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Roots play vital roles in growth and development of plants. They function in 

uptaking of water and nutrients in the soil, in the interaction with symbiotic fungi 

and bacteria, in carbohydrates storage, and in maintenance of the rhizosphere (Zhu et 

al. 2011; Petricka et al. 2012; Scheres et al. 2002; Morris and Walker 2003). 

Environmental conditions greatly affect plant development and productivity. As 

plants cannot escape from adverse environmental conditions, they utilize autologous 

mechanisms to cope with environmental stresses. Among these mechanisms, 

receptor-like kinases (RLKs) localized in the plasma membrane of plant cells, have 

become the focus of more and more studies on signal perception and transduction in 

various aspects of plant growth and development. Moreover, many identified RLKs 

are also found to respond to environmental cues and trigger acclimation to cope with 

different biotic and abiotic stresses. 

    Arabidopsis thaliana has been widely used in signal transduction studies since the 

1980s because of it's short life circle and simple genome model for plant 

physiological and genetic analyses (Smith and De Smet 2012; Osmont et al. 2007; 

DeYoung and Clark 2008; Péret et al. 2009). Since the first plant receptor kinase, the 

maize putative protein kinase-encoding cDNA clones (ZmPK1), was reported in 

maize (Walker and Zhang 1990), more than 610 members of RLK genes have been 

identified in Arabidopsis, representing nearly 2.5% of all Arabidopsis protein coding 

genes (Shui and Bleecker 2001a). Unlike receptor tyrosine kinases (RTKs) found in 

animals, which contain the tyrosine kinase catalytic domain, plants have the 

serine/threonine signature, which is structurally related to the receptor tyrosine 

kinases (Walker and Zhang 1990; Castells and Casacuberta 2007). Based on the 

structure of the extracellular domain, all RLK genes are divided into three groups. 

The transmembrane RLKs represents the largest group with more than 400 members, 

which have a typical structure comprised of a signal peptide, an extracellular domain, 

a serine/threonine transmembrane domain, and a cytoplasmic kinase domain. The 

second group, the receptor like-cytoplasmic kinase (RLCK) family, which lacks the 

extracellular domain, has 135 members (Shui and Bleecker 2001). The third group, 

with 56 members, is the receptor-like proteins (RLPs) which lacking a cytoplasmic 

domain (Wang et al. 2008).  

    The extracellular domains of RLKs are highly diverse. Based on the similarity of 

these domains, RLKs are classified into more than 21 subfamilies, among which the 

Leucine-rich repeat kinases (LRR-RLKs) represents the largest group in Arabidopsis 

with more than 200 members (Shiu and Bleecker 2001b). The extracellular LRR 

motif has a stretch of around 20-29 amino acids with conserved hydrophobic leucine 

residues with the consensus sequence of LxxLxLxxNxL or LxxLxLxxCxxL, form a 

short B-strand (Kobe and Deisenhofer 1994; Kobe and Kajava 2001). In this 

consensus sequence, "x" represents the non-conserved residues, while "L" represents 

Leucine, Isoleucine, Valine or Phenylalanine. "N" is Asparagine, Threonine, Serine, 

or Cysteine, and "C" is Cysteine, Serine or Asparagine. The most common length for 

an LRR is 24 residues, but repeats containing from 1 up to 32 residues can also be 

found in the extracellular domain (Matsushima and Miyashita 2012; Matsushima et 

al. 2010). Based on the amino acid sequence similarity between kinase domains, the 
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LRR-RLKs can be subdivided into 14 subgroups, LRR I to XIV (Shiu and Bleecker 

2003). In Arabidopsis there are 223 LRR-RLKs, but only about 60 have been 

functionally described to date (Wu et al. 2016). Most of these characterized LRR-

RLKs are assumed to be involved in protein-protein interactions whereas other 

motifs are implicated in binding to various carbohydrate substrates. An exceptional 

type of substrate in implicated for the LRR-RLK, BRASSINOSTEROID 

INSENSITIVE1 (BRI1), which may binds directly to a steroid hormone (Wang et al. 

2001; She et al. 2011). 

Receptor-like kinases in Arabidopsis root system architecture 

Although the root system architecture varies among different species and can be 

modulated by the conditions encountered in the soil environment, the basic root 

system morphology is controlled by the inherent genetic blue print (Osmont et al. 

2007). The Arabidopsis seedling displays a typical root system for dicotyledons, 

consisting of one primary root (PR) that formed during embryogenesis, lateral roots 

(LRs) branching out from PR, and root hairs (RHs) that originate from PR epidermal 

cells (Barrada et al. 2015). In the Arabidopsis primary root, a slowly dividing stem 

cell pool of initial cells surrounds the quiescent center (QC), with three to four 

infrequently dividing cells. The division of initial cell gives rise to the files of 

distinct cell layers (tissues), including the epidermis, the cortex, the endodermis, the 

pericycle and the stele that surrounds the vascular bundels (Figure 1). The 

longitudinal axis of the PR demonstrates a developmental time line: within the apical 

meristem zone, initials and their daughter cells divide multiple times producing 

similar sized daughter cells, while in the transition zone only a few cells still divide 

and the majority of cells start to elongate. Cell size in the elongation zone increases 

sharply, compared with those cells in the transition zone, until they have reached 

their final length. In cells that have reached their final size, polarized cell 

enlargement leads to the formation of root hairs, demarcating the distal margin of the 

maturation zone of a root.  

Embryo receptor like kinases 

The Arabidopsis zygote undergoes an asymmetric division to generate a smaller 

apical cell and a larger basal cell. The apical cell-lineage generates an eight-cell 

embryo proper with an apical domain (AD) and central domain (CD) after a series of 

divisions. The AD generates the cotyledon and the shoot meristem, whereas the CD 

produces part of the cotyledon, the hypocotyl and the root meristem initials (Mayer 

et al. 1991; Jürgens et al. 1991; Slane et al. 2014; Meinke 1991). The basal cell 

produces the suspensor that plays an important role during embryo development, 

including (i) pushing the embryo proper into the endosperm cavity, (ii) transport of 

molecules involved in nutrition and growth regulation and (iii) biosynthesis of plant 

hormones (Kawashima and Goldberg 2010). 
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Figure 1. The longitudinal axis and root radial patterning of primary root of the model 

flowering plant Arabidopsis thaliana. The primary root tip of wild-type Columbia is 

consisted by three different zones, including the meristematic zone, the elongation zone, and 

the maturation zone. The black contours of cortical cells highlight the increase of cell size (left) 

and each color represents a different cell layer (right). Figure modified from Barrada et al. 

(2015).  

    The development of the plant embryo is a complex process and experimental 

evidence indicates that RLKs play major roles in the intercellular signaling in the 

embryo development (Figure 2, reviewed by Nodine et al. 2011). The length of the 

suspensor determines the speed of the development progression of the embryo in 

Arabidopsis, and the SHORT SUSPENSOR (SSP) gene was the first RLCK 

identified to functioning in the zygote (Bayer et al. 2009; Babu et al. 2013). Mutants 

lacking a functional SSP gene fail to generate and elongate basal cells, resulting in a 

short suspensor phenotype. Genetic analysis suggests that SSP acts upstream of the 

YODA (YDA) MITOGEN-ACTIVATED PROTEIN (MAP) kinase cascade, which 

is required for partitioning of the embryo and determine the extra embryonic fates 
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(Lukowitz et al. 2004), but SSP regulates this pathway through a unique parental-

original effect (Bayer et al. 2009). In addition, the SSP is found related to another 

group of RLCKs, the BRASSINOSTEROID-SIGNAL-KINASES (BSKs), which in 

vitro are phosphorylated by BRI1 and which in vivo interact with BRI1 and regulate 

cell elongation in Arabidopsis (Tang et al. 2008). However, no direct evidence was 

found that SSP acts in the BRI1 pathway of controlling nuclear gene expression and 

embryo development.  

 

Figure 2. RLK and RLCK functions during embryogenesis of Arabidopsis. Dotted arrows 

represent possible cell interaction and arrows with solid lines represent interactions that have 

been confirmed by experiments. SSP acts as a signal to promote elongation and asymmetric 

division of zygote via the YDA pathway MAP kinase cascade to regulate basal cell 

development. RPK1/TOAD2 are redundantly required for maintaining protodermal cell fate 

identity during the early globular stage of Arabidopsis embryo development. At the later 

globular and transition stages, ACR4/ALE2 positively regulate protoderm gene expression 

and the integrity of protoderm in the apical domain, which is required for normal cotyledon 

emergency. GSO1/GSO2 are important for maintaining epidermal function from heart stage of 

the embryo development. Figure adapted from Nodine et al. (2011). 

    In the early globular stage of Arabidopsis embryo development two closely related 

RLKs, RECEPTOR PROTEIN KINASE1 (RPK1) and TOADSTOOL2 (TOAD2), 

are required for the maintenance of protodermal cell fate identify in the central 

domain (reviewed by Nodine et al. 2011). The localization of RPK1 and TOAD2 

translational fusions of green fluorescent protein (GFP), together with the cell 

specific markers in toadstool embryos, strongly indicates that RPK1 and TOAD2 are 

redundantly required for Arabidopsis embryonic pattern formation. They are also 

required together for cotyledon initiation during later embryonic stages (Nodine and 

Tax 2008).  

    In maize, the CRINKLY4 (CR4) gene was found to encode a TNFR-like receptor-

like kinase that is involved in the leaf epidermis differentiation (Becraft et al. 1996). 

Arabidopsis thaliana homologue of CR4 (ACR4), a putative receptor-like kinase 
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receptor of Arabidopsis, is homologous to the maize CR4 gene and required for 

proper development of the embryo (Tanaka et al. 2002). At the globular stage during 

early embryogenesis, ACR4 transcripts accumulate in both protoderm and inner cells 

at comparable levels, but change at the heart stage with relative higher level in the 

protoderm than in the inner cells, suggesting a role in epidermis differentiation. In 

addition, the ABNORMAL LEAF SHAPE1 (ALE1) and the ABNORMAL LEAF 

SHAPE2 (ALE2) that results in defects of cuticle formation, were found to act 

together with ACR4 during early stages of embryogenesis (Tanaka et al. 2007; 

Tanaka et al. 2001). These three genes play partially overlapping roles in positively 

regulating protoderm-specific gene expression and the formation of cotyledon 

through different modes of intercellular communications. 

    In addition, two other LRR-RLKs, GASSHO1 (GSO1) and GASSHO2 (GSO2) 

are essential for the normal development of the epidermal surface in Arabidopsis 

embryos (Tsuwamoto et al. 2008). Embryos of the double mutant GSO1/GSO2 

display reverse bending of the embryo compared with the wild type embryo at the 

heart-torpedo transition stage. No difference was apparent between wild type and the 

GSO1/GSO2 double mutant embryos at the early heart stage, but in the mutant the 

apical part of the embryo will stick to the peripheral tissue of the endosperm, which 

is caused by abnormal development of the epidermis.  

    Based on microarray datasets from Keith Lindsey’s group (Spencer et al. 2007) 

and John Harada-Robert Goldberg’s microarray data (NCBI GEO: GSE12404), more 

than 300 expressed receptor-like genes were detected during different stages of 

embryogenesis (Nodine et al. 2011). Apart from high expression of seven RLKs 

(SSP, RPK1, TOAD2, ACR4, ALE2, GSO1, and GSO2) discussed above, a large 

number of RLKs and RLCKs with known functions during adult growth and 

development were detected during embryogenesis, including BARELY ANY 

MERISTEM 1/2 (BAM1/2) (DeYoung and Clark 2008), SOMATIC 

EMBRYOGENESIS RECEPTOR-LIKE KINASE1/2 (SERK1/2) (Fan et al. 2016; 

Albrecht et al. 2005) that is involved in post-embryo development, BRI1 and BSKs 

(Tang et al. 2008) that are involved in the brassinosteroids signal transduction 

pathway, and RLK PEP1 RECEPTOR1 (PEPR1) (Yamaguchi et al. 2006) and the 

RLCK AVRPPHB SUSCEPTIBLE1 (PBS1) (Swiderski and Innes 2001), with 

known functions in pathogen defense responses. Thus, signaling via RLKs and 

RLCKs is important during this part of the life cycle of a plant, and there are still a 

large number of RLKs and RLCKs that are expressed during embryogenesis, but for 

which a specific function during embryonic pattern formation still has to be 

established.  

Root apical meristem maintenance RLKs 

Primary meristems of shoot and root are initiated during embryogenesis and control 

plant growth along the main body axis. The CLAVATA pathway that acts in the 

shoot apical meristem (SAM) to control shoot and floral meristem size in 

Arabidopsis is a good illustration of study on the role of RLKs in signal transduction 
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(Figure 3). In the SAM of Arabidopsis the central zone (CZ), which is surrounded 

by the peripheral zone (PZ), consisting of three clonal layers: the epidermis layer 

(L1), the sub-epidermis layer (L2), and the interior bulk of the meristem (L3). 

CLAVATA1 (CLV1) contains an extracellular domain with 21 leucine-rich repeats 

(LRRs) and is expressed in and around the organizing zone (OZ) which underlies the 

L3 cell layer of the shoot meristem (Clark et al. 1993). CLV1 forms together with 

CLV2 the receptor kinase complex that binds CLV3, a ligand that belongs to the 

large CLAVATA/ENDOESPERM SURROUNDING REIGON (CLE) gene family 

(Clark et al. 1995). The secreted ligand CLV3 is expressed at the apex of the SAM 

and moves to the CLV1-expressing cell in the L3 cell layer, where the activated 

complex causes down-regulation in the OZ of WUSCHEL (WUS) which plays a 

central role in stem cell maintenance in the CZ (Clark et al. 1993; Stahl et al. 2009).  

 

Figure 3. The CLAVATA pathway that acts in the shoot apical meristem of Arabidopsis 

thaliana. The shoot meristem contains a central zone (CZ), the peripheral zone (PZ), and the 

rib zone (RZ) as shown in the figure. In dicotyledoneae angiosperm, the shoot meristem is 

divided into three cell layers (L1 to L3) that contribute differentially to plant growth. The L1 

and L2 layer cells divide predominantly to form the epidermis and sub-epidermis tissues, 

respectively. The cells in the L3 layer mainly give rise to the internal tissues by dividing to all 

directions. CLV3 serves as a negative feedback signal (shown in blue) that binds to several 

RLKs, including LRR-RLK CLV1 and RPK2/TOAD2, the LRR-RLP CLV2, and the RLCK 

CRN, to restrict the organizing center (OC) by down-regulating WUS transcription (shown in 

red). In the leaf primordium, adaxial and abaxial cell fates are marked by expression of HD-

ZIP III (shown in yellow) and KANADI (shown in blue) family genes, respectively. Figure 

modified from Boscá et al. (2011) and Groβ-Hardt and Laux (2003). 

    The root apical meristem (RAM), established during embryogenesis, comprises 

four types of initial cells and three to four infrequently dividing cells, the quiescent 

center (QC) (Figure 4 A) (Scheres et al. 2002). Cell division of these four sets of 

initial cells give rise to different layers of cells in the root apex, including the stele 

layer, the endodermis layer, the cortex layer, the epidermis layer, the columella, and 

the lateral root cap. The identity of the QC within the patch of stem cells in the RAM 

is specified by overlapping expression of the AP2 domain of PLETHORA (PLT) and 

the GRAS family SGORT ROOT (SHR)/SCAREROW (SCR) transcription factor, 

mutants of which display arrested root growth (Petricka et al. 2012; Aida et al. 2004). 
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The QC is essential for maintenance of the undifferentiated state of stem cell initials 

and it regulates cell division in the columella by arresting cell differentiation of the 

columella initial cells (van den Berg et al. 1997). Roots of a putative mutant lacking 

expression of the homeobox gene WUSCHEL-RELATED HOMEOBOX5 (WOX5) 

display enlarge cells at the QC and columella stem cells (CSCs) positions, and starch 

granules (a feature of a mature columella cells) accumulate in stem cells other than 

the QC in the null allele mutant. These results indicate that WOX5 is required to 

prevent stem cell differentiation (Sarkar et al. 2007), similar to the role of WUS in 

the SAM (Stahl et al. 2009).   

 

Figure 4. RLK functions during root apical meristem development and vascular 

development. A: Schematic of the root apical meristem of Arabidopsis. Colours represent 

different cell layers of root tip and the localization of the homeodomain transcription factor 

WOX5 (red) in the quiescent center, receptor like kinase ACR4 in the columella stem cell and 

columella cells, and it's ligand CLE (blue). (Figure modified from Stahl and Simon 2012). B: 

Conceptual model of regulation of root apical meristem through CLE peptide/RLK pathway.  

C: Schematic of transverse section of meristematic region of the Arabidopsis root (Figure 

modified from Miyashima et al. 2011). D: Conceptual model of regulation of vascular 

patterning through TDIF peptide signaling (Figure modified from Yang and Wang 2016).  

    Over-expression of CLV3 related members of the CLE families (CLE14, CLE19, 
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CLE20, and CLE40) results in arrested root growth, suggesting that the CLV-like 

signaling pathway also operates in the root apical meristem (Meng and Feldman 

2010; Stahl et al. 2009; Stahl and Simon 2009). ACR4 is expressed in the outer cell 

layer of embryos and involved in proper embryogenesis (Tanaka et al. 2002). In the 

RAM of plants transformed with the HISTONE2B::YFP fusion protein encoding 

gene, ACR4 expression was observed in the QC, the columella initials and the 

columella cells below the QC, the lateral root cap and the initial cells that give rise to 

the epidermal tissue (Gifford et al. 2003). CLE40, which is also expressed in the 

embryo, also acts as a secreted ligand of the ACR4 receptor in the columella and the 

columella stem cells, where it up-regulates its own expression and that of CLV1, 

restricting WOX5 expression to the QC (Pallakies and Simon 2014) (Figure 4 B). 

Together, this indicates a WOX5-dependent mechanism of stem cell fate regulation 

by CLE40, CLV1, and ACR4. 

    In addition to the CLE peptide-receptor pathway, the LRR-RLK BRI1 was 

identified playing a specific role in the regulation of RAM through a steroid 

hormone-RLK pathway (González-García et al. 2011; Hacham et al. 2011). The 

BRI1 gene encodes a widely expressed putative receptor of the hormone 

brassinosteroid (BR), which modulates cell elongation and division throughout 

growth and development of a plant (Clouse et al. 1996; Li and Chory 1997). The 

bri1 mutant displays a severely dwarfed phenotype and can't be rescued by BRs 

treatment. Generally, treatment with the brassinosteroid brassinolide (BL) promotes 

primary root growth at low levels and inhibits growth progressively at higher levels 

(Clouse et al. 1996). Both gain- and loss-of function of BR-related Arabidopsis 

mutants possess a reduced meristem size indicating a possible role for BRs in 

optimal root growth. In fact, BRs act on the root stem cells by promoting the QC cell 

renewal and controlling the cell cycle progression and differentiation necessary for 

maintaining the meristem size (González-García et al. 2011). In addition, 4 nM BL 

treatment of the bri1 mutant causes increased expression of WOX5 and SCR, and the 

lack of SHR and WOX5 expression in the serk triple mutants (Du et al. 2012; Gou et 

al. 2012), indicating that RLKs are candidate molecules to function as receptor or co-

receptors in the regulation of root apical meristem maintenance.  

Stele and ground tissue RLKs 

The vasculature of Arabidopsis root is organized into a central stele, comprised of 

the xylem and phloem, and is formed in the RAM by initial cells that give rise to the 

protoxylem, metaxylem and procambial cells, depending upon the direction of cell 

division (Figure 4 C) (Ohashi-lto and Fukuda 2010; Scheres et al. 1994; Dolan et al. 

1993). These tissues are originally formed from a set of pericycle/vascular initials 

proximal to the QC, and they grow symmetrical along a central axis with protoxylem 

at the poles and metaxylem in the center (Zhang et al. 2011).  

    The BREVIS RADIX (BRX) gene family of Arabidopsis is a class of transcription 

factors that control growth and development throughout the plant and of which BRX 

is the only gene that has a role in root system development of Arabidopsis (Mouchel 
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et al. 2004). BRX is expressed in the vasculature and the reduced root size phenotype 

of brx mutant results from the reduced expression of a rate-limiting enzyme in 

brassinosteroid biosynthesis pathway (Mouchel et al. 2006). Expression of BRX is 

strongly induced by auxin and mildly repressed by brassinolide, indicating that BRX 

mediates a feedback loop between brassinosteriod and auxin signaling enabling 

optimal root growth. Recently, the LRR-RLK gene, BARLY ANY MERISTEM3 

(BAM3) was identified as suppressor of root meristem growth and protophloem 

development defects of brx mutant (Depuydt et al. 2013). While CLE45 treatment 

severely inhibits root meristem growth in wild type roots, the roots of the bam3 

mutant are insensitive to application of the CLE45 ligand. As expression of bam3 is 

increased in both brx mutants and roots treated with CLE45 peptide, protophloem 

differentiation in the transition zone of the root tip is caused by activation of BAM3 

binding to CLE45, and BRX promotes protophloem differentiation through 

inhibition of BAM3 expression.  

    In the Arabidopsis genome, thirty-two CLE genes have been identified to be 

involved in many aspects of biological processes of plant growth and development 

(Betsuyaku et al. 2011; Jun et al. 2008). Among them, CLE41 and CLE44 encode a 

12-amino acid TRACHEARY ELEMENT DIFFERENTIATION INHIBITORY 

FACTOR (TDIF) peptide. In the vascular meristem, the LRR-RLK PHLOEM 

INTERCALATED WITH XYLEM/TDIF RECEPTOR (PXY/TDR), which shares 

high level sequence similarity with CLV1, perceives the TDIF signals from phloem 

to regulate the undifferentiated procambial cell fate during secondary growth 

(Figure 4 D, Hirakawa et al. 2008; Ohyama et al. 2008; Yang and Wang 2016). The 

TDR, localized in procambial cells, is activated by TDIF and then promotes cell 

division of procambial cells and suppresses differentiation of the procambial cells 

into xylem cells (Hirakawa et al. 2010). Additionally, expression of WOX4 increases 

in the presence of TDIF in a TDR-dependent manner (Hirakawa et al. 2010). A 

mutation in TDR causes both the suppression of procambial cell proliferation and the 

enhancement of xylem differentiation, whereas a mutation in WOX4 only suppress 

the proliferation of procambial cells, suggesting that TDIF-TDR signaling regulates 

vascular stem cell fate by two independent pathways that appear to diverge early 

after TDIF recognition. 

    Several other RLKs are also implicated in the development of the vascular system. 

For instance, two members of the BRI1 family of plant steroid receptors, BRI1-

LIKE1 (BRL1) and BRI1-LIKE1 (BRL3), are predominantly expressed in the 

vascular tissues and function specifically in provascular differentiation to maintain 

xylem and phloem (Caño-Delgado et al. 2004). Another RLK, XYLEM 

INTERMIEXD WITH PHLOEM1 (XIP1), displays an aberrant accumulation of 

highly lignified cells and phloem cells adjacent to xylem cells in stem sections, 

similar to the pxy mutant phenotype, indicating that XIP1 plays a role in 

differentiation of phloem cells in vascular development (Bryan et al. 2012). 

Moreover, MORE LATERAL GROWTH1 (MOL1) and REDUCED IN LATERAL 

GROWTH1 (RUL1) were identified as opposing regulators of lateral expansion of 
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plant growth axes, and they might function to recognize and communicate long or 

short range signals to cambium cells (Agusti et al. 2011).  

Regulation of epidermal cell fate and root hair formation 

Root hairs are long cylindrical extensions of epidermal cells, and they are 

responsible for uptake of nutrients, establishing plant-microbe interactions, and 

helping plant anchoring to soil (Grierson et al. 2014). In Arabidopsis, epidermal cells 

are divided into two groups, the root hair cells that can produce root hairs and the 

non-hair cells, which lack root hairs. The Arabidopsis root epidermis is generated 

from a set of epidermal/lateral root cap initial cells formed during embryogenesis, 

and these initial cells can give rise to epidermal cells and cells of the lateral root cap, 

in the proximal and distal direction of the QC, respectively (Petricka et al. 2012). 

Like in many other members of the Brassicaceae, the epidermis of Arabidopsis 

possesses a distinct position-dependent pattern of root hair cells and non-hair cells, 

and how the identity of a newly formed epidermal cell, differentiating either into a 

root hair cell or a non-hair cell, is established, has been studied extensively to 

understand the regulation of cell type patterning in plants (Grierson et al. 2014; 

Dolan et al. 1994; Galway et al. 1994). 

 

Figure 5. Control of epidermal root cell fate of Arabidopsis. In immature epidermal cells in 

the N position, the WER and MYB23 protein form an active complex with TTG and 

GL3/EGL3 proteins, and then positively regulate expression of GL2 and non-hair cell 

differentiation. However, the SCM pathway is proposed to negatively regulate WER 

transcription in the H position of the epidermal cell, which cause the GL3/EGL3 proteins 

succumb to the CPC/TRY/ETC1, which lead to inactive complexes, repression of GL2 and 

hair cell differentiation, in a position-dependent manner (Schiefelbein et al. 2009; Grierson et 

al. 2014). Figure modified from Bernhardt et al. (2003). 

    Several Arabidopsis mutants display a disrupted pattern of root epidermal cell 

types compared to wild type cells (Grierson et al. 2014). For instance, mutations in 

TRANSPARENT TESTA GLABRA (TTG), GLABRA3 (GL3), ENHANCER OF 

GLABRA3 (EGL3), and WEREWOLF (WER), alone or in combination, cause 
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plants to produce "hairy" roots, by changing non-hair cells in to root-hair cell 

(Galway et al. 1994; Bernhardt et al. 2003; Lee and Schiefelbein et al. 1999). On the 

other hand, CAPRICE (CPC), TRIPTYCHON (TRY), and ENHANCER OF TRY 

AND CPC (ETC1) are required for establishing the root-hair cell identity and 

mutation of these genes, alone or in combination, cause plants to produce "bald" 

cells at the former root-hair cell position (Simon et al. 2007; Wada et al. 1997; Kirik 

et al. 2004). Recently, an LRR-RLK SCRAMBLED (SCM) was discovered that 

enables immature epidermal cells to detect a positional signal and establish an 

appropriate cell-type pattern (Kwak et al. 2005). All these genetic findings to date 

led to a possible model for cell type pattern formation in the root epidermis of 

Arabidopsis (Figure 5) (Grierson et al. 2014).  

