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Casimir forces between material surfaces at close proximity of less than 200 nm can lead to increased
chaotic behavior of actuating devices depending on the strength of the Casimir interaction. We investigate
these phenomena for phase-change materials in torsional oscillators, where the amorphous to crystalline phase
transitions lead to transitions between high and low Casimir force and torque states, respectively, without material
compositions. For a conservative system bifurcation curve and Poincare maps analysis show the absence of chaotic
behavior but with the crystalline phase (high force-torque state) favoring more unstable behavior and stiction.
However, for a nonconservative system chaotic behavior can take place introducing significant risk for stiction,
which is again more pronounced for the crystalline phase. The latter illustrates the more general scenario that
stronger Casimir forces and torques increase the possibility for chaotic behavior. The latter is making it impossible
to predict whether stiction or stable actuation will occur on a long-term basis, and it is setting limitations in the
design of micronano devices operating at short-range nanoscale separations.

DOI: 10.1103/PhysRevE.96.042215

I. INTRODUCTION

Nowadays, advancements in fabrication techniques has
led to scaling down of micromechanical systems into the
submicron length scales, which open new areas of applications
of the Casimir effect [1–7]. This is because micronano elec-
tromechanical systems (MEMS-NEMS) have surface areas
large enough but gaps small enough for the Casimir force to
play a significant role. An example is a torsional actuator that is
a kind of MEM with applications to torsional radio frequency
(RF) switches, tunable torsional capacitors, torsional micro
mirrors, and Casimir force measurements in the search of new
forces beyond the standard model [1–4,8]. A simple torsional
device (cantilever type) has two electrodes with one fixed and
the other able to rotate around an axis [9]. The electrostatic
and Casimir force can rotate the movable electrode toward the
surface of the fixed electrode, and under certain conditions it
can undergo jump-to-contact leading to permanent adhesion,
a phenomenon known as stiction.

Although the Casimir force was predicted in 1948 [10],
one must use the Lifshitz theory to compute the force
between real dielectric materials [11]. This is accomplished by
exploiting the fluctuation-dissipation theorem, which relates
the dissipative properties of the plates (optical absorption by
many microscopic dipoles) and the resulting electromagnetic
field fluctuations that mediate the Casimir interaction between
macroscopic bodies [11]. Since the optical properties of
materials play a crucial role on the Casimir force [12–14], it
is anticipated to influence the actuation dynamics of MEMS.
Indeed, it has been predicted that less conductive materials can
enhance stable operation of MEMS in comparison to metal
coated electrodes that yield higher Casimir forces [15]. In
addition, there have been several investigations on Casimir
torques [16–22] for possible applications on MEMS-NEMS.
The genuine Casimir torque in periodic systems arise due to
the broken rotational symmetry [16–18], while in optically
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anisotropic materials it originates from the misalignment
between two optical axes [19–22]. Moreover, the actuation
of MEMS can be influenced by mechanical Casimir torques
originating from normal Casimir forces [23–27].

Furthermore, the magnitude of the Casimir force, and
consequently the corresponding mechanical Casimir torque,
can be modulated using, for example, the amorphous and
crystalline phase transitions in phase change materials (PCMs)
without composition changes [14]. Notably, the similar possi-
bilities were also explored using the metal-to-insulator phase
transitions in hydrogen-switchable mirrors, and topological-
insulator materials [28]. In any case the PCMs are renowned for
their use in optical data storage (Blue-Rays, DVDs, etc.) where
they switch reversibly between the amorphous and crystalline
phases [29]. Here we have chosen the AIST (Ag5In5Sb60Te30)
PCM to perform our study, since we have measured the
optical properties and the corresponding Casimir forces [14].
The amorphous phase of AIST is a semiconductor, while the
crystalline phase shows closely metallic behavior [29], which
is highly distinct from the amorphous state at low frequencies
due to the high absorption of free carriers in the far-infrared
(FAR-IR) spectrum [14]. Crystallization of the amorphous
AIST has led up to ∼25% Casimir force contrast [14].

