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Experimental preeclampsia in rats 
affects vascular gene expression 
patterns
Simone V. Lip  1, Anne Marijn van der Graaf2, Marjon J. Wiegman1, Sicco A. Scherjon1,  
Mark V. Boekschoten3, Torsten Plösch1 & Marijke M. Faas1,2

Normal pregnancy requires adaptations of the maternal vasculature. During preeclampsia these 
adaptations are not well established, which may be related to maternal hypertension and proteinuria. 
The effects of preeclampsia on the maternal vasculature are not yet fully understood. We aimed to 
evaluate gene expression in aortas of pregnant rats with experimental preeclampsia using a genome 
wide microarray. Aortas were isolated from pregnant Wistar outbred rats with low-dose LPS-induced 
preeclampsia (ExpPE), healthy pregnant (Pr), non-pregnant and low-dose LPS-infused non-pregnant 
rats. Gene expression was measured by microarray and validated by real-time quantitative PCR. Gene 
Set Enrichment Analysis was performed to compare the groups. Functional analysis of the aorta was 
done by isotonic contraction measurements while stimulating aortic rings with potassium chloride. 
526 genes were differentially expressed, and positive enrichment of “potassium channels”, “striated 
muscle contraction”, and “neuronal system” gene sets were found in ExpPE vs. Pr. The potassium 
chloride-induced contractile response of ExpPE aortic rings was significantly decreased compared to 
this response in Pr animals. Our data suggest that potassium channels, neuronal system and (striated) 
muscle contraction in the aorta may play a role in the pathophysiology of experimental preeclampsia. 
Whether these changes are also present in preeclamptic women needs further investigation.

Preeclampsia is a hypertensive pregnancy disorder, which affects 2–8% of all pregnancies and is a leading cause 
of maternal and perinatal morbidity and mortality1. The development of preeclampsia is complex, but is thought 
to proceed in two stages. In the first stage, the placenta is poorly established (in the case of early onset preeclamp-
sia) or poorly perfused (for late onset preeclampsia)2. In the second stage, proinflammatory factors, released by 
the “diseased” placenta into the maternal circulation, cause a systemic inflammatory response and endothelial 
cell activation3. This together leads to endothelial dysfunction, a hallmark characteristic of preeclampsia4,5, but 
possible also to an increased risk of developing heart and vascular diseases in preeclamptic women later in life6,7.

The endothelium plays an important role in the regulation of vascular tone by producing vasoactive fac-
tors (including: nitric oxide, endothelium-derived hyperpolarization factor [EDHF], prostacyclin, and 
endothelin-1)8–10. The endothelium-derived vasoactive factors interact with vascular smooth muscle cells to reg-
ulate vasoconstriction and relaxation. An imbalance of these vasoactive factors is associated with endothelial dys-
function11. During preeclampsia, an imbalance of endothelium-derived vasoactive factors occurs, with decreased 
nitric oxide production12, reduced EDHF-mediated relaxation13, and dysregulated prostacyclins14.

We recently studied endothelial function in the low dose LPS infused rat model for preeclampsia15. We have 
shown that the pregnancy-induced changes in endothelial function, such as an increased role of contractile pros-
taglandins and a decreased role of EDHF in acetylcholine-induced endothelial vasodilation as well as a decreased 
sensitivity to angiotensin II (angII), were not observed in the preeclamptic rat model15. Also in humans, similar 
changes occur in healthy pregnancy, while a lack of these changes are found in preeclamptic patients. This indi-
cated that the model is a suitable model for studying vascular changes in preeclampsia.

Therefore, in the present study we used this low-dose LPS induced preeclampsia model and studied whole 
genome gene expression in the maternal vasculature, using the aorta as a model for maternal vasculature. 
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Thus, pregnant rats were infused with a low-dose of LPS resulting in the main characteristics of preeclampsia: 
an increase in blood pressure, proteinuria, endothelial cell activation and an inflammatory response16–18. The 
effect of experimental preeclampsia (ExpPE) on the maternal vasculature in rats was examined by whole tran-
scriptome expression profiling of aortic tissue using a DNA microarray and by functional contraction measure-
ments. For control, healthy pregnant (Pr), and control non-pregnant rats (NPr) as well as low-dose LPS-infused 
non-pregnant rats (NPr + LPS) were used.