    Genetic analysis reveals discrete steps in the root hair development in Arabidopsis 

(Péret et al. 2009). In the initiation stage, rop proteins are first localized at the site 

where the root hair will be formed, before the hair begin to grow. Rop GTPases are 

localized to the tips of root hairs and control polar growth of Arabidopsis (Molendijk 

et al. 2001). Mutation of At3g51550, which encodes the FERONIA (FER) receptor-

like kinase, induces sever root hair defects and reduced levels of active RAC/ROPs, 

indicating that FER assist in rop accumulation at the apical plasma membrane 

domains in the root tip (Duan et al. 2010). Within a minute after localized rop 

accumulation, the root hair cell wall begins to bugle out and the pH of the wall drops 

to pH 4 - 4.5, which is thought to activate expansion proteins that catalyze cell wall 

loosening (Grierson et al. 2014). As the bulge enlarges, large amount of endoplasmic 

reticulum and filamentous (F) actin accumulate in the developing swelling.  In the tip 

growth stage the hairs grows to its final length by targeted secretion.  

Lateral root development 

In Arabidopsis, lateral roots are derived from the pericycle layer deep within the 

differentiation zone of the primary root (De Smet 2012). The mature pericycle cells 

along the xylem pole are stimulated to proliferate and re-differentiate into lateral root 

primordia (LRP), which contain their own meristems when they mature (Malamy 

and Benfey 1997). Histological studies showed that initiated LRP can then mature 

through eight stages (stage I-VII and emergence) defined by specific anatomical 

characteristics and cell divisions (Figure 6 A) (Malamy and Benfey 1997). Stage I of 

LR development begins with increased anti-clinal (perpendicular orientation to the 

root axis) divisions of cells in the pericycle layer. In stage II peri-clinal divisions 

have led to an outer and an inner layer and further peri-clinal divisions in the out 

layer result in a three layers primordium (outer layer1, outer layer2 and inner layer) 

in stage III. A second round of peri-clinal divisions in the inner layer creates a four-

cell layer structure (layer1, outer layer2, inner layer1 and inner layer2). The LRP 

then penetrates the parent endodermis at stage IV, the cortex by stage V and the 

epidermis by stage VI. At stage VI and VII, the organization of the LRP shows 

similarity to the primary root tip, with epidermis, cortex, endodermis layers 

surrounding the stele and a root cap at the tip. Enlargement of the basal cells in the 
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outer layer1 promotes the increase in length of the LRP and finally the new lateral 

root emerges from the parent epidermis.  

 

Figure 6. RLKs mediated pathways in the Arabidopsis lateral root development. A: 

Lateral root formation consists of three stages including LR initiation, LRP development, and 

LR emergence (Jung and McCouch 2013). B: Model of IDA-HAE/HSL2 signaling in lateral 

root emergency (Kumpf et al. 2013). C: Model for auxin-dependent lateral root emergency 

through auxin influx carrier LAX3 (Swarup et al. 2008). 

    During the development of LR auxin underpins each stage of the LRP 

development (Figure 6) (Nibau et al. 2008). Auxin is crucial for the determination of 

both the position and frequency of lateral root initiations and exogenous application 

of auxin can activate the whole pericycle to form LRPs (Himanen et al. 2002). A 

total of 1920 significantly differentially expressed genes were identified in auxin-

activated pericycle cells and 15 potential key regulator genes were found associated 

with asymmetric cell division during lateral root initiation. Only one gene, 

At3g59420, was identified by all of the different filters, and this encodes a 

membrane localized receptor-like kinase ACR4 (De Smet et al. 2008). ACR4 is 

expressed in the small daughter cells after the first asymmetric cell division in the 

pericycle and mutants lacking ACR4 display additional cell divisions in the pericycle 

cell adjacent to the lateral root initiation site, an uncommon position for the lateral 

root meristems, or exhibit aberrant expression of the boundary marker (LBD5) and 

auxin response marker (DR5). Thus, ACR4 might be required for the autonomous 

specification of lateral root initials cell. As no ACR4 expression is observed in the 

neighboring pericycle cells, ACR4 signaling might prevent neighboring pericycle 

cells from being initiated as LRP, in a non-cell autonomously way. However, the 

mechanism of how ACR4 acts is not known. 
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    In the single mutant of INFLORESCENCE DEFICIENT IN ABSCISSION (IDA), 

HAESA (HAE), HAE-LIKE2 (HSL2) and in the hae/hsl2 double mutant the density 

of LRs is significantly reduced compared with wild type, suggesting that these genes 

might play a role in LR development (Figure 6 B) (Kumpf et al. 2013). In 

Arabidopsis, abscission of the floral organ is controlled by the ligand peptide IDA 

through the receptor-like kinase receptors HAE and HLS2 (Cho et al. 2008). 

Emergence of new lateral root primordia depends on cell separation in the overlaying 

layers of the LR apex. At stage I and II, IDA expression in the overlaying cell layer 

is induced by auxin derived from the LRP which then binds to the HAE and HLS2 

receptors located in the cell membrane. The activated receptors trigger expression of 

cell-wall-remodelling (CWR) genes and leads to cell wall separation in the 

endodermis. In the overlaying cortex and epidermal layer, both IDA and the receptor 

expression are coupled, in an ARF7-dependent manner, to the auxin influx carrier 

LAX3 (Figure 6 C) (Swarup et al. 2008). IDA signaling through HAE induces the 

expression of CWR enzymes to dissolve the cell walls and enable LR to penetrate 

the cortex and epidermis tissue from the deep xylem. Although IDA expression is 

100-fold increased by exogenous auxin, the HAE and HSL2 receptors function as the 

limiting factor controlling cell separation (Kumpf et al. 2013). Thus, IDA-

HAE/HSL2 signaling module is crucial for root/shoot cell separation during plant 

growth, but in different processes.  

    Other RLKs have been implicated in lateral LRP development and LR emergence 

as well. The double and triple mutant combinations of the TRANSMEMBRANE 

KINASE (TMK) subfamily of receptor-like kinases in Arabidopsis, tmk1, tmk3 and 

tmk4, show a severe reduction in organ size and a related delay in growth stages (Dai 

et al. 2013). Moreover, they show reduced lateral root density and are insensitive to 

exogenously supplied auxin in root inhibition, suggesting that these RLKs might 

play a role in the auxin-mediated signaling pathway of lateral root emergence and 

development. In addition, other plant hormones also affect lateral roots development 

in a complicated network by controlling auxin synthesis and/or transport. In 

particular, BRs act synergistically with auxin to promote lateral root development 

through increasing auxin acropetal transport (Bao et al. 2004). In bri1-119 

background, the synthetic auxin-inducible promoter DR5 was severely decreased in 

the lateral root, compared to the wild type. This promotor was also decreased when 

treated with the BR biosynthesis inhibitor brassinozale, indicating that BRI1 is 

probably affecting lateral roots development in an auxin-dependent manner. 

However, currently there is not enough evidence to confirm the exact role of TMK, 

or that of the BRI receptor, in the process of LRP development.  

RLKs involved in plant stress responses 

Endogenous stimuli, such as plant hormones and ROS, modulate the molecular and 

biochemical mechanisms that increase the tolerance of plants to external stresses 

(Petricka et al. 2012; Potters et al. 2007; Overvoorde et al. 2010; Walter et al. 2009; 

Munns and Tester 2008). However, the external stress signals must first be perceived 

by plant cells or organs in order to initiate the acclimation to the new conditions. In 
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the case of molecular signals the perception is often by binding of the signaling 

molecule to a receptor protein located in the plasma membrane. RLKs play 

important roles in sensing the external stimuli and activating the down-stream 

elements of the signaling pathway via their serine/threonine kinase domains (Shiu 

and Bleecker 2001 a, b; Osakabe et al. 2013). Of the more than 610 genes that 

encode RLKs and RLPs in Arabidopsis genome, only a fraction has been assigned to 

the biological processes that they control (Diévart and Clark 2004).  

The ERECTA family 

The ERECTA family of LRR-RLKs, consisting of ERECTA (ER), ERECTA-like1 

(ERL1), and ERECTA-like2 (ERL2), exhibits partial redundancy among these three 

members and mediates cell fate specification during the development of the stomatal 

complex (Pillitteri and Torii 2012). A mutant of TOO MANY MOUTHS (TMM) 

was first isolated as a phenotype that has stomates formed in adjacent cells that in 

wild type would have been developed into epidermal pavement cells (Shpak et al. 

2005). The tmm plants exhibit an organ-dependent phenotype, with clustered stomata 

in cotyledon and leaves, whereas hypocotyls and stem are devoid of stomata. TMM 

thus can either influence stomata initiation in a positive or negative fashion (Geisler 

et al. 1998; Yang and Sack 1995). Since TMM encodes an LRR-RLP lacking any 

cytoplasmic effector domain by itself, it exerts its' effect by associating with 

ERECTA family receptors as co-receptor to perceive their putative ligands, 

EPFs/EPFLs (Pillitteri and Torii 2012).   

    The Epidermal Patterning Factor (EPF), EPF1 and EPF2, are three cysteine-rich 

peptides (CRPs) that mediate divers aspects of cell-cell communication (Marshall et 

al. 2011). ER is the main receptor for EPF2, together forming a ligand-pair in vivo, 

governing the initial decision of protodermal cells to generate a stomatal complex by 

asymmetric division. The EPF1-ERL1 pair acts to maintain stomatal cell activity and 

suppress guard mother cell (GMC) differentiation (Hara et al. 2007; Lee et al. 2012; 

Ohki et al. 2011). The signals received by kinase receptors are transmitted to the 

downstream MAPK cascades consisting of YODA (MAPKKK), MKK4/5 

(MAPKKs) and MPK3/6 (MAPKs) to inhibit phosphorylation of basic helix-loop-

helix (bHLH) transcription factors, such as SPEECHLESS (SPCH), MUTE and 

FAMA, leading to a suppression of stomatal cell fate specification (Wang et al. 

2007). Stresses such as low temperature, drought, wounding, pathogens and stress-

related molecules and hormones can either activate MAPK cascades or its target 

bHLH transcription factors to control stomata development (Pillitteri and Torii 2012).  

BRI1 kinase 

Brassinosteroids (BRs) play crucial roles in various aspects of plant growth and 

development, including cell elongation, photomorphogenesis, xylem differentiation, 

and seed germination (González-García et al. 2011; Hacham et al. 2011; Howell et al. 

2007). Brassinosteroid-insensitive1 (BRI1) has been identified as the plasma-

membranes receptor of brassinolide, the most active brassinosteroid (Wang et al. 
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2001; Li and Chory 1997). In this hormone-regulation pathway, BR binding to the 

LRR-RLK BRI1 inactivates BIN2, a glycogen synthase kinase-3, through the 

activation of phosphatase BSU1. By dephosphorylating transcription factor BZR1 

and BES1, BSU1 positively regulates BR signaling, while BIN2 negatively regulates 

BZR1 and BES1 by phosphorylating them (Tang et al. 2008). Although, both BRI1 

ASSOCIATED KINASE1 (BAK1) and BR-signaling kinases (BSKs) interact with 

BRI1 in vitro and in vivo, they play very distinct roles in BR signaling. BAK1 

encodes an LRR-RLK that mainly mediates activation of BRI1 kinase, which 

enhances signaling output though reciprocal BRI1 transphosphorylation (Li et al. 

2002; Divi et al. 2010; Russinova et al. 2004; Fàbregas et al. 2013). In contrast, 

BSKs directly mediate signal transduction from BRI1 to downstream BR responses 

(Tang et al. 2008).  

    Another feature for BR is their potential to enhance tolerance in plants to a range 

of abiotic stresses such as low/high temperature, drought stress, salt stress, and 

pathogen attack (Krishna 2003; Elhiti et al. 2013). The molecular mechanism of BR-

induced stress tolerance is still largely unexplored (Elhiti et al. 2013). Recently, Kim 

et al. (2012) reported that BR inhibits stomatal development by alleviating GSK3-

mediated inhibition of the MAPK module, leading to a decrease in stomatal density, 

that effectively limits water loss under high salt stress conditions (Ryu and Cho 

2015). Since BR interacts with other hormones, some molecular changes associated 

with BR-induced stress tolerance result from BR cross talk with other hormones 

(Krishna 2003). For instance, BR positively regulates the salicylic acid pathway 

component NPR1 to promote thermo-tolerance (Divi et al. 2010; Ahammed et al. 

2016), as well as WRKY70, which plays a pivotal role in salicylate-dependent and 

jasmonate-dependent defense pathways (Li et al. 2004, 2006). Another example of 

BR-other hormone cross talk is BR-enhanced salt tolerance which is established by 

either an ethylene-dependent or an ethylene-independent pathway (Divi et al. 2010; 

Ryu and Cho 2015). However, whether BRI1 participates in these stress responses 

signaling is unknown, further studies need to be done in the future.  

FLS2 

In Arabidopsis, the leucine-rich receptor kinase FLAGELLIN-SENSITIVE2 (FLS2) 

is involved in the recognition of flagellin, a protein that is part of the bacterial 

flagella, as a signal of bacterial presence, binding of which leads to the activation of 

defense responses (Gómez-Gómez and Boller 2000; Chinchilla et al. 2006). The fls2 

mutant allele fls2-24 and fls2-17, with point mutations in the LRR motif of the 

extracellular domain and kinase domain, respectively, were shown to confer 

insensitivity to flg22. However, flg22 binding was restored in the transgenic fls2 

plants expressing the wild-type FLS22 gene, indicating that both extracellular and 

cytoplasmic domains of FLS2 protein are required for flagellin binding (Gómez-

Gómez et al. 2001; Chinchilla et al. 2006). Another RLK, BAK1 was shown to 

interact with FLS2 in vivo, in a ligand-specific manner, suggesting a role for BAK1 

in innate immunity of plants (Chinchilla et al. 2007; Lin et al. 2014; Heese et al. 

2007). BAK1 has been considered a co-receptor for BR-binding BRI1, thus FLS2 
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interacts with BAK1 which subsequently phosphorylates BIK1, a cytoplasmic kinase, 

to control FLS2 signaling as a positive regulator (Wang 2012; Kemmerling et al. 

2007; Schwessinger et al. 2011). Albrecht et al. (2008) reported that brassinosteroids 

inhibit the FLS2-mediated immune signaling independent of the complex formation 

with BAK1. BRs were also shown to inhibit downstream signaling triggered by the 

BAK-independent recognition of the fungal PAMP chitin (Albrecht et al. 2012). 

However, Belkhadir et al. (2011) provided evidence that BR acts antagonistically or 

synergistically in the response to microbe-associated molecular pattern (MAMP) 

through both BAK1-dependent and -independent mechanisms. It thus seems that the 

relative levels of BR, BRI1 and BAK1 determine whether BAK1 has a positive or a 

negative effect on FLS2-mediated signaling and that appropriate levels of 

endogenous BR are required for optimal flg22 signaling.  

RPK family 

RECEPTOR-LIKE PROTEIN KINASE1 (RPK1) is an ABA-inducible LRR-RLK 

isolated from Arabidopsis thaliana and is expressed ubiquitously in flower, stem, 

leaves and roots. ABA is the plant hormone that is mainly associated with its role in 

stress signaling (Malamy 2005). RPK1 expression is rapidly induced upon treatment 

with ABA and by several environmental stresses, such as low temperature, high salt 

and dehydration (Smith and De Smet 2012; Lucas et al. 2013), indicating that the 

gene is involved in a general stress response. Loss of function of RPK1 resulted in 

ABA insensitivity and decreased expression level of ABA-responsive genes 

indicating that RPK1 functions as a positive regulator of ABA signal transduction 

(Osakabe et al. 2005).  

    Reactive oxygen species (ROS) are sub-products of aerobic metabolism in plants 

and other aerobic organisms (Apel and Hirt 2004). Various abiotic stresses lead to 

the accumulation of ROS in plants and an elaborate plant ROS network, comprised 

of efficient enzymatic and non-enzymatic antioxidant defense systems, is present to 

maintain the ROS level low, to protect plant cells from oxidant damage (Gill and 

Tuteja 2010; Gechev et al. 2006). ROS could also serve as signaling molecules to 

modulate various processes, including plant stress responses, program cell death, and 

stomatal behavior (Adler et al. 1999; Suzuki and Mittler 2006; Apel and Hirt 2004; 

Gechev et al. 2006). In a microarray analysis, ROS genes were identified in the 

RPK1 knockout mutants and antisense transgenic plants, as well as water stress-

responsive genes, which were also identified and up-regulated in Arabidopsis RPK1-

overexpressing plants (Osakabe et al. 2013; Osakabe et al. 2005). Therefore, RPK1 

seems to controls ROS homeostasis and the related, ROS-mediated water-stress and 

oxidative response pathways in Arabidopsis. 

    RECEPTOR-LIKE PROTEIN KINASE2 (RPK2), also known as RPK1/ 

TOADSTOOL2 (RPK1/TOAD2), is an important regulator in plant development, 

controlling cell fate in anther development (Mizuno et al. 2007), regulating embryo 

development during early globular stage (Nodine et al. 2011), and controlling plant 

meristem maintenance through CLV3 signal independent of the two best known 
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pathways: the CLV-CLV3 homomers and CLV2-CRN/SOL2 heteromers (Kinoshita 

et al. 2010).  

PERK family 

The Arabidopsis proline-rich extension-like receptor kinase (PERK) family consists 

of 15 predicted receptor kinases, is related to the Brassica napus PERK1 and shares 

sequence similarity with plant cell WALL-ASSOCIATED KINASEs (WAKs) (Silva 

and Goring 2002; Nakhamchik et al. 2004; Osakabe et al. 2013). The Brassica napus 

Bn-PERK1 was first reported to be involved in the early phase of perception and 

response to wounding or exposure to pathogens (Silva and Goring 2002). Antisense 

down-regulation of Bn-PERK expression in Arabidopsis results in phenotypic 

changes, like loss of apical dominance, increased secondary branching and floral 

organ defects (Humphrey et al. 2007; Haffani et al. 2006). PERK4 was identified as 

a positive regulator in the ABA response and the perk4 T-DNA insertion mutant 

plant shows decreased sensitivity to ABA for seedling growth and root tip growth. 

Both [Ca
2+

] channel currents and the cytosolic free calcium concentration are lower 

in perk4 root cells than in wild type cells in the presence of ABA (Bai et al. 2009). 

This implies that PERK4 functions in the early stage of the ABA signaling pathway 

to modulate root cell elongation via [Ca
2+

], a second messenger that participates in 

many aspect of plant growth and development, as well as in the response of plants to 

biotic and abiotic stresses (Bothwell and Ng 2004; Harper et al. 2004; Hetherington 

and Brownlee 2004). 

Other stress responsive RLKs  

RLK7, belonging to the LRR-RLK XI subfamily, was identified to be involved in 

the control of the timing of seed germination and tolerance to oxidative stress 

(Pitorre et al. 2010). GUARD CELL HYDROGEN PEROXIDE-RESISTANT1 

(GHR1) is a critical early component in ABA signaling and mediates ABA- and 

H2O2-regulated stomatal movement in response to drought stress (Hua et al. 2012). 

Srlk, a novel LRR-RLK gene forms the legume Medicago truncatula, is rapidly 

induced by salt stress, and Srlk was shown to control the expression level of several 

salt-responsive genes (de Lorenzo et al. 2009), suggesting that it is involved in the 

adaptation of Medicago roots to salt tolerance. CRK36, a cysteine-rich RLK, 

interacts with and phosphorylates ARCK1, a receptor-like cytosolic kinase gene 

induced by abiotic stress, to form a complex that functions in a negative feedback 

mechanism regulating ABA and osmotic stress responses (Tanaka et al. 2012; 

Wrzaczek et al. 2010). However, as the ligands and kinase functions for these RLKs 

have not been resolved, further studies are required to elucidate how they are 

involved in sensing external signals and control downstream signaling pathways in 

response to various stresses. 

    Plants have evolved complex processes to adapt to and tolerate environmental 

stresses. The large membrane-anchored RLK protein families recognize these 

extracellular signals at the cell surface and activate the downstream signaling 
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pathways. The genome-wide collection of Arabidopsis insertion mutants presents us 

with the opportunity to get insight into the biological role of RLKs in response to 

these different environmental stimuli (Wang et al. 2008; Alonso et al. 2003). 

Generally, RLKs perceive signals like hormones, small peptide or other molecules 

and physical stimuli to trigger the intracellular downstream events of RLKs, 

including the kinase MAPK, ROS signaling, cytosolic [Ca
2+

] concentration, ABA 

signaling and metabolic adjustment, leading to an acclimation to the environment 

(Osakabe et al. 2013). Due to the functional redundancy between receptors on the 

one hand and combination of functions for a single receptor on the other, the roles of 

RLKs in plant development and defense responses appear complicated. Although, 

more than 610 RLK genes were identified in the Arabidopsis thaliana genome, only 

a fraction of them have been associated with biological functions yet, and even when 

the function is known, the upstream and/or downstream targets are often not clear 

(Afzal et al. 2008; Morris and Walker 2003). Mapping the intricate signaling web 

will allow us to better understand how plant cells communicate with each other and 

with their environments.    
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Aim and the outline of this thesis 

Hidden from our view, root system is the first organ for plant sensing the adverse 

signals in soil. Growing roots on the surface of a semi-solid agar medium greatly 

facilitates the analysis of root system architecture under different abiotic stresses. To 

date, most studies on RSA have been performed on two-dimensional images of roots 

captured by digital cameras or scanners, and several sophisticated image analysis 

programs have been designed to increase the accuracy of measuring specific RSA 

traits, such as RootTrace (French et al. 2009), REGR analysis (Walter et al. 2002), 

KineRoot (Basu et al. 2007), and RootflowRT (van der Weele et al. 2003). These 

programs mainly focus on analyzing root growth from a time series of images, used 

for kinematic or morphometric analysis of root. The second class of the RSA 

program has been developed to quantify RSA traits across the entire root system, 

including WinRHIZO
TM 

(http://www.regentinstruments.com/assets/winrhizo_softwa-

re.html), Delta-T-Scan (http://www.dianjianghk.com/v_1/272.aspx), WR-RIPL 

(http://www.rootimages.msu. edu), RMS (Ingram and Leers 2001), and EZ-Rizo 

(Armengaud et al. 2009). 

    Of the more than 610 members of the RLK family in Arabidopsis, only a fraction 

has been firmly given a function. The collection of gene-knockout mutants provides 

a direct route to determine the function of the gene product. Agrobacterium T-DNA 

tagging has been proven to be a very efficient method of identifying a wide range of 

gene-indexed loss-of-function mutants (Krysan et al. 1999; Feldmann 1993; Alonso 

et al. 2003). After the isolation of a homozygous mutant with only one T-DNA 

insertion present, the next step is to determine the consequences of the mutant gene 

on growth and development compared with wild type. The aim of this thesis is to 

determine the role of receptor-like kinases (RLKs) in the modifications of RSA 

induced by environmental changes and in response to various biotic and abiotic 

stresses. In the first chapter, we reviewed the structure and classification of plant 

RLKs, their known functions during root growth and development, and the role of 

RLKs in response to unfavorable stress conditions. 

    Chapter 2 provides an extensive description of the newly identified mutant of the 

LRR-RLK gene, ROOT GROWTH IHIBITION RECEPTOR (RGIR1), which 

displays a shorter primary root and less lateral roots when grown on agar medium 

under optimal growth condition in Arabidopsis seedlings. Seed size, seed 

germination, root phenotype and leaf phenotype of rgir1 knockout mutant plants 

were measured to address a possible role for RGIR1 gene during plant growth and 

development.  

    In chapter 3, a kinematic analysis of the growth of rgir1 mutant and wild type 

seedlings was performed to identify the functions of RGIR1 on root growth. The root 

system architecture, root growth rate and root branching of mutant and wild type 

seedlings grown on medium supplied with salt, or grown in a low temperature 

growth chamber of rgir1 mutants and wild type were analyzed. Our main aim was to 

test whether RGIR1 acts in the chill-tolerance or salt-tolerance pathways of plant. 

http://www.regentinstruments.com/assets/winrhizo_software.html
http://www.regentinstruments.com/assets/winrhizo_software.html
http://www.dianjianghk.com/v_1/272.aspx
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    Chapter 4 provides an overview of the common effects of growth medium 

ingredients on RSA of plants and the responses of root morphology of rgir1 mutants 

on 1/2 MS medium with low pH and medium with salt or without sulfur.  

    Chapter 5 describes the effects of the agar composition on root skewing behavior 

and the interaction with salt and osmotic (high mannitol) stress. The impact of salt 

and mannitol on root skewing behavior of plant, including the growth phenotypes of 

root tip, the skewing direction, and the slanting angle of tip root deviation from the 

vertical axis are described.  

    Finally, based on the outcome of the described experiments in the thesis, chapter 6 

presents a general discussion of abiotic stresses and the surface of the media on RSA 

of plant, and the role of LRR-RLK RGIR1 on root growth and development is 

debated under control and stress treatments.   
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RGIR1 is a leucine-rich repeat kinase that involved in root system 

architecture of Arabidopsis thaliana 
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Abstract: Receptor-like kinases are localized in the plasma membrane of plant cells 

and have a wide range of functions during plant growth and development. 

Previously, we identified the ROOT GROWTH INHIBITION RECEPTOR 1 (RGIR1), 

which encodes a LRR-RLK, displayed distinct root phenotype in the insertional 

mutagenized plants from Arabidopsis ecotype Columbia under standard growth 

condition. To identify the biological functions of RGIR1, two T-DNA insertional 

mutants (rgir1-1 and rgir1-2), were used in a detailed screen for alteration of root 

system architecture under optimal growth condition. Whereas rgir1-1 and rgir1-2 

have smaller seed size compared with wild type, no evidence was found of a direct 

link between RGIR1 with control of seed size. Low temperature (15°C) and high 

salinity (>100mM NaCl) delayed full germination from 1 to 5 days, but the final 

germination percentage was not affected when compared with standard growth 

conditions at 21°C. The only difference found between mutant and wild type during 

the whole germination process, was a higher germination percentage of rgir1-2 on 

day 1 at high temperature (25°C). Seedlings of rgir1-1 mutant showed a significantly 

reduced root length and root surface area compared to wild type (P<0.05) on agar 

plates, whereas no difference was found for rgir1-2 mutant seedlings grown on the 

same plate. In addition, no difference was found in leaf phenotype both for rgir1-1 

and rgir1-2 mutant plants. Taken together, our results indicate that RGIR1 only 

functions in root elongation and development of plant. 
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Introduction 

Receptor-like kinases (RLKs) have been known to play major roles in integrating 

environmental signals in plants (Shiu and Bleecker 2001 a, b; Osakabe et al. 2013). 