Therefore, PCMs offer a unique system to study how
changes of the magnitude of the Casimir force and torque
within the same system could affect the actuation dynamics
of MEMS-NEMS. So far there is limited knowledge on how
the Casimir forces-torques between actuating components at
close proximity (typically less than 200 nm) can lead to chaotic
behavior with changing strength of the force in relation also
to the conduction properties of interacting materials. Surface
roughness has been shown to strongly increase the Casimir
force at separations less than 100 nm, and lead to chaotic
behavior [30,31]. On the other hand, for flat surfaces, which are
desirable in device application, this is also a possible scenario
that has to be carefully investigated since Casimir forces are
omnipresent. Hence, we will investigate here the occurrence of
chaotic behavior in torsional oscillators when the amorphous
to crystalline phase transitions lead to transitions between
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FIG. 1. Bifurcation diagrams δCas vs. ϕ for δv = 0. The solid and
dashed lines represent the stable and unstable points, respectively.
The inset shows the schematic of the torsional system.

low and high Casimir force states, respectively, though the
conclusions have qualitatively general application for any
material that is used in actuation of micronano devices.

II. THEORY OF ACTUATION SYSTEM

The equation of motion for the torsional system (see Fig. 1),
where the fixed and rotatable plates are assumed to be coated
with gold (Au) and AIST PCM respectively [14], is given by

I0
d2θ

dt2
+ ε I0

ω0

Q

dθ

dt
= τres + τelec + τCas + ε τ0 cos(ωt),

(1)

where I0 is the rotation inertia moment of the rotating plate. The
conservative case corresponds to ε = 0 and system quality fac-
tor Q = ∞ (in practice Q � 104), while the nonconservative
forced oscillation with dissipation to ε = 1. The mechanical
Casimir torque τCas is given by [25]

τCas =
∫ Lx

0
rFCas(d

′)Ly dr , (2)

where FCas(d) is the Casimir force (see Appendix for Casimir
force and dielectric function extrapolations in Figs. 2 and 3, as
well as the dependency of the Casimir torque on the torsional
angle for both PCM states in Fig. 4), Lx and Ly are the length
and width of each of the plates, respectively (with Lx = Ly =
10μm), and d ′ = d − r sin θ with d the distance for parallel
plates. The torsional angle θ , which is considered positive as
the plates move closer to each other, and its sign are also
indicated in the inset of Fig. 1 that shows the actuating system.
We assume also d = 200 nm so that the maximum torsional
angle θ0 to remain small (θ0 = d/Lx = 0.02 � 1) in order
to ignore also any buckling of the moving beam (assuming
typical operation at 300 K). Moreover, the electrostatic torque
τelec due to an applied potential Va is given by [14,25]

τelec = 1

2
ε0Ly(Va − Vc)2 1

sin2(θ )

[
ln

(
d − Lx sin(θ )

d

)

+ Lx sin(θ )

d − Lx sin(θ )

]
, (3)

FIG. 2. Imaginary part ε′′(ω) of the frequency-dependent dielec-
tric function for both phases of AIST [14].

with ε0 the permittivity of vacuum, and Vc is the contact
potential difference between Au and AIST (Vc ∼ 0.4 V for
both phases of AIST) [14]. In the following we will consider
only the potential difference V = Va − Vc for the Casimir
torque calculations, and we will ignore small variations of Vc

between the amorphous and crystalline phases (∼25 mV [14]).
Both the Casimir and electrostatic torques are counterbalanced
by the restoring torque τres = −kθ with k the torsional spring
constant around the support point of the beam [32]. Finally,
the term I0(ω/Q)(dθ/dt) in Eq. (1) is due to the energy
dissipation of the oscillating beam with Q the quality factor.
The frequency ω is assumed to be typical like in AFM
cantilevers and MEMS [1–4,33].

