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Abstract 

Gas-aqueous liquid-oil three-phase flow was generated in a microchannel with a double 

T-junction. Under the squeezing of the dispersed aqueous phase at the second T-junction (T2), the 

splitting of bubbles generated from the first T-junction (T1) was investigated. During the bubble 

splitting process, the upstream gas-oil two-phase flow and the aqueous phase flow at T2 fluctuate 

in opposite phases, resulting in either independent or synchronous relationship between the 

instantaneous downstream and upstream bubble velocities depending on the operating conditions. 

Compared with two-phase flow, the modified capillary number and the ratio of the upstream 

velocity to the aqueous phase velocity were introduced to predict the bubble breakup time. The 

critical bubble breakup length and size laws of daughter bubbles/slugs were thereby proposed. 

These results provide an important guideline for designing microchannel structures for a precise 

manipulation of gas-liquid-liquid three-phase flow which finds potential applications among 

others in chemical synthesis. 

Key words: microreactor, microfluidics, multiphase flow, bubble phenomena, bubble breakup 

 

Introduction 

Gas-liquid-liquid three-phase reactions are commonly encountered in various chemical 
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syntheses, like hydrogenation1-3, hydroformylation4 and carbonylation5. These reactions usually 

involve complex mass transfer steps6,7, including first the absorption of reactive gases (e.g., H2, 

syngas or CO) into the organic substrate phase and then the transfer of dissolved gases to the 

aqueous phase where a (homogeneous) catalyst is usually contained. This feature causes the 

overall reaction performance to be likely hindered by mass transport limitation. Therefore, an 

effective dispersion of reactants and large interfacial area are required to intensify 

gas-liquid-liquid mass transfer thereof. However, conventional reactors (e.g., stirred tank reactors) 

can hardly fulfill these requirements, leading to low reaction efficiency. Besides, these reactors 

usually exhibit poor controllability over the phase dispersion (e.g., by the presence of a broad 

distribution of bubble/droplet sizes, channeling and dead zones), and hence low reproducibility 

and poor predictability of product quality. 

Microreactor is an attractive reactor type for carrying out these gas-liquid-liquid reaction 

processes by enabling effective mass transfer8-11 and precise process control12-14. Yap et al.2,3 have 

shown that a series of hydrogenation reactions operated in a gas-liquid-liquid segmented flow 

(characterized by the alternate passage of bubbles and droplets in a continuous liquid carrier) 

yielded higher conversion and yield compared with its batch counterpart. Nevertheless, these 

reactions still remain mass transfer limited3 due to the non-optimized dispersion of bubbles and 

droplets. Their microreactor design was simple (i.e., using capillary setups) and somehow 

arbitrary given a serious lack of common knowledge in the manipulation of three-phase flow in 

this field. In fact, their experiments already showed that shorter continuous phase segments 

improved mass transfer and reaction performance. Hence, it is inferred that by adjusting the 

dispersion of bubbles/droplets in a three-phase flow, mass transfer rate may be improved by 

several folds, as reported in two-phase flow systems15-17. This necessitates a comprehensive 

investigation into such topic for a successful application of three-phase reactions in microreactors. 

In addition, a precise control over gas-liquid-liquid flow regime in microreactors enables other 

important applications such as kinetics determination1, nanomaterial synthesis18-21, chemical 

screening22 and extraction enhancement8-10. Overall, an in-depth understanding into the dispersion 

of bubbles/droplets in microreactors and the underlying mechanism is of great importance for 

obtaining the desired reaction/separation performance in these target applications. 
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Gas-liquid-liquid three-phase flow could be generated in several microreactor structures, such 

as microchannels with a cross-junction8,23 or a double T-junction1-3,9-12,24,25, and dual-coaxial 

microchannels19,20. The double T-junction configuration is the most common structure in use 

because of its assembly-oriented facility1,9-11 (e.g., can be easily realized via a combination of 

capillary tubes and T-type connectors) and flexibility in multistep injection26. In a typical double 

T-junction configuration, bubbles are formed at the first T-junction and are usually subject to 

breakup at the second T-junction by impinging the second liquid phase24-26, especially when large 

gas-liquid ratio is employed. This breakup (or bubble splitting) is of great importance as it dictates 

the size laws of the dispersed bubbles and droplets, as well as the flow characteristics therein. 

Currently, most literature on three-phase flow generation in microfluidic systems only involved 

short and non-breakup bubbles12,23-25,27,28, indicating a knowledge gap concerning bubble splitting 

that is inevitable under conditions with large gas holdup. Wang et al.24 proposed a model to predict 

the average bubble/droplet length by assuming that the phase interaction at the second T-junction 

would not influence hydrodynamics at the first T-junction. This assumption is well fulfilled when 

the velocity of the second liquid phase is much smaller than the bubble velocity from upstream, 

whereas much deviation occurs under other conditions12,25. In addition, their model could only 

predict the average length of bubbles/droplets instead of the separate lengths of daughter 

bubbles/droplets split at different stages, which greatly reduces the accuracy and application of 

such model. This suggests that a more in-depth investigation into the bubble breakup mechanism 

in a double T-junction microchannel is still necessary in order to fully understand the 

bubble/droplet generation and dispersion characteristics. 

The existing numerous research on the breakup process of gas bubbles or liquid droplets in 

two-phase microchannel systems can shed light on the bubble breakup process in gas-liquid-liquid 

three-phase microflow. In two-phase microchannel systems, the breakup processes of 

bubbles/droplets arriving at a T-junction can be classified as the type ‘breakup with permanent 

obstruction’ in which bubbles/droplets totally obstruct the microchannel throughout the whole 

breakup process, and the type ‘breakup with tunnel’ in which a tunnel between bubbles/droplets 

and the wall opens29. These breakup types are present under a wide range of capillary numbers 

(Ca) depending on the bubble length. At relatively high Ca numbers (of a magnitude of 10-2), Link 
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et al.30 attributed the mechanism of ‘breakup with tunnel’ to the classical Rayleigh-Plateau 

instability and proposed a critical Ca number for determining the boundary between the breakup 

and non-breakup droplets. But at low and medium Ca numbers (e.g., with high surface tension 

values for the fluid system), Leshansky et al.31,32 proposed that this breakup type was caused by 

the pressure in the lubrication film between the droplet and the channel wall. They derived a 

critical droplet breakup length that is proportional to Ca-0.21 based on a 2-D lubrication analysis. 

As to the ‘breakup with permanent obstruction’, it usually occurs with relatively long droplets and 

low viscous continuous phase29. Also through a 2-D model, Leshansky et al.33 showed that in the 

surface tension-dominated system, the breakup time was negatively associated with the flow rate 

and Ca number. However, this model failed to predict both the numerical and experimental results 

in 3-D systems34-36. Hoang et al.34 ascribed this discrepancy to a three-dimensional capillary effect 

driven by the larger surface tension at the stagnation point. The above studies reveal that the 

interaction between phases has a significant effect on the breakup process, especially when surface 

tension plays an important role37,38. 

In gas-liquid-liquid microfluidic systems, the presence of a second liquid phase would certainly 

increase the effect of phase interaction on the bubble breakup. The underlying rupture mechanism 

might thus differ significantly from that in two-phase systems. Therefore, efforts need to be taken 

for a better design and operation of three-phase microfluidic systems1-3,9-12,21-26,39,40. This work 

concerns bubble breakup process under a gas-liquid-liquid flow in a microchannel with a double 

T-junction, aiming at improving the fundamental understanding thereof. Gas-oil segmented flow 

with slender bubbles was generated at the first T-junction, followed by bubble squeezing and 

splitting by the dispersed aqueous phase at the second T-junction. Types of the breakup regime, 

flow fluctuation, evolution of interfaces and breakup time were presented and discussed. 

Subsequently, the critical bubble breakup length and size laws of daughter bubbles/slugs thereof 

were proposed. 