After the first plant receptor kinase, ZmPK1, was reported in maize (Walker and 

Zhang 1990), more than 610 members of RLK genes have been identified in 

Arabidopsis, representing nearly 2.5% of all Arabidopsis protein coding genes (Shui 

and Bleecker 2001a). Like in animals, RLKs are generally assumed to be localized in 

the plasma membrane and can bind extracellular ligands. Based on the structure of 

the extracellular domain, leucine-rich repeat (LRR) receptor-like kinases, form one 

of the largest receptor gene families with more than 200 members, and are divided 

into 15 subfamilies (LRR I to LRR XV) in Arabidopsis (Shiu and Bleecker 2003; 

Gish and Clark 2011).  

    In Arabidopsis, some of the RLK genes are involved in the root apical 

maintenance (Wierzba and Tax 2013). Key factors that controlling the distal 

meristem during postembryonic root development including CLE40 peptide (Stahl et 

al. 2009), receptor kinase encoding gene ACR4 (Tanaka et al. 2002; Gifford et al. 

2003), homeobox gene WOX5 (Sarkar et al. 2007) and transcription factors 

SCR/SHR (Helariutta et al. 2000; Laurenzio et al. 1996). ACR4, expressed in 

columella cells and columella stem cells, is positively regulated by CLE40 from 

mature columella cells, and the activated ACR4 up-regulates it’s own expression and 

represses WOX5 expression, thereby restricting stem cell identity along the distal 

axis to columella stem cells. Although the organization of the Arabidopsis shoot 

meristem differs from the root meristem, and the regulatory genes for shoot and root 

stem cell described so far are different, these genes were confirm to play parallel 

roles in root and shoot apical meristem (RAM and SAM, respectively) maintenance. 

Moreover, CLV1, a key receptor-like kinase, which perceives CLV3 to restrict the 

expression of the homeodomain transcription factor WUS to the SAM (Clark et al. 

1993; Clark et al. 1995), interacts with ACR4 to form a complex that binds CLE40 

and reinforces the repression of WOX5 (Stahl et al. 2013). In addition to this CLE 

peptide/receptor like kinase pathway, BRI1 expressed in the epidermis and SERKs 

expressed throughout the root, promote WOX5 expression and cell cycle progression 

via SCR and SHR, respectively (González-García et al. 2011; Petricka et al. 2012; 

Du et al. 2012). 

    Lateral roots (LRs) of Arabidopsis, are derived from the pericycle cells within the 

differentiation zone of the main root and contain their own apical meristem when 

mature, through a series of seven distinguishable stages (Malamy and Benfey 1997; 

De Smet 2012; De Smet et al. 2015). However, not all initiated lateral root 

primordias (LRPs) can mature into a LR and emerge through the endodermis and 

cortical cell layers of the mature root (Malamy 2005). One intrinsic pathway for LRs 

development is controlled by the auxin-dependent induction of cell-wall-remodeling 

(CWR) genes, which promote cell separation before LRP developing (Swarup et al. 

2008; Péret et al. 2009). In endodermal cells, auxin derived from the LRP triggers 

the expression of CWR enzymes by targeting auxin-dependent degradation of the 
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IAA/SHY2 repressor to initiate cell separation in this tissue. An auxin influx carrier, 

LAX3, within the cortex is induced after the degradation of the IAA/SLR repressor. 

Influx and accumulation of auxin causes up-regulation of CWR enzymes to initiate 

cortex cell separation and induces the expression of LAX3 in the epidermal cells, 

resulting the separation of epidermal cells.  

    Furthermore, the related LRR-RLKs HAE and HLS2 and their peptide signal IDA 

have roles in cell separation in this auxin-regulation pathway during LR 

development (Kumpf et al. 2013). IDA expression is induced by auxin, derived from 

the young LRP, and then binds to it's receptor in the endodermal cells, to trigger 

expression of CWR genes. Expression of IDA within the cortex and epidermal cells 

overlaying LRP is dependent on key regulators of the LAX3 and ARF7, which 

increase the expression IDA and the receptor genes, to trigger the expression of 

CWR genes that dissolve cell wall of cortex and epidermal cells and ultimately 

leading to the emergency of the lateral root emergency. Moreover, initially 

characterization and BL treatment of mutants suggest that TMK family of LRR-RLK 

and BRI1 are likely playing a role in the LR development (Dai et al. 2013; Kim et al. 

2006; Bao et al. 2004; Yoshimitsu et al. 2011). However, detailed analysis need to be 

done to help determine their specific function in this progress. 

    Root hairs are approximately cylindrical extension of epidermal cells that 

important for plant anchoring to soil and nutrients acquisition (Grierson et al. 2014). 

Like many other members of the Brassicaceae family, the root epidermis of 

Arabidopsis possesses a distinct position-dependent pattern of root hair cells and 

non-hair cells (Dolan et al. 1994; Galway et al. 1994). In the N position, the WER 

and MYB23 proteins form an active complex together with TTG/GL3/EGL3 

proteins, and the complex induces the expression of GL2 and non-hair cell 

differentiation genes, leading to non-hair cell type of epidermis cells (Galway et al. 

1994; Bernhardt et al. 2003; Lee and Schiefelbein 1999). However, a high level of 

CPC is present in the immature epidermal cells in the H position, which forms an 

inactive complex with TTG/GL3/EGL3 proteins instead of WER, leading to the 

repression of GL2 and hair cell differentiation (Wada et al. 1997; Grierson et al. 

2014). It is noteworthy that SCM, an LRR-RLK receptor, differs from these 

preceding genes, is proposed to enable immature epidermal cells to detect a 

positional signal and initiate differential accumulation of the WER and CPC 

regulators (Kwak et al. 2005). In addition, the FERONIA (FER) receptor-like kinase 

acts as upstream of the RAC/ROP-signaled pathways and controls the ROS-mediated 

root hair development at the initiation stage (Molendijk et al. 2001; Duan et al. 2010; 

Huang et al. 2013).    

    In an earlier study, 70 RLKs were identified in a proteomic analysis of plasma 

membrane vesicles using an optimized 2D-LC MS approach. Here, we report the 

isolation and characterization of one RLK gene At2g37050, named as ROOT 

GROWTH INHIBITION RECEPTOR 1 (RGIR1), which encodes a putative leucine-

rich repeat receptor-like kinase in Arabidopsis. Two T-DNA insertional mutant lines 

(rgir1-1 and rgir1-2) were used to study the biological function of RGIR1 during 
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plant growth and development. Our results showed that low temperature and high 

salinity directly delayed the germination of plant seeds both for wild type and rgir1 

mutants. Whereas rgir1-1 and rgir1-2 have smaller seed size compared with wild 

type, no evidence was found of a direct link between RGIR1 with control of seed 

size in Arabidopsis. Moreover, roots of rgir1-1, but not rgir1-2, exhibit a reduced 

root length, suggesting that the mutation didn’t affect the function of the kinase when 

inserted after the kinase domain. Despite the distinct root phenotype of rgir1-1, no 

difference was observed for cotyledon size on the agar and shoot phenotype in soil. 

Thus, these results demonstrated that RGIR1 is a growth regulator that mainly 

functions in processes involved in root development of plant. 

Material and Methods 

Isolation and sequence analysis of RGIR1 

The gene with AGI code At2g37050 was identified in an earlier study on highly 

expressed LRR-RLKs in Arabidopsis, as having a mutant phenotype with shorter 

main roots and was named ROOT GROWTH INHIBITION RECEPTOR 1 (RGIR1). 

The structural domains of LRR-RLK kinase encoded by RGIR1 were annotated by 

using the SMART (Schultz et al. 2000) and Pfam (Sonnhammer et al. 1998) 

algorithms and databases. Predicted protein interactions were identified tentatively 

by consulting the STRING database (http://string-db.org/). 

Plant material and growth conditions 

The rgir1-1 (Salk_143700c) and rgir1-2 (Salk_071422c) mutant alleles are present 

in the T-DNA express Collection at Salk institute (http://signal.salk.edu/cgi-

bin/tdnaexpress) and seeds of mutants were obtained from the Nottingham 

Arabidopsis Stock Center (NASC, http://arabidopsis.info/). Homozygosity of the T-

DNA insertion for each allele was determined by a three-primer PCR method 

designed by using the SIGnAl T-DNA Verification Primer Design Tool 

(http://signal.salk.edu/tdnaprimers.2.html). The sequences of primers were: LP (5’-

TTGGACCCGTAAAAGAATTCC-3’) and RP (5’-GATAAATTTCGGGGC-

TGAAAG-3’) for rgir1-1, and LP (5’-CTTTTCTAATGGGGCCTCATC-3’) and RP 

(5’-GAAAGCTTTGGTGTCAACTGC-3’) for rgir1-2. They shared the same T-DNA 

left border primer LBb1.3: 5’-ATTTTGCCGATTTCGGAA-3’, as also 

recommended by the SIGnAl Primer Design Tool.  

    Seeds of ecotype Columbia and the two mutant lines were sown in soil in a growth 

chamber with 16 hours light (around ~120 μmol m
-2

 s
-1

)/8 hours dark at 21 ºC during 

day period and 18 ºC during night at 72% humidity, and then transferred to a green 

house two weeks later. Leaf samples of 14 days old plants were used for verification 

of homozygous T-DNA insertion and seeds of mutant plants were harvested only 

when they were considered homozygous according to the result of the PCR reaction 

system as described above. 

http://string-db.org/
http://signal.salk.edu/cgi-bin/tdnaexpress
http://signal.salk.edu/cgi-bin/tdnaexpress
http://signal.salk.edu/tdnaprimers.2.html
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RT-PCR analysis 

For semi-quantitative RT-PCR analysis, shoot and root tissue of 24-d-old 

Arabidopsis wild type plants (Col-0) and rgir1 mutant plants, cultured on 1/2 MS 

medium with 1% sucrose, were harvested and frozen immediately in liquid nitrogen. 

Total RNA from the different tissues was extracted with NucleoSpin
®
 RNA plant kit 

(Macherey-Nagel, Düren, Germany). cDNAs, which were synthesized from total 

RNA with superscript 2 reverse transcripts (Fermentas) and Oligo (dT) primer 

(Promega) in a total 20 μl reaction mixture, were PCR-amplified. For rgir1-1 

transcription detection we used the following primers: RGIR1-1F (5'-

GGTCCTTAACTTACAGAATGAACC-3') and RGIR1-2R (5'-

CCATCAAGCCATAACTCAACC-3'). For rgir1-2 transcript detection we used the 

specific primers: RGIR1-2F (5’-GTGTCAACTGCCGGAACATA-3’) and RGIR1-

2R (5’-GAGCTGTTGGCTGCAATACT-3’). The RT-PCR amplified reaction were 

performed using the following program: 94 °C for 5 min, followed by 30 circles 

consisting of 94 °C for 30 s, 60 °C for 30 s, and 72 °C for 90 s, followed by a 7 min 

incubation at 72 °C. We followed the same protocol and conditions for the Actin2 

gene with specific primers: Actin2-F (5’-GTTGGGATGAACCAGAAGGA-3’) and 

Actin2-R (5’-GAACCACCGATCCAGACACT -3’). 

Seed size and seed germination assay 

The Columbia ecotype (Col-0), which is the background genotype for both rgir1 

insertional mutant alleles, was used as control in this experiment. Seed size was 

measured using a commercial scanner as described previously (Herridge et al. 2011). 

Around five hundred seeds of wild type, rgir1-1 and rgir1-2 mutants were placed in 

a glass petri dish and then imaged using a flatbed scanner (Epson, Québec, Canada). 

The seed size was measured by the "particle analysis" macro of the image analysis 

program ImageJ version 1.47 (National Institute of Health, USA) and each 

experiment was repeated three times.  

    In order to avoid contamination by fungi and bacteria, seeds were gas-sterilized in 

a desiccator by exposing them for 3 h to the fumes of a solution of 100 ml bleach (4% 

NaClO) mixed with 5 ml of 37% HCl. Subsequently the seeds were transferred to 

agar plates, consisting of 1/2 MS medium, supplemented with 1% sucrose, 1% agar, 

2.5 mM MES (Sigma) and set to pH 5.7 with KOH (0.1 mM). After stratification for 

3 days in dark at 4 °C, plates with seeds were transferred to growth chambers with 

temperature of 15 °C, 21 °C and 25 °C, respectively, to test the effect of temperature 

on seed germination. To test the effect of salinity on seed germination, seeds were 

transferred to the same 1/2 MS medium plates, but supplemented with 0 mM, 50 mM, 

100 mM, 150 mM and 200 mM NaCl, respectively, in a growth chamber at 21 °C  

during day and night. All plates were placed vertically and all chambers had the 

same photoperiod of 16 hours light/8 hours dark with a light level of ~120 μmol m
-2

 

s
-1

 and a humidity of 72%. 
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Characterization of RGIR1 

All F1 seeds of wild type Columbia and rgir1 mutant lines were harvested at the 

same time and were used to check root and leaf phenotype. In order to avoid 

infection by fungi and bacteria, seeds were gas-sterilized as described above, and 

then transferred to agar plates in petri dishes with 1/2 MS medium supplemented 

with 1% sucrose, 2.5 mM MES (Sigma), 1% agar and pH was set at 5.7 with KOH 

(0.1 mM). The seeds were vernalized at 4 °C for 3 days after sowing on agar plates, 

subsequently all petri dishes were transferred to a growth chamber at 21 °C under 

fluorescent light (16 hours light / 8 hours dark cycles, light level of~120 umol m
-2

 s
-1

 

during day-time) with a 72% relative humidity. 

    Only seedlings that germinated at the same time were used for measuring the 

phenotypic parameters of roots and shoots. Twelve day-old seedling of wild type and 

rgir1 mutants cultured on agar were imaged with a flatbed scanner and images were 

analyzed using the WinRHIZO software package (WinRHIZO 2009 a,b,c) connected 

to the scanner. After growing for 17 days on agar plates the seedlings were 

transferred to soil and moved to a greenhouse with natural light. After 27 days 

growth in soil, leaves of wild type and mutant plants were photographed (Cannon 

550d, 17-225nm lens) and the leaf surface area was determined using the Analyze 

Particles module of the ImageJ software package. 

EBL treatment 

For epi-Brassinolide (EBL) treatment, wild type (Col-0), rgir1-1, and rgir1-2 seeds 

were grown on the surface of solid media consisting of 1/2 MS basal salt medium, 

2.5 mM MES, 1% agar, 1% sucrose, and supplied with EBL at concentrations of 1, 

10 and 100 nM. The final concentration of 1 nM EBL was chosen to test sensitive 

response of bri1-10 and rgir1 mutants grown on 1/2 MS medium as described above. 

Seeds of Col-0, rgir1-1 and bri1-10 were directly germinated and grown on the 

surface of the media for 19 days and then seedling were transferred to pots with 

commercial potting soil (vermiculite) in the green house (16 hours light/8 hours dark) 

for another 56 days before cutting to analysis shoot and root phenotype. Only demi-

water was used to water plants in pots in the green house.  

Results 

RGIR1 encodes an LRR-I receptor like protein kinase 

The gene with AGI code At2G37050, here after termed RGIR1, contains 15 exons 

and 14 introns, and encodes a protein of 934 amino acids with a predicted molecular 

mass of 103.4 kD (Figure 1 A). To examine the function of RGIR1, two T-DNA 

insertion lines, rgir1-1 (Salk_143700c) and rgir1-2 (Salk_071422c), from the 

collections of T-DNA transformed Arabidopsis lines (ABRC), were characterized. 

Right insertion of T-DNA in the RGIR1 gene gives a predicted and observed PCR 

product around 700-bp using right and border primers, while the size of product in 

the wild-type DNA is around 1100-bp with left and right primer (Figure 1 B). To 
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identify how the insertions affect the transcription of the mutated RGIR1 gene, the 

transcription level of the gene in shoot and root were compared with wild type using 

RT-PCR. The expression of RGIR1 was abolished both in rgir1-1 shoot and root 

(Figure 1 C), whereas, the expression of RGIR1 was only slightly decreased in the 

rgir1-2 mutant plants shoot and root (Figure 1 D). 

 

 

Figure 1. Identification of T-DNA insertions in RGIR1 gene of Arabidopsis thaliana. A: 

Schematic showing the genomic structure of T-DNA insertion of two SALK lines of RGIR1, 

Salk_143700c (up) and Salk_071422c (down), named as rgir1-1 and rgir1-2 respectively. 

Exons are represented by black boxes, and black lines represent introns and 5’ and 3’ UTR. 

The triangle indicates the position where the T-DNA is inserted. B: Genomic PCR analysis of 

homozygous T-DNA insertion of rgir1-1 and rgir1-2. By using a T-DNA primer and a gene 

specific primer, a PCR product around 700bp was amplified in mutant DNA but not from 

wild-type (Col-0) DNA, whereas, the PCR product with size around 1100-bp was amplified in 

wild-type (Col-0) DNA but not from the mutant DNA when using two gene specific primers 

spinning the insertion site. C-D: Transcription levels in homozygous mutants of rgir1-1 (C), 

rgir1-2 (D), and wild type. RT-PCR of total RNAs isolated from shoot and root of 24-d-old 

plants cultured on 1/2 MS medium. The Actin gene (At3g18780) was used as a control. 

    Sequence analysis of the RGIR1 protein revealed that it contains four distinct 

putative domains (Figure 2). The signal peptide domain, located at the N-terminus, 

consists of 23 amino acids, followed by a conserved Malectin-like domain from aa 

31 to 365, as described for membrane-anchored endoplasmic proteins in animals 

(Schallus et al. 2008) and contributes to downy mildew disease (Hok et al. 2011). 

The P-kinase domain is located at the C-terminal of RGIR1 after the hydrophobic 

transmembrane domain of 23 amino acids, as found in most RLKs in plants. 

Comparison of database entries revealed that RGIR1 is a member of a subfamily of 

Arabidopsis LRR-RLKs (Shiu and Bleecker 2001). There are three conserved LRRs 

in the extracellular domain between the Malectin domain and the single 

transmembrane domain, suggesting that RGIR1 is a putative LRR-I transmembrane 

receptor kinase protein. 

 



RGIR1 is a putative LRR-I transmembrane receptor kinase protein 

31 
 

 

 

 

Figure 2. RGIR1 encodes an LRR-I Receptor–like Protein Kinase. RGIR1 encodes a 

polypeptide of 934 amino acids long and belongs to the LRR-I receptor-like kinase family of 

Arabidopsis. The extracellular domain of this protein contains a signal peptide of 23 amino 

acids, a Malectin-like structure, and 3 LRRs before the transmembrane region, followed by a 

P-kinase cytoplasmic kinase domain. The numbers on the right side of the figure indicate the 

position of all the amino acids residues, and the conserved residues of leucine-rich repeat are 

highlighted in bold. 

Predicted functions of RGIR1 

To identify novel receptors that may function together with RGIR1, a search of the 

Arabidopsis genome with the amino acid sequence of RGIR1 was conducted in the 

STRING database (http://string-db.org/). Four Arabidopsis genes were found that 

might be associated with RGIR1, including At5g08580 (EF-hand, calcium binding 

motif-containing protein), AT5G01150 (an uncharacterized protein), At2g28060 (5'-

AMP-activated protein kinase beta-2 subunit protein), and AT2G23900 (Pectinlyase-

like protein). However, no evidence has been shown that RGIR1 has a direct 

interaction with these identified genes.  

Seed size and seed germination 

http://string-db.org/
http://string-db.org/newstring_cgi/display_single_node.pl?taskId=g1C16XAq9lG7&node=136209&targetmode=proteins
http://string-db.org/newstring_cgi/display_single_node.pl?taskId=g1C16XAq9lG7&node=124033&targetmode=proteins
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As shown in Figure 3, rgir1-2 has the smallest seed size with ~0.13 mm
2 
among the 

three genotypes. It showed a significant reduction of 13% compared to rgir1-1 

(P<0.01) and 15% compared to wild type (P<0.001). The germination rates were 

analyzed by scoring stage 0.5, characterized by radicle emergence (Boyes et al. 

2001). At both the control (21 °C) and high temperature (25 °C), all seeds were 

germinated at day 2 after sowing, whereas at 15 °C the germination was delayed 

with one day (Figure 4 A). No differences were found between wild type and 

mutants in germination rate at 21 °C and 15 °C. Strikingly, seeds of rgir1-1 had the 

highest germination percentage at day 1 after sowing in the 25 °C chamber, with 10% 

higher germination than rgir1-2 and 20% higher than wild type. However, the 

difference between mutant lines and wild type disappeared one day later, when all 

genotypes reached their final germination percentage. 

 

Figure 3. Seeds of RGIR1 mutants are smaller than wild-type seeds. A: Images of seeds 

were taken by a scanner (Epson scanner) at a resolution of 1200 dpi using transmitted light 

(left), and the resulting image was processed to solid black and white using "threshold" 

function of ImageJ (right); Scale bar = 5 mm. B: Particle analysis of ImageJ was used to 

measure the seed size with a lower limit of 30000 um2 to exclude any non-seed material. 

Different letters indicate significant difference between mutants and wild type (mean ± SD, 

p<0.001, Tukey’s multiple comparison test). 

    High salinity (100 and 200 mM NaCl) delayed full germination by 1 and 5 days, 

respectively (Figure 4 B), whereas 50 mM NaCl had no effect compared with 

control condition. Germination percentages at 100 mM and 150 mM NaCl were 

similar (data not shown), with 70% at day 2 after sowing, followed by full 

germination at day 3. No significant differences were observed between wild type 

and the two mutants under the three salinity treatments. Surprisingly, nearly 100% of 

the seeds were germinated at day 7 after sowing, even at the high salinity 

concentration of 200 mM NaCl. At this treatment the two mutant lines seemed to 

have a higher germination rate than the wild type, however, this difference was not 

significant (Figure 4 B). Although seeds of wild type and both mutants all had a 

germination percentage of more than 95% at day 7 after sowing at 200 mM NaCl, 
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they stopped growth 3-7 days after germination at this high salinity treatment (data 

not shown). 

 

Figure 4. Seed germination time courses on 1/2 MS medium with 1% sucrose at different 

temperature (A) or on medium containing different concentrations salt at 21 °C (B). All 

growth chambers have the same light period of 16 hours light / 8 hours dark, and seed 

germination rate was scored every-day for three to seven days after vernalization in a cold 

chamber (4 °C). Results are represented as the average value with standard deviation, n = 40. 

Different letters indicate significant difference between mutants and wild type (P<0.001, Two-

way ANOVA). 

Characterization of rgir1 mutant lines 

The main roots of 12-d-old seedlings of rgir1-1 are significant shorter than wild type 

plants (P<0.05), and the main root surface area was also significantly smaller when 

compared to wild type (P<0.05) (Figure 5). However, seedlings of rgir1-1 mutant 

had a similar root diameter and number of lateral roots as wild type plants. We did 

not observed any significant root phenotype change in the rgir1-2 mutant plants 

compared to wild type plants, indicating that rgir1-2 is a knock-down mutant and the 

insertion of T-DNA didn't affect its' function at protein level. When we transfer 

seedlings to soil after 27 days grown on MS medium, no significant difference was 

found between the mutants and wild type in leaf number and leaf surface area 

(Figure 6), suggesting that RGIR1 only functions in root growth and development of 

plants. 
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Figure 5. Quantitative analysis of root phenotype of rgir1 mutant plants under standard 

growth conditions for Arabidopsis. A: Seeds of mutant and wild type were sown on 1/2 MS 

medium and plants of 12-d-old were scanned for quantitative analysis of root phenotype. Scale 

bar = 10 mm. B: Data of main root length, main root surface area, total lateral root number, 

and total root projected area were collected using root phenotyping program WinRHIZOTM. 

Only lateral root length that longer than 0.5cm were selected for lateral root number 

calculation. Results are presented as mean ± SD, n=6. Different letters on top of bars represent 

significant difference between genotype (P<0.05, Tukey’s multiple comparison test). 
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Figure 6. No difference was found between rgir1 mutants and wild type for leaf 

phenotype when grown in green house. Plants of rgir1 mutants and wild type were first 

cultured on 1/2 MS medium in a climate chamber at 21 ºC with a photoperiod of 16 hours 

light/8 hours dark for 17 days, and then transferred to soil in a greenhouse with nature light. 

Images of leaf phenotype (A) were taken by a camera (Cannon 550d, 17-225 nm lens) 27 days 

later after transferred to soil, and leaf number (B) and leaf surface area (C) were calculated by 

Threshold function combined with Analyze Particles of ImageJ. Values represent mean ±SD, 

n=6. Scale bar = 2 cm in A. 

BR effects on root growth of wild type and mutants plants 

BSR050 (here named as RGIR1) was identified in a proteomic study of BSK3-

interacting proteins in Arabidopsis, and the RNA expression of RGIR1 in wild type 

seedling decreased slightly when grown on media with EBL (Xu et al. 2014). To test 

whether RGIR1 encoded RLK is involved in BR responses, BR sensitivity of rgir1-1 

and rgir1-2 were analyzed in a dose-response curve from 0 nM up to 100 nM EBL. 

Plates applied with EBL-free ethanol (95%) were used as reference. At 1 nM EBL, 

root growth of wild type was significantly increased, whereas, increasing EBL 

concentration significantly reduced main root growth of wild type when the 

concentration of EBL was higher than 10 nM (Figure 7 A). In response to EBL in 

the same concentration, root growth of rgir1-2 was similar to that of wild type at all 

concentrations, but rgir1-1 only showed similar root growth to that wild type and 

rgir1-2 at 10 nM and 100 nM EBL (Figure 7 A). Although lower concentration EBL 

increased main root growth, roots of rgir1-1 remained shorter than wild type on 

media with EBL less than 1 nM.  
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Figure 7. Effects of epi-brassinosteriod on root and shoot phenotype of Col-0, bri1-10 

and rgir1 mutants. A: Main root growth analysis of wild type (Col-0) and rgir1 mutant 

(rgir1-1 and rgir1-2) seedlings grown on 1/2 MS medium containing different 24-epiBL 

concentrations and the blank solvent (96% ethanol).  B-C: Main root length and lateral roots 

number of 7-d-old seedlings grown on medium with 1 nM or without 24-epiBL. Twelve 

seedlings were measured for each genotype. Error bars indicate SEM. D-E: Root length and 

lateral roots number of 12-d-old seedling grown on medium with 1 nM or without 24-epiBL. 