To investigate the actuation dynamics by taking into account
the effect of PCM phase transitions, we introduce the bifur-
cation parameter δCas = τm

Cas / kθ0 that represents the ratio
of the minimal Casimir torque τm

Cas = τCas(θ = 0) for the
amorphous phase of AIST, and the maximum restoring torque
kθ0 [34]. Equation (1) can be rewritten in a normalized form
in terms of δCas, ϕ = θ/θ0, and the bifurcation parameter of

FIG. 3. Dielectric functions at imaginary frequencies ε(iξ ) for
both phases of the AIST PCM.
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FIG. 4. Casimir torques calculated for Au-PCM materials using
as input the PCM optical data from Fig. 3.

the electrostatic force δv = (ε0 V 2 Ly L3
x)/(2kd3) [21],

d2ϕ

dT 2
+ ε

1

Q

dϕ

dT
= −ϕ + δv

1

ϕ2

[
ln(1 − ϕ) + ϕ

1 − ϕ

]

+ δCas

[
τcas

τm
Cas

]
+ ε

τ0

τMax
res

cos

(
ω

ω0
T

)
,

(4)

with I = I0/k and T = ω0t .

III. CONSERVATIVE SYSTEM (ε = 0 AND Q = ∞)

The equilibrium points for conservative motion are obtained
from the condition τtotal = τres + τelec + τCas = 0, which yields

−ϕ + δv
1

ϕ2

[
ln(1 − ϕ) + ϕ

1 − ϕ

]
+ δCas

[
τcas

τm
Cas

]
= 0. (5)

Figure 1 shows plots of δCas vs. ϕ for both the amorphous
and crystalline phases for δv = 0 or equivalently V = 0
(for δv > 0 see Figs. 5 and 6). Similarly to the Casimir
bifurcation diagrams in Fig. 1, the bifurcation parameter δv also

FIG. 5. Bifurcation diagrams for both PCM states of the electro-
static parameter δv vs. ϕ with δCas = 0.1.

FIG. 6. Bifurcation diagrams δCas vs. ϕ for different δv . All points
of the solid and dashed lines represent the stable and unstable
points respectively in (a) amorphous and (b) crystalline phase.
δMAX

Cas decreases in magnitude if one compares the amorphous and
crystalline phases.

shows sensitive dependence on the amorphous to crystalline
phase transition. In both cases the bifurcation curves of the
amorphous and crystalline phases are distinct around the
maximum, where one approaches critical unstable behavior.
In Fig. 1 the solid lines show the stable regions where the
restoring torque τres is strong enough to ensure stable periodic
motion. The dash lines indicate unstable regions where the
moving beam undergoes stiction. When δCas < δMAX

Cas two
equilibrium points exist. The equilibrium point closer to ϕ = 0
(solid line) is a stable center point, and the other one closer
to ϕ = 1 (dashed line) is the unstable saddle point. The
latter obeys the additional condition dτtotal/dϕ = 0, which
yields

−1 + δv

[
2ϕ − 3

ϕ2(1 − ϕ)2 + 2 ln (1 − ϕ)

ϕ3

]

+ δCas
1

τm
Cas

(
dτCas

dϕ

)
= 0. (6)
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FIG. 7. Variation of δv for different values of δCas in (a) amor-
phous, and (b) crystalline phases. It can be clearly seen that for
δCas � 0.12 we have δv � 0. The latter means that for δCas > 0.12
there is no stability even without any voltage. For the amorphous
phase the value of the critical δCas is larger, and a weaker restoring
torque can lead to stable actuation.

By increasing δCas or weakening the restoring torque
(δCas ∼ 1/k), the distance between the equilibrium points
decreases until δCas reaches the maximum saddle point δMAX

Cas .
In fact, when δCas ∼ δMAX

Cas,C for the crystalline phase, it is still
δCas < δMAX

Cas,A for the amorphous phase ensuring the presence
of two equilibrium points and increased possibility for stable
motion. The situation is qualitatively similar in presence of
an electrostatic force (see Figs. 6 and 7). According to the
diagram of the bifurcation parameter δv , the maximum δMAX

v

decreases similar to δMAX
Cas . The range of bifurcation parameters

to produce periodic motion (0 < δCas < δMAX
Cas and δv � 0) is

decreased during the amorphous to crystalline phase transition.
Note that for δCas > δMAX

Cas there is no stability in the torsional
device even in the absence of electrostatic torques (δv = 0). In
any case, when the applied voltage increases, δMAX

Cas decreases
for both PCM phases. As a result, since the electrostatic force
is attractive, the device would require higher restoring torque
to ensure stable operation.