 

Experimental Section 

Microchannel device and experimental setup 

The gas-water-oil three-phase flow experiments were carried out in the microchannel device 
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(under horizontal orientation) shown in Fig. 1. The microchannel structure was fabricated on a 

transparent PMMA (polymethyl methacrylate) plate by precision milling technology (fabrication 

tolerance: 10 μm), covered by a second blind PMMA plate and sealed by bolted joints. All 

microchannels are 600 μm in width and 300 μm in depth and the serpentine main channel with 

half-circle connections is 44 cm long in total. The lengths of side channels 1, 2, 3 are 16, 40, 16 

mm, respectively. The distance between the first and second T-junctions is 17 mm. 

Oil and water were injected to inlet 1 and inlet 3 by syringe pumps (LSP02-1B, LongerPump, 

China), respectively. Gas was delivered from a cylinder to inlet 2 through a mass flow controller 

(SC200, Sevenstar, China) which was calibrated in advance. Thus, the gas-oil two-phase flow was 

formed at the first T-junction (abbreviated as T1) and the gas-water-oil three-phase flow at the 

second junction (abbreviated as T2). The experimental zone of interest is indicated by the blue 

dotted box in Fig. 1. The three-phase flow in the main channel was recorded by a high-speed 

CMOS camera (Phantom M310, Vision Research, USA, working at 500-1000 frames/s) 

supplemented by an optical microscope (SZX 16, Olympus, USA). 

 

Figure 1. Schematic of the horizontally placed microchannel device with a double T-junction. The 

view section for camera snapshots is shown by the blue dotted box. 

 

Experimental procedure 

In the experiments, nitrogen, aqueous glycerol solutions and n-octane with 2.5 wt% Span 80 

were chosen as the working fluids. N-octane added with surfactants has lower interfacial tension 

with the channel wall in comparison to the aqueous counterpart, thus the oil phase acted as the 

continuous phase. Physical properties of these fluids are listed in Table 1. Viscosities were 

measured with a viscometer (DV-II+Pro, Brookfield, USA). Interfacial tensions between gas 

phase/aqueous solutions and oil phase were measured by a tensiometer (DataPhysics OCA 15EC, 

Germany) using pendent drop method. Refractive indexes and densities were obtained from the 

literature41. As can be seen, refractive indexes of the investigated aqueous solutions and oil phase 

are very close. Therefore, 0.02 wt% of methyl orange was added into the aqueous solutions to 

make it easier to distinguish the different phases. Adding such a small amount of methyl orange 
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had little effect on the viscosity and interfacial tension according to our measurements. The 

experiments were carried out at room temperature (20±2 oC) and ambient pressure, the flow rate 

ranges of oil, gas and water phases being 0.10-0.30, 0.20-1.60 and 0.10-0.50 mL/min, respectively. 

Before recording the flow patterns, the system was running for at least 5 minutes to ensure the 

establishment of a stable flow. 

 

Table 1. Physical properties of the used working fluids (20 oC, 0.1 MPa) 

 

Results and Discussion 

Breakup types and depression region evolution in T2 

To facilitate the interpretation of our results, several important notations are defined here. The 

segments of the continuous phase are referred as ‘plug’ whereas the segments of dispersed 

aqueous droplets as ‘slug’. Bubbles generated in T1 are called parent bubbles and denoted by PB, 

as shown in Fig. 2. If a parent bubble is cut off by the aqueous phase at T2, the first generated 

daughter bubble is called DB1 and the second DB2. The aqueous slugs formed within the duration 

are defined as S1 and S2, accordingly. During these breakup processes, the depression region 

refers to the water area between the bubble and the channel wall (Fig. 2). At the bottom of the 

depression region locates the stagnation point E, which is of the highest pressure and presets the 

droplet/bubble breakup point30,37. A is the obstruction point, where the parent bubble touches the 

channel wall as the obstruction initially occurs. The operating conditions are expressed in the form 

of ‘oil flow rate-gas flow rate-aqueous flow rate (concentration of glycerol)’. For example, 

‘0.10-0.35-0.20 (0 wt%)’ indicates that the oil and gas flow rates are 0.10 and 0.35 mL/min, 

respectively, and the aqueous phase is deionized water of which the flow rate is 0.20 mL/min. 

 

Figure 2. Important notations used in this paper. Aqueous phase is shown in orange, oil phase 

being the continuous carrier phase and gas bubbles being split at T2. 

 

At T2, three bubble breakup types were observed as shown in Fig. 3: breakup with permanent 

obstruction (BPO), breakup with temporary obstruction (BTO) and non-breakup (NB), which are 
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similar to those observed in two-phase systems29,37. Their characteristics are summarized as 

follows: 

(1) Type BPO (Fig. 3a) mainly happens in surface-tension dominated systems with low viscous 

aqueous phases (e.g., deionized water and 30 wt% glycerol solution). In this breakup type, the 

bubble obstructs the main channel and pinches off S1 immediately once the front bubble cap 

creeps out of the T2 zone, i.e., the obstruction point locates at the top-right corner of T2 (Fig. 3a, 

upper image). The depression region is always symmetric with respect to the centerline of T2, and 

the stagnation point locates at the centerline (Fig. 3a, middle image). When DB2 is about to leave 

T2, the aqueous phase is squeezed upwards due to its lower surface tension compared with the 

bubble (Fig. 3a, lower image). This may cause a large velocity fluctuation in the upstream flow. 

(2) Type BTO (Fig. 3b) mainly occurs in systems with high viscous aqueous solutions (e.g., 50 

wt% and 65 wt% glycerol solutions). The high viscosity of the aqueous phase makes slugs more 

difficult to be pinched off, resulting in the deformation of the front bubble cap. This also leads to 

the opening of a tunnel through which the aqueous phase flows downwards (Fig. 3b, upper image). 

With the parent bubble creeping, the tunnel narrows gradually and thins out finally to yield the 

aqueous slug S1 (Fig. 3b, middle image). We noticed that with more viscous aqueous phase, the 

obstruction point moves downwards and it takes longer time for the tunnel to thin out (see Fig. 3b, 

middle image, and Fig. 3c, upper image). With higher ratio of the upstream flow rate to the 

aqueous flow rate (i.e., Qup/QW, where Qup= QO+QG), the obstruction point also moves downwards 

as shown in Fig. 3c. After the tunnel disappears, an asymmetrical depression region with an 

off-center stagnation point is formed due to the high viscosity. Then the aqueous phase starts to 

squeeze and cut off the bubble neck (Fig. 3b, lower image).  

(3) Type NB (Fig. 3d) happens in systems with relatively short parent bubbles or large upstream 

flow rates. In this type, the extra aqueous slugs may be sheared off by the continuous phase (i.e., 

free ruptured slug)24,27. Thus, more than one slug can be generated between two bubbles 

downstream. 

  

Figure 3. Bubble breakup processes in the current microchannel device: (a) Type BPO, 

operating condition: 0.10-0.35-0.30 (0 wt%); (b) Type BTO, operating condition: 0.20-0.35-0.30 
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(50 wt%); (c) The effect of Qup/QW on the obstruction point in BTO, operating conditions from top 

to bottom: 0.20-0.35-0.30 (65 wt%), 0.20-0.82-0.30 (65 wt%), 0.20-1.45-0.30 (65 wt%); (d) Type 

NB, operating condition: 0.20-0.16-0.30 (0 wt%). 