Twelve seedlings were measured for each genotype. Error bars indicate SEM. Two-way 

ANOVA analysis indicated the differences are statistically significant between treatments for 

bri1-10 mutant seedlings. (*, P<0.05; **, P<0.01). F: Root system architecture of Col-0, bri1-

10, and rgir1-1 grown in vermiculite for 56 days after 19 days culturing on 1/2 MS medium 

with 2.5 mM MES, 1% sucrose, and 1% micro-agar. Scale bar is equivalent to 5 cm. G: Shoot 

phenotype of 76-d-old bri1-10 mutant plants grown in a 22°C growth room (16 hours light/ 8 

hours dark). 

    Since BRI1 is a critical component of plasma-membrane receptor for plant 

brassinosteroids, bri1-10 (Salk_041648), which causes BR-insensitivity dwarf and 

very reduced fertility (Kwon and Choe 2005), was introduced to test BR response 

together with rgir1-1. At 1 nM EBL, no difference was observed for main root 

length and lateral roots number of 7-d-old wild type seedlings grown on control 

medium (Figure 7 B and C). Compared with wild type plants, rgir1-1 displayed 

indistinguishable root phenotype from wild type in the same conditions, and bri1-10 

showed shorter main root and less lateral roots but not significant statistically both 

on control and treatment media. At day12, the main root length of rgir1-1 and bri1-

10 were significantly shorter than wild type on the control medium as well as the 



RGIR1 is a putative LRR-I transmembrane receptor kinase protein 

37 
 

number for lateral roots (Figure 7 D and E). Treatment with 1 nM EBL enhanced 

the main root growth and root branching both for 12-d-old wild type and mutant 

plants, but the promotion was much stronger in the bri1-10 mutant plants.  

    The rgir1-1 had shoot phenotype similar to that of wild type when they were 

grown in vermiculite for 56 days, but root system of rgir1-1 was shorter and smaller 

than wild type in the identity condition (Figure 7 F). The bri1-10 showed a 

significant dwarf shoot phenotype characterized by a dwarfed stature, dark green, 

thicken leaves, and very lower fertility (Figure 7 G). Although BR seemed to 

recover the root phenotype of bri1-10 seedlings on the medium, root system of these 

two-month-old bri1-10 seedling was shorter and smaller compared with wild type 

grown in vermiculites. 

Discussion  

There are more than 610 Receptor-like kinase genes in the Arabidopsis genome and 

these genes play important roles in various aspects of plant life (Shiu and Bleecker 

2001). Over the years, an increasing number of characterized RLKs have been 

shown to play key roles in diverse and important biological processes, such as 

hormone perception, morphology development and change, pattern development, 

resistance to pathogens and abiotic stress tolerance (De Smet et al. 2009; Hazak and 

Hardtke 2016; Diévart and Clark 2004; Osakabe et al. 2013; Wierzba and Tax 2013). 

In this work, we present evidence that RGIR1, which encodes a putative leucine-rich 

receptor like kinase protein, plays critical role in Arabidopsis root development. 

Down-regulation of RGIR1 transcription of T-DNA insertion in the promote region 

of rgir1-1 resulted in a significant decrease of main root length and root surface area, 

whereas, the rgir1-2 mutant plants showed similar main root length with ecotype 

Columbia (Figure 5). Sequence analysis showed that the T-DNA is inserted in the 

third exon of RGIR1 gene in rgir1-1 mutant plants, but it is only 24bp upstream of 

the end codon ATG in rgir1-2 (Figure 1). Combined with the RT-PCR result (Figure 

1), we found that rgir1-2 is one knock-down mutant that has a somewhat lower 

expression of RGIR1 both in shoot and root of the plants, but has a phenotype in both 

root and shoot similar to the wild type.  

    Reverse genetics has been used as an effective approach to illuminate biological 

functions of RLK genes of Arabidopsis (Alonso et al. 2003; Gou et al. 2010). In a 

search of genomic-wide transcriptome analysis, RGIR1 was found involved in the 

stress response of drought and freezing tolerance (Wituszyńska et al. 2013), in 

protein phosphorylation in response to various plant hormones and corresponded 

with quantitative trait loci that controls fiber length and lignin content of Arabidopsis 

stems (Capron et al. 2012). Moreover, comparison of the NORK/SYMRK region of 

legumes to other dicotyledonous plants showed that the closet homologues in 

Arabidopsis were the two RLKs At1g67720 and At2g37050 (here named as RGIR1) 

with a sequence identity of approximately of 33% (Stracke et al. 2002; Zhu et al. 

2005; Kevei et al. 2005). Since SYMRK confirmed to function in early signal 

transduction between nod factor perception and activation of the legheamoglobin 
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genes, homologous RGIR1 RLKs might also involved in signal transduction of early 

root symbiotic. 

    Seed germination is controlled by environmental factors such as light, temperature, 

humidity and applied chemicals in the culture medium, as well as by genetic 

background. The size of the seed is determined by growth of both endosperm and 

integument, and some genes have been found that directly affect seed size of 

Arabidopsis, including IKU1 and IKU2 (Jofuku et al. 2005; Garcia et al. 2003), 

MINI3 (Luo et al. 2005), SHB1 (Zhou et al. 2009), ARF2 (Schruff et al. 2006), and 

TTG2 (Johnson et al. 2002). In this study, all genotypes had a germination 

percentage higher than 97%, both under standard temperature condition and 

higher/lower temperature, but the kinetics of the germination process was both 

affected by genotype and temperature conditions (Figure 4). Although T-DNA 

insertion mutant had smaller seed size than wild type before stratification, this did 

not delay germination when compared to wild type under standard growth condition 

and when exposed to salinity. Remarkably, the mutant rgir1-1 showed a higher 

germination percentage at 25 °C at day1, indicating a possible role of gene RGIR1 in 

seed germination process. Further studies are, however, needed to confirm a possible 

role of RGIR1 in the process of seed germination. 

    One of the best-characterized LRR-RLKs in Arabidopsis is BRI1, which perceives 

plant steroids hormone brassinosteroids at the cell surface (Li and Chory 1997), and 

numerous alleles of bri1 were identified in a variety of independent screens (Clouse 

2011). Recent evidences suggest that a large number of RLKs were confirmed to be 

involved in the BRI1 hormone signal transduction pathway and several members of 

BR-signaling kinases were phosphorylated by BRI1 before BR binding, which 

appear to play a redundant role in BR signaling (Tang et al. 2008). RGIR1, together 

with 11 transmembrane receptor-like kinases, was identified in a proteomics study of 

BR-signaling kinases3 (BSK3)-interacting proteins (Xu et al. 2014). In the BR-

response experiment, the expression level of RGIR1 decreased slightly by increasing 

concentration of EBL, indicating a role for RGIR1 in BR-regulated responses. 

    We found that BR is able to stimulate root elongation and growth in a dose-

dependent manner (Figure 7). Compared with other tissues of Arabidopsis, the 

physiological response of different tissue varies in the concentration of exogenously 

supplied EBL (Müssig et al. 2003; Bao et al. 2004; Yang et al. 2005). In response to 

1 nM EBL, both root length and lateral formation were significantly promoted for 

bri1-10 root, while it was only slight but not significantly increased for wild type and 

rgir1-1 plant. Thus, bri1-10 might more sensitive to BR with shorter time treatment. 

Plants of bri1-10 showed characteristic dwarf phenotype of BR-deficient and BR-

insensitive mutants when grown in the soil and only watered demi-water, and the 

root system architecture was thinner and also decreased with shorter main root and 

less lateral roots, compared with wild type (Figure 7, Vogler et al. 2014). rgir1-1 

also displayed a smaller and compassed root system compared with wild type and 

bri1-10, and no difference was observed for shoot phenotype of plants grown in soil 
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(Figure 6), thus, the function of RGIR1 mutation might mainly acts on the growth of 

main root.  

    Based on sequence similarity, BRL1 and BRL3 were identified possessing a 

ligand binding island domain similar with BRI1 and encode functional BR receptors 

to bind BL with high affinity (Caño-Delgado et al. 2004). Unlike BRI1 that is 

expressed in most cells of the plant, the expression of BRL1 and BRL3 are mainly in 

the vascular tissues, and they function redundantly with BRI1 in vascular 

development in the Col-0 background. Using IP and LC/MS/MS techniques, RGIR1 

together with an ATP-binding cassette-2 transporter were found to co-immuno-

precipitate with BRL3 in the provascular/stele tissues (Fàbregas et al. 2013), 

supporting the deduction that RGIR1 is involved in root growth and development. 

Taken together, our results indicate that LRR-RLK RGIR1 is involved in the root 

growth and development at later stage of plant growth both on agar plates and in soil. 

Although there is no direct evidence that RGIR1 is involved in the BR signal 

transduction pathway during root growth and development, some results seem to 

indicate such a role. The characterization of the rgir1-1 mutant root phenotype 

provides a basis for further analysis of the role of gene RGIR1 in plant growth and 

development.
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Abstract: The ROOT GROWTH INHIBITION RECEPTOR 1 (RGIR1) gene encodes 

a receptor-like kinase that is involved in Arabidopsis root growth under optimal 

condition (Chapter2). In this study, kinematic and morphology parameters were 

measured to quantify the spatial distribution of growth rate and the cell numbers and 

size in the root tip of rgir1 mutants and wild type under control conditions and when 

exposed to cold or salinity stress. Our results showed that the observed short root 

phenotype of rgir1-1 mutant root was associated with a lower cell elongation rate 

and decreased cortex cell number in the transition and elongation zone of the root tip. 

In the presence of salt or cold stress, root growth and development in all genotypes 

(mutants and wild type) were strongly affected with shorter main root length and less 

lateral roots. The root phenotype of rgir1-2 was similar with wild type Col-0 

seedling under both control and stress (salinity and temperature) conditions. 

However, the rgir1-1 seedling had shorter main root and less lateral roots than wild 

type under control condition. These differences between the rgir1-1 and wild type 

were more pronounced at high temperature, but disappeared under cold and salinity 

stress. These results indicate that RGIR1 is a positive regulator of root growth in 

Arabidopsis under optimal growth condition and it seems not directly interact with 

pathways of plants in response to cold and salinity stress.  



Role of RGIR1 in controlling RSA of A.thaliana 

43 
 

Introduction 

Roots play vital roles during plant growth and development, including the uptake of 

water and nutrients, anchoring the plant into the soil, interacting with symbiotic 

fungi and bacteria, carbohydrates storage and influencing the rhizosphere by 

exudates, and have become more and more an indispensable part of the study on 

plant-environment interactions (Zhu et al. 2011; Sánchez-Calderón et al. 2013). 

Generally, the basic morphology of the root system is determined by inherent genetic 

factors, but abiotic (stress) conditions can strongly modify the root system 

architecture (RSA) through regulating primary root growth and lateral root initiation, 

and via formation of adventitious roots and root hairs (Osmont et al. 2007). The RSA 

is plastic and dynamic, allowing plants to respond to unfavorable environmental 

conditions, including nutrient deficiency, extreme temperatures, flooding, and 

salinity (Overvoorde et al. 2010; Galvan-Ampudia and Testerink 2011; González-

García et al. 2011; Gruber et al. 2013; Nagel et al. 2009; Koevoets et al. 2016). 

However, the mechanism for the adaptation and alteration of the whole RSA of plant 

by single or multiple stress factors remains unclear.  

    Cold is a major abiotic stress that adversely affects plant growth and crop 

productivity (Yang et al. 2010). Low temperature not only decreases the elongation 

rate of primary root tips, but also affects the RSA by inhibiting the formation of 

lateral roots and the branching angle between primary and lateral roots (Nagel et al. 

2009). The cold response of plants starts at the perception of the cold signal by 

membrane-located proteins, and this signal is relayed to downstream signalling 

components through a series of phosphorylation cascades resulting in an altered 

transcription of several cold responsive genes (Rahman 2013; Kazan 2013). Auxin 

plays major roles in the maintenance of cell division and expansion in the root apex, 

and strongly influences the initiation and development of lateral roots (reviewed by 

Nibau et al. 2008; Osmont et al. 2007; Péret et al. 2009; Petricka et al. 2012; 

Shibasaki et al. 2009). Low temperature inhibits both cell number and meristem size 

via the ARABIDOPSIS RESPONSE REGULATOR 1/12 (ARR1/12)-mediated 

reduction in the auxin accumulation in apex root, and cytokinin-signalling is also 

involved in the low temperature mediated inhibition of root growth (Zhu et al. 2015; 

Yang et al. 2017). Moreover, CYTOKININ RESPONSE FACTOR 2 (CRF2) and 

CRF3 are found to play an important role in regulating lateral root development in 

response to cold stress in Arabidopsis (Jeon et al. 2016). 

    High salinity also modulates primary root growth, development of lateral roots 

and/or root hairs, and the gravitropic growth of root tip (reviewed by Osmont et al. 

2007; Galvan-Ampudia and Testerink 2011). Salinity stress is a combination of two 

different processes, both requiring plant adaptation. The first is an, often rapid, 

osmotic stress and the second is, a slower, ionic stress, caused by the toxic effect of 

high Na
+
 concentration in the cytoplasm. Salinity tolerance mechanisms are a 

combination of osmotic tolerance and Na
+
 and Cl

-
 exclusion, or Na

+
 and Cl

-
 

sequestration in, for instance, the vacuole (reviewed by Munns and Tester 2008). 

Many genes have been found to be involved in salinity tolerance mechanism, such as 
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SOS3 (with a role in sensing salinity in the root and transferring this signal to the 

shoot (Qiu et al. 2003; Ishitani et al. 2000; Shi et al. 2000), HKT (that acts as Na
+
 

transporter) (Rus et al. 2001; Rus et al. 2004; Mäser et al. 2002), and the vacuolar 

Na
+
/H

+
 exchanger AtNHX1 (that sequester Na

+ 
into the vacuole) (Møller and Tester 

2007). In addition, plant hormones, which act as endogenous regulators of plant 

development, function as central integrators in conferring tolerance to unfavorable 

abiotic stress conditions including salinity stress (Ryu and Cho 2015; Iyer-Pascuzzi 

et al. 2011; Colebrook et al. 2014; Kohli et al. 2013; Kazan 2015).   

    Recent studies suggest that receptor-like kinases play a major role in relaying 

external abiotic stress signals to changes in gene transcription. For instance, a plasma 

membrane anchored Calcium/CAM-regulated RLK (CRLK1) plays a role in bridging 

calcium/calmodulin signalling and cold signalling and acts as a positive regulator of 

cold-regulated genes expression (Yang et al. 2010). The Salt Overly Sensitive 2 

(SOS2) gene encodes a functional serine/threonine-type protein kinase that is 

predicted to be required for salt tolerance (Liu et al. 2000). Furthermore, other RLKs 

have been implicated in controlling disease resistance and functioning in defence 

responses, such as FLS2 (Gómez-Gómez and Boller 2000; Sun et al. 2013), PBS1 

(Swiderski and Innes 2001), and WAK-like genes (Wagner and Kohorn 2001). 

Although our understanding of the functions of RLKs in all aspects of plant growth 

and development has increased in recent years, only a small number of members of 

this big gene family have been established biological roles and not too many genetic 

mutants of these related are available up to now. 

    Based on results of previous study in Chapter2 (not published), the RGIR1 gene is 

believed to play a pivotal role in the root system architecture of Arabidopsis, with 

shorter main root length under optimal growth condition. However, the mechanism 

of how this newly identified RLK gene affects root growth or whether it is involved 

in the tolerance of cold or salinity is not yet clear. In the present study, we firstly 

performed a detailed root growth study of Arabidopsis ecotype Col-0 and rgir1 

mutants (rgir1-1 and rgir1-2) at low or optimal growth temperature (21 °C) at 

different concentrations of NaCl, quantifying the relative elongation rate in the 

primary root growth zone with the aid of RootflowRT software (van der Weele et al. 

2003). Our results indicate that RGIR1 inhibits root growth by reducing cell division 

in the transition zone of the root tip at optimal growth condition. Cold and salinity 

adversely affect root growth and lateral root development in wild type plants and 

rgir1-1 and rgir1-2 alike, indicating that RGIR1 is not involved in the growth 

response to low temperature or salinity.  

Materials and methods 

Plant materials and growth conditions 

All homozygous F1 seeds of wild type Col-0 and two T-DNA insertion mutant lines 

of At2G37050 (referred to as rgir1-1 and rgir1-2) were surface sterilized with 

gaseous chlorine and sown on 1/2 MS medium agar plates as described in Chapter 2. 

After sowing, plates with seeds were incubated at 4 ºC for three days and 
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subsequently transferred to growth chambers with a relative humidity of 70% and a 

photoperiod of 16 hours light/ 8 hours dark. The irradiance level of light was about 

110 µmol m
-2

 s
-1

 during daytime for all chambers. Effects of temperature treatment 

on root growth and development were performed in three climate chambers at 

constant temperatures of 15, 21, and 25 ºC, while the effect of salinity were 

performed at 21 ºC. For effect of salinity stress on root growth and development, 

seeds were germinated directly on 1/2 MS medium amended with NaCl to final 

concentrations of 0, 50 and 100 mM. 

    The seedlings on agar filled petri dishes were scanned daily with a scanner (Epson, 

Québec, Canada) to collect data on root system architecture analysis with 

WinRIZHO software (2009 a, b, c). Since seeds germination time differs under 

different treatments, day 0 was defined by radical emergence longer than 2 mm (48 

hours after sowing at 25 and 21 ºC, and 72 hours at 15 ºC, whereas for salinity 

treatments this was 48 hours for plates with 0 and 50 mM NaCl, and 72 hours for the 

plates with 100 mM). Statistical analysis of data on main root length and lateral root 

density was done with the Prism Graphpad software package (Version 5, GraphPad 

Prism Software; San Diego, USA).   

Kinematic analysis  

To determine the effect of the RGIR1 mutation and salt stress (50 and 100 mM NaCl) 

on cell expansion and division, we used a kinematic approach using the RootflowRT 

software package (version 2.8, University of Missouri-Columbia), which identifies 

the rate of expansion for different zones of apical part of the root (van der Weele et 

al. 2003). Apart from the velocity of the different root zones, the position of the first 

epidermal cell with a visible root bulge was determined. Six seedlings of both mutant 

lines and the wild type were grown on a vertically placed petri dish and images of 

the root tip under different culture conditions were taken with an Optikam B5 digital 

camera (Ponteranica, Italy) that was installed on an optical microscope (CX41, 

Olympus, Tokyo, Japan) using the 4X objective. For tip tracking, the tip was placed 

in the central field of view and images were taken every 20 s for a total length of 

time of up to 20 min. Nine images of each root tip were selected for calculation of 

spatial velocity using RootflowRT software with the time interval of 60 s. Only data 

with a reliable intermediate graph (automatically generated by the software) were 

used for further statistical analysis.  

The velocity profiles were fitted with a logistic function with following model:  

Y=S+ (L-S) / (1+exp (-K*(X-X0)))  

in which Y is the predicted value, X is the distance to the quiescent center, X0 is the 

midpoint of X value, K is the steepness of the curve, S and L are the minimum and 

maximum value of X at which breakpoint in the regression curve. The relative 

elongation rate was calculated by taking the derivative of the root growth velocity in 

relation to the distance from the root tip. 
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Salt growth responses 

Experiments were conducted with seedlings of wild type Col-0, rgir1-1, and rgir1-2. 

Homozygous progenies of rgir1-1 and rgir1-2 seeds were surface sterilized as 

described above, and then sown on 1/2 MS medium together with Col-0 on the same 

plate. After stratification, plates with seeds were placed vertically in a climate 

chamber at 21 ºC. Three–day-old seedlings after germination were transferred to 

fresh medium that was supplemented with 0 (control), 50 or 100 mM NaCl.  

Confocal microscopy 

Root tips of 7-d-old seedlings grown on a 1/2 MS medium -/+ 50 mM NaCl were cut 

and stained with 10 µg/ml Propidium Iodide (PI) for 5 minutes at room temperature 

separately. Fluorescence signals were excited by a Kr/Ar 488-nm laser line using 

confocal laser-scanning microscope Leica TCS SP2 with a water immersion 

objective of 10X and the emission was passed through a 570-670 nm band-pass filter. 

The root meristem zone size and cortex cell numbers were calculated by visible cell 

borders that made by the intense PI fluorescence. Significance of the difference 

between wild type and mutants was tested by a one-way ANOVA followed by a 

Tukey’s multiple comparison test. 

Results  

Temperature effect on root system architecture 

At day12 after germination, low temperature (15 °C) strongly affected root 

development and the resulting root architecture in Arabidopsis (Figure 1 C). 

However, the root system architecture both for mutants and wild type plant in the 

25 °C chamber (Figure 1 A) were similar with those in the 21 °C chamber (Figure 1 

B). The primary root length increased linearly for 12 days at the three temperature 

treatments (25, 21 or 15 ºC, Figure 1 D-F). Within 12 days, the total root length for 

the main root at 21 ºC was not significantly different from 25 ºC, whereas, primary 

roots developed for 12 days at 15 °C were 40~60% shorter compared with roots 

developed at 25 ºC and 21 ºC (Figure 1 D-F). Differences between mutants and wild 

type roots became obvious 9 days after germination. At both 25 and 21 ºC, rgir1-1 

showed a significantly (p<0.01) shorter primary root length (Figure 1 D, E) at day 

12 compared to the wild type, while rgir1-2 showed a primary root length that was 

intermediate between (and not significantly different from) the wild type and rgir1-1. 

Moreover, the difference between rgir1-1 and wild type became more exaggerated at 

25 ºC (Figure 1 A, D). 
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Figure 1. Effect of three constant temperature treatments on the root system 

architecture of two rgir1 mutant lines and their wild type. A-C: Images of 12-d-old 

seedlings of rgir1 mutants and wild type Arabidopsis ecotype Columbia grown on vertical 1/2 

MS agar medium (with 1% sucrose) at 25 °C (A), 21 °C (B), and 15 °C (C). Scale bar = 2 cm. 

D-F: Main root growth of Col-0, rgir1-1, and rgir1-2 roots grown at 25 °C, 21 °C, and 15 °C. 

G-I: Lateral roots formation of Col-0, rgir1-1, and rgir1-2 roots grown at 25 °C, 21 °C, and 

15 °C. J-L: The lateral root density was defined as the lateral root number per cm primary 

root, which was calculated by dividing the total lateral root number by the length of the 

primary root. Different letters depicted in D to F at day 12 indicate significant differences 

between rgir1-1 and wild type as well as rgir1-2 (means value ± SD, n=6, P<0.05, Two-way 

ANOVA). 

    The effect of temperature on lateral root development resembled the effect on 

primary root growth at day 12 after germination: total number of lateral roots 

significantly decreased (P<0.01) at 15 ºC (Figure 1 I), compared with the standard 

growth temperature of 21 ºC (Figure 1 H), while no difference was found between 

21 and 25 ºC (Figure 1 G). In contrast to the number of lateral roots formed, the 

lateral root density (number of laterals per cm primary root length) was not affected 

by temperature (Figure 1 J-L). Furthermore, no significant differences were found 

between wild type and mutants for both lateral root number and root density at any 

of the three temperatures.   
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Salinity effects on root system architecture 

In accordance with the results of the temperature experiment, rgir1-1 showed a 

significant shorter primary root length under control conditions (0 mM NaCl) at day 

12 after germination, while no difference was found between the rgir1-2 mutant line 

and wild type roots (Figure 2 A and D). At 50 mM NaCl, primary root growth was 

strongly inhibited by ~50% and no differences were found between mutants and wild 

type until day 12 (Figure 2 B and E). At 100 mM NaCl (Figure 2 C and F), 

primary root growth was severely reduced (80%) throughout the 12 days treatment 

when compared to conditions of 0 mM NaCl control treatment. Again, no differences 

could be observed between mutants and the wild type at 100 mM NaCl during the 

entire treatment period.  

 

Figure 2. Effect of salinity stress on the root system architecture of two rgir1 mutant 

lines and their wild type. A-C: Images for 12-d-old seedling of RGIR1 mutants and wild type 

Arabidopsis ecotype Columbia grown on vertical 1/2 MS agar plates with 0 (A), 50 (B) or 100 

mM (C) NaCl. Scale bar = 2 cm. D-F: Main root growth of Col-0, rgir1-1, and rgir1-2 roots 

grown at 0, 50, and 100 mM NaCl treatment medium. G-I: Lateral roots formation of Col-0, 

rgir1-1, and rgir1-2 roots grown at at 0, 50, and 100 mM NaCl treatment medium. J-L: 

Lateral root density was defined as lateral roots number per cm of each primary root, which 

was calculated by dividing the total lateral root number by the length of the primary root. 

Different letters depicted in D at day 12 indicate significant differences between rgir1-1 and 

the wild type as well as rgir1-2 (means value ± SD, n=6, P<0.05, Two-way ANOVA). 
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    The total number of lateral roots without NaCl increased linearly during the 12 

days treatment (Figure 2 G) and the lateral root density was between 1.5 to 2 per cm 

after initiation of lateral roots (Figure 2 J) both for mutant and wild type plants. 

Root branching was severely inhibited by the salinity treatment in a concentration 

dependent matter (Figure 2 B, H, C, I). No differences were observed between the 

two mutants and wild type in total lateral root number and lateral root density 

(Figure 2 J-L).  

Response of rgir1 mutants to salinity 

To test the interaction between the RGIR1 mutation and salinity stress, seeds of 

rgir1-1 and rgir1-2 were germinated on 1/2 MS medium, together with the wild type 

on the same plate to exclude possible systematic errors. Seedlings were transferred to 

new mediums with 0, 50 or 100 mM of NaCl after three days germination 

/development on the control medium without NaCl. As shown in Figure 3 A, 100 

mM NaCl caused severe growth inhibition of the primary root and induced a curly 

root phenotype while seedlings at 0 and 50 mM NaCl were growing similarly and 

without phenotypically abnormalities. In our experiments the growth of rgir1-2 and 

wild type were indistinguishable under all conditions. However, rgir1-1 mutant 

displayed a significantly shorter primary root length (p<0.05) compared to wild type 

after 4 days grown on the new medium without salt. The difference became obscured 

between rgir1-1 seedlings and wild type when grown on the medium in the presence 

of NaCl, and no difference was observed in root growth rate between mutants and 

wild type under different salt concentrations (Figure 3 C).  