Results
Animal model. The LPS-induced preeclampsia rat model is a well-established model with the main char-
acteristics of preeclampsia (i.e., elevated blood pressure, proteinuria, endothelial cell activation, inflammatory 
response)16–18. Maternal weight was significantly (p < 0.01) increased at day 20 of pregnancy in Pr (325.50 g ± 6.9) 
and ExpPE (344.22 g ± 68.5) compared to NPr (242.12 g ± 7.4) and NPr + LPS (249.75 g ± 6.9). The Pr and ExpPE 
rats did not significantly differ in body weight or the number of foetuses (number of foetuses: 12.1 ± 0.22 and 
13.44 ± 1.0 respectively). The length of the pups was significantly (p < 0.05) smaller in ExpPE compared to Pr 
(31.57 mm ± 0.21 and 32.36 mm ± 0.22 respectively).

Differences in transcriptome. Expression levels of 19,357 genes were measured in the aortas. Pr rats 
showed 662 significantly differently expressed genes compared to NPr control rats (p < 0.05 and a fold change 
>1.4 or <−1.4) (Supplementary Table S1). ExpPE showed 606 significantly differently expressed genes compared 
to NPr controls (Supplementary Table S2).

Comparing ExpPE with healthy pregnancy revealed that 526 genes showed a significantly altered expression 
(Supplementary Table S3). A venn diagram shows the number of differentially expressed genes (Fig. 1). Figure 2 
shows a heatmap using the 332 up- and 194 downregulated genes in ExpPE compared to Pr. The same heatmap 
also shows the relative gene expression values of the NPr control group. Interestingly, it appears that the upregu-
lated genes in ExpPE are specific for ExpPE (while Pr showed gene expression levels comparable to those of NPr 
controls). The downregulated genes in ExpPE on the other hand, are specific for Pr (while ExpPE showed gene 
expression levels comparable to those of NPr controls).

Pregnancy-induced changes in gene expression (Pr vs. NPr). Pregnancy-induced changes were 
investigated by comparing gene expression levels of Pr with NPr control animals. The top 10 significantly up- and 
downregulated genes are listed in Table 1. The most upregulated gene is Cxcl13 (chemokine [C-X-C motif] ligand 
13), which encodes for a B-cell attracting chemokine. Number two on the list of upregulated genes is Mmp3, 
which encodes for matrix metallopeptidase 3, and is involved in tissue remodelling through the degradation of 
extracellular matrix19. The most downregulated gene in Pr is Ucp1, encoding for uncoupling protein 1 (mitochon-
drial, proton carrier).

Figure 1. Venn diagram of aortic gene expression, representing three sets of genes which are differential 
expressed between the groups. The top left circle contains the differential expressed genes between healthy 
Pregnant (Pr; n = 5) and Non-Pregnant (NPr; n = 4) animals, the top right circle contains the differential 
expressed genes between Experimental Preeclamptic (ExpPE; n = 5) and NPr animals, and the bottom circle 
contains the differential expressed genes between ExpPE and Pr. p < 0.05, fold change <−1.4 or >1.4.

http://S1
http://S2
http://S3
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Gene Set Enrichment Analysis (GSEA) was performed to investigate gene expression changes in predefined 
sets of genes. The data showed that most of the significantly positively enriched gene sets, in Pr vs. NPr rats were 
related to the immune system, (Table 2). The top four positively enriched gene sets were “interferon signalling”, 
“cytokine signalling in immune system”, “interferon gamma signalling” and “interferon alpha beta signalling”.

Experimental preeclampsia-induced changes (ExpPE vs. Pr). The top 10 significantly up- and down-
regulated genes in ExpPE compared to Pr are shown in Table 3. The two most highly upregulated genes in ExpPE 
are important in the organization of muscles: Ttn (Titin) and Tnni1 (troponin I type 1 [skeletal, slow]). The most 

Figure 2. Heatmap of differentially expressed genes, ExpPE vs Pr. The average expression of all samples was 
used as a reference to calculate the relative gene expressions. 332 genes were significantly (p < 0.05) upregulated 
(fold change >1.4) and 194 genes were significantly downregulated (fold change <−1.4) in ExpPE compared to 
Pr. Pr = healthy Pregnant; NPr = Non-Pregnant; ExpPE = Experimental Preeclampsia.
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downregulated genes were Nlrp1b (NLR family, pyrin domain containing 1B) and Ccl11 (chemokine [C-C motif] 
ligand 11). Also potentially interesting is #10 in the list, Wnt16 (Wnt Family Member 16).