 

For bubble breakup, the interface evolution provides rich information to explore the underlying 

mechanism. Fig. 4 presents an example of such evolution pattern based on the shape of the 

depression region in BPO. Shown in Fig. 4a is the characterization of the depression region, which 

is illustrated by the left expanded length Ll, the right expanded length Lr, the width ω and the 

location of stagnation point xE. Fig. 4b depicts the evolution of these parameters from the parent 

bubble obstructing the channel to its breakup. As can be seen, the breakup process could be 

divided into three stages: the quick expansion stage, slow squeezing stage, and rapid collapse 

stage. The quick expansion stage starts at the moment when the parent bubble pinches off S1 and 

obstructs the channel totally (t=0). This obstruction induces quick augmentation of pressure in the 

aqueous phase, which further expands the depression region in both normal and tangential 

direction. During this stage, the stagnation point will be retracted back to the centerline (xE =0) by 

surface tension whereas its original location is a little downstream due to the effect of the inertial 

force during S1 formation. The retraction is also the reason of the fast increase of Ll, which 

characterizes the quick expansion stage. 

 In the slow squeezing stage, the bubble deformation is mainly driven by the applied water flow 

while the effect of the upstream pressure is very small. The expansion of the depression region 

mainly takes place in the y-direction when Ll≈Lr>ω. At this time, the shape of the depression 

region resembles to the bubble/droplet breakup in two-phase flow33,36. However, when ω 

approaches Ll, the depression region keeps a semicircle shape (Ll≈Lr ≈ω) with three parameters 

increasing at the same pace. This shows that interfacial tensions start playing a dominant role over 

the upstream pressure and viscous force as Ll≈Lr≈ω. It is in agreement with the phenomenon that 

the stagnation point E keeps staying at the y-axis. 

When the depression region expands to a critical extent, it triggers the rapid collapse stage. At 

the critical time, the curvature at the stagnation point becomes the largest, which can easily lead to 

the spontaneous breakup of the bubble according to the surface-tension-driven mechanism 
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proposed by Hoang et al.34 This mechanism suggests that the surface tension induces significant 

reverse flow to the stagnant point, which quickens the breakup. Besides, Wang et al.35 suggested 

that when the bubble neck is thin enough, the circulation flow around the bubble neck would also 

aggravate the Raleigh-Plateau instability and the bubble breakup. The critical neck thickness in the 

case shown in Fig. 4 is found as δc/w=0.26 (i.e., =1-ωc/w), which is in accordance with the 

literature34-38. Afterwards, the bubble neck shrinks and the water contracts from the two sides 

dramatically (indicated by the rapid decrease of Ll and Lr, and increase of ω) till the bubble 

ruptures (t=tb).  

  

   Figure 4. (a) Typical sketch of bubble breakup process for BPO. Jup and JW represent the 

superficial upstream bubble velocity (Jup=(QO+QG)/ACH) and aqueous velocity (JW=QW/ACH), 

respectively. (b) Evolution of bubble breakup process. Three distinct stages are divided by blue 

dotted lines. The operating condition is 0.10-0.35-0.30 (0 wt%). 

 

Flow fluctuation 

The phenomenon that bubble neck obstructs the channel and ruptures periodically has been 

widely investigated in the bubble/droplet splitting29,34,35,37,38 or formation processes42,43. These 

processes are always accompanied by the fluctuations of velocity and pressure. To gain a better 

understanding into the mechanism during bubble splitting in three-phase flow, we compared both 

the instantaneous bubble velocities in the upstream (Uup) and downstream (Udown) of T2. The 

bubble velocities were measured with Matlab (R2014b, The Mathworks, Inc., USA) by calculating 

the moving distance of bubble caps in a time step of 1-3 ms. We found that Udown could be either 

independent of or in synchronization with Uup. The possible reason could be related to 

hydrodynamics in the aqueous phase, so we estimated the instantaneous aqueous phase flow rate 

(QEW) according to the captured 2-D images. The estimation included the extraction of the 2-D 

area of unbroken slugs in each frame, and then multiplying them with channel height to obtain the 

instantaneous volume of water. The difference in the consecutive volume values divided by the 

time step was approximated as QEW, which turned out to fluctuate largely during the bubble 

splitting process. 
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 Fig. 5 shows a typical case of Udown varying independently with Uup. The time t was scaled by 

bubble splitting period T. The measured Uup (Udown) and instantaneous QEW were scaled by the 

corresponding superficial values Jup (Jdown) and QW, respectively. Clearly, the normalized 

downstream bubble velocity Udown/Jdown keeps almost constant whereas the normalized upstream 

bubble velocity Uup/Jup varies periodically under the specified operating condition. Similar to 

two-phase systems, the decline in Uup/Jup occurs when the aqueous slug enters from the side 

channel to the main channel and leads to an increase in the flow resistance, whereas the rise in 

Uup/Jup occurs when the augmented upstream pressure starts to release and leads to fast shrinkage 

of the slug neck44-47. However, there are distinguishable characteristics for the three-phase system. 

As shown in Fig. 5, the rapid decrease in Uup/Jup from moment (3) to moment (5) originated from 

the increase in the flow resistance due to the slug tip squeezing the PB (moments (3)-(4)) and the 

slug blockage after the bubble ruptures (moments (4)-(5)). Interestingly, the decrease rate in 

Uup/Jup is larger after the bubble is pinched off. This suggests that the accumulation of flow 

resistance during the slug squeezing bubble is smaller than that during the slug blockage. It is 

reasonable as in the former case there is much larger space for the continuous phase flow around 

the bubble neck (especially when the diameter of the bubble neck is smaller than the channel 

depth, i.e., δ<h) when bubble is not pinched off. The next decline of Uup/Jup from moments (6) to 

(7) is also due to the slug squeezing the DB2 and the slug blockage of the channel afterwards. As 

DB2 is not pinched off due to its relatively short length, neither dramatic shrinkage of bubble 

shape nor significant slope difference in Uup/Jup exists during the evolution.  

From Fig. 5, it can also be seen that QEW/QW varies just in the opposite phase of Uup/Jup, 

showing that the periodic pressure accumulation/release in the upstream flow and aqueous flow 

are also in the opposite phases. For example, when the aqueous phase is firstly blocked by the PB 

(moments (2) to (3)), the slug tip cannot squeeze the PB due to the stronger gas-oil interfacial 

tension. The instantaneous flow rate of the aqueous phase decreases rapidly while its pressure 

accumulates fast48. As the augmented pressure becomes large enough to compete with interfacial 

tension, the bubble neck starts to shrink, leading to the pressure release in the aqueous phase 

(moments (3) to (5)). In the meanwhile, the flow resistance in the junction and the pressure of the 

upstream flow increase. In this way, the absolute flow fluctuations induced by the periodic 
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generation of slugs are offset, which results in a much stable flow in the downstream (stable 

Udown/Jdown). 

 

Figure 5. (a) Independent case showing the instantaneous evolutions of the upstream and 

downstream bubble velocities and the aqueous phase flow rate. (b) The corresponding flow 

images for moments (1)-(7) in (a). The operating condition is 0.10-0.35-0.30 (0 wt%); The dotted 

vertical line in (a) shows the bubble breakup moment; U/J equals UupACH/(QO+QG) for the 

upstream flow and UdownACH/(QO+QG+QW) for the downstream flow. 

 

For the synchronous case (Fig. 6), which occurs under the breakup type with temporary 

obstruction (BTO), the normalized upstream bubble velocity Uup/Jup also fluctuates periodically. 

But QEW/QW is much more smooth and steady compared with the independent case. In this case, 

the absolute fluctuation of QEW cannot offset that of Uup, leading to a synchronous variation 

between Udown/Jdown and Uup/Jup. As can be seen, when Uup/Jup increases from moment (1) to 

moment (3) due to the pressure release of the upstream flow, QEW/QW only decreases significantly 

from moment (1) to moment (2). The generally stable aqueous flow from moment (2) to moment 

(3) results from the existence of an open tunnel which delays the pressure accumulation in the 

aqueous phase and further leads to the rebound of QEW/QW postponed to the moment (4), close to 

the bubble rupture. This is totally different from the independent case in which the rebound of 

QEW/QW occurs soon after T2 is blocked, as shown in Fig. 5. As a result, there are several 

durations in which QEW/QW varies very little and a significant fluctuation only occurs around the 

period during bubble breakup (moment (5)) and bubble cutting the slug (moment (1)). In addition, 

given the fact that QW herein is relatively small compared with the upstream flow rate Qup, the 

aqueous phase flow fails to compensate the fluctuation of Uup, and thus Udown/Jdown fluctuates in a 

synchronized pace with Uup/Jup. 