Velocity and strain rate profiles 

The first epidermal cell with a visible root hair bulge is considered as a good 

parameter to quantify cell elongation under different treatments (Le et al. 2001). For 

a kinematic analysis of the root tip growth of rgir1 mutants and wild type, the 

software package RootflowRT was used (van der Weele et al. 2003). The software 

calculates the rate of expansion in the different zones behind the root tip from high-

resolution microscopic images taken with 20 s intervals. No visible root hair bulges 

were found within 1500 µm from the root tip of 6-d-old germinated seedlings of wild 

type and both mutants, whereas at day 14 root hairs already appeared at 1250 µm 

distance from the tip (Figure 4 A and B). The wild type did not differ significantly 

in the length between the root tip and the first visible root hair bulge at day 6 from 

the two mutants, but root hair bulges of 14-d-old seedling of rgir1-1 emerged at a 

distance around 1200±125 µm from the quiescent center, which was significantly 

closer to the root tip than the root hair bulges of wild type and rgir1-2 seedlings (P< 

0.001, Figure 4 B).  

    The kinematic analysis confirmed that zone of the primary root that exhibits 

elongation growth at day 6 after germination encompassed the apical 1500 µm, while 

the zone was limited to the apical 1250 µm at day 14 (Figure 4 C). The profile of the 

elongation rate at day 6 peaks at about 800 µm from the apex, followed by a 

gradually decrease to zero at 1500 µm. At day 6 there is no difference between the 
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three genotypes in the position of the peak of the growth rate or the peak rate 

(between 35 and 40% h
-1

). At day 14, the growth rate profile of rgir1-2 and wild type 

were somewhat narrower, while the peak of maximum strain rate was not 

significantly shifted towards the root tip by about 100 µm compared to day 6. In 

contrast, the strain rate of rgir1-1 at day 14 was strongly shifted apically to 500 µm 

from the tip and had a reduced lower maximum strain rate of only 22% h
-1

, 

indicating that RGIR1 affects root growth by reducing the elongation rate and not by 

narrowing the elongation zone.  

 

 

Figure 3. The response of root development of wild type and rgir1 mutants plants to 

salinity. A: Seven-d-old roots of wild type (Col-0), rgir1-1, and rgir1-2 plants at 0, 50 mM, 

100 mM NaCl. Seeds were first germinated on a 1/2 MS medium without NaCl for 3 days and 

then transferred to media with different concentrations of NaCl. Arrows besides each root 

mark the position of root tip for 3-d-old plants at the time when transferred to the new medium. 

Scale bar = 10 mm. B: Length of the primary root for 3-d-old and 7-d-old plants shown in 

panel A (means ± SD, n=18). Different letters indicate significant differences between mutants 

(p<0.05, Two-way ANOVA). C: Dose response of plants shown in A to NaCl. Root growth 

rates at the three different NaCl concentrations (3 to 7 days after germination) are presented as 

a percentage of the root growth rates before transferring the roots from a medium without 

NaCl during the first 3 days after germination (means ± SD, n=18).   
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Figure 4. The rgir1-1 mutant has a shorter meristem zone length compared to wild type 

(Col-0) and rgir1-2 mutant line at later growth stage. A: Images of 14-d-old root tip with 

visible root hairs. The first visible root hair bugle is marked with the circle (scale bar = 2 cm). 

B: Distance to the first epidermal cell with a visible root hair bulge from the quiescent centre 

(QC) at day 14 (mean value ± SD, n=6). Different letters indicate statistically significant 

difference between genotypes (P<0.001, Two-way ANOVA). C: Spatial profiles of 

longitudinal growth velocity rate of 6 d and 14 d old rgir1 mutant roots along the root growth 

zone. The insets show longitudinal displacement velocity profiles for the same roots (mean 

value ±SD, n=6).   
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   In the presence of salt in the MS medium root hairs were formed closer to the tip of 

the root compared with control medium, in a concentration-dependent manner 

(Figure 5 A). The first visible bulge of an emerging root hair of wild type emerged 

at 750 µm from the QC in 100 mM NaCl, compared to 1500 µm in control medium 

or medium supplied with 50 mM NaCl (Figure 5 B). Root growth of wild type was 

severely prohibited under high salinity stress (Figure 2), thus the appearance of the 

first root hair under salt stress gives a good correlation with the main root length. 

While rgir1-2 resembles wild type (Figure 5 B), rgir1-1 showed a slight, non-

significant, reduction in the distance between first root hair bulge and QC. Seedling 

of rgir1-1 plants older than 9 d had significantly shorter main root than wild type and 

rgir1-2 under control conditions (Figure 2 A). No difference was observed in 6-d-

old between wild type and rgir1-1 (Figure 3 B), but at 12-d-old a difference was 

obvious. Therefore, the lack of the correlation of root length with root hair formation 

in rgir1-1 might be obscured by the lower growth rates and organ size in young 

plants. 

    Salinity does not affect the maximum cell elongation rate (around 30% ~ 40% h
-1

) 

of wild type root, but the zone of maximal growth rate moved towards the QC by 

200 µm and 300 µm under 50 mM and 100 mM NaCl treamtent, respectively, 

compared with control condition (Figure 5 C). Since root growth was seriously 

inhibited under high salinity stress, it seems that growth of main root doesn’t 

correlate strongly with the distance between the QC and the zone of the maximum 

growth rate both for different genotypes and for salt treatment. Although rgir1-1 had 

the lowest elongation rate compared with wild type and rgir1-2, the zone for 

elongation rate data and the zone for the maximum rate were not strongly affected 

under salt stress, indicating that salt doesn’t have an additive inhibiting effect on the 

RGIR1 mutation.  

 



Role of RGIR1 in controlling RSA of A.thaliana 

53 
 

 

 

Figure 5. Root tip phenotype and relative elongation rate of rgir1 mutants and wild type 

under salinity stress. A: Six-d-old root tip phenotype of wild type developed on 1/2 MS 

medium amended with 0, 50 or 100 mM NaCl. Circles mark the first visible root hair bulge. 

Scale bar = 200 µm. B: Distance from root tip to first epidermal root with a visible root hair of 

wild type and rgir1 mutants treated on mediums with different NaCl concentrations (means ± 

SD, n=6). Different letters above bars represent statistically significant differences between 

genotypes (p<0.05, Two-way ANOVA). C: Relative elongation rate as calculated from the 

first derivatives of logistic growth curves fitted to the root growth velocity data (the growth 

data are represented in the insets). The growth data were obtained by tracking 500 points 

along the tip of root of mutants and wild type of 6-d-old seedlings (mean value ± SEM, n=6). 

RGIR1 mutation controls cell division 

To assess the role of the RGIR1 mutation in root growth, we first compared the 

lengths of the apical meristem zone and the elongation zone of 7-d-old seedlings of 

mutant rgir1-1 and wild type (Col-0). As shown in Figure 6 A, the apical root 

meristem zone is characterized by high rate of cell division from the QC to the first 

noticeable cortical cell, and the elongation zone of the root starts from the end of the 

apical meristem and extend to the start of differentiation zone with a visible hair 

bulge on the epidermal cell. The apical meristem length was reduced in rgir1-1 

compared with wild type (P<0.001) (Figure 6 B). The reduction in meristem size 

was even more pronounced in the rgir1-1 mutant root when exposed to a growth 
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medium that was supplied with 50 mM NaCl (data not shown). The length of the 

elongation zone of rgir1-1 is about 50% of that of the wild type (P<0.001, Figure 6 

C), and the corresponding cortex cell numbers showed a similar result, with a 10% 

decrease compared to wild type (P<0.05, Figure 6 D).   

 

Figure 6. Root tip phenotype of Col-0 and rgir1-1 mutant. A: Roots of 7-d-old seedlings 

grown vertically on 1/2 MS medium were stained with 10 µg ml-1 propidium iodide (PI) for 10 

min at room temperature and visualized under Leica SP2 confocal microscope. Scale bar = 

100 µm. Cortex layer was marked as the second layer from the outside (top) for wild type and 

rgir1-1. Black arrows indicate the first cortex cell with notable larger size. B-C: Direct 

measurement of the length of meristem and elongation zone. D-E: Cortex cell number in the 

elongation zone and the length of the first seven cells in this segment of root tip. F-G: Cell 

length for the first mature epidermal cell with a visible root hair bulge and the one before it in 

the elongation zone. Values represent the mean of ten plants for each mutant ± s.d. An asterisk 

indicates significant difference between rgir1-1 and wild type (* = P<0.05; ** = P<0.01; *** 

= P<0.001). 

    We also studied the effect of RGIR1 on the cell length in the cortex layer by direct 

measurement of all single cell lengths, from the first cortical cell that starts to 

elongate to the first epidermal cell with a visible root hair bulge. As shown in Figure 

6 E, cell length increased gradually from the first cell to the 7th cell, which reached 

the maximum length about 120 µm to 140 µm. rgir1-1 showed a slight but not 

significantly decrease in size at all cell positions. In addition, no difference was 

found between the mutant and wild type when we compared cell length for the last 

epidermal cell and first mature cell with a visible root hair bulge (Figure 6 F and G). 

These results show that RGIR1 mutation impacts on root growth by controlling cell 
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division rather than cell expansion leading to less cell proliferation in the transition 

zone of the root. 

Discussion 

Root growth is determined by a balance of cell proliferation and cell expansion in the 

meristem and elongation zone of the root tip (Scheres et al. 2002). Cell numbers play 

an important role in regulating growth of plant organ especially for Arabidopsis root 

because of it's simple and stereotyped organization of cell types (Beemster and 

Baskin 1998; Dolan et al. 1993; Wildwater et al. 2005; Sarkar et al. 2007), and the 

first epidermal cell with a visible root hair bugle is generally accepted as the location 

along the root where cell elongation no longer takes place (Le et al. 2001). The 

kinematic results showed that inhibition of rgir1-1 root growth is caused by a 

shortening of the division zone as indicated by the apical shift of the zone of 

maximal growth rate, rather than a reduction of the maximum expansion rate 

(Figure 4). According to the confocal results, the length of the cell division zone and 

the elongation zone are decreased in the rgir1-1 mutant root while the number of 

cortex cell layers was less in rgir1-1 than in wild type (Figure 6). However, the 

average length of cortex cells was similar as those wild type roots suggesting that 

RGIR1 reduces root growth by affecting cell divisions in the transition zone rather 

than cell expansion in the elongation zone.  

    In roots of Arabidopsis seedlings, abiotic stress stimulates a stress–induced 

morphogenic response (SIMR), which is characterized by proliferation of lateral 

roots, inhibition of primary root and lateral root elongation, and alteration of cell 

differentiation status in the root apex (Zolla et al. 2010; Potters et al. 2007). Results 

from our study showed that both low temperature (15ºC) and salinity, 50 mM NaCl, 

induced a change in the RSA of Arabidopsis characterized by a decrease in root 

length and less lateral roots. The effect of salt stress on RSA was even more 

pronounced under 100 mM salt treatment (Figure 2 and 3). When lateral root 

density was measured as number of laterals per cm primary root length, no 

difference was found between stress conditions at 15 ºC, nor at 50 mM NaCl 

treatment, compared with control condition at 21 ºC, suggesting there is a balance 

between growth and development in the intrinsic regulating pathways in response to 

diverse mild abiotic stresses.  

    As sessile organism, plants development a wide assortment of mechanisms to cope 

with the biotic and abiotic stress conditions in the surrounding environment 

(Pasternak et al. 2005; Munns and Tester 2008; Ryu and Cho 2015; Schmidt et al. 

2015; Atkin and Tjoelker 2003) and the RLKs, localized in the membrane of plants, 

are important in the perception and transferring of signals during various aspects of 

root growth and in response to diverse stresses. rgir1-1 mutant plants showed a 

reduced primary root length under standard growth conditions at 21 ºC, but do not 

exhibit a modified shoot phenotype (see Chapter 2, Figure 6). In the present 

experiments, a significant difference was found between rgir1-1 mutant roots and its' 

wild type at high temperature treatment (25 ºC), where plants have a much higher 
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growth rate (Figure 1 A). However, in the cold- and salt-stressed Arabidopsis roots, 

there appeared to be no obviously correlation between the mutation of RGIR1 gene 

with either cold (Figure 1 C and F) or salt stress (Figure 2 and 3) when root growth 

rates were lower and inhibited by cold /salt stress.  

    In the presence of salt (Figure 3 and 5), the decrease of the growth rate for rgir1-

1 mutant roots matched by a reduction of growth in wild type and rgir1-2, obscuring 

the phenotypic difference between rgir1-2 and wild type. One possible explanation 

for the lack of difference in root growth under salinity stress between rgir1-1 and 

wild type is that, the processes affected by salinity are no longer available for 

modification in the rgir1-1 mutant background. Thus, the root growth phenotype for 

rgir1-1 under control conditions is similar to those wild type plants under salinity 

and low-temperature conditions. When these rgir1-1 roots are salt-stressed or 

developed in a cold chamber, the cell division zone for rgir1-1 plants cannot be 

shortened any further by an additional abiotic stress factor. 

    In conclusion, our data suggest that this newly identified RLK RGIR1, is a 

positive growth regulator of root, and the short-root phenotype of the rgir1-1 mutant 

is probably caused by reduction of the number of cortex cells in both the transition 

and elongation zone of the root tip, without affecting cell size. Under low 

temperature or salinity treatment, roots of rgir1-1 mutant were phenotypically and 

physiologically similar as wild type, indicating that RGIR1 gene-associated 

processes might partly overlap with the pathways involved in cold and salinity stress. 

Another possibility is that the effect of the rgir1 mutant of abiotic stress leaves "no 

room for further inhibition" of growth by abiotic stress. Thus, root system 

architecture of Arabidopsis is controlled by a complex network and can be changed 

under changing conditions. Future research is needed to understand the molecular 

mechanism of RGIR1 and to find out what the specific role of RGIR1 in adaptation 

of root system architecture under abiotic/biotic stresses. 
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Abstract: Root system architecture of plants is regulated by both intrinsic and 

environmental response pathways. The goal for this study was to determine which of 

the components of the nutrient medium are having effects on root elongation or/and 

root branching, and how roots respond to abiotic stresses and nutrient deficiency.  

We found that sucrose induced a waving and skewing phenotype on hard agar, with 

strongly reduced lateral root formation and an increased length of the main. 

Although sucrose affected roots of wild type plants and rgir1 mutants in a similar 

way, the rgir1-1 mutant, which exhibits altered root growth kinetics in the transition 

zone, had a shorter main root. Inhibition of main root growth and root branching 

were observed on media supplemented with salt or mannitol, or with a low pH, while 

sulfur-deficiency did not affect main root length. In contrast, lateral root induction 

was strongly stimulated in media lacking sulfur. Roots of rgir1 mutants reacted 

similar to wild type to salt and osmotic stress, but S-deficiency medium induced 

more lateral roots in rgir1-1 mutants than in wild type plants, indicating a possible 

role for RGIR1 in the process of lateral root initiation or emergence.   
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Introduction 

The Arabidopsis root has been used as a model for root growth and development, as 

it has a comparatively simple organization and can be easily cultured in non-soil 

media (Petricka et al. 2012; Osmont et al. 2007). Structure and composition of the 

growth medium can strongly modify root growth and architecture. When grown on 

the surface of nutrient containing agar medium, the combined effect of gravity and 

the contact between the medium and the root results in a characteristic skewing and 

waving growth pattern (Oliva and Dunand 2007; Johnsson et al. 2009; Scherer and 

Pietrzyk 2014), and this root surface-dependent behavior varies between different gel 

patches (Vaughn and Masson 2011; Thompson and Holbrook 2004). Also the pH of 

the root rhizosphere displays a heterogeneous patchiness when grown in vitro on 

agar plates, as well as in natural soils (Walter et al. 2009; Blossfeld and Gansert 

2007; Hinsinger et al. 2003). Moreover, the low pH of the growth medium can 

severely inhibit root growth by decreasing the cytoplasmic pH of the root cells (Iuchi 

et al. 2007; Yan et al. 1992). 

    There is a large body of literatures describing how the growth medium can alter 

root system architecture in different ways (Malamy 2005). A major proportion for 

these papers is referred to morphogenetic responses of plants to salinity stress. This 

focus on salinity stress stems from the fact that this is one of the most significant 

factors limiting crop production and is a threat for future food supply for human 

(Kazama et al. 2013; Zhu et al. 2007; Boursiac et al. 2005; Møller and Tester 2007). 

Other growth medium factors are nutrients, such as nitrate, phosphate, sulfate and 

ion that act as environmental signals to trigger molecular mechanisms involved in 

the cell division and proliferation of plant roots (Lopez-Bucio et al. 2003; Vidal et al. 

2008; Gruber et al. 2013), and hormones, which play vital roles in the intrinsic 

pathways that determine root system architecture (Muraro et al. 2014; González-

García et al. 2011; Petricka et al. 2012; Overvoorde et al. 2010; Ryu and Cho 2015). 

In addition, osmotic stress caused by drought or high salinity in the medium also 

affects plant root system growth and development (Deak and Malamy 2005; Nguyen 

et al. 2016; Liu et al. 2014; Zwiewka et al. 2015; Osakabe et al. 2013).   

    Roots of Arabidopsis have developed a generic stress-induced morphogenetic 

response under distinct stresses on the grown medium. For instance, exposure to a 

mild salt stress causes a drastic reduction in main root and lateral root elongation, but 

an increase in lateral root number. Furthermore, this stimulation of lateral roots 

proliferation by salt stress is enhanced by nitrate in the medium (Zolla et al. 2010). 

Additionally, nutrient varieties and the nutrient availability in the agar medium also 

has a profound impact on root system architecture, by altering the length and 

diameter of main roots, inhibiting or stimulating lateral roots and roots hairs, and 

controlling root growth direction and branching angles of lateral roots (Singh et al. 

2014; Booker et al. 2010; Malamy 2005; Gruber et al. 2013; Osmont et al. 2007). 

However, distinct effects on root system architecture strongly depend on kind and 

concentration of the nutrient involved (Gruber et al. 2013; Lopéz-Bucio et al. 2003; 

Hodge 2004). Despite the diversity in phenotype changing under different abiotic 
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stress conditions, the generic stress-induced morphogenic response comprise of 

inhibition of cell elongation, localized stimulation of cell proliferation, and alteration 

of cell differentiation status (Potters et al. 2007).  

    Lineages and fate of cells in developing Arabidopsis roots show a stereotypical 

pattern forming a set of concentric cylinders, consisting (starting from the outermost 

one) of the epidermis, the cortex, the endodermis and the stele (consisting of 

pericycle and vascular bundles), with the columella and lateral root cap providing 

additional layers at the root tip (Wierzba and Tax 2013; Scheres et al. 2002; Petricka 

et al. 2012; Yan et al. 1992). Each cell type in the root has its own transcriptional 

profile and many biological functions are regulated in a cell–type-specific manner 

(Birnbaum et al. 2003; Brady et al. 2007). Recently, comparison of gene expression 

levels within cell types under standard conditions with those under certain stresses, 

demonstrated that cell identity plays important roles in the stress responses of plants 

(Iyer-Pascuzzi et al. 2011; Dinneny et al. 2008). Thus, the use of environmental 

stimuli combined with the genomic-wide data sets allows the identification of 

associated regulator genes within cell types, and those root-patterning factors, which 

always are expressed at higher levels in the specific cell types regardless of the 

outside environment.  

    We previously identified a receptor-like kinase mutant, rgir1-1, which had a 

shorter main root and less lateral roots compared to the wild type Arabidopsis 

ecotype Columbia. In a screen for common stress response genes in the whole root, 

the gene expression of RGIR1 was enriched in the stele and endodermis layer under 

low pH and sulfur deficiency stress conditions, respectively (Iyer-Pascuzzi et al. 

2011). As detailed studies of wild type and rgir1 mutant root responses under low 

pH and sulfur deficiency conditions are lacking, the specific role of RGIR1 in root 

development is still not elucidated.  

    In this present study, we set out to understand how nutrient and growth media 

affect root system architecture of Arabidopsis seedling grown on the surface agar 

plate. Arabidopsis ecotype Col-0 and two RGIR1 alleles (rgir1-1 and rgir1-2) in Col-

0 background were used to investigate the response of root system architecture under 

different abiotic stress conditions. In particular, our objective is to identify the 

specific component of the growth media and to which extent that they affect root 

elongation and/or root branching. Our data showed that elongation of primary root 

was increased on the higher concentration agar while the average length of lateral 

roots was inhibited for the same plant. The length of primary root was increased in 

the presence of sucrose in the media, whereas, low pH and increasing salinity stress 

dramatically repressed root elongation and root branching of plants. No difference 

was observed between mutant seedlings and wild type seedling, when they had 

reduced root system under stress conditions. Root elongation was not affected on the 

sulfur deficiency media both for wild type and mutant seedlings. However, in rgir1-1 

roots starved with sulfate, lateral roots formation formed earlier and closer to the tip 

of the root compared to rgir1-2 and wild type.  



Effects of growth conditions on root growth patterns 

61 
 

Materials and methods 

Plant material and growth conditions 

Arabidopsis (Arabidopsis thaliana) ecotype Columbia (Col-0), rgir1 mutants, rgir1-

1 (Salk_143700c) and rgir1-2 (Salk_071422c) were used in this experiment. All wild 

type and mutant lines were in Columbia background and seeds were obtained from 

NASC (http://arabidopsis.info/). Seeds of mutants and wild-type (Col-0) were gas-

sterilized in a desiccator for 3 hours with the fumes in a beaker with 100 ml of 

bleach (4% NaClO) mixed with 5 ml 37% Hydrochloric Acid and then sown on agar 

plates with nutrient media with different additives in 120×120 mm square Petri plate, 

approximately 2 cm from the top edge. Plates were wrapped with parafilm and, after 

two to four days vernalization at 4 °C, transferred to a growth chamber with 16 hours 

light/ 8 hours dark at 21 °C. All plates were placed vertically in the growth chamber, 

except when being scanned on a flatbed scanner for two to three minutes at the 

indicated days. 

Media composition  

The standard medium consisted of 1/2 MS (Murashige and Skoog 1962) basal 

medium, 2.5 mM MES, 1% agar, and adjusted to pH 5.7 with KOH (0.1 mM). In the 

experiments to test the effect of the agar concentration on root growth and 

development, the agar concentration was increased to 1.5% without any change for 

the other ingredients. Sucrose (1%) was added to the standard medium to test the 

effect of sucrose on root system architecture of plants grown on hard medium. For 

salt and mannitol treatment experiments, plants were directly germinated on hard 

(1.5%) standard medium with 1% sucrose and different concentrations of NaCl or 

mannitol, as indicated.   

    The sulfur sufficient media contained 1.25 mM KNO3, 1.25 mM Ca(NO3)2, 0.25 

mM KH2PO4, 0.5 mM MgSO4, 22.5 μM Fe
3+ 

(EDTA), 11.6 μM H3BO3, 2.4 μM 

MnCl2, 0.24 μM ZnSO4, 0.08 μM CuSO4, and 0.13 μM Na2MoO4. To make S-free 

medium, MgSO4, ZnSO4, and CuSO4 were replaced by their respective chloride salts. 

Low pH media is 1/2 MS salts with vitamins (Murashige and Skoog 1962), 2.5 mM 

MES, 1% agar, and pH adjusted to 4.6 by KOH (0.1 mM). 

Root system architecture analysis on solid media 

    Seedlings of Col-0, rgir1-1, and  rgir1-2 that grown on different medias were 

scanned everyday by a scanner connected to computer running image analysis 

program WinRHIZO (van der Weele et al. 2003). The root architecture parameters, 

including the root length, cotyledon length, and lateral roots number, were 

determined. All data collected were statistically analyzed by a two-way ANOVA test 

using GraphPad prism (http://www.graphpad.com/). 
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Results 

Gel concentration affects root waving but not root growth when placed 

vertically   

To determine whether a higher concentration of agar in the medium affects the 

architecture of surface-grown root system, seedlings of Arabidopsis ecotype 

columbia and rgir1 mutants in the Col-0 background were grown on 1% and 1.5% 

agar plates (without sucrose) and placed vertically or at 45°. When placed vertically, 

seedlings of 7-d-old wild type grew relatively straight regardless of the agar 

concentration, and no waves were observed near the tip of main root. Roots of rgir1 

mutants similarly displayed a straight main root without waves, both on control and 

hard medium when grown vertically. However, wild type and mutant roots skewed 

to the right (observed form the bottom of the plate) and started to make coils when 

the plates were placed at a 45° angle. The root phenotype of wild type and mutants 

grown on 1% medium, were indistinguishable from those grown on hard medium 

with 1.5% agar (data not shown).  

    We also compared root growth parameters between wild type and mutants on hard 

medium placed vertically. rgir1-1 has significantly shorter main root length (P<0.05) 

compared with wild type both at 1% and 1.5% agar medium (identical to our 

previous results). The roots of rgir1-2 were indistinguishable from wild type on 1% 

agar but significantly shorter (P<0.001) than wild type on vertical medium with 1.5% 

agar (Figure 1 A), indicating a possible role for harder agar concentration on the 

elongation of root. No differences between mutants and wild type both at control and 

hard medium were found in the number of lateral roots (Figure 1 B) and cotyledon 

length (Figure 1 C). However, rgir1-2 showed the shortest length of lateral roots on 

1% medium placed vertically, a difference that disappeared when grown on hard 

medium at 1.5% agar (Figure 1 D).   
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Figure 1. Effects of hard agar on root system architecture of rgir1 mutants and wild type 

of Arabidopsis thaliana. Seeds of rgir1 mutants and wild type Columbia were directly 

germinated on control medium (1/2 MS, 2.5 mM MES, and 1% micro-agar) and hard medium 

(1.5% micro-agar), and images of 7-d-old seedlings were scanned by a scanner (Epson 

scanner). Root length (A) and cotyledon length (B) were analysis with image software of 

WinRihzo connected to the scanner, and lateral root number (C) and average of lateral root 

length (D) were used to analysis effect of hard agar on root branching. Data are means ±SEM 

of six roots for each genotype. '*' represents significant difference at 0.05, and '**" represents 

significant difference at 0.01 (two-way ANOVA). 