FIG. 8. Poincare maps dϕ/dt vs. ϕ (δCas = 0.1, δv = 0) of the
conservative system (ε = 0) for amorphous and crystalline PCM
phases. For the calculations we used 150 × 150 initial conditions
(ϕ, dϕ/dt). The red (lighter gray) region (under the homoclinic orbit)
shows that initial condition for which the torsional device shows
stable motion after 100 oscillations with the natural frequency ω0.
The homoclinic orbit separates sharply stable and unstable solutions
prohibiting chaotic behavior.

Besides the bifurcation diagrams, the sensitive dependence
of the actuation dynamics on the PCM phase transition is
reflected by the Poincare maps d ϕ/dt vs. ϕ in Fig. 8 [35]. The
homoclinic orbit separates unstable motion (leading to stiction
within one period, Fig. 9) from the periodic closed orbits
around the stable center point. Since the distance between
these two critical points is larger in the amorphous phase (see
the phase portraits in Fig. 10), a torsional MEM can perform
stable operation over a larger range of torsional angles.
The orbit size in the crystalline phase is larger [Fig. 9(a)]
because the moving plate approaches closer the fixed plate.
With increasing δCas, the orbit breaks faster open for the
crystalline phase leading to stiction (Fig. 9), while for the
amorphous phase there is still periodic motion. Therefore, the
amorphous phase can ensure better device stability without
any significant differences in electrostatic contributions (due
to some difference in Vc [11]) from the crystalline phase.

Moreover, if one introduces some dissipation into the
autonomous oscillating system via a finite quality factor

FIG. 9. Phase portraits dϕ/dt vs. ϕ for δCas = 0.1, δv = 0 and
Q = ∞. (a) Similar plot for smaller δCas = 0.09 where only stable
motion takes place for both PCM phases. (b) Phase portraits for
δCas = 0.1, δv = 0, and finite damping contributing with Q = 500.
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FIG. 10. Phase portraits dϕ/dt vs. ϕ for δv = 0.05 and δCas =
0.1, and initial conditions inside and outside of the homoclinic orbit.
(a) Amorphous PCM, and (b) Crystalline PCM.

Q, then dissipative motion can prevent stiction also for the
crystalline phase despite the stronger Casimir torque [see
Figs. 9(b) and 11]. In any case, because the homoclinic orbit
separates qualitatively different (stable-unstable) solutions, as
the Poincare maps show in Fig. 8, it precludes the possibility
of chaotic motion or equivalently sensitive dependence on
the initial conditions [30,35]. A chaotic oscillator can have
qualitatively different solutions for an arbitrarily small dif-
ference in the initial conditions. As a result the conservative
oscillating system provides an essential reference for the study
of forced oscillations induced by an external applied forces and
torque treated as a perturbative correction on the conservative
system.

IV. NONCONSERVATIVE SYSTEM (ε = 1 AND Q < ∞)

Here we performed calculations to investigate the existence
of chaotic behavior of the torsional system undergoing forced
oscillation via an applied external torque τo cos(ω t) [30].
Chaotic behavior occurs if the separatrix (homoclinic orbit)
of the conservative system splits, which can be answered by
the so-called Melnikov function and Poincare map analysis
[30,35]. If we define the homoclinic solution of the conser-

FIG. 11. Influence of the damping term on actuation dynamics
of torsional MEMS for the crystalline phase with δCas = 0.1, δv = 0,
and different values of the quality factor Q. A decreasing quality
factor Q can change stiction to dissipative stable motion for torsional
device.

vative system as ϕC
hom(T ), then the Melnikov function for the

torsional system (ε = 1) is given by [30,35]

M(T0) = 1

Q

∫ +∞

−∞

(
dϕC

hom(T )

dT

)2

dT + τ0

τMAX
res

×
∫ +∞

−∞

dϕC
hom(T )

dT
cos

[
ω

ω0
(T + T0)

]
dT . (7)

The separatrix splits if the Melnikov function has simple
zeros so that M(T0) = 0 and M ′(T0) �= 0. If M(T0) has
no zeros, the motion will not be chaotic. The conditions
of nonsimple zeros, M(T0) = 0 and M ′(T0) = 0 gives the

FIG. 12. Threshold curve α (= γω0 θ0/τ0) vs. driving frequency
ω/ωo (with ωo the natural frequency of the system) for the amorphous
and crystalline states. The area bellow the curve corresponds to
chaotic motion.
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threshold condition for chaotic motion [30,35]. If we define