    

Figure 6. (a) Synchronous case showing the instantaneous evolutions of the upstream and 

downstream bubble velocities and the aqueous phase flow rate. (b) The corresponding flow 

images for moments (1)-(8) in (a). The operating condition is 0.10-0.78-0.20 (50 wt%); The dotted 
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vertical line in (a) shows the bubble breakup moment; U/J equals UupACH/(QO+QG) for the 

upstream flow and UdownACH/(QO+QG+QW) for the downstream flow. 

 

Whether Udown/Jdown varies synchronically with Uup/Jup depends on the viscosity of the aqueous 

phase μW and the upstream flow rate Qup. As shown in Fig. 7, the increase in μW by an increase in 

glycerol concentration can lead to a transition from the independent variation to the synchronous 

variation. Although the magnitude of fluctuation in Uup/Jup is very large at relatively low μW (e.g., 

with 0 wt% glycerol in the aqueous phase), it is nearly completely offset by the aqueous flow, 

leading to a stable Udown/Jdown. At relatively high μW, it usually induces the opening of a tunnel 

(i.e., breakup under BTO mode) which reduces the blockage of gas bubble. Therefore, the 

fluctuation in the aqueous flow rate tends to be smaller and cannot offset the fluctuation in Uup, 

leading to the synchronous variation. Meanwhile, the opening of the tunnel also reduces the 

squeezing force on the bubble. This results in the decreased magnitude of fluctuation in Uup/Jup 

when μW increases (i.e., at increasing glycerol concentration).  

 

Figure 7. Effect of the viscosity of the aqueous phase (or glycerol concentration) on the 

fluctuation of the upstream and downstream bubble velocities. QO=0.10 mL/min, QG=0.35 

mL/min, QW=0.30 mL/min. The text in the figure indicates the bubble breakup type and glycerol 

concentration in the aqueous phase. U/J equals UupACH/(QO+QG) for the upstream flow and 

UdownACH/(QO+QG+QW) for the downstream flow. 

 

Fig. 8 shows the effect of the upstream flow rate (Qup=QO+QG) on the flow fluctuation. It can be 

seen that increasing Qup has a similar effect to increasing μW, that is, a transition from the 

independent variation to the synchronous variation tends to occur upon increasing Qup. Though 

higher Qup results in both higher inertial force and viscous force exerted on the aqueous phase, the 

viscous force is not likely to dominate given the presence of the ultra-thin oil film (thickness 

below the optic resolution: ca. < 20 μm as measured from the flow images) in the depression 

region and the less significant shear stress at the gas-oil interface due to the low gaseous viscosity. 

By contrast, it is more likely the inertial force that adjusts the squeezing direction of the aqueous 
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phase and favors the tunnel opening, given somewhat large Reynolds number associated with the 

upstream flow (cf. Fig. 9 which will be discussed in detail hereafter). The absolute velocity 

fluctuation in Uup is observed to only increase slightly with the increase of Qup. For example, the 

fluctuation ranges of Uup are within 0.022, 0.023, 0.028 m/s for QG=0.35, 0.82, 1.54 mL/min (or 

Jup=0.051, 0.094, 0.161 m/s) in Fig. 8, respectively. This results in an increased fluctuation in 

Udown/Jdown (Fig. 8) due to the smoother QEW/QW caused by the tunnel opening especially 

facilitated at higher Qup values (see Fig. 3c). Although the decrease in the normalized fluctuation 

magnitude in Uup (i.e., associated with Uup/Jup) upon increasing Qup as shown in Fig. 8 is partly 

caused by the increased denominator (i.e., Jup), this does signify the important effect of the inertial 

force in lowering the flow fluctuation in the upstream. In other words, without the effect of the 

inertial force in facilitating the tunnel opening at higher Qup, the evolution of the depression region 

in all cases shown in Fig. 8 should be under BPO mode. Then, at higher Qup, the pressure 

accumulated in the upstream flow in this mode should be higher during the slug tip squeezing the 

PB (Fig. 5b, moments (3)-(4)) and the slug blockage after the bubble ruptures (Fig. 5b, moments 

(4)-(5)), which should result in a larger or at least the same magnitude of fluctuation in Uup/Jup 

when it releases (Fig. 5b, moments (5)-(6)).  

 

Figure 8. Effect of the upstream flow rate on the fluctuation of the upstream and downstream 

bubble velocities. 30 wt% glycerol solution serves as the aqueous phase. QO=0.20 mL/min, 

QW=0.40 mL/min. The breakup types and QG are shown in the figure text. U/J equals 

UupACH/(QO+QG) for the upstream flow and UdownACH/(QO+QG+QW) for the downstream flow. 

 

From the analysis above, it is concluded that the velocity variation pattern is a result of the 

interaction among the phases at T2. Two main factors have been observed: the first one is the 

viscosity of the aqueous phase that influences the competition between the aqueous viscous force 

and interfacial tension; the other one is the upstream flow rate that influences the inertial force 

exerted on the aqueous phase. Therefore, CaW and Reup are chosen to map the variation pattern of 

Uup and Udown. CaW is defined in Eq. (1), which represents the importance of the aqueous viscous 

force over the interfacial tension. 
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In the estimation of CaW, the oil-gas interfacial tension γO-G is employed because it is the oil phase 

that directly touches the gas bubble and determines the bubble neck shape. The aqueous viscosity 

is adopted since the oil film is so thin that its velocity gradient is likely to be almost constant, 

implying that the shear force exerted on the gas-oil interface might be roughly equal to that on the 

oil-water interface (i.e., as if there is a direct shear action of the aqueous phase on the gas bubble). 

Reup is the Reynolds number of the upstream flow defined as 

h O G O
up

O CH

( )d Q QRe
A

ρ
µ
+

=                             (2) 

The obtained map is shown in Fig. 9, where five distinguished zones are identified as follows:                                                                         

(a) Zone I: the interfacial tension dominated zone. In this zone (CaW < 0.009 - 0.00015Reup), the 

interfacial tension dominates over the aqueous viscous force and the upstream inertial force, and 

only the independent variation pattern is included. 

(b) Zone II: the transition zone where the interfacial tension is comparable to the viscous force or 

the upstream inertial force; both independent and synchronous variation patterns are observed in 

this zone. The transition line is depicted as CaW = 0.009 - 0.00015Reup. 

(c) Zone III: the aqueous viscous force dominated zone (CaW > 0.009 and Reup < 60), which only 

includes synchronous variation pattern. 

(d) Zone IV: the upstream inertial force dominated zone (CaW < 0.009 and Reup > 60). In this zone, 

the inertial force dominates over the viscous force and interfacial tension, and only the 

synchronous variation pattern is included. 

(e) Zone V: the synergistic zone of the aqueous viscous force and upstream inertial force (CaW > 

0.009 and Reup > 60). Since both forces facilitate the opening of tunnel, only the synchronous 

variation pattern is included. 

It should be noted that the variation pattern is closely related to the breakup type, hence the map in 

Fig. 9 can be used to distinguish types BPO and BTO: Type BPO mainly locates at zone I, while 

types BTO at zones III, IV, and V. 
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Figure 9. Map of the bubble velocity variation pattern. The triangular box (II) shows the 

transition zone. 

 

Bubble breakup time and size prediction 

The critical bubble breakup length is an important parameter in the control of three-phase flow. 