Sucrose induces wavy phenotype of root grown on agar independently of root 

length and lateral roots changes 

Root growth and wave amplitudes were analyzed for each mutant line to quantify the 

differences between wild type and rgir1 mutants in response to growth on the agar 

medium with sucrose. Under control condition, roots of rgir1-1 plants showed 

significantly shorter (P<0.05) main root length and lateral root length, whereas the 

number of lateral roots and the ratio of lateral root length to main root length was not 

affected. However, roots of rgir1-2 were indistinguishable from wild type, as 

expected (Figure 2 B). In the presence of sucrose, roots of rgir1-1 and rgir1-2 also 

displayed wavy growing character like wild type (Figure 2 A). Waves of rgir1-1 and 

rgir1-2 roots have shorter wave lengths than wild type roots on sucrose medium, and 

they have more waves near the tip of the root, in the region where no lateral roots are 

observed. The precise function of RGIR1 in waving formation, however, is not 

known. 
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Figure 2. Response of root system architecture of wild type and rgir1 mutants grown on 

hard medium supplied with 1% sucrose. A: 14-d-old root phenotype of rgir1 mutants and 

wild type grown on control medium (1/2 MS, 2.5 mM MES, and 1.5% agar) with 1% sucrose 

and without sucrose. Scale bar = 10 mm. B: Length of primary root, total number of lateral 

roots, and the average length of lateral roots in wild type and rgir1 mutants seedlings shown in 

(A). Data are Mean ±SEM of six roots for each phenotype. Different letters on top of the 

column represent significant differences between genotype under the same treatment condition 

(P<0.05, two-way ANOVA).  
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Repression of root elongation by NaCl is caused by the high ionic strength of 

the media 

Arabidopsis is a salt-sensitive plant species (Munns and Tester 2008). Increasing the 

salt concentration in the media results in shorter main root length in both the wild 

type and rgir1 mutant seedlings (Figure 3 A). Sucrose (1%) promotes main root 

elongation and inhibits lateral root formation when growing on the surface of a solid 

medium (Figure 2), but does not prevent the inhibition of root elongation by NaCl 

(neither in wild type, nor in the mutants). The effect of sucrose on root elongation 

and root branching is independent of the negative effect of salt on growth and is not 

differentially regulated in the rgir1 mutants.  

 

Figure 3. Responses of rgir1 mutant plants and wild type plants to different 

concentrations of NaCl or mannitol. A: Growth (over a period of 12 days after germination) 

of wild type and rgir1 mutants on the medium supplemented with different levels of NaCl 

(left, control) and medium supplied with 1% sucrose in addition to NaCl (right, + 1% sucrose). 

Data are mean ± SEM of 6 plants for each genotype. Different letters represent significant 

difference between genotype at the same level of NaCl (P<0.05, two-way ANOVA). B: 14-d-

old root length of rgir1 mtuants and wild type grown on hard (1.5 %) MS medium (1/2 MS, 

2.5 mM MES, and 1% sucrose) with salt or mannitol. Values are mean ± SEM of 6 plants. 

Different letters on top of bar columns represent significant difference while n.s. indicates no 

difference was found between genotypes at the same treatment condition (P<0.05, two-way 

ANOVA). 
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    To determine whether the repression of root elongation was caused either by the 

high osmotic value or the toxic ionic (Na
+
 and Cl

-
) effect or both, we supplemented 

the media with osmotically equivalent concentrations of mannitol. Mannitol 

appeared to have no effect on root elongation (Figure 3 B), indicating that the 

repression of root elongation on salt media is caused by the ionic effects. rgir1-1 

displayed significantly shorter (P<0.05) main roots on control media, but this 

difference disappeared both on mild and high salinity treatment media. Although 

both salinity and RGIR1 mutation repress root elongation for Arabidopsis, salt does 

not induce a further reduction of root growth in rgir1-1, possibly indicating an 

interaction of salinity with gene function or suggesting that a further reduction of 

growth in the rgir1-1 background by salt is not feasible.  

Effects of Sulfur deficiency on root system architecture 

In Arabidopsis seedlings grown on the surface of agar plates without SO4
2-

, lateral 

roots formed closer to tip of the root and developed at a higher density, compared to 

those grown on sulfate-sufficient medium (Lopez-Bucio et al. 2003). To assess the 

effects of sulfur deficiency on root architectural traits of wild type and rgir1-1 and 

rgir1-2 mutants, we first grew seedlings on control medium (+S) for 9 days and then 

transferred to new medium with (+S) or without (-S) sulfate for 16 days. After 7 d 

growth on the new medium, the primary root growth rate of wild type and the two 

rgir1 alleles were not affected on the S-free medium (Figure 4 A and B). Root 

growth of rgir1-2 was indistinguishable from wild type both on the +S medium and 

–S medium. However, the rgir1-1 mutant displayed a 21% (Figure 4 A) and 41% 

(Figure 4 C) reduction in main root length after 7 d and 16 d growth on new +S 

medium. The reduction of main root length in rgir1-1 was 22% and 49% for 7 d and 

16 d growth on -S medium, respectively, suggesting that sulfur does not interact with 

RGIR1 in controlling elongation of root.   

    As shown in Figure 4 E, we carefully examined the formation of lateral roots in 

the tip part of primary root in both the segment that formed on sulfur-sufficient 

medium before transfer to new medium and the segment that was newly formed 

while on the new +S or –S medium. After 7 d growth on the new medium, lateral 

root formation was significantly increased by sulfur deprivation in both wild type 

and rgir1 mutant roots (Figure 4 D). Although there were small differences between 

rgir1-1, rgir1-2, and wild type, these were not statistically significant. The density of 

lateral roots formed on the upper (proximal) segment was around 2-fold higher than 

that of distal segment that formed on the new medium in wild type and mutant 

seedlings (Figure 4 F). This pattern was identical in +S and –S roots. Since the 

number of lateral roots in all genotypes is nearly the same, but the root length is 

shorter in the rgir1-1 mutant, the lateral root density in this mutant is significantly 

higher.  
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Figure 4. Effect of sulfur deficiency on root morphology of rgir1 mutants and Arabidopsis 

ecotype Columbia. Seedlings were cultured for 9 d on 25% Hoagland (NO3
-) medium 

solidified with 1% micro-agar and then transferred to medium without/with S for a further 16 

days. A: Total length of main root of wild type and rgir1 mutant seedlings grown on the new 

medium with or without S for 7 days. B: Percentage of length for the newly formed root 

segment on the new medium by total length of the primary root after 7 d growth on the new 

medium (+S or -S). C: Total length of main root of wild type and rgir1 mutant seedlings 

grown on the new medium with or without S for 16 days. D: Total number of lateral roots in 

wild type and rgir1 mutant seedlings grown on the new medium with or without S for 7 days. 

E: Schematic of root (wild type) grown on the Sulfur-sufficient medium (before transfer to 

fresh medium) and the new medium with sulfate or without sulfate for 7 days. The black dot 

on the primary root indicates the original position of root tip when transferred to the new 

medium. F: Lateral root density in different root segment (light bars for segment L1, grey bars 

for segment L2) in wild type and rgir1 mutant seedlings on +S and –S medium. Values are 

mean ± SEM, n=6-18. Different letters on top of bar column in all graphs indicate significant 

difference between genotype at the same treatment condition (P<0.05, two-way ANOVA). 
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Response of roots morphology on low pH medium 

Root growth and branching of both wild type and rgir1 mutants were markedly 

reduced by lowering the pH of the growth medium from 5.7 (Figure 5 A) to 4.6 

(Figure 5 B). Consistent with previous results, rgir1-1 had a shorter main root 

compared to rgir1-2 and wild type after 5 d incubation at pH 5.7, but this difference 

disappeared when grown at pH 4.6 (Figure 5 C). Seedlings of rgir1-1 that were 16 

days old showed more lateral roots than rgir1-2 and wild type at pH 5.7. Low pH 

strongly reduced lateral root density and the difference among wild type and mutants 

plants was no longer visible (Figure 5 D). The ratio for the newly formed root on the 

new medium of rgir1 mutants were similar with wild type Col-0 after 5 days grown 

on the control medium, but it was significant decreased in the rgir1-1 seedling 

compared with Col-0 and rgir1-2 at the same medium (Figure 5 E). The decrease of 

ratio in rgir1-1 was even enlarged in the prolonged culture period on the fresh low 

pH medium (Figure 5 F), indicating that low pH exacerbated the function of RGIR1 

in controlling root growth of young seedlings. 

Discussion 

Plant growth is a complex and highly dynamic process, and the root system of plants 

shows a high plasticity in growth and development in response to environmental 

change (Sánchez-Calderón et al. 2013; Ryu and Cho 2015; Petricka et al. 2012; 

Scheres et al. 2002; Walter et al. 2009). Our data reveal that the surface-dependent 

growth behaviors of root were easily influenced by slight changes in the (nutrient) 

properties of the medium. 

    Without sucrose, the wavy phenotype was not observed in wild type Columbia 

seedlings and no difference was found between roots grown on standard medium (1% 

agar) and on hard agar with 1.5% micro-agar (Figure 1). While seedlings showed 

approximately straight root tip growth and had increased branching angles when 

grown on the control medium without sucrose (Figure 2), vertically grown wild type 

Col-0 seedlings displayed a waving phenotype combined with right skewing in the 

presence of sucrose. In addition, sucrose (1%) induces a substantial increase in main 

root growth and a decrease in the formation of lateral roots. 

    A stress-induced morphogenetic response in roots consists of inhibition of root 

elongation and an increase or decrease in lateral roots number (Potters et al. 2007). 

Arabidopsis is a relatively salt-sensitive species compared to other species, such as 

rice, wheat, and barley (Munns and Tester 2008). Treating Arabidopsis wild type 

Columbia with salt inhibits root elongation at relatively low concentrations of NaCl 

(Figure 3 A) (see for instance also Zolla et al. 2010). Root system architecture 

response to stress requires coordination of many genes and an intricate signal 

transduction network of receptors, second messengers and transcription factors 

(Scheres et al. 2002; Shiu and Bleecker 2001; Stahl and Simon 2012). Stress 

responses in RSA are tightly coordinated with specific developmental processes and 

some stress responses appear to show cell-type-specificity (Iyer-Pascuzzi et al. 2011; 

Dinneny et al. 2008). The rgir1-1 mutants display a smaller root system with a 
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shorter main root length and less lateral roots when cultured on standard MS medium 

without sucrose (Figure 1). In response to sucrose and salt, roots of rgir1-2 were 

indistinguishable from wild type on the same plate, but root elongation of rgir1-1 

does not seem to be inhibited further by salt stress (Figure 3).  

 

Figure 5. Responses of root morphology on medium with low pH. A-B: Root phenotype of 

16-d-old rgir1 mutants and wild type seedlings grown on control medium (pH=5.7, A) and 

low pH medium (pH=4.6, B). C: Growth of main root in wild type rgir1 mutants seedlings 

grown on medium with pH 5.7 (red line) and 4.6 (blue lines). Value are mean±SEM, n=12. D: 

Lateral roots number of 16-d-old seedlings in rgir1 mutants and wild type grown on control 

medium and low pH medium. E-F: Ratio of the length of newly formed root on the new 

medium for 5 days (E) and 11 days (F) to the total root length of plants under control medium 

and low pH medium.Value are mean±SEM, n=12. Different letters on top of bar column 

indicate significant difference between genotype at the same treatment condition (P<0.05, 

two-way ANOVA). 

    At low pH expression level of rgir1 was increased in the transition zone of wild 

type root tip stress (Iyer-Pascuzzi et al. 2011) and the main root elongation was 

suppressed significantly, both in rgir1-1 mutant and wild type plants. The rgir1-1 

mutant had more lateral roots than wild type at both pH 5.7 and 4.6, regardless of the 

difference in growth rate of the main root. Therefore, despite the function as a 
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growth regulator in the root elongation zone RGIR1 might also play a role in lateral 

root induction.    

    Nutrient availability exerts a profound impact on root system architecture and 

plant roots exhibit strong morphological responses to different deficiencies (Gruber 

et al. 2013; Hodge 2004). For instance, primary root length is significantly decreased 

when grown under low P and K in the medium, but is slightly increased under 

intermediate supplies of N and Fe (Zhang and Forde 2000; Williamson et al. 2001). 

Nutrient deficiencies also induce changes in lateral root initiation (Gruber et al. 2013; 

López-Bucio et al. 2002). Arabidopsis wild type seedlings produce a highly 

branched root system with abundant lateral roots and a shorter primary root at low P, 

K and S concentration medium (López-Bucio et al. 2002; Williamson et al. 2001; 

Kutz et al. 2002), whereas the lateral root density is not affected under N and Ca 

deficiency (Gruber et al. 2013). We observed that primary root length of wild type 

was not affected by -S, but the lateral root formation was markedly increased 

(Figure 4 C and F). Apart from the genetic control of the internal gene network of 

plants, the total number of lateral roots depends on environmental factors (Malamy 

and Ryan 2001). Expression of RGIR1 was strongly enriched in the endodermis 

(Iyer-Pascuzzi et al. 2011), indicating a possible role for RGIR1 in controlling lateral 

root initiation in the pericycle, the cell layer immediately inside the endodermis. 

Indeed, the lateral root density of rgir1-1 plants was higher compared to wild type 

and rgir1-2 both under control medium and the –S medium. It remains to be 

confirmed that this increased lateral root density is the result of stimulated root 

initiation or an effect of main root growth inhibition. 
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Abstract: Arabidopsis thaliana roots display waving and skewing growth patterns 

when grown on inclined medium, and the directional growth of roots is modulated 

by endogenous factors (e.g. circumnutation) and various environmental signals (e.g. 

gravity, water and nutrients in the medium). This work showed that the presence of 

sucrose and salt in the medium extensively modulates directional root growth in 

Arabidopsis seedlings. When grown on vertical agar medium, Col-0 displayed 

rightward slanting roots and this slanted phenotype was enhanced in the presence of 

1% sucrose. However, roots of Col-0 and rgir1 mutant seedlings developed 

anticlockwise root coils on horizontal medium and a hooked root tip when culture 

plates were inclined at an angle of 45°. High salt stress altered root directional 

growth combined with severe suppression of main root length and lateral roots 

formation in wild type and mutants, probably caused by uptake of sodium, but not 

osmotic stress. In addition, high salinity (100 mM NaCl) induced strong right-hand 

helical growth in wild type and mutants seedlings. Both loss of function mutant 

rgir1-1 and knock-down mutant rgir1-2, displayed indistinguishable phenotypes in 

the root direction growth when compared with wild type. Thus, sucrose and salt are 

key regulators in the alteration of root surface growth of Arabidopsis roots, and 

RGIR1 seems not involved in the root directional growth on the surface of the solid 

medium except its role in controlling root elongation in the transition zone of the 

root tip. 
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Introduction 

A common way to track root growth behavior and root system architecture of plants 

is to germinate seedlings in a vertically placed petri dish on agar supplied with 

nutrients. Primary roots of plant display a characteristic surface-growth pattern that 

comprises of waves, coils and slanting towards one side from the gravity vector, 

especially when the plate is inclined at 30° to 60° from the vertical plane (Migliaccio 

and Piconese 2001; Mirza 1987; Simmons et al. 1995a; Simmons et al. 1995b; 

Okada and Shimura 1990). Based on three-dimensional images and genetic analyses 

of skewing/waving mutants, all these movements are assumed to be the result of the 

interaction between positive gravitropism and negative thigmotropism, together with 

the process of circumnutation, a more commonly found process in the above ground 

parts of plants (Migliaccio et al. 2013; Migliaccio and Piconese 2001). 

    Plant organs display helical growth movements known as circumnutation and 

produce tracks that are commonly elliptical or circular (Migliaccio et al. 2013; 

Kitazawa et al. 2005; Kiss 2006). Roots of Arabidopsis seedlings grow in a circle 

when the force of the gravity is excluded (i.e. in a Space Station) (Johnsson et al. 

2009; Scherer and Pietrzyk 2014), but exhibit an oscillatory pattern called waving 

under earth’s gravity when grown on inclined agar plates (Migliaccio and Piconese 

2001; Migliaccio et al. 2013). This waving pattern was first published as being the 

result of thigmotropism by Okada and Shimura (1990, 1992). They hypothesized that 

roots grown on an inclined mediumsense both a touch experience and gravity and the 

formation of waves would be the result of negative thigmotropism of the root tip 

with agar surface and the positive gravitropism of plants. However, Simmons et al. 

(1995) argued that this waving growth patterns results from the interaction between 

the intrinsic circumnutation and gravitropism. A recent idea considers the 

circumnutation of little importance in the formation of root waving, assuming that 

the interaction between gravitropism and root tip impedence is sufficient for 

generating the waving/coiling phenotype (Thompson and Holbrook 2004). Other 

factors that are considered in this still open debate on the establishment of waving or 

coiling phenotype are: possible involvement of hormone (s) (Vanneste and Friml 

2009), light (Oyama et al. 1997) and anisotropic cellular growth (De Smet et al. 

2007).  

    In addition to waving and/or coiling, roots tend to deviate their growth away from 

the gravity vector, typically rightward for most Arabidopsis ecotypes when observed 

from the back of plates, through the agar (Migliaccio and Piconese 2001; Oliva and 

Dunand 2007). When grown on titled agar surfaces, the degree of slanting angle 

differs in ecotypes of Arabidopsis plants, with little or no slanting for Columbia and 

more slanting to the right for Landsberg and Wassileskija (Migliaccio and Piconese 

2001; Migliaccio et al. 2013). Recently, mutants have been discovered that differ in 

the root waving and skewing patterns on the inclined hard-agar plates (Migliaccio et 

al. 2013). The wav1-1 mutant produces mostly straight root growth with few waves 

on a titled plate (Okada and Shimura 1990), whereas, the wav2-1 and wav3-1 mutant 

display enhanced wavy root growth on inclined agar surface with shorter-pitch 
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waves in their roots (Mochizuki et al. 2005; Sakai et al. 2012). Other mutants were 

identified that had enhanced right skewing (i.e. sku1, 2 or lefty1, 2) or a pronounced 

leftward skew (i.e. spr1, 2 or wvd2) (Rutherford and Masson 1996; Abe et al. 2004; 

Thitamadee et al. 2002; Furutani et al. 2000; Yuen et al. 2003). 

    Many skewing mutants also display epidermis cell file rotations (CFRs) and 

abnormal cortical microtubule array formation. In fact, re-arrangement of the 

cytoskeleton could be an important process for epidermis CFRs and twisted growth 

of plants (Ishida et al. 2007). At the molecular level, genes affecting skewing are 

mainly involved in the arrangement of cytoskeleton structure, such as left1 and left2 

(Thitamadee et al. 2002), SPR1 and SPR2 (Furutani et al. 2000), which encode 

proteins that correlated with stability of the cytoskeleton in the epidermal cells. The 

Arabidopsis sku mutant seedlings show an exaggerated right skewing phenotype on 

agar (Rutherford and Masson 1996; Sedbrook et al. 2002; Sedbrook et al. 2004). 

Cloning of genes of sku6 and spr1 revealed that they are the same gene, and 

sku6/spr1 encodes a plus end-localized microtubule interacting protein that is 

involved in directional expansion of cell walls (Sedbrook et al. 2004). In addition, 

microtubule-depolymerizing molecules, such as propyzamide, oryzalin and taxol, or 

microtubule-stabilizing compounds can provoke or suppress skewing (Sedbrook et al. 

2004; Furutani et al. 2000), clearly supporting the effect of re-arrangement of the 

cytoskeleton on root skewing and waving. 

    The mutant WAVE DAMPEND 2 (wvd2) roots skewed leftwards without waving 

when grown on inclined agar with respect to its wild type ecotype (Nossen-0) (Yuen 

et al. 2003), indicating that different processes regulate the waving and skewing 

behavior of roots. Compared with skewing, the genes affecting waving seem to have 

different functions. Most mutants discovered with abnormal waving phenotypes 

were identified to be related to the gravitropic response. The first discovered waving 

mutants (wav1-6) were almost all defective in the root gravitropic response (Okada 

and Shimura 1990). Among them, some of the mutations were further identified as 

allelic with genes mediating influx (wav5/aux1) and efflux (wav6/pin2) of the plant 

hormone auxin (Müller et al. 1998; Rashotte et al. 2000). Auxin appears to be 

involved in most of the tropic reactions studied, including gravitropism (Reviewed 

by Vanneste and Friml 2009; Kleine-Vehn and Friml 2008; Rashotte et al. 2000; 

Muday et al. 1993). De Smet et al. (2007) reported that application of the auxin 

transport inhibitor naphthylphthalamic acid (NPA) blocks root waving and the 

gravitropic response. Furthermore, the hybrid wag1/wag2 double mutant develops 

pronounced and compressed waves even on vertical gar plates and its root are more 

sensitive to NPA in the root curing processes (Santner and Watson 2006). Although 

the precise functions of these genes are still lacking, they seem to mainly affect the 

perception of gravity and have roles in transducing the gravity signal to produce 

waves.  

    Recently, it was found that other hormones (i.e. ethylene, cytokinin) and the 

contact between the root and medium also play important roles in the process of 

waving and skewing (Buer et al. 2003; Thompson and Holbrook 2004). While our 
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study of the loss function of gene in the rgir1 mutants was in progress, we found that 

roots grown on the vertical medium always skewed to one side of the plate and 

changed growth direction in the absence of osmotically active compounds in the 

medium. The goal of this study was to assess whether RGIR1 is involved in 

controlling the directional growth of the roots and how salt and growth medium 

affect the root waving and slanting behavior on agar surfaces. Our results show that 

roots display waving patterns and coils on tilted growth medium at different angles, 

and that sucrose enhances the extent of skewing of roots on vertically placed agar 

plates with control medium without other osmotic compounds. Furthermore, we have 

also found that treatment of seedlings with NaCl, besides inhibiting root elongation, 

induces leftward skewing (observed from the bottom of plate through the agar) at 

higher concentration and that this NaCl-induced change of growth direction is not 

due to the osmotic change alone. In the phenotypic analysis of rgir1 mutants, no 

significant difference was found compared with wild type plants that were treated the 

same, indicating that RGIR1 mainly affects root elongation, but is not involved in 

controlling the direction of growth. Taken together, these results demonstrated that 

sucrose and salt are key regulators in the alteration of root surface growth patterning 

of Arabidopsis roots. 

Material and methods 

Plant materials and growth conditions 

Arabidopsis thaliana wild type (Col-0) and T-DNA insertion mutants, rgir1-1 and 

rgir1-2, were utilized to study the waving and skewing phenotype in this work.  F1 

seeds of wild type and homozygous mutants harvested at the same time were first 

surface sterilized as described in chapter2, and then were sown on the surface of 5 

mm thick medium containing 1/2 MS, 2.5 mM MES, 1% sucrose, and 1% micro-

agar, unless otherwise noted. Each plate was sealed with parafilm tape and seeds 

were stratified on the plate for 3-4 days at 4 °C. Subsequently, plates with seeds were 

transferred to a growth chamber at 21 °C. Light of the chamber was provided by 

red/blue fluorescent lights with an average fluence rate of 120 μmol m
-2

 s
-1

 following 

a photoperiod of 16 hours light/ 8 hours dark. 

Effect of light, sucrose, and inclined medium on root skewing phenotype  

Seeds were germinated on the plates that were directly placed vertical (θ=90°), 

horizontal (θ=0°) or titled at a 45° angle. In order to study the effect of light on the 

skewing root phenotype, one group of plates were placed vertically and covered by a 

black box. For experiments testing the effect of sucrose on root directional growth, 

seeds were germinated directly on 1/2 MS medium with 2.5 mM MES, 1% or 1.5% 

micro-agar, and with or without 1% sucrose, and then placed vertically in the same 

chamber at 21 °C. Images of roots were taken though the medium from the back of 

the plate by a scanner (Epson scanner), and Day0 of the growth is defined as the time 

when plates were transferred to the 21 °C growth chamber. 
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NaCl-induced root phenotype  

In all NaCl exposure experiments, imbibed seeds were grown and germinated on 

square petri dishes (12×12 mm) containing 1/2 MS medium buffered with 2.5 mM 

MES, supplemented with 1% sucrose and 1% micro-agar, unless otherwise noted. 

All plates were sealed with parafilm tape and placed vertically in a growth chamber 

at 21 °C during day and night with a photoperiod of 16 hours light/8 hours dark and 

75% relative humidity. For experiments testing the effect of salt on the skewing 

phenotype of root, the indicated concentrations of 0, 50, and 100 mM NaCl were 

used to supplement the standard medium, which already contains 0 mM Na
+
 and 6.2 

mM Cl
 -
. To examine whether salt-induced directional growth of the root was caused 

by a general osmotic stress or by the presence of Na
+
 and Cl

-
 ions, the equivalent 

concentrations (100 and 200 mM, respectively) of mannitol medium in 1.5% micro-

agar, was used as a control. 

Measurements of roots 

ImageJ (https://imagej.nih.gov/ij/) was used to determine parameters according to 

the method described before (Figure 1) (Grabov et al. 2005; Vaughn and Masson 

2011). The length of the primary root (L) is measured by tracking the root with the 

"segmented line" tool; vertical growth index (VGI) is the ratio of displacement of 

root tip Ly divided by the root length L, and similarly displacement of root tip Lx 

divided by L gives the horizontal growth index (HGI). The root deviation was 

measured by taking the angle α from the vertical axis (0°), assigning a positive sign 

when moving counterclockwise and a negative sign when moving clockwise. Taken 

together, VGI, HGI, and the deviation angle α enable quantification of skewing 

growth pattern of root under different treatment. 

Results  

Sucrose enhances the rightward skewing phenotype of Arabidopsis 

As shown in Figure 2 A, roots of Arabidopsis wild type skewed to the right on 

vertically placed plates with 1% micro-agar medium when observed from the bottom 

of agar plated through the agar. The slanting wild type roots was suppressed when 

we increased the micro-agar concentration from 1 percent to 1.5 percent in the 

absence of sucrose, whereas, the rightward slanting was enhanced in the presence of 

1% sucrose both on standard medium (1% gar) and hard agar (1.5%). We next 

quantified the skewing phenotype by measuring the slanting degree of the root tip 

from the vertical axis measured from the point of connection between root and stem 

(Figure 1 B). We found that, the rightward slanting angle (α) in wild type roots was 

reduced by 61% when grown on hard agar (1.5%) compared to 1% agar medium 

(Figure 2 B). Including 1% sucrose in the medium increased the slanting angle by 

100% both for standard medium and hard agar. In the presence of 1% sucrose, the 

rightward slanting angle (α) was increased almost two-fold, compared with control 

medium with 1% agar. However, the sucrose induced enhancement of rightward 

slanting was strongly reduced on hard agar, possibly caused by altered friction 

between the root tip and the hard agar.  

https://imagej.nih.gov/ij/
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Figure 1. Quantification of root skewing phenotypes of Arabidopsis seedlings grown on 

agar medium. A: 7-d-old seedling of Arabidopsis ecotype Col-0 grown on vertical 1/2 MS 

medium. B: Measurement of parameters describing skewing: α, skewing angle; Ly, 

displacement of the root tip along the y-axis; Lx, displacement of the root tip along the x-axis. 