μc
hom =

∫ +∞

−∞

(
dϕC

hom(T )

dT

)2

dT and β(ω)

=
∣∣∣∣H

[
Re

(
F

{
dϕC

hom(T )

dT

})]∣∣∣∣, (8)

then the threshold condition for chaotic motion α =
β(ω)/μc

hom with α = (1/Q)(τ0 /τMAX
res )−1 = γω0 θ0/τ0 ob-

tains the form

α = γω0 θ0

τ0
=

∣∣∣∣H
[

Re

(
F

{
dϕC

hom(T )

dT

})]∣∣∣∣
/

∫ +∞

−∞

(
dϕC

hom(T )

dT

)2

dT , (9)

with γ = Iωo/Q, and H [. . .] denoting the Hilbert transform
[30,35]. Figure 12 shows the threshold curves α = γω0 θ0/τ0

versus driving frequency ratio ω/ωo. For large values of α

(above the curve) the dissipation dominates the driving torque
(α ∼ γ /τ0) leading to regular motion, which asymptotically
approaches the stable periodic orbit of the conservative system.

FIG. 13. Poincare maps dϕ/dt vs. ϕ (δCas = 0.1, δv = 0) of the
nonconservative system (ε = 1) for amorphous (left column) and
crystalline (right column) PCM phases. For the calculations we used
150 × 150 initial conditions (ϕ, dϕ/dt). The red (lighter gray) region
shows that initial condition for which the torsional device shows stable
motion after 100 oscillations with oscillating frequency ω/ω0 = 0.8.
With decreasing α the chaotic behavior increases, and the area of
stable motion shrinks more for the crystalline (high force-torque)
phase.

However, for parameter values below the curve, the splitting
of the separatrix leads to chaotic motion. Clearly for the
crystalline state, which gives to stronger Casimir torques,
chaotic motion is more likely to occur.

Since we study the occurrence of chaotic motion in terms of
the sensitive dependence of the motion on its initial conditions,
we present in Fig. 13 Poincare maps for different values of
the threshold parameter α. When chaotic motion occurs (with
decreasing value of α) there is a region of initial conditions
where the distinction between qualitatively different solutions
is unclear. If we compare with Fig. 8, where chaotic motion
does not occur, the latter implies that for chaotic motion there
is no a simple smooth boundary between the red (lighter gray)
and the blue (Dark gray) regions. As a result, if the motion
is chaotic then stiction can take place after several periods
affecting the long-term stability of the device. Therefore,
chaotic behavior introduces significant risk for stiction and this
more prominent to occur for the more conductive crystalline
PCM. In more general, as the Casimir force-torque increases
the possibility for chaotic behavior increases and practically
it could be impossible to predict whether stiction or stable
actuation will occur on a long term basis.

V. CONCLUSIONS

In conclusion, Casimir forces and torques between ac-
tuating components at close proximity, typically less than
200 nm, can lead to increased chaotic behavior with increasing
strength of the nonlinear in nature Casimir interaction. We have
illustrated these phenomena in torsional oscillators undergoing
both conservative and non-conservative motion, where the
amorphous to crystalline phase transitions in phase change
materials lead to transitions between high and low Casimir
force-torque states respectively. The occurrence of chaotic
behavior introduces significant risk for stiction, and this more
prominent for the more conductive crystalline phase that
generates stronger Casimir forces and torques. In addition,
this is also the case for conservative motion, where chaotic
behavior is absent, that the crystalline phase is again more
luckily to lead to stiction.

For the particular case of PCMs, our study shows that these
materials can offer a versatile way to control motion by using
both phases of the PCMs and controlled energy dissipation
during device actuation. Furthermore, our analysis has general
character in the sense that as the Casimir force-torque increases
the possibility for chaotic behavior increases, and practically it
could impossible to predict whether stiction or stable actuation
will occur on a long term basis. The latter has serious
implications because Casimir forces are omnipresent, and one
must be very careful in choosing the proper conductivity
materials in the design of micronano devices actuating at
nanoscale separations.