For example, in order to achieve a quantitative dosing26,40, the manipulation of a multistep 

synthesis process requires that the three-phase flow regime be kept in the non-breakup zone. In 

two-phase flow, the critical droplet breakup length was proposed either by capillary instability30 or 

lubrication analysis31. In three-phase flow, whether a parent bubble is split or not at T2 is governed 

by the rule that the time for the parent bubble passing T2 should be larger than its breakup time24: 

PB s
b

up

( )L w t
J
−

>                                (3) 

where ws=w in the current microchannel. So the bubble breakup time needs to be derived 

first.  

Leshansky et al.33 developed a 2-D model to illustrate the droplet breakup with permanent 

obstruction in liquid-liquid two-phase flow in a microfluidic T-junction, as shown in Fig. 10. The 

model assumes that the shear force of the external flow (i.e., continuous flow in the case of Fig. 10) 

is always balanced by the interfacial tension at point B, which means that the depression region 

keeps a steady-state evolution49. Another assumption is that the depression region can be depicted 

as a circular arc with radius R(t) and a small angle φ, thus Lr=Rsinφ~Rφ and ω=R(1-cosφ)~1/2Rφ2. 

For simplification, it is assumed that the continuous flow does not leak through the gap between 

the droplet and the channel wall. Thus, the increase rate of the area of the depression region 

(=R2(φ–1/2sin2φ)~2R2φ3/3) equals to the mean inlet flow rate, 

2 3
C

2( )
3

d R J w
dt

ϕ ≈                              (4) 

If the continuous phase perfectly wets the channel wall, the balance between the interfacial 

tension and viscous force around the depression region edge B can be described by the Tanner’s 

law50, which suggests that φ3 ~dLr/dt·μC/γ. Then, the expansion rate of the depression region 

(dLr/dt) reads 
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Where CaC = μCJC/γ. Solving Eq. (4) and Eq. (5) yields the evolution of Lr and ω as 
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a                          (6) 
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w a −                          (7) 

where α was approximated as 0.25 by fitting to 2-D numerical simulation results33. Then the 

droplet breakup time is calculated as the time needed for the depression region width to be equal 

to the channel width (ω=w):  

1/3
b

C C

3.54 ( )
3

wt
J Ca

a
=                           (8) 

This correlation indicates that the droplet breakup time is negatively dependent on the capillary 

number of the carrier liquid (CaC).  

 

Figure 10. Schematic of the depression region in a typical ‘obstructed’ breakup regime in 

two-phase flow in a microfluidic T-junction according to the model of Leshansky et al.33 The side 

and main channels have the same width (i.e., ws=w). 

 

  The above model is firstly applied to describe the bubble breakup under BPO mode in 

gas-liquid-liquid three-phase system in the current microchannel. It is expected to be 

approximately valid because all the aqueous phase squeezes the bubble without leakage due to the 

existence of the oil-water interface. In addition, the inertial of the upstream flow is very small 

compared with the interfacial tension in BPO, as shown previously in this paper (e.g., see zone I in 

Fig. 9). Therefore, the main deviation from this model is that the viscous force of the aqueous 

phase has to overcome the oil-gas interfacial tension as explained above (Eq. (1)). This leads to a 

revision of the Tanner’s law50 as φ3 ~ dLr/dt·μW/γO-G. The usage of the aqueous viscosity is because 

that aqueous phase fills the depression region. Accordingly, the modified 2-D model of Leshansky 

et al.33 is obtained as 
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We compared the prediction of Eq. (9) with the experimental results and found that the 

prediction is about 10 times larger. There are two important reasons that result in this large 

discrepancy. Firstly, the model developed from 2-D analysis deviates much from the real 3-D 

conditions. The prediction of the model of Leshansky et al.33 has also been shown to be 4-6 times 

higher than the simulated and measured bubble/droplet breakup time in two-phase flows34,36. 

Hoang et al.34 found that the 2-D model can well predict the depression region in their 3-D 

simulation only before the bubble neck reaches the critical thickness (δc). They proposed that the 

interfacial tension induced circulation near the neck could accelerate the breakup, which is 

however not considered in the 2-D model. The second reason is that the spread of the dispersed 

aqueous phase in x-axis in three-phase flow is more difficult than that of the perfect wetting 

continuous phase in two-phase flow, which causes a much stronger squeezing on the gas bubble in 

y-axis (e.g., see Fig. 4(a)). This is reasonable since: (1) the squeezing phase in three-phase flow is 

the dispersed phase which is restricted by the oil-water interface; (2) the aqueous phase in 

three-phase flow cannot well wet the current microchannel wall made of PMMA preceding its 

expansion (due to the poor aqueous wettability, e.g., the deionized water-solid contact angle in the 

continuous oil phase is 135°) while the perfect wetting continuous phase does in two-phase flow. 

This also explains why the prediction of the 2-D model shows a larger divergence in three-phase 

flow than that in two-phase flow cases. Fig. 11 shows the comparison between the 2-D model and 

our experimental results of Lr and ω. As can be seen, the experimental Lr is much smaller, whereas 

ω is much larger than the model prediction at the later stage of the squeezing, suggesting that the 

spread of the aqueous phase in x-axis is largely confined. 

 

Figure 11. Comparison of the depression region predicted by the model of Leshansky et al.33 

(i.e., Eqs. (6)-(7) in which CaC and JC are replaced with CaW and JW, respectively) and our 

experimental results. The solid lines are the experimental results and the dashed lines are obtained 

from the model. 
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Accordingly, a semi-empirical correlation similar to Eq. (9) is obtained for the breakup time 

under BPO mode through a regression of the experimental data: 

1/3
b,P W

W
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−=                              (10) 
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J

t Ca
J

−=                              (11) 

where t* 
b,P is the dimensionless breakup time scaled by w/Jup in BPO mode. The range of the 

operating conditions is 0.0004 < CaW < 0.005 and 0 < Reup < 60. And the same exponent 

associated with CaW (i.e., -1/3 in Eq. (11)) is used because it is thought that the model of 

Leshansky et al.33 is still approximately applicable to three-phase system, given many similarities 

in physical flow situation (or more precisely, in the governing equations of the interface evolution). 

Besides, a smaller coefficient (i.e., 0.165 here vs. 1.54 in Eq. (9)) is obtained by adjusting the 

value of α (cf. Eq. (8)) from 0.25 to 3.04×10-4, which is acceptable because: (1) α is a fitting value 

resulting from sample data (i.e., either 2-D numerical simulation results33 or 3-D experimental 

results); (2) α fitted by 3-D experimental results tends to be much smaller than that by 2-D 

numerical simulation results33 due to the huge influence of the rapid collapse stage and much 

confined aqueous x-axial expansion on breakup time, as we have discussed previously (Fig. 11). 

As to the bubble breakup under BTO mode, the upstream flow plays an important role as 

previously mentioned (e.g., see Fig. 9). Therefore, compared with Eq. (11), an additional 

modification over Jup/JW needs to be made here to depict the competition between the inertial 

force from the upstream flow and the squeezing from the aqueous phase. Then, a correlation for 

the breakup time in BTO mode is proposed as 

up* 0.766 0.029
b,T W

W

1.926( )
J

t Ca
J

=                          (12) 

where t* 
b,T is the dimensionless breakup time scaled by w/Jup in BTO mode. The range of the 

operating conditions is 0.005 < CaW < 0.022 and 0 < Reup < 100. The positive exponent with CaW 

in this correlation is due to the existence of an open tunnel between the bubble and the channel 

wall. In BTO mode, the bubble breakup time consists of two parts: the tunnel time during which 

the aqueous phase flow through the tunnel, and subsequently the obstruction time during which 

the channel is obstructed by the bubble and the aqueous phase squeezes the bubble. The tunnel 
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time is positively correlated to CaW (e.g., the tunnel width is shown to follow a law of Ca0.4 
W  in 

two-phase systems29,31) while the obstruction time is negatively correlated to CaW as indicated by 

Eq. (10). Therefore, it is reasonable that the tunnel time dominates over the obstruction time, 

resulting in a positive exponent with CaW. It can be seen that both the predictions of Eqs. (11) and 

(12) agree well with the experimental results (Fig. 12). 