The total length of the primary root (L) is calculated by tracking the root with "segmented 

line" of ImageJ, and the vertical growth index (VGI) is given by the ratio of length of Ly in 

total root length. Similarly, length of Lx in a ratio of L gives horizontal growth index (HGI). 

The skewing angle is calculated directly by the "angle tool" function of ImageJ. 
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Figure 2. Effect of exogenous sucrose and hard agar concentration on the rightward 

skewing phenotype of Arabidopsis ecotype Columbia. A: 7-d-old seedling of wild type 

(Col-0) grown on control medium with 1/2 MS, 2.5 mM MES and 1% micro-agar and 

treatment mediums supplied with 1% sucrose or with higher concentration (1.5%) of micro-

agar. Images were taken from the back of the plate through the agar. Scale bar = 10 mm. B: 

The root slanting angle of root tip in 7-d-old Col-0 seedling deviated from vertical. Data are 

mean + s.e.m. of three biological replicates with 6 to 21 seedlings. Different letters on top of 

the bar columns indicate significant difference between treatments (P<0.01, Tukey's Multiple 

Comparison test). 

Root coils and skewing phenotypes on tilted medium 

To demonstrate the effect of inclining the angle of the growth medium on root 

skewing phenotype, agar plates were places at three different inclination angles from 

the gravity vector (0°, 45° and 180°). At 0° (vertical), roots of wild type seedlings 

skewed to the right and formed waves in the primary root (Figure 3 A). rgir1-1 

seedlings displayed enhanced, but not statistically significant, rightward slanting on 

the vertical media compared with wild type, whereas, the rightward slanting angle (α) 

was significantly decreased in rgir1-2 seedlings compared with Arabidopsis ecotype 

Columbia (Figure 3 B). On plates with a 45° inclination angle the roots stopped 

waving and showed a slightly coiled phenotype, while on a horizontal surface (180°) 

roots continued to developed anticlockwise coils as seen from the bottom of the plate 

without waving (Figure 3 C). Waving and coil pattern of rgir1 mutant seedlings 
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grown on tilted medium were similar as that of wild type (data not shown).  

    In an attempt to study the effect of light on the directional growth of root, seeds of 

wild type and rgir1 mutants were germinated directly on vertical agar plates covered 

by a black box. Waving movement of dark-grown seedlings was similar to those of 

light-grown seedlings of wild type on the vertical plate in the same growth chamber 

(Figure 3 D). However, the rightward slanting was reduced in the darkness and 

seedlings developed shorter roots and longer hypocotyls compared with those grown 

under 16 hours light/8 hours dark photoperiod, both in wild type and mutant 

seedlings (data not shown). 

 

Figure 3. Root growth phenotypes of wild-type (Col-0) and rgir1 mutants seedlings 

grown on titled mediums. Wild type (Col-0) and rgir1 mutant seedlings grown 7 d on 1% 

agar-solidified 1/2 MS medium placed vertically (A) or tilted at 45° and placed horizental (C) 

in the growth chamber with light period of 16 hours light / 8 hours dark. B: The slanting angle 

of wild type and rgir1 mutants seedling deviated from vertical y-axis that shown in (A). Data 

are mean + s.e.m, n=29. Different letters on top of the bar columns indicate significant 

difference between genotypes (P<0.05, Tukey's Multiple Comparison test). D: Wild-type 

(Col-0) seedlings grown 9 d on 1% agar-solidified 1/2 MS medium in the same chamber as (A) 

and (C), but in the dark. Note: all images were taken from the back of the plate, through the 

agar. Scale bar = 1 cm in (A) and (D), and 2 mm in (C). 

NaCl induced root growth direction changes independently of root length 

change 

When grown vertically on a hardagar (1.5% micro-agar) plates without salt, roots of 

wild type and rgir1 mutants skewed to the right of the plate (Figure 4 A). In contrast 

to the rightward skewing on the control medium, roots grew almost straight and 

parallel to the vector of gravity, or even skewed to the left, when the medium was 

supplied with 50 mM NaCl in wild type and rgir1 mutants (Figure 4 B). As shown 

in Figure 4 C, high salinity (100 mM NaCl) induced a strong right-handed helical 

arrangement of epidermal cell files (Figure 4 D), resulting in a more leftward 

skewing in wild type and mutants seedlings (Figure 4 C) compared with those on 

control medium (Figure 4 A) and 50 mM salt medium (Figure 4 B).  
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Figure 4. Root growth phenotypes of wild type (Col-0) and rgir1 mutant seedlings grown 

on medium supplied with salt. Seedlings of wild type and rgir1 mutants were germinated 

directly and grown 9 d on 1/2 MS hard medium (1.5% micro-agar) without salt (A) or with 50 

mM (B), and 100 mM NaCl (C). Images were taken from back of the plate through the agar. 

Scale bar = 1 cm in A to C. D: Root tip phenotype of 9-d-old seedlings in Col-0 grown under 

different concentrations of NaCl. Arrows marked the first root hair bugle under 50 mM and 

100 mM treatment and the twisting of the epidermal cell files under 100 mM salt treatment. 

Scale bar = 200 μm. 

    As shown by the root slanting angle and the primary root length results (Figure 5 

A and B), the length of Col-0, rgir1-1, and rgir1-2 was clearly suppressed in the 

presence of high salinity (100 mM) and the root slanting angle was also strongly 

exaggerated, but skewed to the opposite direction, when compared with growth 
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conditions without NaCl. When seedlings were grown on medium containing 50 mM 

NaCl, initially skewed root began to grow parallel to the vector of gravity or 

leftwards in wild type and mutant seedlings. While rgir1-1 has the shortest primary 

root length in control medium and in 50 mM NaCl medium (Figure 5 B), the 

slanting angle of rgir1-1 is similar to those in wild type and rgir1-2 (Figure 5 B), 

indicating that RGIR1 only affects the elongation of the cells in root tip, but is not 

involved in helical growth of the root.  

 

Figure 5. Quantification of root skewing phenotypes of wild type and rgir1 mutant 

seedlings under salt treatment. Seedlings of wild type (Col-0) and rgir1 mutants were grown 

for 9 days on salt medium without or with 1% sucrose. A-B: Effect of salt and sucrose on the 

root slanting angle (A) and main root length (B). Letters at the right side of bars in B indicate 

significant difference between genotype at the level of p<0.05 (n=13-16, Tukeys' Multiple 

comparison Test). C-D: Dynamics of root vertical growth index (VGI, C) and horizental 

growth index (HGI, D) in wild type (Col-0) and rgir1 mutant seedlings under different 

treatments. No difference was observed between wild type and mutant seedlings for VGI and 

HGI at the same treatment condition. 

    In the presence of 1% sucrose in the medium, the seedlings show a pronounced 

rightward slanting with a concomitant increase in root length, both for wild type and 

mutants seedlings. When grown on salt medium, adding sucrose affects root 

elongation both at the lower (50 mM) and higher (100 mM) levels of NaCl in wild 

type and mutants seedlings. However, the salt-induced leftward skewing is enhanced 
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in the 50 mM medium in the presence of 1% sucrose, whereas it was not affected on 

the 100 mM medium. 

    The vertical growth index (VGI) and horizontal growth index (HGI) analysis is a 

versatile method for quantifying the deviation of root tip from straight downward 

vertical growth (Grabov et al. 2004). We next measured VGI and HGI to study the 

dynamics of root development in different medias. Although the root length and root 

slanting angles of Col-0 and rgir1 mutant seedlings were different under different 

treatments (with or without sucrose; different concentrations of NaCl) we did not 

detect a significant difference in HGI and VGI of those seedlings when treated 

identically (Figure 5 C and D), which support the idea that VGI and HGI are 

independent parameters of root development processes (Grabov et al. 2004).  When 

we only focus on the treatment effects, VGI in wild type and mutant seedlings was 

lower in 1% sucrose, 100 mM NaCl or 100 mM NaCl with 1% sucrose, compared 

with those grown on control medium (Figure 5 D). However, an increased was 

observed in HGI for those seedlings with lower VGI, indicating the roots tend to 

deviate to one side (left or right) from the vertical by positive HGI.  

    Compared with seedling treated with 100 mM NaCl, only 36% seedling skewed to 

the left when treated with 50 mM NaCl in wild type seedling, while that is 33% and 

50% in rgir1-1 and rgir1-2 seedlings, respectively. In the presence of 1% sucrose in 

the 50 mM salt medium, the leftward skewing in wild type seedlings was increased 

to 85%, while it was 79% for rgir1-1 and rgir1-2 mutant seedlings. However, the 

VGI and HGI were not statistically different between wild type and mutants under 

treatment with 50 mM NaCl. As shown in Figure 5 C and  D, the VGI in wild type 

and rgir1 mutant seedlings on the 50 mM salt medium was not affected by adding 

sucrose, but HGI was significantly increased by including 1% sucrose in the medium. 

Thus, the sucrose-induced enhancement of root skewing is mainly caused by an 

increased growth rate and and not by an change in the skewing angle of root growth.  

Salt-induced root growth direction changes are not merely due to osmotic stress 

To determine which aspect of salt stress, osmolarity or ionic toxicity, affects the 

skewing phenotype, we monitored root growth of seedlings on medium containing 

osmotically equivalent concentrations of mannitol and of NaCl. When seedlings 

were grown in the presence of NaCl at different concentrations, the initial rightward 

slanting angle first decreased to 0° and then changed further into a leftward slant in a 

dose dependent manner, with a concomitant decreased of root length, both in wild 

type and mutants seedlings (Figure 6 A and C).  In contrast, neither the main root 

length nor the skewing angle was affected by osmotically equivalent concentrations 

of mannitol up to 200 mM (Figure 6 B and D). The HGI and VGI were not affected 

by mannitor in wild type or rgir1 mutant seedlings (Figure 6 F and H), whereas, 

HGI of all genotypes were affected by NaCl (Figure 6 E). As expected, VGI of roots 

in all genotypes were slightly affected by 50 mM NaCl in the medium, but decreased 

strongly in 100 mM NaCl. The clear difference in effect of NaCl and mannitol 

indicates that the suppression of root length and salt-induced changes in the growth 

direction of the root is due to ionic toxicity of Na
+
 or Cl

-
, but not to osmotic stress in 
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the medium. Although rgir1-1 seedlings showed a significant shorter root length in 

200 mM mannitol and a lower VGI in 100 mM NaCl, it is too earlier to assume a 

role for RGIR1 in growth direction of roots. 

 

Figure 6. Effect of NaCl and mannitol treatment on root phenotypes in wild type (Col-0) 

and rgir1 mutants. Seedlings of the indicated genotypes were grown for 9 d on a vertically 

placed hard agar medium (1/2 MS; 2.5 mM MES, 1% sucrose, and 1.5% agar) plate supplied 

with 0, 50, and 100 mM NaCl, or supplied with the equivalent concentrations mannitol. Data 

are mean ±s em with 6 to 7 seedlings per genotype. Different letters on top of bars in D or on 

the right of the scatters dot in G indicate significant difference between genotypes (P<0.05, 

Two-way ANOVA). 

Discussion 

Gravitropism and the root-agar interactions modulate root phenotype 

The high plasticity of the root system allows plants to adapt to various external 

stimuli in order to maintain growth and development (Osmont et al. 2007; Petricka et 

al. 2012). Apart from the regulation of root elongation and branching, plant roots 

need to be able to adjust their growth direction in response to environmental signals, 

including gravity and water and nutrients availability (Potters et al. 2007; Pasternak 

et al. 2005). Previously studies showed that Arabidopsis roots grow straight down on 
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a vertical agar surface paralllel to the gravitational vector (Scherer and Pietrzyk 

2014), and displayed a waving phenotype characterized by a sinusoidal growth 

pattern when grown on inclined agar gels (Thompson and Holbrook 2004). 

Gravitropism is confirmed to be an important component controlling root waving 

and the slanting behavior (Simmons et al. 1995). Arabidopsis ecotype Col-0 

seedlings grow almost straight along the gravity vector on vertically placed 1/2 MS 

mediums (Migliaccio et al. 2013; Buer et al. 2000). Seedlings of Col-0 skew to the 

right when grown on vertical 1/2 MS medium under long light photoperiod (Figure 

1-3) in our work, and the slanting angle was decreased when we changed the 

medium from basal MS to MS with vitamin, suggested that the medium type can 

alter direction growth of root and can even override the positive gravitropism growth 

behavior of vertically grown roots. 

    Root slanting and root waving are two processes that are regulated by the 

combined actions of gravitropism and/or the intrinsic circumnutation factor of root 

(Migliaccio et al. 2013). Root slanting in many Arabidopsis ecotypes always occurs 

in one direction only, to the right being the most common orientation (Simmons et al. 

1995; Migliaccio and Piconese 2001), apparently resulting from the right-hand 

circumnutation of the root tip. Slanting is more pronounced at smaller inclinations, 

resulting in a clockwise coil on an almost horizontal agar surface due to right-hand 

circumutation and the perpendicular orientation of the gravitional vector. Here, we 

phenocopied the waving and slanting behavior of Arabidopsis root by growing wild 

type Columbia roots on tilted agar medium. We observed that Col-0 roots displayed 

less waving and a hooked (seemingly initiating the formation of a coil) root tip on an 

inclined agar plate at 45° (Figure 3), and making anticlockwise coils on the 

horizontal agar plates (roots that traversed across the agar surface even continued to 

make coils at the bottom of the petri dish). Thus, circumnutation is an intrinsic 

directional growth process in plant organs, but the torsion movementsof a root can be 

modulated by positive gravitropism and negative thigmotropism of root-gel 

interactions.    

Sucrose affects root growth direction in Arabidopsis thaliana 

Increasing the sucrose concentration not only promotes root growth and lateral root 

formation, but also modulates root directional growth of the primary root in 

Arabidopsis seedlings. In this present work, the rightward slanting of wild type and 

rgir1 mutant seedlings was enhanced in the presence of sucrose (Figure 2), which is 

consistent with an earlier report by Buer’s group (Buer et al. 2000). Subsequently, 

Buer et al. (2003) reported that ethylene modulates the root’s waving/skewing 

response in a nutrient-dependent manner and clearly influenced the effects of sucrose 

on root skewing. In addition, cytokinin was identified to play a role in controlling 

direction/tropic responses including waving and producing coils and to interact with 

the ethylene, auxin, and glucose signaling pathways (Kushwah et al. 2011). In the 

presence of salt in the medium, sucrose also promotes the skewing without changing 

the growth direction (Figure 5), indicating that the sucrose-induced increased of the 

slanting angle in salt-treated roots is due to the increased growth rate.  
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    The effects of sugars on plant growth and development are diverse, both as 

nutrient and as structural components (Rook et al. 2006; Lastdrager et al. 2014). In 

many cases, sugar itself acts as a signalling molecule in regulating it’s own 

production and use in plant organs. Sugar sensing and signaling are involved in the 

entire plant life circle (Rolland et al. 2002; Zhou et al. 1998). High sugar 

accumulation may for a short period lead to arrest in Arabidopsis seedlings 

development, from which it can be recovered after transfer to soil without stress or to 

medium with an appropriated sugar concentration (Rolland et al. 2002; Lopez-

Molina et al. 2001; Rook and Bevan 2003). However, sugar (i.e. sucrose and glucose) 

has marked and complex effects on the root system architecture and directional 

growth in plants, the mechanism of which is still not well understood. The study of 

sugar sensitive/insensitive mutants revealed that many of these mutants also have 

defects in hormone-synthesis or -signaling (Ljung et al. 2015; Rook et al. 2006; 

Zhou et al. 1998; Booker et al. 2010), hinting at a complex sugar-hormone-

regulatory network that modulates various processes during plant growth and 

development.   

Salinity effects on skewing phenotype of Arabidopsis root 

Salinity is one of the major abiotic factors limiting crop yield worldwide (Vaughan 

et al. 2002). The root system of plants is the first and most important organ that 

senses salinity in the soil. Tolerance to salinity stress could partly be mediated by 

changes in the root system architecture, regulated through a complicated network of 

genes and proteins, and the relative levels of phytohormones (reviewed by 

Julkowska and Testerink 2015). Preliminary studies showed that mild salinity stress 

in the MS medium slightly suppressed primary and lateral root growth, while high 

level of salt (>100mM) were detrimental for root system development (See Chapter3, 

Figure 2 and Figure 4). In the present study, exposure roots of Columbia to 100 

mM NaCl changed the skewing direction from right to left, consistent with obvious 

right-hand helical growth of epidermal root cells (Figure 4 D), in addition to root 

growth reduction and suppression of lateral roots (Figure 4 B, C). The response of 

Columbia roots growth to 50 mM NaCl was indistinguishable from those of roots 

cultured on the standard medium (with 1% Sucrose) without salt, but increasing the 

NaCl concentration to 100 mM caused the right-slanting angle to decreased to 0°. 

Since neither the VGI of roots in wild type or rgir1 mutant seedlings, nor the HGI 

was affected by equivalent concentrations of mannitol, the effect of 100 mM NaCl 

on growth direction must be due to the ionic effect and not to the increased 

osmolarity of the medium.  

Potential roles for RGIR1 in root waving and skewing phenotype 

A large collection of root waving and skewing mutants were identified during the 

screening of abnormal root growth behavior in recent years. The diversity of 

skewing mutants indicates that there must be a number of genes involved in the 

symmetry determination of root growth. One class of genes, involved in 

gravitropism, was shown to control auxin transport and responses, such as aux1 (De 

Smet et al. 2007), rgl1 (Simmons et al. 1995), rha1 (Fortunati et al. 2008), and knat1 
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(Qi and Zheng 2013). Another group was shown to be involved in the arrangement 

of cortical microtubule including spiral genes (Shoji et al. 2006; Furutani et al. 2000), 

sku6 (Sedbrook et al. 2004; Rutherford and Masson, 1996), and WVD2 and WDL1 

(Yuen et al. 2003). Interestingly, CLE40, a protein functionally equivalent to the 

stem cell restricting CLV3, is required for normal root growth, and loss of CLE40 

enhances root waving (Hobe et al. 2003). The wavy-root phenotype of plants with 

overexpression of CLE-like (CLELs) seems independent of the known 

environmental stimuli, which regulates root growth through an auxin-independent 

pathway (Meng et al. 2012), indicating the possibility of peptides that participates in 

intracellular signaling and in regulating root direction growth.  

    Based on an in silico analysis, five proteins (SPF1, T2E22.10, At23G47570, 

AT5G3310, and WAV2) are reported to be co-expressed with the RGIR1 

(At2g37050) gene, of which only WAV2 is associated with RGIR1 according to co-

localization. The roots of the wav2 mutant bent with a larger curvature than those of 

wild type seedlings in wavy growth, as WAV2 reduces root bending induced by the 

environmental stimuli through inhibition of root tip rotation (Mochizuki et al. 2005). 

Moreover, the homolog of RGIR1 in rice plant (os0174550) was identified to be 

involved in the response to mannitol (Diervart et al. 2016). In the present work, we 

found that the waving and skewing patterns of rgir1 mutants were indistinguishable 

from those of Columbia seedlings grown on an inclined agar plate, or when exposed 

to sucrose, salt or mannitol. Therefore, RGIR1 seems not involved in the response to 

mannitol and is not involved in the root growth direction.  

Conclusion  

Our observations demonstrate that roots display waving/skewing patterns and coils 

on tilted growth medium at different angles, and sucrose enhances the slanting 

angles of root at vertical plates by increasing the root growth rate. NaCl induces 

leftward skewing both at lower and higher concentration, and this salt-induced 

directional change is not due to the osmotic change alone. Although rgir1-1 has a 

shorter main root length compared to wild type under optimal growth condition, root 

responses of rgir1-1 seedlings are indistinguishable from wild type and rgir1-2 

seedlings in their skewing and waving behaviour under different treatments. 

Therefore, RGIR1 seems not to be involved in controlling the growth direction of 

root on the surface of agar. 
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Role of RGIR1 in plant growth and development 

Reverse genetics procedures are now well-established methods to identify the 

function of a gene. Analyzing the phenotypic characteristics caused by the mutation 

of a particular gene with inserted elements, such as T-DNA of Agrobacterium or a 

transposon (Bouché and Bouchez 2001; Feldmann 1991; Krysan et al. 1999) often 

give strong indications of what the specific role the gene plays. The result of the 

insertion of a T-DNA element in or near an Arabidopsis’ gene depends on the place 

of insertion: the promoter, a coding region or a 3’ un-translated region. In some cases, 

even a knockout mutant has no readily identifiable phenotype or displays a 

distinguishable phenotype compared to its wild type ecotype under the same growth 

conditions. The availability of large numbers of Arabidopsis T-DNA insertion lines 

has facilitated the discovery of functions of newly identified genes or proteins. 

Several steps are needed to characterize the phenotypic consequences of a particular 

T-DNA induced mutation. The lack of alteration of the phenotype could be caused 

by functional redundancy among members of a gene family and some other 

mutations have phenotypes that are conditional and can only be observed under 

specific physiological conditions. 

    Receptor-like kinases (RLKs) have emerged as a major component in the 

intercellular signaling processes within Arabidopsis root development (Wierzba and 

Tax 2013). Despite the large gene family of RLKs in the Arabidopsis genome, only a 

few of the total 610+ RLKs and RLPs have clear, identified, functions in mediating 

cell signaling during various stages of root development. Among these published 

RLKs that have a clear function in Arabidopsis root development, LRR-receptor 

kinases BRI1, BAK1, BRL1 and BRL3 reduce root length and root meristem size in 

a BR-dependent pathway (Caño-Delgado et al. 2004; Hacham et al. 2011; González-

García et al. 2011). Besides interacting with BRI1 to control root growth via a BR-

dependent pathway, SERKs were identified to interact with another unknown RLK, 

controlling root growth by regulating common target genes needed for root 

development (Du et al. 2012). In addition to BR, the transmembrane kinase TMK 

subfamily of RLKs show a reduced sensitivity to auxin and orchestrate plant growth 

by regulating cell expansion and cell division, and some of its members could also 

play a role in the auxin-mediated control of lateral roots development (Dai et al. 

2013; Chang et al. 1992).  

    The Root-growth-inhibition-receptor 1 (RGIR1) belongs to the LRR I subfamily, 

with three conserved LRRs in the extracellular domain between the Malectin domain 

and the single transmembrane domain (Chapter 2). In the detailed root phenotypic 

analysis of two homozygous RGIR1 alleles (rgir1-1 and rgir1-2), the rgir1-2 mutant, 

which is caused by the invalid insertion position close to 3’-untranslated region, did 

not exhibit visible changes under standard culture conditions when compared with 

it's wild type ecotype Col-0. However, the knock-out mutant allele rgir1-1 has a 

shorter main root and less lateral roots when grown on agar medium under optimal 

growth condition (Chapter 2). Moreover, the transcripts of RGIR1 showed strong 

tissues specificity with higher expression in the root and lower in the rosette in the 
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reverse transcript analysis. Thus, RGIR1 only functions in the root system, while the 

shoot phenotype is not affected. 

    In Chapter 2, a significant reduction of seed size was observed in the rgir1 mutant 

seeds compared with seeds of Arabidopsis ecotype Col-0, indicating a possible role 

for RGIR1 in controlling seed mass of plants. The seed germination process is 

affected strongly under low temperature and high salinity stresses, but no difference 

was found between wild type and mutant seeds under the identical conditions. 

However, the seeds of rgir1-1 germinated earlier at high temperature than seeds of 

wild type and the rgir1-2 mutant, suggesting a role for RGIR1 in the germination 

process. Germination is controlled by various environmental factors (and can be 

manipulated by hormonal treatment). Moreover, environmental factors can affect the 

endogenous factors that control germination (Bentsink and Koornneef 2008). Despite 

the smaller seed mass of rgir1-1, it exhibits a similar germination percentage as wild 

type under control condition and even a higher percentage when seeds were 

germinated under higher temperature of 25 ºC. Apparently, the germination process 

is not strongly positively correlated with the size of the dormant seed in our study.  

    In Chapter 3, the short root phenotype observed in rgir1-1 mutant is always 

accompanied by a decrease of meristem size and elongation zone length and less 

cortex cells in the elongation zone. However, the average size of the cortex cells is 

not affected in the rgir1-1 mutant root tip compared with ecotype Col-0. The 

development of the Arabidopsis root system is a dynamic process, comprised of 

diverse molecular mechanisms underlying different processes during root 

development that respond to both the external environment and the intrinsic 

signaling systems. Unlike those LRR-RLKs found in the hormone response 

pathways, RGIR1 may play a regulatory role in controlling root cell elongation 

and/or division under optimal growth condition and without any exogenous stress. 

Future work is needed to understand the regulatory process during root development 

and the regulatory mechanism of this newly identified LRR-RLK receptor.  

Role of RGIR1 in response to diverse abiotic stresses 

Plants are sessile organisms that have developed an extensive array of morphogenic 

responses when exposed to diverse abiotic stress conditions. Our detailed 

characterization of root system modification in Arabidopsis wild type (Col-0) under 

various abiotic stresses indicated that root elongation and root branching was 

distinctively affected by abiotic stresses (Chapter 4 and Chapter 5). Under abiotic 

stresses, results from the root trait of Col-0 and rgir1 mutants (Chapter 3 and 

Chapter 4) indicate that abiotic stress imposed highly distinct effects on root growth 

and development of Arabidopsis plants. Main root length and lateral roots number of 

independent plants from Col-0, rgir1-1, and rgir1-2 were selected in a Principle 

Component Analysis (PCA) to capture the major factor of RSA in response to 

abiotic stresses, including high/low temperature, salinity, osmotic stress, and plant 

hormone 24-EBL. As shown in Figure 1A, the two principal components accounting 

for 100% of the variation and the first principle component explained 95.2% of the 
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observed variation. Both PC1 and PC2 were related to main root length and lateral 

roots number of different genotypes and various abiotic stresses. The absolute value 

of Col-0, rgir1-1, and rgir1-2 are close to 0 along PC1 axis indicating that the 

difference between genotypes is not significant. Despite the opposite direction on the 

PC1 axis, the absolute value for plant under treatment with 1 nM EBL or high 

temperature chamber (25 °C) is similar with those under treatment with 100 mM salt, 

and low temperature chamber (15 °C), approximately to 2. Thus, root growth and 

development is significantly increased under high temperature and hormone while it 

is severely prohibited under low temperature treatment and salinity (50 and 100 mM 

NaCl) (Figure 1 B). Arabidopsis plants under osmotic stress by supplied mannitol in 

the medium also showed decreased growth of main root and lateral development, but 

the inhibition was not as significant as salinity and low temperature stress.  