Below the top 10 we also found some interesting genes with regard to possible changes in vascular function, 
for example Nos1 (nitric oxide synthase 1; p = 0.044, fold change = 1.67), Edn3 (endothelin 3, p = 0.034, fold 
change = 1.46), and Ang2 (angiogenin, ribonuclease A family, member 2; p = 0.010, fold change = 1.45) were 
upregulated in ExpPE compared to Pr and Esm1 (endothelial cell specific molecule 1; p = 0.026, fold change 
−1.78) was downregulated in ExpPE compared to Pr.

GSEA was performed comparing ExpPE to Pr. The most positively enriched gene sets were “potassium chan-
nels”, “striated muscle contraction” and the “neuronal system” (Table 4). The genes that contribute the most within 
the potassium channels gene set are Kcna6, Kcnh8 and Hcn4. The genes that contribute the most within the 
neuronal system gene set are Kcna6, Cacng3 and Syn3, and for the striated muscle contraction gene set are Myh8, 
Tnni1 and Myh3. A heatmap of the 20 most strongly contributing genes in the potassium channels gene set was 
generated (Fig. 3).

Microarray validation. Real-time quantitative PCR (RT qPCR) was performed to validate the microarray 
data. Gene expression levels of 11 genes in total were evaluated. The 11 genes chosen were of most interest because 
they include: the top 2 upregulated genes in ExpPE vs. Pr which were also in the “striated muscle contraction” 
gene set. Two additional genes of the same gene set were also included, the top 5 mostly contributing genes to 
the enrichment of the gene set “potassium channels”, and the top 3 genes of the “neuronal system”. For 9 of the 11 
genes a significant linear correlation was found between RT qPCR data and array data (Supplementary Fig. 1). For 
Myh3 and Myh8 (Supplementary Fig. 1C,D) no linear correlation was found, probably due to very low expression 
values which are not properly detectable by RT qPCR.

LPS-infusion in NPr controls. As a control for LPS effects, expression of 11 genes (also included in the 
validation of the array) was measured by RT qPCR in LPS-infused non-pregnant rats (Fig. 4). Ttn, Myh3, Myh8, 
Kcna6, Kcnh8 (Fig. 4A,C–F), Hch4 (Fig. 4I), and Syn3 (Fig. 4K) were all significantly increased in ExpPE rats vs 

Gene name Fold change p-value

Cxcl13 12.09 <0.001

Mmp3 7.61 <0.001

Rnase1l2 7.19 0.004

Slfn3 7.17 <0.001

Irf7 6.95 <0.001

Mx2 6.01 <0.001

Oas1a 5.62 <0.001

Oas1b 5.44 <0.001

Pcsk1 5.09 <0.001

LOC100911190 4.80 <0.001

Ucp1 −4.36 0.032

Pnpla3 −3.93 0.005

Otop1 −3.88 0.007

Aspg −3.83 0.001

Ttc25 −3.35 0.001

Hamp −3.08 0.001

Chrnb4 −3.05 0.048

Fam57b −3.04 0.029

Acly −2.98 0.011

Gpam −2.94 <0.001

Table 1. Top 10 significantly up- and downregulated genes, Pr vs. NPr. Gene expression was measured with a 
whole-genome microarray. Pr = healthy Pregnant; NPr = Non-Pregnant.

# Gene sets Normalized enrichment score Normalized p-value False discovery rate Q-value

1 Interferon signaling 3.15 <0.001 <0.001

2 Cytokine signaling in immune system 3.08 <0.001 <0.001

3 Interferon gamma signaling 3.05 <0.001 <0.001

4 Interferon alpha beta signaling 2.97 <0.001 <0.001

Table 2. Gene Set Enrichment Analysis, Pr vs. NPr. Gene expression was measured with a whole-genome 
microarray and analyzed by Gene Set Enrichment Analysis. Listed are the top 4 positively enriched gene sets in 
healthy Pregnant (Pr) compared to Non-Pregnant (NPr).

http://1
http://1C,D
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Pr rats, but not in NPr + LPS vs NPr. The expressions of the genes Kcnq3 (Fig. 4G), and Cacng3 (Fig. 4J) were 
significantly increased in NPr + LPS vs NPr and not in ExpPE vs Pr.

Ex vivo aortic ring contractile response to KCl. To examine functional changes of the aorta in response 
of potassium ions, aortic rings were incubated with KCl ex vivo and the contractility of the rings was meas-
ured. The contractile response of ExpPE aortic rings was significantly decreased compared to Pr rats (Fig. 5). 