 

Figure 12. Comparison of the predicted dimensionless bubble breakup time vs. the experimental 

results. Eqs. (11) and (12) are used as the models for BPO and BTO modes, respectively. 

 

As the bubble breakup time is obtained, the critical bubble length and the size laws of daughter 

bubbles/slugs can be derived. According to Eq. (3), if the length of a PB is larger than its moving 

distance during the breakup time, the PB will rupture. A margin length equal to the side channel 

width (ws=w in our experimental conditions) was introduced in Eq. (3) since the squeezing starts 

when the bubble completely covers the side channel, as indicated by the simplified process shown 

in Fig. 13 (i.e., at t = 0). However, we suggest this margin length to be w+ws since the blockage of 

the side channel is still needed when the bubble ruptures (i.e., LDB2≥1/2(ws+w)=w in the current 

experiments). Thus, the critical bubble breakup length can be written as 

* *c s
b b 2L w wt t

w w
+

= + = +                            (13) 

 

Figure 13. Simplified bubble breakup process for BPO mode (ws=w in the current 

microchannel). 

 

According to the simplified model for the breakup process proposed in Fig. 13, the lengths of 

DB1 and DB2 are then estimated as:  

*DB1
b 1L t

w
= +                             (14) 

*DB2 PB
b 1L L t

w w
= − −                           (15) 

It should be noted that the above analysis only considers the situation when a PB splits into two 
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daughter bubbles. If a PB splits into more than two bubbles, DB2 can be treated as a new PB and 

the analysis is also applicable. In our experimental conditions, the splitting of DB2 only happens 

rarely in BTO mode with extremely long bubbles and very large aqueous flow rates. Fig. 14 shows 

a comparison between the measured length of PB and the critical bubble length predicted by Eq. 

(13) in which t* 
b  was calculated by Eqs. (11) and (12) for BPO and BTO modes, respectively. As 

can be seen, a good prediction over whether the bubble breaks up or not is obtained in both modes 

(i.e., bubble is split at LPB ≥ Lc). 

  

Figure 14. Comparison between the measured PB lengths and the predicted critical ones (with Eqs. 

(11)-(13)). The solid and open symbols stand for data under BPO and BTO modes, respectively. 

The solid line represents the parity line. 

 

When a parent bubble breaks into two daughter bubbles under BPO mode, S2 is generated 

between them. The total generation time includes the bubble breakup time (tb) and the time for 

DB2 to cut S2 off (tc). The second time duration allows DB2 to move a distance of w+ws, as 

shown in Fig. 13 (tc=(w+ws)/Jup; ws=w in the present experiments). Then, the length of S2 is 

derived as 

( )W b c * *S2 s W W
b b

up up

( ) ( 2)
J t tL w w J Jt t

w w w J J
+ +

= = + = +                   (16) 

Besides, the frequency of the parent bubble equals to that of S1 and S2. If we neglect the slip 

velocity between bubbles and the aqueous slugs, the following equation holds approximately: 
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S1 S2 W
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L L J

≈
+

                             (17) 

Therefore, the length of S1 could be estimated from: 

S1 W S2PB

G

L J LL
w w J w

≈ −                             (18) 

As can be seen in Fig. 15a, the proposed model (i.e., Eqs. (13)-(16) and (18)) provides a good 

prediction over the lengths of daughter bubbles and slugs measured in our experiments under 

mode BPO. The small deviations are mainly caused by the flow fluctuations mentioned above. For 
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example, during the generation process of DB1 (Fig. 5, moments (1)-(4)), the average Uup is 

higher than the corresponding superficial value (i.e., Jup) that is utilized in Eq. (14) for the 

calculation of t* 
b , which results in the underestimation of LDB1 shown in Fig. 15a as well as an 

overestimation of LDB2. Thus, it is expected that the smoother the flow fluctuation, the higher the 

prediction accuracy of this model. Interestingly, this proposed model also works well under BTO 

mode (Figs. 14 and 15b), though the simplified breakup process shown in Fig. 13 differs greatly 

from the real evolution process in BTO. This indicates that a good estimation of the bubble 

breakup time (e.g., Eq. (12)) is essential in the size law prediction. Since the detailed breakup 

mechanism under BTO mode is not very clear yet, more dedicated studies are still needed in this 

direction. It should be noted that this model is derived for the present microchannel with a double 

T-junction characterized by equal widths of side and main channels, thus its applicability in other 

configurations (e.g., with different side channel widths) still needs to be examined. 

   

   Figure 15. Comparison between the predicted daughter bubble/slug lengths and the 

experimental results: (a) type BPO; (b) type BTO. LDB1, LDB2, LS2, LS1 are predicted by Eqs. 

(14)-(16) and (18), respectively. 

 

In order to further confirm the validity of our model, the measured LS2 values under mode BPO 

was compared in Fig. 16 with the literature data (i.e., those obtained by Wang et al.24 during 

three-phase flow in a similar microchannel geometry; the original data in Fig. 8 of their work were 

reprocessed to estimate the corresponding LS2 values as a function of JW). As can be seen, the 

measured LS2 in our experiments follows a linear relationship with JW for a given Qup (or Jup) 

value, as indicated from Eq. (19) (which is derived from Eqs. (11) and (16)): 

* 1/3S2 s W s W
b,P W

up up

0.165 1L w w J w Jt Ca
w w J w J

−+   = + = + +   
   

             (19) 

Furthermore, Eq. (19) also correctly reveals the decreased LS2 and linear slope with the increase of 

Qup (or Jup), as experimentally observed (Fig. 16). However, regarding the literature data24, 

although a linear relationship seems to exist between LS2 and JW, the influence of Qup (or Jup) on 

LS2 cannot be revealed because the exact Qup (or Jup) value for a given JW is not available. It can 
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also be seen in this figure that LS2/w values from the literature24 (under the condition that 0.23 

ml/min <Qup=QG+QO< 0.64 ml/min) is lower than ours (under the condition that 0.37 ml/min <Qup 

< 0.68 ml/min). This discrepancy, albeit somewhat comparable ranges of Qup or Jup in both cases, 

might arise from the different microchannel configuration in use (ws/w=0.5 in the literature24 while 

ws/w=1 in our work). In addition, the roughly equal y-intercepts for all the straight lines could be 

anticipated from Eq. (19) of which the first term in the right side, i.e., 0.165Ca-1/3 
W , is roughly close 

to each other under the literature conditions (ca. in a range of 0.6-2.3) and ours (ca. in a range of 

1.0-2.2). Therefore, the model introduced in the present work is considered to be accurate, robust 

and physically reasonable. 

 

Figure 16. Comparison between our experimental results on LS2/w (closed symbols) and those of 

the literature24 (+). Operating conditions in our experiments: the aqueous phase is deionized water, 

QW = 0.2-0.8 mL/min, QG = 0.28 mL/min, and Qup is adjusted by the oil flow rate; Operating 

conditions in the literature24: QG = 0.182-0.512 mL/min, QO = 0.050-0.125 mL/min in the air-PEG 

aqueous solution-n-octane (with 2 wt% Span-80) system. 

Conclusions 

Gas-liquid-liquid three-phase flow is frequently encountered in various chemical syntheses with 

aqueous-organic catalysis (e.g., hydrogenation, hydroformylation and carbonylation). The 

performance of such processes, when carried out in conventional reactors, tends to be hindered by 

mass transfer limitation due to the presence of three phases rendering difficulties in a precise 

control over flow pattern and interfacial area. In this respect, microreactors provide unique 

potential in the intensification of these chemical processes by offering effective dispersion of 

reactants and large interfacial area in microchannels.  

