described below).

Integrative phasing using WhatsHap. As an input for integrative phasing,
Strand-seq haplotypes were phased using StrandPhaseR (exported in VCF format)
and combined with either PacBio or Illumina alignments (both stored in BAM
format) or 10X Genomics pre-phased haplotype segments (stored in the VCF
produced by LongRanger) to phase heterozygous variants obtained from Illumina
platinum genomes. We achieved this integrative phasing across platforms by sol-
ving the weighted MEC (wMEC) problem using WhatsHap19,20.

Mathematically, aligned reads from Illumina or PacBio (or pre-phased 10X
Genomics haplotype segments) and sparse Strand-seq haplotypes are jointly
represented in the form of a fragment matrix, where each row represent either one
reads (in case of Illumina and PacBio), one pre-phased haplotype segment (in case
of 10X Genomics), or one sparse global haplotype (in case of Strand-Seq data) and
columns represent the variant sites (Fig. 2). The matrix is filled with 0, 1, and “−”
entries, where 0 and 1 indicate that the corresponding read supports the reference
or alternative allele, respectively, and “−” means the information is missing (e.g.,
because a read does not cover this variant site). WhatsHap selects a subset of rows
and solves the wMEC problem optimally on these rows, as described earlier20. The
result is a maximum likelihood bipartition of rows, which corresponds to the two
sought haplotypes.
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For all analyses, WhatsHap was provided with a reference genome (option
“--reference”) to enable re-alignment-based allele detection when constructing the
fragment matrix from sequencing reads. This has been shown to significantly
improve performance for PacBio reads20.

Quality metrics of assembled haplotypes. To assess the quality of assembled
haplotypes in this study, we calculated different metrics described in the following.

Completeness: The process of haplotyping establishes phase relations between
pairs of consecutive heterozygous variants. We call each such pair a “phase
connection.” For each haplotype segment produced by a technology (or
combination of technologies), we therefore count the number of phase
connections, which is equal to the number of heterozygous markers that make part
of such a haplotype segment minus one. To measure the completeness of a phasing,
we sum the number of phase connections across all haplotype segments and divide
by the maximum possible number of phase connections, which is equal to the
number of heterozygous variants on a chromosome minus one.

Switch error rate: The switch error rate is the fraction of phase connections for
which the phasing between the two involved heterozygous variants is wrong
(Supplementary Fig. 3a).

Largest haplotype segment: In this study, we are interested in haplotypes that
span the whole length of a chromosome. To measure the completeness of phasing,
we report the fraction of heterozygous variants that are part of the largest haplotype
segment.

Largest haplotype segment Hamming rate: To assess whether haplotypes are
correct over long genomic distances, we only consider the largest haplotype
segment and compute the Hamming distance between true and predicted
haplotypes (Supplementary Fig. 3b), divided by the total number of heterozygous
variants in this haplotype segment. That is, the Hamming error rate is equal to the
fraction of wrongly phased heterozygous variants. Note that, only one switch error
(e.g., in the middle of a chromosome) can result into a very high Hamming
distance and hence the Hamming distance is a much more stringent quality
measure. While the switch error rate assesses whether haplotypes are correct
locally, i.e., between pairs of neighboring heterozygous variants, the Hamming
distance assesses whether haplotypes are correct globally.

Data availability. We have made the final haplotypes resulting from using 134
Strand-seq cells and full PacBio coverage available via the GIAB FTP site (http://
ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/analysis/
MPG_WhatsHap_phasing_07202017/).

Code availability. The StrandPhaseR software is publicly available through GitHub
(https://github.com/daewoooo/StrandPhaseR). The WhatsHap software is publicly
available through BitBucket (https://bitbucket.org/whatshap/whatshap). The com-
putational pipeline to run experiments is available at (https://github.com/
daewoooo/IntegrativePhasingPaper).
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