Gene name Fold change p-value

Ttn 8.16 0.049

Tnni1 3.27 0.039

RGD1564480 2.49 0.004

Syngr3 2.48 0.031

Ugt1a1 2.46 0.021

Rab6b 2.34 0.041

Scg3 2.30 0.025

Snca 2.29 0.007

Mcpt9 2.26 0.008

Add2 2.26 0.028

Nlrp1b −2.97 0.023

Ccl11 −2.57 0.007

LOC100359993 −2.55 0.017

RGD1561778 −2.51 0.002

LOC100361319 −2.15 0.008

LOC681325 −2.12 0.005

RT1-CE5 −2.12 0.026

Rpl23a −2.10 0.022

Cd180 −2.06 0.002

Wnt16 −2.05 0.014

Table 3. Top 10 significantly up- and downregulated genes, ExpPE vs. Pr. Gene expression was measured with a 
whole-genome microarray. ExpPE = Experimental Preeclampsia; Pr = healthy Pregnant.

# Gene sets Normalized enrichment score Normalized p-value False discovery rate Q-value

1 Potassium channels 2.40 <0.001 <0.001

2 Voltage gated potassium channels 2.40 <0.001 <0.001

3 Striated muscle contraction 2.35 <0.001 <0.001

4 Neuronal system 2.30 <0.001 <0.001

Table 4. Gene Set Enrichment Analysis, ExpPE vs. Pr. Gene expression was measured with a whole-genome 
microarray and analysed by Gene Set Enrichment Analysis. Listed are the top 4 positively enriched gene sets in 
Experimental Preeclampsia (ExpPE) compared to healthy Pregnant (Pr).

Figure 3. Heatmap of the 20 most contributing genes to the positive enrichment of the potassium channel 
gene set. The average expression of all samples was used as a reference to calculate the relative gene expressions. 
Pr = healthy Pregnant; NPr = Non-Pregnant; ExpPE = Experimental Preeclampsia.
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Non-pregnant animals treated with LPS did not differ in contractile aortic response after KCL incubation com-
pared to non-pregnant animals without LPS treatment.

Discussion
The aim of this study was to evaluate changes in the vascular transcriptome due to experimental preeclampsia in 
the rat. Therefore, we examined gene expression patterns in aortic tissue in non-pregnant, healthy pregnant and 
experimental preeclamptic rats by microarray technology. Eleven upregulated genes in ExpPE vs. Pr were vali-
dated by RT qPCR, and also evaluated in an additional control group of non-pregnant animals infused with LPS. 
This study showed that the gene sets “potassium channels”, “striated muscle contraction” and “neuronal system” 
were positively enriched in aortic tissue from preeclamptic rats vs. healthy pregnant rats (Fig. 6).

Figure 4. Gene expression was measured by RT qPCR of an additional control group for LPS infusion in 
non-pregnant animals. Expression levels of Ttn, Tnni1, Myh3, Myh8, Kcna6, Kcnh8 (A–F), Kcnj3, Hch4, 
(H,I), and Syn3 (K) did not differ between NPr and NPr + LPS animals. The genes Kcnq3 (G), and Cacng3 
(J) were found differently expressed due to LPS infusion independent of pregnancy. Pr = healthy Pregnant; 
ExpPE = Experimental Preeclampsia; NPr = Non-Pregnant; NPr + LPS = Non-Pregnant + LPS. Data are 
presented as mean ± SEM. * p < 0.05.
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During pregnancy the maternal vascular system undergoes considerable adaptations, which are of importance 
for maternal health and fetal growth and development20,21. In the present study, we found pregnancy-induced 
adaptations in gene expression patterns in aortic tissue by comparing the Pr group with the NPr controls. We 
found that over 600 genes were differentially expressed in the aorta between the Pr and NPr group. The most 
notable changes were seen in genes associated with the immune system, such as the twelve-fold upregulation of 
Cxcl13, which encodes for a B-cell-attracting chemokine. Mmp3, which encodes for matrix metallopeptidase 3, 
was also upregulated in aortic tissue during Pr compared to NPr, which was also shown by Kelly et al.22. The Mmp 
family plays a role in vascular remodelling and angiogenesis by the degradation of extracellular matrix23,24.

GSEA was done to find functional changes in gene expression between the groups, with the use of prede-
fined sets of genes. Each gene set encodes for one shared biological function, regulation or chromosomal 

Figure 5. Contractility of aortic rings (isotonic displacement (microns)) after KCl (60 mM) incubation of 
10 minutes. Aorta rings of Experimental Preeclamptic animals (ExpPE) had a significantly decreased response 
to KCl compared to healthy Pregnant (Pr) animal aorta rings. Non-Pregnant animals treated with LPS 
(NPr + LPS) did not differ in contractile aortic response after KCL incubation compared to Non-Pregnant 
animals without LPS treatment (NPr). Data are presented as mean ± SEM. * p < 0.05.