This paper presents an experimental investigation into the bubble breakup process in a 

gas-aqueous liquid-oil three-phase flow generated in a microchannel with a double T-junction. The 

bubble breakup at the second T-junction is found as a result of the competition between the 

squeezing of the dispersed aqueous phase and the inertial force of the upstream gas-oil flow. 

Therefore, different breakup types can be mapped based on the capillary number of the aqueous 

phase (CaW) and Reynolds number of the upstream flow (Reup). When interfacial tensions are 
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dominant (i.e., at low CaW and Reup), the bubble breakup type is ‘breakup with permanent 

obstruction’ (BPO). Due to blockage of the gas bubbles, the instantaneous upstream bubble 

velocity and aqueous flow rate fluctuate in the opposite phases. These fluctuations are perfectly 

compensated in BPO mode, leading to an almost invariable bubble velocity in the downstream. 

When the viscous or inertial force plays an important role (i.e., at high CaW or Reup), the ‘breakup 

with temporary obstruction’ (BTO) occurs and is characterized by an open tunnel for the aqueous 

phase to flow through. This leads to a partial compensation of the flow fluctuations in the 

upstream bubble and the aqueous phase, and therefore a synchronous variation pattern in the 

bubble velocity develops between the downstream and upstream. 

In this work, a 2-D model of Leshansky et al.33 describing the evolution of the squeezed droplet 

interface in two-phase microflows is applied to the present three-phase system after some 

modifications. According to the distinct three-phase flow characteristics therein, CaW and the ratio 

of the upstream to aqueous phase flow rate are introduced to modify the model, based on which 

two semi-empirical correlations (Eqs. (11) and (12)) are proposed to predict the bubble breakup 

time for both BPO and BTO modes. Moreover, the critical bubble length and size laws for the 

generated daughter bubbles/droplets are obtained (Eqs. (13)-(16) and (18)). The proposed length 

model well predicts the experimental results and is considered to be physically reasonable. The 

findings in this work can serve as an important guideline for the manipulation of flow 

regime/dispersion of gas-liquid-liquid flow in microreactors, which finds potential applications 

among others in chemical synthesis. 
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Notation 

ACH cross-sectional area of microchannel [ACH=wh], m2 

dh hydrodraulic diameter of main channel, m 
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h height of microchannel, m 

JC superficial velocity of the continuous phase [JC=QC/ACH], m/s 

Jdown superficial velocity of the downstream bubble [Jdown=(QO+QG+QW)/ACH], m/s 

Jup superficial velocity of the upstream bubble [Jup=(QO+QG)/ACH], m/s 

JW superficial velocity of the aqueous phase [JW=QW/ACH], m/s 

Lc critical bubble breakup length, m 

LDB1 length of the first daughter bubble, m 

LDB2 length of the second daughter bubble, m 

Ll left expanded length of the depression region, m 

LPB length of the parent bubble, m 

Lr right expanded length of the depression region, m 

LS1 length of the first aqueous slug, m 

LS2 length of the second aqueous slug, m 

Qdown preset downstream flow rate [Qdown=QO+QG+QW], m3/s 

QEW instantaneous aqueous flow rate, m3/s 

QG preset gas flow rate, m3/s 

QO preset oil flow rate, m3/s 

Qup preset upstream flow rate [Qup=QO+QG], m3/s 

QW preset aqueous flow rate, m3/s 

T bubble splitting period, s 

tb bubble breakup time measured from experiments, s 

tb,L bubble breakup time estimated by the model of Leshansky et al.33, s 

tb,P predicted bubble breakup time for BPO mode, s 

tc time that DB2 needs to cut S2 off, s 

Udown instantaneous downstream bubble velocity, m/s 

Uup instantaneous upstream bubble velocity, m/s 

w width of main microchannel, m 

ws width of side microchannel, m 

Greek letters 
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γO-G interfacial tension between oil and gas, N/m 

γO-W interfacial tension between oil and the aqueous phase, N/m 

δ neck thickness of bubble, m 

μW viscosity of the aqueous phase, Pa∙s 

μO viscosity of the oil phase, Pa∙s 

ρO density of the oil phase, kg/m3 

φ angle of the depression region edge 

ω width of the depression region, m 

Dimensionless groups 

CaC capillary number of the continuous phase in two-phase flow [CaC=μCJC/γ] 

CaW capillary number of the aqueous phase in three-phase flow [CaW= μWJW/γO-G] 

Reup Reynolds number of the upstream gas-oil flow [Reup=dhQupρO/μOACH] 

t* 
b  dimensionless bubble breakup time 

t* 
b,P dimensionless bubble breakup time for BPO mode 

t* 
b,T dimensionless bubble breakup time for BTO mode 
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Table list 

 

Table 1. Physical properties of the used working fluids (20 oC, 0.1 MPa) 

Phase Fluid 
Refractive index 

n 

Viscosity 

μ [mPa∙s] 

Density 

ρ [kg/m3] 

Interfacial tension with oil 

 γ [mN/m] 

Oil 
n-octane with 2.5 

wt% Span 80 
1.397 0.565 702 – 

Gas Nitrogen 1.000 0.018 1.271 21.94 

Aqueous 

Deionized water  1.333 1.002 1000 4.77 

30 wt % glycerol  1.375 2.29 1078 4.94 

50 wt % glycerol  1.404 5.28 1131 4.40 

65 wt % glycerol  1.425 12.82 1171 4.69 
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Figure lists 

 

Figure 1. Schematic of the horizontally placed microchannel device with a double T-junction. The 

view section for camera snapshots is shown by the blue dotted box. 

 

Figure 2. Important notations used in this paper. Aqueous phase is shown in orange, oil phase 

being the continuous carrier phase and gas bubbles being split at T2. 

 

Figure 3. Bubble breakup processes in the current microchannel device: (a) Type BPO, operating 

condition: 0.10-0.35-0.30 (0 wt%); (b) Type BTO, operating condition: 0.20-0.35-0.30 (50 wt%); 

(c) The effect of Qup/QW on the obstruction point in BTO. operating conditions from top to bottom: 

0.20-0.35-0.30 (65 wt%), 0.20-0.82-0.30 (65 wt%), 0.20-1.45-0.30 (65 wt%); (d) Type NB, 

operating condition: 0.20-0.16-0.30 (0 wt%). 

   

Figure 4. (a) Typical sketch of bubble breakup process for BPO. Jup and JW represent the 

superficial upstream bubble velocity (Jup=(QO+QG)/ACH) and aqueous velocity (JW=QW/ACH), 

respectively. (b) Evolution of bubble breakup process. Three distinct stages are divided by blue 

dotted lines. The operating condition is 0.10-0.35-0.30 (0 wt%). 

 

Figure 5. (a) Independent case showing the instantaneous evolutions of the upstream and 

downstream bubble velocities and the aqueous phase flow rate. (b) The corresponding flow 

images for moments (1)-(7) in (a). The operating condition is 0.10-0.35-0.30 (0 wt%); The dotted 

vertical line in (a) shows the bubble breakup moment; U/J equals UupACH/(QO+QG) for the 

upstream flow and UdownACH/(QO+QG+QW) for the downstream flow. 

 

Figure 6. (a) Synchronous case showing the instantaneous evolutions of the upstream and 

downstream bubble velocities and the aqueous phase flow rate. (b) The corresponding flow 

images for moments (1)-(8) in (a). The operating condition is 0.10-0.78-0.20 (50 wt%); The dotted 

vertical line in (a) shows the bubble breakup moment; U/J equals UupACH/(QO+QG) for the 
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upstream flow and UdownACH/(QO+QG+QW) for the downstream flow. 