ACKNOWLEDGMENTS

G.P. acknowledges support from the Zernike Institute of
Advanced Materials, University of Groningen, The Nether-
lands. F.T., M.K., and A.A.M. acknowledge support from the
Department of Physics, Alzahra University, Iran.

042215-6



CHAOTIC BEHAVIOR IN CASIMIR OSCILLATORS: A . . . PHYSICAL REVIEW E 96, 042215 (2017)

APPENDIX: CASIMIR FORCE AND DIELECTRIC
FUNCTION OF PCM MATERIALS

WITH EXTRAPOLATIONS

The Casimir force FCas(d) in Eq. (2) is given by [11]

FCas(d) = kB T

π

∑
l=0

′ ∑
ν=TE,TM

∫ ∞

0
dk⊥ k⊥ k0

× r (1)
ν r (2)

ν exp(−2k0d)

1 − r
(1)
ν r

(2)
ν exp(−2k0d)

. (A1)

The prime in first summation indicates that the
term corresponding to l = 0 should be multiplied
with a factor 1/2. The Fresnel reflection coefficients
are given by r

(i)
TE = (k0 − ki)/(k0 + ki) and r

(i)
TM =

(εi k0 − ε0 ki)/(εi k0 + ε0 ki) for the transverse electric
and magnetic field polarizations respectively. ki(i = 0,1,2) =√

ε(iξl) + k2 represents the out-off plane wave vector in the
gap between the plates (k0) and in each of the interacting plates
(ki=(1,2)). k is the in-plane wave vector.

Furthermore, ε(iξ ) is the dielectric function evaluated
at imaginary frequencies, which is the necessary input for
calculating the Casimir force between real materials using
Lifshitz theory. The latter is given by [11]

ε(iξ ) = 1 + 2

π

∫ ∞

0

ω ε′′(ω)

ω2 + ξ 2
dω. (A2)

For the calculation of the integral in Eq. (A2) one needs the
measured data for the imaginary part ε′′(ω) (see Figs. 2 and
3) of the frequency dependent dielectric function ε(ω). The
AIST PCM was optically characterized by ellipsometry over
a wide range of frequencies at J. A.Woollam Co.: VUV-VASE
(0.5–9.34 eV) and IR-VASE (0.03–0.5 eV) [14].

The experimental data for the imaginary part of dielec-
tric function cover only a limiting range of frequencies
ω1 (=0.03 ev) < ω < ω2(=8.9 ev). Therefore, for the low
optical frequencies (ω < ω1) we extrapolated using the Drude

model for the crystalline phase [14],

ε′′
L(ω) = ω2

p ωτ

ω
(
ω2 + ω2

τ

) , (A3)

where ωp is the plasma frequency, and ωτ is the relaxation
frequency. For amorphous phase there is no any significant
IR absorption and contribution to the Casimir force. For the
crystalline phase the free carriers have small mean free paths
(below ∼3 nm) implying a significant value for ωτ [14].
Therefore, the extrapolation via the Drude model in Eq. (A3),
since ω � ωτ , obtains the form

ε′′
L(ω) = ω2

p

ωωτ

, (A4)

where one can determine from the optical data directly the
conductivity ratio ω2

p/ωτ [14]. Furthermore, for the high
optical frequencies (ω > ω2) we extrapolated using for both
PCM phases [14,15]

ε′′
H (ω) = A

ω3
. (A5)

Finally, using Eqs. (A2)–(A5), ε(iξ ) is given for both phases
by

ε(iξ ) A = 1 + 2

π

∫ ω2

ω1

ω ε′′
exp(ω)

ω2 + ξ 2
dω + �H ε(iξ ), (A6)

ε(iξ ) C = 1 + 2

π

∫ ω2

ω1

ωε′′
exp(ω)

ω2 + ξ 2
dω + �Lε(iξ ) + �Hε(iξ ).

(A7)

Equations (A6) and (A7) are the dielectric functions for the
amorphous and crystalline phases, respectively, with

�Lε(iξ ) = 2

π

∫ ω1

0

ω ε′′
L(ω)

ω2 + ξ 2
dω and

�H ε(iξ ) = 2

π

∫ ∞

ω2

ω ε′′
H (ω)

ω2 + ξ 2
dω. (A8)
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