Figure 6. Schematic overview of the main findings and the hypothesis of the role of the findings. During 
pregnancy the experimental preeclamptic syndrome is induced, resulting in the main features of preeclampsia. 
Gene expression in the aorta is changed compared to healthy pregnant control animals which can lead to 
vascular changes in the animals and contribute to the preeclamptic syndrome. The three most contributing 
genes to the positively enriched gene sets are shown.
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location25. GSEA revealed that gene sets related to interferon (γ) signalling and cytokine signalling were highly 
positively enriched in the healthy pregnant group compared to NPr controls. Interferon γ is known to have a 
pro-inflammatory effect on the endothelium by upregulation of surface adhesion molecules and chemokines, 
such as CXCR3, CCR5, and CX3CR1 ligands26. Cytokine signalling in the endothelium may play an important 
role in the immune system and could be related to important changes in the immune system necessary for a 
healthy pregnancy27,28.

Experimental preeclampsia in rats induced with low-dose LPS during pregnancy is one of the main models 
to study the effects of preeclampsia on both the mother and the offspring15,18,29–33. We choose to use the aorta, 
since the aorta is easily accessible and often used for studies of vascular function in pregnancy, including our 
own studies15,34–36. The aorta, however, is a typical conductance vessel, rather than a resistance vessel associated 
with blood pressure regulation. Although the present study showed differential regulation of various genes and 
gene sets between the three groups of rats, in future studies we will need to confirm the role of these gene sets in 
hypertension and vascular function in resistance vessels.

The comparison of ExpPE with Pr revealed that over 500 genes were significantly (p < 0.05) differently 
expressed in the aorta with a relatively high fold change (>1.4 or <−1.4). The most upregulated genes in ExpPE 
compared to Pr were Ttn (Titin) and Tnni1 (troponin I type 1 [skeletal, slow]), which are both important in 
muscle organization37,38. While the protein Titin is mostly known for its expression in skeletal muscle, it is also 
expressed in smooth muscle of the aorta37. Granzier et al.39 hypothesize that Titin could influence structural integ-
rity and passive elasticity of smooth muscle tissues by linking dense bodies to thick filaments. Titin is also associ-
ated with heart failure with preserved ejection fraction by influencing the elasticity of myocardial muscle40,41. An 
increase of certain isoforms of Titin, which is also detected in a spontaneously hypertensive rat model42, correlates 
with increased passive stiffness of muscle tissue39,43. We are the first to hypothesize a role of increased Titin in 
hypertension in relation to preeclampsia. Multiple other genes associated with vascular function (Nos1, Edn3 and 
Ang2) were also upregulated in ExpPE.

The most downregulated genes were Nlrp1b (NLR family, pyrin domain containing 1B) and Ccl11 (chemokine 
[C-C motif] ligand 11). The proteins encoded by these genes both play a role in inflammation. Nlrp1b also plays 
a role in programmed cell death. Also potentially interesting is #10 in the list of downregulated genes, Wnt16 
(Wnt Family Member 16). The Wnt family is implicated in various developmental processes44. Downregulation 
of Wnt16 is associated with vascular calcification45, which plays a role in vascular stiffness and is associated with 
hypertension46. The protein Wnt16 has been reported in circulatory vesicles of healthy pregnant women, while it 
was not detected in preeclamptic women47. If this gene is downregulated in preeclamptic patients, it may contrib-
ute to the development of artery calcification, which is observed in formerly preeclamptic women later in life48.

We performed a GSEA analysis in order to evaluate which gene sets are up- or downregulated in the aorta of 
preeclamptic rats. We showed that the most positively enriched gene sets were “potassium channels”, “striated 
muscle contraction” and “neuronal system”. The first 16 most highly contributing genes for the positive enrich-
ment of the potassium channel gene set are significantly upregulated in ExpPE compared to Pr, 11 of these 16 
genes are significantly upregulated in ExpPE compared to NPr controls. Since none of these genes are different 
between Pr and NPr animals, the effect of experimental preeclampsia on potassium channel gene expression is 
specific for experimental PE and not induced by pregnancy. Potassium channels play an important role in the 
vasculature by the establishment of the membrane potential49. The membrane potential determines the depolari-
zation/repolarization state of cells, which affects the contractility of vascular smooth muscle cells49,50. Endothelial 
cells also express potassium channels51. The channels regulate the endothelial cell membrane potential and are, 
via Ca2+ signalling, involved in the production and release of endothelial derived vasoactive factors, such as nitric 
oxide, prostaglandins and EDHF52.