 

Figure 7. Effect of the viscosity of the aqueous phase (or glycerol concentration) on the fluctuation 

of the upstream and downstream bubble velocities. QO=0.10 mL/min, QG=0.35 mL/min, QW=0.30 

mL/min. The text in the figure indicates the bubble breakup type and glycerol concentration in the 

aqueous phase. U/J equals UupACH/(QO+QG) for the upstream flow and UdownACH/(QO+QG+QW) for 

the downstream flow. 

 

Figure 8. Effect of the upstream flow rate on the fluctuation of the upstream and downstream 

bubble velocities. 30 wt% glycerol solution serves as the aqueous phase. QO=0.20 mL/min, 

QW=0.40 mL/min. The breakup types and QG are shown in the figure text. U/J equals 

UupACH/(QO+QG) for the upstream flow and UdownACH/(QO+QG+QW) for the downstream flow. 

 

Figure 9. Map of the bubble velocity variation pattern. The triangular box (II) shows the transition 

zone. 

 

Figure 10. Schematic of the depression region in a typical ‘obstructed’ breakup regime in 

two-phase flow in a microfluidic T-junction according to the model of Leshansky et al.33 The side 

and main channels have the same width (i.e., ws=w). 

 

Figure 11. Comparison of the depression region predicted by the model of Leshansky et al.33 (i.e., 

Eqs. (6)-(7) in which CaC and JC are replaced with CaW and JW, respectively) and our 

experimental results. The solid lines are the experimental results and the dashed lines are obtained 

from the model. 

 

Figure 12. Comparison of the predicted dimensionless bubble breakup time vs. the experimental 

results. Eqs. (11) and (12) are used as the models for BPO and BTO modes, respectively. 

 

Figure 13. Simplified bubble breakup process for BPO mode (ws=w in the current microchannel). 
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Figure 14. Comparison between the measured PB lengths and the predicted critical ones (Eqs. 

(11)-(13)). The solid and open symbols stand for data under modes BPO and BTO, respectively. 

The solid line represents the parity line. 

 

Figure 15. Comparison between the predicted daughter bubble/slug lengths and the experimental 

results: (a) type BPO; (b) type BTO. LDB1, LDB2, LS2, LS1 are predicted by Eqs. (14)-(16) and (18), 

respectively. 

 

Figure 16. Comparison between our experimental results on LS2/w (closed symbols) and those of 

literature24 (+). Operating conditions in our experiments: the aqueous phase is deionized water, 

QW = 0.2-0.8 mL/min, QG = 0.28 mL/min, and Qup is adjusted by the oil flow rate; Operating 

conditions in the literature24: QG = 0.182-0.512 mL/min, QO = 0.050-0.125 mL/min in the air-PEG 

aqueous solution-n-octane (with 2 wt% Span-80) system. 
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Figure 1. Schematic of the horizontally placed microchannel device with a double T-junction. The 

view section for camera snapshots is shown by the blue dotted box. 
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Figure 2. Important notations used in this paper. Aqueous phase is shown in orange, oil phase 

being the continuous carrier phase and gas bubbles being split at T2. 
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Figure 3. Bubble breakup processes in the current microchannel device: (a) Type BPO, 

operating condition: 0.10-0.35-0.30 (0 wt%); (b) Type BTO, operating condition: 0.20-0.35-0.30 

(50 wt%); (c) The effect of Qup/QW on the obstruction point in BTO. operating conditions from top 

to bottom: 0.20-0.35-0.30 (65 wt%), 0.20-0.82-0.30 (65 wt%), 0.20-1.45-0.30 (65 wt%); (d) Type 

NB, operating condition: 0.20-0.16-0.30 (0 wt%). 
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Figure 4. (a) Typical sketch of bubble breakup process for BPO. Jup and JW represent the 

superficial upstream bubble velocity (Jup=(QO+QG)/ACH) and aqueous velocity (JW=QW/ACH), 

respectively. (b) Evolution of bubble breakup process. Three distinct stages are divided by blue 

dotted lines. The operating condition is 0.10-0.35-0.30 (0 wt%). 
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Figure 5. (a) Independent case showing the instantaneous evolutions of the upstream and 

downstream bubble velocities and the aqueous phase flow rate. (b) The corresponding flow 

images for moments (1)-(7) in (a). The operating condition is 0.10-0.35-0.30 (0 wt%); The dotted 

vertical line in (a) shows the bubble breakup moment; U/J equals UupACH/(QO+QG) for the 

upstream flow and UdownACH/(QO+QG+QW) for the downstream flow. 
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Figure 6. (a) Synchronous case showing the instantaneous evolutions of the upstream and 

downstream bubble velocities and the aqueous phase flow rate. (b) The corresponding flow 

images for moments (1)-(8) in (a). The operating condition is 0.10-0.78-0.20 (50 wt%); The dotted 

vertical line in (a) shows the bubble breakup moment; U/J equals UupACH/(QO+QG) for the 

upstream flow and UdownACH/(QO+QG+QW) for the downstream flow. 
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Figure 7. Effect of the viscosity of the aqueous phase (or glycerol concentration) on the fluctuation 

of the upstream and downstream bubble velocities. QO=0.10 mL/min, QG=0.35 mL/min, QW=0.30 

mL/min. The text in the figure indicates the bubble breakup type and glycerol concentration in the 

aqueous phase. U/J equals UupACH/(QO+QG) for the upstream flow and UdownACH/(QO+QG+QW) for 

the downstream flow. 
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Figure 8. Effect of the upstream flow rate on the fluctuation of the upstream and downstream 

bubble velocities. 30 wt% glycerol solution serves as the aqueous phase. QO=0.20 mL/min, 

QW=0.40 mL/min. The breakup types and QG are shown in the figure text. U/J equals 

UupACH/(QO+QG) for the upstream flow and UdownACH/(QO+QG+QW) for the downstream flow. 
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Figure 9. Map of the bubble velocity variation pattern. The triangular box (II) shows the 

transition zone. 
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Figure 10. Schematic of the depression region in a typical ‘obstructed’ breakup regime in 

two-phase flow in a microfluidic T-junction according to the model of Leshansky et al.33 The side 

and main channels have the same width (i.e., ws=w). 
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Figure 11. Comparison of the depression region predicted by the model of Leshansky et al.33 (i.e., 

Eqs. (6)-(7) in which CaC and JC are replaced with CaW and JW, respectively) and our 

experimental results. The solid lines are the experimental results and the dashed lines are obtained 

from the model. 



 75 

 

0

2

4

6

8

10

12

0 2 4 6 8 10 12
Experimental t

Pr
ed

ic
te

d 
t

BPO

BTO

*

b

* b

 

Figure 12. Comparison of the predicted dimensionless bubble breakup time vs. the experimental 

results. Eqs. (11) and (12) are used as the models for BPO and BTO modes, respectively. 
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Figure 13. Simplified bubble breakup process for BPO mode (ws=w in the current 

microchannel). 
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Figure 14. Comparison between the measured PB lengths and the predicted critical ones (with Eqs. 

(11)-(13)). The solid and open symbols stand for data under BPO and BTO modes, respectively. 

The solid line represents the parity line. 
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Figure 15. Comparison between the predicted daughter bubble/slug lengths and the experimental 

results: (a) type BPO; (b) type BTO. LDB1, LDB2, LS2, LS1 are predicted by Eqs. (14)-(16) and (18), 

respectively. 
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Figure 16. Comparison between our experimental results on LS2/w (closed symbols) and those of 

literature24 (+). Operating conditions in our experiments: the aqueous phase is deionized water, 

QW = 0.2-0.8 mL/min, QG = 0.28 mL/min, and Qup is adjusted by the oil flow rate; Operating 

conditions in the literature24: QG = 0.182-0.512 mL/min, QO = 0.050-0.125 mL/min in the air-PEG 

aqueous solution-n-octane (with 2 wt% Span-80) system. 
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