Analysis of the kinetics of rgir1-1 root growth  

For the analysis of root growth methods have become available over the last couple 

of years that allow us to study the growth and development of roots at a high spatial 

resolution, enabling us to distinguish differences between the different processes that 

affect the length of roots. For Arabidopsis ecotypes, Beemster et al. (2002) used 

proxies for cell production and mature cell length to model the variation in root 

elongation rate. Starting from the clear premise that the rate of tip growth is the 

product of rate of cell production by divisions in the root meristem and the final cell 

length at the proximal end of the elongation zone (where the mature root zone starts, 

see Figure 2), the analysis of the different ecotypes resulted in large differences in 

both parameters (and also in the final outcome).  

    For our study it is interesting to determine what the reason for the shorter primary 

root in rgir1-1 plants is: does the mutation affect the cell division rate or is the 

expansion of the cortical cells inhibited. This type of analysis would also make it an 

easy exercise to establish whether the processes leading to the short root phenotype 

of rgir1-1, are involved in other processes leading to a short root (i.e. abiotic stresses 

like low temperature or hormonal effects like ethylene). Using the root growth 

analysis program RootflowRT (see Chapter 3) the growth rate in the different root 

zones can be determined from series of root tip images taken 20 seconds apart. From 

the pixel (group) displacement the growth rate along the root tip is calculated. The 

growth patterns obtained resemble sigmoidal curves that can be fitted with a 

modified logistic growth function (Figure 3). The differences in overall growth rate 

of a root are identical to the maximal growth rate. The elongation zone is centered 

around the midpoint, the zone of the steepest increase in growth rate and the 

meristematic zone is represented by the zone where the growth rate is close to zero. 
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Figure 1. Biplot display of principal component analysis (PCA) based on the correlation 

of Arabidopsis ecotype Col-0 and two T-DNA insertion mutant lines in response to 

different abiotic stresses. 
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Figure 2. Schematic overview of the different zones in the root tip where cell division and 

cell expansion are mainly localized. The cortical cell files are derived from initials close to 

the quiescent center. Cell division (and limited cell elongation) continues in the meristem zone 

providing an ongoing "influx" of cells into the elongation zone, where cells no longer divide 

and most of the cell elongation takes place. Proximal of the elongation zone the cells no longer 

grow, the first root hairs are formed and the cell size has reached their maximal length (after 

Beemster et al. 2002). 

 

Figure 3. Family of theoretical curves for the growth rate along the root tip of roots with 

normal and reduced growth to 70%. A: Curves of the overall growth relative to the 

quiescent center (x=0) of normal growth (solid line), inhibited growth due to low expansion 

rate in elongation zone (dotted line), inhibited growth due to shortening of the elongation zone 

(dash-dotted line) and inhibited growth due to limited production of cells in the meristematic 

zone. B: Curves representing the first derivative of the growth rate curves shown in A. 

    In Figure 3 the three basic processes that can lead to a reduced overall growth rate 

in root tips are illustrated. The first process is a reduction in the number of cells that 
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are available for elongation by limiting the rate of division in the meristematic zone. 

This will almost invariably result in a shift of the elongation zone towards the tip of 

the root. The resulting lines in the Figure 4 A and B are dashed. The second option 

is a reduction in the rate of cell elongation, the resulting mature cells that are on 

average shorter. While the elongation zone still has the same dimensions, the cell 

length remains shorter and the number cells still slowly expanding at any one time is 

increased. This model option is depicted by the lines that are dotted. The third option 

is a shortening of the expansion zone: the meristematic cells deliver cells to the 

elongation zone at the same rate, the elongation rate per cell is not lower, but the 

length of time the cells keep elongating is shortened. Again this will result in shorter 

mature cells in the cortex. As the results of Beemster et al. (2002) already indicated, 

combinations of modulating both cell production and cell size at maturity are both 

possible in realizing a certain root growth rate.  

 

Figure 4. Comparison between the dynamic root growth parameters of wild type, rgir1-1 

and etr1-3 roots on plates with control medium or medium supplemented with 5 µM 

ACC. A: The data resulting from the RootflowRT software fitted with a logistic growth curve 

(solid line). The first order derivative of the fitted line is also indicated (dotted line). 

Maximum velocity (B) and distance between root tip and midpoint (C) are derived from fitted 

logistic growth curves to the growth rate profiles. 
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    If sufficiently high resolution data from the dynamic analysis of root growth 

profiles along the root tip could be obtained, distinguishing between the mechanism 

of root growth inhibition would indeed be possible. In Figure 4 the results of a 

comparison between short roots phenotypes of rgir1-1 and ACC-treated roots are 

shown. From the comparison between the genotypes wild type, rgir1-1 and etr1-3 (a 

mutant with a reduced sensitivity to ethylene) the slightly lower growth rate or rgir1-

1 and the slightly higher rate of etr1-3 are noted. In both short phenotype situations 

(rgir1-1 and exposure to ACC, a precursor of ethylene) it is clear that the lower 

growth rate correlates with a shift of the midpoint of the elongation zone towards the 

root tip. The only two model options that are compatible with this shift of the 

elongation zone are reduced cell production (reduced division rate in the 

meristematic zone) and the shortening of the elongations zone. When the length of 

the mature cells would be available for this experiment further distinction between 

these two models would be possible. From the ANOVA that was performed on these 

data it became clear that although the root length reduction in rgir1-1 resembles that 

of ACC exposure, there was no statistically significant interaction between rgir1-1 

and ACC effects, which indicates that both mechanisms probably act independently. 

Root waving and skewing behavior of Arabidopsis 

Arabidopsis ecotype Columbia root exhibit a sinusoidal waving pattern and skew to 

one side of the plate when grown on inclined agar medium (Chapter 5). Since the 

discovery of waving and skewing root growth patterns, different models have been 

proposed to explain this surface-dependent root growth behavior (Roy and Bassham 

2014). One widely accepted model explains waving and skewing as a result of 

intrinsic circummnutation, positive gravitropism and negative thigmotropism, while 

another interesting model considers the formation of these movements due to the 

physical interaction of the root tip with the medium. Other factors that have been 

implicated in regulating root movement on the surface of medium, including 

hormones and environmental cues (e.g. light, humidity, and nutrients in the medium). 

However, a unifying, generally accepted model for understanding the mechanism of 

waving and skewing movements is still lacking.  

    In the last decade, the isolation of wavy and skewing mutants has been used to 

discover genes implicated in skewing and waving behavior of the root (Oliva and 

Dunand 2007). Mutants with aberrant skewing phenotypes also have defects in the 

root cytoskeleton and cell wall modifications, indicating that function of genes 

affecting skewing are mainly involved in the re-arrangement of cytoskeleton and cell 

walls. The alteration of root skewing direction under high salinity and the enhanced 

skewing angle in the presence of sucrose (Chapter 5) suggests the processes that lead 

to the normal skewing response, based on the structure of the cytoskeletal elements, 

can interact with other signaling pathways and create flexibility in the root growth 

response to multiple environmental signals. The existence of mutations affecting 

skewing, but not waving, indicating that these two root growth behaviors are 

regulated by different processes. Compared with skewing, the process affecting 

waving is more complex and more difficult to explain since a range of different 
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factors is involved (Buer et al. 2003). Most discovered wavy mutants are defective in 

root gravitropism and show altered waving dynamics, such as amplitude and 

wavelength of waves, compared with wild type. Some mutants were identified 

involved in mediating the influx and efflux of the plant hormone auxin, which plays 

a fundamental role in the root gravitropic response. As lateral root initiation and the 

gravitropic response are both affected by the redistribution and transportation of 

auxin between different zones of the root tip, and lateral roots also space along the 

primary root in a regular left-right pattern that correlates with gravitropic response- 

mediated waves, this suggests that there is crosstalk between gravitropism, waving 

and lateral root formation.  

    The roots of the wav2 mutant show wavy root growth with exaggerated curves 

compared to wild type Arabidopsis. WAV2 is probably a negative regulator root 

bending by inhibiting root tip rotation (Mochizuki et al. 2005). According to an in 

silico proteomic data analysis, RGIR1 is co-expressed with SPF1, T2E22.10, 

At3g47570, At5g43310 and associated with WAV2 based on co-localization, 

indicating a possible role for RGIR1 in controlling the waving and skewing 

phenotype of roots. However, the waving pattern of rgir1 mutant was 

indistinguishable from that of Columbia seedlings grown on vertical medium plates 

or on the inclined plates either at 45° or 180° (Chapter 5). Therefore, we conclude 

that RGIR1 is involved in the regulation of root elongation, but that it has no effect 

on root directional growth on vertical agar medium.  
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Receptor-like kinases (RLKs) have emerged as major components in intercellular 

signaling during plant growth and development. Based on the similarity of the kinase 

domain sequences, the RLK family is comprised of more than 610 members, but for 

only a fraction we currently do know their function(s) during plant growth or in 

response to various abiotic and biotic stresses (Chapter1). In a previously study, one 

knock-out mutant of Arabidopsis gene At2g37050, here named ROOT GROWTH 

INHIBITION RECEPTOR1 (RGIR1), displayed a distinctly shorter primary root and 

less lateral roots. The RGIR1 gene encodes a protein of 934 amino acids with a 

predicted molecular mass of 103.4 kD, which belongs to the LRR-I transmembrane 

receptor-like protein kinase family, with three conserved LRRs in the extracellular 

domain. Since most work published for RGIR1 was mainly focused on comparison 

of transcriptome analyses under particular stress conditions, the role of RGIR1 in 

plant growth and development was still lacking.  

    In Chapter2 seed germination of two T-DNA insertion mutants (rgir1-1 and rgir1-

2) under cold and salt stress was studied and a detailed screen for alteration of their 

root system architecture under optimal growth condition was performed. Seed 

germination was strongly affected by low temperature and salinity treatment both for 

wild type and mutants. Whereas mutant seeds have a smaller seed size compared 

with wild type, no evidence was found for a direct link between RGIR1 with control 

of seed size and seed germination. Seedlings of rgir1-1 mutants showed a shorter 

main root length and smaller root surface area on agar plates, while the leaf 

phenotype was not affected on agar or in soil at optimal temperature, indicating that 

RGIR1 only has a role in root development. 

    In Chapter3 root morphology, to quantify cell number and size, and kinematic 

parameters of root elongation, to establish the location, size and activity of the 

elongation zone, in wild type and rgri1-1 root tips were determined under optimal 

condition and when exposed to cold or salinity stress. In the presence of salt or cold 

stress, root growth and development were strongly affected with shorter main root 

length and less lateral roots in Col-0 and rgir1-1mutant. The shorter root phenotype 

of rgir1-1 seedlings is associated with a lower elongation rate and decreased cortex 

cell number in the transition zone and elongation zone of the root tip under optimal 

growth condition. Differences in main root and lateral roots between rgir1-1 and 

wild type disappeared when exposed to cold and salinity, but were more pronounced 

at high temperature, indicating that RGIR1 is a positive regulator in the process of 

root growth and development under optimal growth condition. The pathways for 

RGIR1 controlling root elongation seems to be independent of those involved in the 

responses to cold and salinity. 

    In Chapter4 effects of culturing conditions on root growth patterns in Col-0 and 

rgir1 mutants were studied. Sucrose (1.5%) induces a waving and skewing 

phenotype on hard (1.5% micro-agar) medium, and strongly reduced lateral roots 

formation and an increase length of the main root in both Col-0 wild type and rgir1 

mutants. Main root growth and root branching in wild type and mutants were 

inhibited under salt or osmotic stress, and at low pH. Sulfur-deficiency didn't affect 
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main root growth of Col-0 seedlings but lateral roots formation was strongly 

stimulated compared with those grown on sulfur-sufficient medium. More lateral 

roots developed in rgir1-1 roots than on Col-0 roots, grown on the same sulfur-

deficiency medium, indicating a possible role for RGIR1 in the process of lateral 

root initiation or emergency. 

    In Chapter 5 we studied the effects of salt stress and root-agar interaction on root 

skewing behavior in Arabidopsis thaliana. Root of Col-0 displayed rightward 

slanting on vertically placed agar medium, and this slanted phenotype was enhanced 

in the presence of 1% sucrose. Anti-clockwise root coils and hooked root tips were 

identified in Col-0 seedlings when the agar plates were placed horizontally or 

inclined at an angle of 45°, respectively. High salinity altered root skewing direction, 

combined with severe suppression of main root elongation and lateral roots 

formation in Col-0. These responses were observed when exposed to NaCl, but not 

under osmotic stress. Roots of rgir1-1 seedlings responded the same as wild type, 

both on inclined agar medium and on vertical medium with high salt or mannitol, 

indicating that RGIR1 has a role controlling root elongation, but is not involved in 

the directional growth of the root tip. 

    In summary, it can be concluded (Chapter 6) that RGIR1 is an LRR-I receptor-like 

kinase which does have a function in the root system architecture of Arabidopsis. 

However, changes in root morphology induced by high or low temperature or the 

hormone EBL, or exposure to salinity, are not affected by mutating the RGIR1 gene. 

The dynamic analysis of the root growth profile along the root tip in rgir1-1 and 

etr1-3 (a mutant also with shorter main root length and reduced sensitivity to ACC), 

does not show a statistically significant interaction between rgir1-1 and ACC 

treatment, thus, both mechanisms controlling the reduction of root length probably 

act independently. Although RGIR1 is associated with WAV2, which shows wavy 

root growth and exaggerated curves compared to Arabidopsis wild type, no evidence 

was found for RGIR1 in controlling the directional growth of root in this thesis.  
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Receptor-like kinases (RLK's) zijn belangrijke componenten in de intercellulaire 

signaaloverdrachtin zowel dieren als planten en spelen een belangrijke rol in groei en 

ontwikkeling. Op basis van overeenkomsten in de  de kinase domein sequenties 

onderscheiden we 610 eiwitten die tot de de RLK familie behoren.Van slechts een 

klein deel van deze 610 RLK’s weten we de precieze functie tijdens de groei van 

planten of in hun reactie op verschillende abiotische / biotische stress 

omstandigheden (hoofdstuk 1). In een eerder onderzoek werd een 

mutantgeïdentificeerd (At2g37050, in dit proefschrift ROOT GROWTH 

INHIBITION RECEPTOR1 (RGIR1) genoemd), die een duidelijke kortere primaire 

wortel had en ook minder zijwortels vertoonde.Het RGIR1 gen codeert voor een 

eiwit van 934 aminozuren met een voorspelde moleculaire massa van 103,4 kD, dat 

behoort tot de LRR-I transmembrane receptor-like kinase familie, met drie 

geconserveerde leucine-rich repeats (LRRs) in het extracellulaire domein. Aangezien 

het meeste dat al bekend was over RGIR1 voornamelijk was bebaseerd op 

vergelijking van genexpressieonder verschillendestressomstandigheden, ontbrak een 

duidelijke rol voor het RGIR1 gen. 

    In hoofdstuk 2 worden zaadkiemingsexperimentan van twee T-DNA 

insertiemutanten van RGIR1  (rgir1-1 en rgir1-2) onder lage temperatuur en bij 

blootstelling aan een hoge zoutconcentratie beschreven. Tevens werd een 

gedetailleerd analyse gemaakt van de verandering in de structuur van wortelstelsel 

van RGIR1 mutanten ten opzichte van wildtype planten.De zaadkieming werd sterk 

beïnvloed door een lage temperatuur en door een hoog zoutgehalte, zowel voor 

wildtype als mutanten. Terwijl de zaden van  mutantenwel kleiner zijndan die van 

het wildtype, werd geen bewijs gevonden dat RGIR1 een rol heeft in de controle op 

zaadgrootte en -vorming. Zaailingen van rgir1-1 mutant vertoonden een kortere 

lengte van de primaire wortel  en een kleiner  worteloppervlakte, maar de 

ontwikkeling van de spruit of de bladeren was identiek in wildtype en mutanten, wat 

impliceert dat RGIR1 alleen een rol heeft in de ontwikkeling van de wortel. 

    In hoofdstuk 3 werden morfologie (celgroote en –aantal) en kinematische 

parameters (locatie, omvang en activiteit van de groeizone) van de worteltop 

gemeten in de wildtype en rgri1-1 planten onderzowel optimale omstandigheden, 

lage temperatuur en hoge zoutconcentratie.  In aanwezigheid van zout of bij lage 

temperatuur werden wortelgroei en -ontwikkeling sterk beïnvloed, resulterend in een 

kortere hoofdwortellengte en minder zijwortels in Col-0 en rgir1-1 mutant. Het 

kortere wortelfenotype van rgir1-1-zaailing is geassocieerd met een lagere 

celstrekking en een lager aantalcortexcellen in de overgangszone en de 

strekkingszonevan de wortel onder optimale groeiconditie. Verschillen tussen rgir1-1 

en wildtype inwortellengte en aantallen laterale wortels verdwenen wanneer de 

planten werden blootgesteld aan koude en zoutg, maar werden meer uitgesproken bij 

hoge temperaturen.Dit duidt erop dat RGIR1 een positieve regulator is van het 

proces van wortelgroei en –ontwikkeling onder optimale omstandigheden. Het 

regulatiemechanismewaarmee RGIR1 de wortellengte beinvloedt, lijkt onafhankelijk 

het mechanisme waarmee lage temperatuur en zout de wortellengte veranderen. 
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    In hoofdstuk 4 werden effecten van groeiomstandighedenop de structuur van het 

wortelstelvan van Col-0 en rgir1 mutanten bestudeerd. Sucrose (1.5%) induceert een 

golvend en ‘scheef’fenotype op hard (1,5% micro-agar) medium, een sterk 

verminderde aantal laterale wortels en een langere hoofdwortel in zowel wildtype 

(Col-0), als rgir1 mutant planten. Blootstelling aan zout, een lage pH, of een hoge 

osmotische waarde remt de lengte groei en de ontwikkeling van zijwortels in zowel 

wildtype als in de mutanten. Zwavel-deficiëntie had geen invloed op de lengte van 

de hoofdwortel van Col-0-zaailingen, maar de vorming van laterale wortels werd 

sterk gestimuleerd in vergelijking met de planten opmedium met voldoende zwavel. 

Laterale wortels van rgir1-1 zaailingen waren sterker gestimuleerd dan die van 

wildtype planten op hetzelfde zwavel-deficiëntie medium, wat mogelijke duidt op 

een rol voor RGIR1 in de intiatie van laterale wortels. 

    In hoofdstuk 5 bestuderen we de effecten van zoutstress en de interactie van de 

wortel met het oppervlakte van agarmediumop het wortelfenotype van Arabidopsis 

thaliana. Wortels van Col-0 op verticaal geplaatste agar platen hebben een duidelijk 

neiging om scheef naar rechts te groeien, en dit schuine fenotype wordt versterkt in 

aanwezigheid van 1% sucrose. Op platen die horizontaal of onder een hoek van 45 

graden worden geplaatst vertone een wortels een ant-iclockwise kurketrekker-achtige 

groei waarbij de wortelpunt een krul vertoont.Een hoog zoutgehalte verandert de 

groeirichting van de wortelpunt, terwijl tegelijkertijd de lengtegroei van de 

hoofdwortel en de ontwikkeling van zijwortels sterk wordt geremd in Col-0. Deze 

remming wordt veroorzaakt door NaCl, en niet door de hogere osmotische waarde. 

Wortels van rgir1-1 mutant zaailingen reageerden op een vergelijkbare manier: op 

vertikaal geplaatste platen en onder NaCl en osmotische (mannitol) stress reageert 

rgir-1 zoals wildtype. Dit lijkt erop te wijzen dat RGIR1 alleen een rol heeft bij de 

lengtegroeivan de wortel, maar niet op de groeirichting van de wortelpunt.  

    Samenvattend kan worden geconcludeerd (hoofdstuk 6) dat RGIR1 een LRR-I 

receptor-likekinase is diealleen in de ontwikkeling van de wortel van Arabidopsis 

een rol van betekenis speelt en geen effect heeft op de ontwikkeling van de spruit of 

van het blad. Wortelgroei en -ontwikkeling wordt aanzienlijk verhoogd onder hoge 

temperatuur en behandleing met het hormoonEBL, terwijl lage temperatuur en een 

hoog zoutgehalte wortelgroei remmen, in zowel wildtype en mutanten. RGIR1 lijkt 

geen functie te hebben in de respons op deze abiotische stressen en 

hormoonbehandeling. Uit de dynamische analyse van het wortelgroei profiel langs 

de wortelpunt in rgir1-1 en etr1-3 (een mutant ook met kortere wortellengte en 

verminderde gevoeligheid voor ACC), waren er geen statistisch significante 

interacties in rgir1-1 en ACC behandeling, dus  beide mechanismen die de 

vermindering van de wortellengte beinvloeden, treden onafhankelijk op. Hoewel 

RGIR1 is geassocieerd met WAV2, die een golvende wortelgroei en overdreven 

wortelcurvatuur veroorzaakt in vergelijking met Arabidopsis wildtype, werdin dit 

proefschriftgeen bewijs gevonden voor een rol van RGIR1 de regulatie van de 

richtinggroei van de wortelpunt. 
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ACR4 Arabidopsis thaliana homologue of CR4 
 

AD apical domain 
   

ALE1 ABNORMAL LEAF SHAPE1 
  

ALE2 ABNORMAL LEAF SHAPE2 
  

BAK1 BRI1 ASSOCIATED KINASE1 
  

BAM1/2 BARELY ANY MERISTEM 1/2 
  

bHLH basic helix-loop-helix 
  

BL brassinolide 
   

BR brassinosteroid 
   

BRI1 BRASSINOSTEROID INSENSITIVE1 
 

BRL1 BRI1-LIKE1 
   

BRL3 BRI1-LIKE1 
   

BSKs BR-signaling kinases 
  

CD central domain 
   

CFRs cell file rotations 
   

CLE CLAVATA/ENDOESPERM SURROUNDING REIGON 

CLV1 CLAVATA1 
   

CPC CAPRICE 
    

CR4 CRINKLY4 
    

CRF2 CYTOKININ RESPONSE FACTOR 2 
 

CRLK1 Calcium/CAM-regulated RLK 
  

CRPs cysteine-rich peptides 
  

CSCs columella stem cells 
  

CWR cell-wall-remodelling 
  

CZ central zone 
   

EBL epi-Brassinolide 
   

EGL3 ENHANCER OF GLABRA3 
  

EPF Epidermal Patterning Factor 
  

ER ERECTA 
    

ERL1 ERECTA-like1 
   

ERL2 ERECTA-like2 
   

ETC1 ENHANCER OF TRY AND CPC 
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FER FERONIA 
    

FLS2 FLAGELLIN-SENSITIVE2 
  

GFP green fluorescent protein 
  

GHR1 GUARD CELL HYDROGEN PEROXIDE-RESISTANT1 

GMC guard mother cell 
   

GSO1 GASSHO1 
    

GSO2 GASSHO2 
    

HAE HAESA 
    

HGI horizontal growth index 
  

HSL2 HAE-LIKE2 
   

IDA INFLORESCENCE DEFICIENT IN ABSCISSION 

LRPs lateral root primordias 
  

LRRs leucine-rich repeats 
  

LRs lateral roots 
   

MAMP microbe-associated molecular pattern 
 

MAP MITOGEN-ACTIVATED PROTEIN 
 

MOL1 MORE LATERAL GROWTH1 
  

NPA naphthylphthalamic acid 
  

OC organizing center 
   

OZ organizing zone 
   

PBS1 AVRPPHB SUSCEPTIBLE1 
  

PEPR1 PEP1 RECEPTOR1 
   

PERK proline-rich extension-like receptor kinase 

PI Propidium Iodide 
   

PLT PLETHORA 
   

PR primary root 
   

PXY/TDR PHLOEM INTERCALATED WITH XYLEM/TDIF RECEPTOR 

PZ peripheral zone 
   

QC quiescent center 
   

QTL quantitative trait locus 
  

RAM root apical meristem 
  

REGR relative elemental growth rate 
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RGIR1 Root Growth Inhibition Receptor 
 

RHs root hairs 
    

RLCK receptor like-cytoplasmic kinase 
 

RLKs Receptor-like kinases 
  

RLPs receptor-like proteins 
  

ROS Reactive oxygen species 
  

RPK1 RECEPTOR PROTEIN KINASE1 
  

RPK2 RECEPTOR-LIKE PROTEIN KINASE2 
 

RSA root system architecture 
  

RTKs receptor tyrosine kinases 
  

RUL1 REDUCED IN LATERAL GROWTH1 
 

RZ rib zone 
    

SAM shoot apical meristem 
  

SCAREROW WUSCHEL-RELATED HOMEOBOX5 
 

SCM SCRAMBLED 
   

SCR SCAREROW 
   

SERK1/2 SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1/2 

SHR SGORT ROOT 
   

SIMR stress-induced morphogenic response 
 

SOS2 Salt Overly Sensitive 2 
  

SPCH SPEECHLESS 
   

SSP SHORT SUSPENSOR 
   

TDIF 
TRACHEARY ELEMENT DIFFERENTIATION INHIBITORY 
FACTOR 

TMK TRANSMEMBRANE KINASE 
  

TMM TOO MANY MOUTHS 
  

TOAD2 TOADSTOOL2 
   

TRY TRIPTYCHON 
   

TTG TRANSPARENT TESTA GLABRA 
  

VGI vertical growth index 
  

WAKs WALL-ASSOCIATED KINASEs 
  

WER WEREWOLF 
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WOX5 WUSCHEL-RELATED HOMEOBOX5 
 

WUS WUSCHEL 
    

XIP1 XYLEM INTERMIEXD WITH PHLOEM1 
 

YDA YODA 
    

ZmPK1 the maize putative protein kinase-encoding cDNA clones 
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