A role of potassium channels in aortic contraction in experimental preeclampsia may be in line with previous 
studies from our lab in the same model, in which we found an increased effect of EDHF and a decreased effect of 
prostaglandins in endothelial acetylcholine induced vasodilation in the aorta of preeclamptic rats vs. the aorta of 
healthy pregnant rats15. In this same study, we also found increased angII sensitivity in the aortas of preeclamptic 
rats. Since both EDHF and prostaglandins53, but also angII54,55 may affect vascular function via potassium chan-
nels, potassium channels may play a central role in the endothelial dysfunction in this model. This is also obvious 
from our ex vivo experiment in which aortic rings were treated with potassium chloride to induce contraction. 
We found decreased contraction in the aortic rings from preeclamptic rats, which may also suggests a different 
function of potassium channels in aortas of preeclamptic rats. Further studies are, however, needed to show the 
role of the increased expression of potassium channel genes in the decreased response to potassium in the aortas 
of rats with ExpPE, since potassium induced contraction in the ex vivo aortic contraction experiment may be 
due to membrane depolarization activating voltage operated calcium channels, inducing the influx of calcium 
into the cells and thereby contraction56. Our suggestion of a role for potassium channels in the hypertension in 
preeclampsia, seems to be in line with data from previous studies. It has been shown that during hypertension, 
ion channels are remodelled in the vasculature57, suggesting an important role of ion channels in the modulation 
of vascular tone. In line with the role of increased expression of potassium channels in hypertension, Cox et al.58 
found found increased expression levels of some potassium channel genes in the hypertensive animals as com-
pared with normotensive animals58. Other studies with hypertensive rat models also showed that the expression 
of potassium channel genes influence vascular dysfunction59 or hypertension60, though in these two studies a 
decrease or inhibition of a potassium channel gene induces this effect. Since upregulation of potassium channels 
is often associated with vasodilation49 we speculate that the increase in genes encoding for the gene set potassium 
channels could be an compensatory mechanism (which is insufficient in the present model), related to hyperten-
sion induced by other mechanisms, such as sympathetic activation61. The exact role of potassium channels in our 
model therefore needs further investigation.
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Although our results strongly indicate a role of potassium channels in the pathogenesis of the present model, 
it remains to be established whether the changes in potassium channels also occur in preeclampsia. Watanapa 
et al.62 suggest such a role for potassium channels in preeclampsia, since they showed changes in potassium cur-
rents after incubation of endothelial cells with human preeclamptic plasma. It appeared that due to incubation 
with plasma, the inward K + currents were decreased compared to stimulation with plasma from healthy preg-
nancy, which may result in endothelial cell dysfunction and in a reduced production and release of vasodilators 
of endothelial cells62.

Next to the potassium channels gene set, the neuronal system gene set and striated muscle contraction gene set 
were also highly upregulated. Although in our model we did not study sympathetic activity, the upregulation of genes 
important in the neuronal system may suggest that neuronal genes affect vascular function in this model of exper-
imental preeclampsia. The autonomic nervous system innervates the vascular wall and mediates vascular tone63:  
increased sympathetic activation, which is part of the autonomic nervous system, is strongly correlated with 
human hypertension64 as well as with hypertension during pregnancy65. Upregulated genes in the neuronal system 
could indicate an increased sympathetic activity resulting in vasoconstriction, contributing to the hypertension 
in our model. This data seem to be in line with the suggestion of Schobel et al. stating that during preeclampsia 
over-activity of the sympathetic system occurs66.

The gene set for striated muscle contraction was also upregulated. Signalling pathways in striated muscle con-
traction (including skeletal and cardiac muscle contraction) have many similarities with signalling pathways in 
smooth muscle contraction67. Furthermore, smooth muscle cells of the embryonic dorsal aorta, which progresses 
into the descending aorta, have a common clonal origin with skeletal muscle cells68. So, in analogy with skeletal 
muscle38,69–71, we speculate that this gene set also plays a role in smooth muscle contraction of the aorta and thus 
contributes to the hypertension in our model.

Although we did not include non-pregnant LPS rats in the array, we used RT qPCR to test the expression of 
the 11 most relevant upregulated genes in ExPE vs Pr rats. In line with our expectation that LPS would not affect 
gene expression in non-pregnant rats, nine out of eleven genes did indeed not respond to LPS in non-pregnant 
animals. Only the genes Kcnq3 and Cacng3, increased upon LPS infusion in non-pregnant animals. Thus, the 
results suggest that most, but not all, genes differentially expressed in the preeclamptic animals are pregnancy 
specific and related to the preeclamptic state in the rat.

In conclusion, our data showed that experimental preeclampsia in rats resulted in changes in gene expression 
levels in the aorta compared to healthy pregnant rats. The data suggest that in the present model potassium chan-
nels and innervation as well as (striated) muscle contraction in the aorta may play a role in the pathophysiology. 
Whether similar changes take place in the vasculature in human preeclampsia remains to be established. We are 
currently preparing experiments in which cultured human endothelial and vascular smooth muscle cells are incu-
bated with human preeclamptic and healthy pregnant plasma, followed by gene expression measurements. Our 
findings may contribute to a better understanding of the effects of the preeclamptic syndrome on the maternal 
vasculature. It may also help to explain the long-term effects of preeclampsia on the increased incidence for heart 
and vascular disease.

Materials and Methods
Animal model. Animal material was used from previously conducted experiments15. The use of animals 
was approved (application number: DEC-5516A) by the Ethical Committee for Animal Experimentation of the 
University of Groningen and animal experiments were performed in accordance with the National Institutes 
of Health Guide for the Care and Use of Laboratory Animals. Wistar outbred rats (Harlan Inc, Horst, the 
Netherlands) were housed in a 12-hour light-dark cycle with food and water ad libitum. A cannula was placed 
into the right jugular vein in animals at day 0 of pregnancy and also in age matched non-pregnant control animals 
while anesthetized with isoflurane/oxygen.

Animals were infused with either LPS (E-Coli, 0.55: B5, Whittaker MA Bioproducts, Walkerville, Md.) or 
saline 14 days after cannula placement. Experimental preeclamptic rats were infusede with LPS for 1 hour with 
1 μg/kg bodyweight dissolved in 2 ml saline (n = 9). The Pr control animals received saline only (2 ml during 1 h; 
n = 8).

At day 20 of pregnancy, the animals were euthanized by decapitation and thoracic and abdominal aortas 
were isolated and cleaned from surrounding tissue. Non-pregnant female rats with saline (n = 8) or LPS (n = 8) 
infusion were euthanized on diestrus, and aortas were isolated and cleaned from surrounding tissue. The thoracic 
aortas were placed in cold oxygenated Krebs solution and prepared for contraction experiments. Abdominal 
aortas were stored at −80 °C until further use for microarray analysis.

RNA isolation. Total RNA was isolated from whole abdominal aortas with TriReagent (Sigma-Aldrich, St. 
Louis, MO) following the manufacturer’s instructions from all groups of rats. An additional round of purification 
was performed with RNeasy Microkit columns (Qiagen, Venlo, the Netherlands). RNA quality was assessed using 
RNA 6000 nanochips on the Agilent 2100 bioanalyzer (Agilent Technologies, Amsterdam, the Netherlands), and 
all samples showed intact 18 S/28 S bands.

Microarray. The microarray was performed with three animal groups: NPr (n = 4), Pr (n = 5) and ExpPE 
(n = 5). Total RNA (100 ng) was labelled using the Affymetrix WT plus reagent kit and hybridized to whole 
genome Genechip Rat Gene 1.1 ST arrays coding 19.357 genes (Affymetrix, Santa Clara, CA). Sample labelling, 
hybridization to chips and image scanning was performed according to the manufacturer’s instructions.
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Microarray data analysis. Microarray analysis was performed using MADMAX pipeline for statistical 
analysis of microarray data72. Quality control was performed and all arrays met our criteria. For further analysis a 
custom annotation was used based on reorganized oligonucleotide probes, which combines all individual probes 
for a gene73. Expression values were calculated using robust multichip average (RMA) method, which includes 
quantile normalisation74. Significant differences in expression were assessed using paired Intensity-Based 
Moderated T-statistic (IBMT75). All microarray data are MIAME compliant and have been submitted to the Gene 
Expression Omnibus (accession number GSE96610). Gene expression differences between the groups were con-
sidered significant with a p-value < 0.05 and a fold change <−1.4 or >1.4.

Gene Set Enrichment Analysis (GSEA) was performed comparing the three groups using MADMAX. In 
GSEA predefined sets of genes, which encode for one shared biological function, chromosomal location or reg-
ulation, are investigated and compared between the groups25. This way, functional changes in gene expression 
between the groups could be found.

The dataset generated and analysed during the current study is available at the Gene Expression Omnibus 
(accession number GSE96610).

Validation of the array. To verify microarray data, RNA was used from aorta of NPr (n = 4), Pr (n = 5) and 
ExpPE (n = 5) and RT qPCR was performed as described below on 11 genes. The 11 genes chosen were of most 
interest because they include: the top 2 upregulated genes in ExpPE vs. Pr which were also in the “striated muscle 
contraction” gene set. Two additional genes of the same gene set were also included, the top 5 mostly contributing 
genes to the enrichment of the gene set “potassium channels”, and the top 3 genes of the “neuronal system”.

Inclusion of the non-pregnant LPS treated animals. We did not include samples from non-pregnant rats treated 
with LPS on the array, since previous research showed no physiological differences due to low-dose LPS infu-
sion in non-pregnant animals15,16,18,30. Instead, RT qPCR was used to measure gene expression in NPr + LPS rats 
(n = 5). We used the same 11 genes as for the validation of the array.

RT qPCR. A total of 1 µg RNA was reverse transcribed using random nonamers (Sigma) and 1 µL (200 units) 
M-MLV RT (Invitrogen), according to the manufacturer’s instructions. cDNA was stored at −20 °C until further 
use.

RT qPCR was performed using 2 µL of 20x diluted cDNA, 2.875 µL sterile water, 0.125 µL (10 µM) forward 
and reverse primer mix, and 5 µL SYBR Green PCR Master Mix (Life Technologies) and run in triplicates on 
a StepOnePlus™ Real-Time PCR System machine (Applied Biosystems) using the following program: 10 min 
95 °C, followed by 40 cycles: 15 sec. 95 °C and 1 min 60 °C. Primers (Invitrogen) were designed using Primer3 and 
BLAST (Table 5). The expression levels were calculated based on a calibration curve and data were normalized to 
those of 36b4. Significance was determined on log transformed data which was standardized to 1.0 for Pr, using 
the Student’s t-test to compare ExpPE with Pr, and to compare NPr with NPr + LPS. P < 0.05 was considered sig-
nificant. The data are presented as mean ± SEM. The correlation between microarray and RT qPCR gene expres-
sion values was determined by Pearson correlation.

Contraction assay of aortic rings. Thoracic aorta tissue of Pr (n = 8), NPr (n = 8), NPr + LPS (n = 8) 
and ExpPE (n = 9) was first cleaned of surrounding tissue and then cut into 2 mm rings, which were kept in 
Krebs solution (26) (37 °C and aerated 95% O2, 5% CO2). Isotonic contraction experiments were conducted with 
thoracic aorta rings according to the procedure described by Buikema et al.15,76. In brief: the aortic rings were 
equilibrated for 30 minutes. Thereafter, the rings were stimulated with potassium chloride (KCl) (60 mM) for 
10 minutes and the contraction was evaluated by measuring isotonic displacements (microns). The data were 
analyzed using GraphPad Prism version 5.0 on a standard computer and presented as mean ± SEM. Significance 
was determined with a One-way ANOVA followed by a Student’s t-test.

Gene name Entrez ID Forward primer (5′ - >3′) Reverse primer (5′ - >3′)

Ttn 84015 AGTCAGAGCTACAGGCAACC TCCTTCAATCCTGATCCTTGGG

Tnni1 29388 CTCATCTGCACAGGAACCAAC TCAGGCTCTTCAGCATGAGTTTA

Myh3 24583 TTCGCTACGACAGATGCTGA CACAAAGTGTGGGTGAGTGG

Myh8 252942 GAGGCTGAGGAACAATCCAAC TGCGTTTACTCTGCACTGATTT

Kcna6 64358 CTTGCCTCTGAGGGCTGTG ATCCAGAATCCCCCGTCTCA

Kcnh8 246325 ATCCACTACGTCACCACCTG ATGTACGAGGGACACCACTG

Kcnq3 29682 CAAGTACAGGCGCATCCAAA TAGCAAATGTTTCCAGCAGCA

Kcnj3 50599 CGAGCATGCGGTTATTTCCA GTGTCTGCCGAGATTTGAGC

Hcn4 59266 CGTGAGGGCGGATACTTACT GTTCTTCTTGCCTATGCGGT

Cacng3 140724 TGCTTAGAAGGAGCTTTCCGA ACACAGAGTCCCCCGAAAAA

Syn3 29130 AGTTGTGAGAAATGGCACCAA AGCTGAGAGAACACCCAAGG

Table 5. Primers for RT qPCR.
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