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Abstract—Modern software applications are increasingly de-
ployed and distributed on infrastructures in the Cloud, and then
offered as a service. Before the deployment process happens, these
applications are being manually – or with some predefined scripts
– composed from various smaller interdependent components.
With the increase in demand for, and complexity of applications,
the composition process becomes an arduous task often associated
with errors and a suboptimal use of computer resources. To
alleviate such a process, we introduce an approach that uses
planning to automatically and dynamically compose applications
ready for Cloud deployment. The industry may benefit from using
automated planning in terms of support for product variability,
sophisticated search in large spaces, fault tolerance, near-optimal
deployment plans, etc. Our approach is based on Hierarchical
Task Network (HTN) planning as it supports rich domain
knowledge, component modularity, hierarchical representation of
causality, and speed of computation. We describe a deployment
using a formal component model for the Cloud, and we propose
a way to define and solve an HTN planning problem from
the deployment one. We employ an existing HTN planner to
experimentally evaluate the feasibility of our approach.

Index Terms—service composition, automated planning, appli-
cation configuration, software deployment, cloud computing

I. INTRODUCTION

Cloud computing brings new possibilities of experiencing

benefits from software applications. These are no longer

installed and running on a single machine, but they are

composed of assorted software components that are transpar-

ently deployed and distributed on several machines in Cloud

infrastructures, and are always available on a reliable network.

Consider as an example an application for intelligent energy

management of office buildings [1]. The application is sup-

posed to provide office occupants with various representations

of energy and environment information, and control a wide

range of devices and systems, for instance, a lighting system.

Such an application consists of multiple components each of

which offers its capabilities as services deployed on the Cloud

infrastructure belonging to some office building or building

corporation. These services are not necessarily accessible over

a network that is open for public use, but they are typically

accessible only by the corporations providing or using them

(thus greater control and privacy). We refer to such services

as Cloud services.

The problem

Cloud applications are usually composed manually or with

some predefined scripts, either involving strenuous effort and

being error prone. Several factors contribute to this. The first

one is that although each service is responsible for addressing

a specific and separate aspect of an application, there is

often high interdependency between services [2]. Second, each

service may have multiple versions each of which includes a

different set of requirements for communication, exchange of

information, and functionalities of other services [3]. Third,

each service may have multiple instances running in the same

setting [4]. Say there are 300 rooms in some office building.

A single instance of a service with some specific functionality,

for example, lighting control, may have difficulties with such

scaling of the number of offices. This implies that the number
of services for an actual deployment may vary and increase,

which is a fourth factor.

Considering these factors, one has to find, choose and

properly configure appropriate services so that they compose

applications ready for deployment. We refer to this as a

deployment problem. The solutions to deployment problems

involve deployment actions, which are simple operations per-

formed on services, such as installing a service instance,

binding service instances, terminating a service instance, etc.

With the proliferation of services and requests for application

deployments, solving deployment problems requires a lot

of resources in the development, configuration, integration

and maintenance of applications in Cloud infrastructures. It

is therefore vital to search for and decide on deployment

actions automatically and dynamically such that these actions

configure a required application by interacting with existing

service instances and/or creating new ones on the Cloud.

Proposed solution

As a necessary direction to automate the composition of

Cloud applications ready for deployment, it appears natural to

resort to automated planning [5]. Planning provides powerful

methods for searching in large and complex Cloud infrastruc-

tures to find “good” compositions of Cloud ready applications.

Applications are composed dynamically, thus services need

not to be fixed in advance in scripts and always available

(the same holds for the servers of the Cloud). Additionally,
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planning can be used to handle the Cloud uncertainty (e.g.,

failures of hardware resources), find deployments optimal with

respect to the use of computer resources, etc.

There is an evident basic correspondence between planning

problems and deployment problems: planning goals corre-

spond to requests for application deployments, planning states

correlate to current deployments or configurations of Cloud

infrastructures, and planning actions correspond to deployment

actions. In the Cloud setting, however, deployment actions are

simple operations without any semantics, keeping the actions

separate from the configuration knowledge. To support this

modularity of deployment actions and still consider the con-

figuration knowledge when composing Cloud applications, we

turn to Hierarchical Task Network (HTN) planning [6]. HTN

planning provides support through its rich domain knowledge

and hierarchical representation of causality. HTN planning is

suitable also due to its speed of computation.

The contributions

We summarise our contributions next.

• We propose to solve the problem of composing appli-

cations ready for deployment on Cloud infrastructures

via HTN planning. To the best of our knowledge, this is

the first proposal to compose Cloud applications using a

generic planning technique in contrast to special-purpose

planning techniques (see [2], [3]). On the other hand, this

sort of problems has a close resemblance with Web ser-

vice composition, a problem well studied by the planning

community. There are however a few notable differences.

The first one is that Web services are distributed on

the Internet, thus publicly available, and assumed to be

registered to some repository. Cloud services, in contrast,

are commonly part of well-controlled environments. The

second and important issue with Web services lies in

the lack of consistent semantic annotations such that

make their composition feasible in practice. Even though

various ways to describe Web services exist (e.g., SOAP,

WSDL, OWL-S), some already deprecated or never used

in practice, the reality of Web services is that they are

associated only with syntactic specifications and free-text

descriptions, leading to the consideration of Web services

as nothing more than data sources [7]. Being part of

controlled environments, Cloud services have different

characteristics: they tend to be structured and described

using consistent (in-house) ontologies [8], [9], or even

provided with machine-interpretable annotations [10].

Corporations tend to make use of well-established stan-

dards and best practices they gain in the domain of

service-oriented architectures to support a standardised

way of access to Cloud services [11]. In contrast to Web

service composition, these considerations foreground the

possibility to make the composition of Cloud applications

feasible in practice. Third, the configuration processes

in Cloud infrastructures involve creation of new service

instances, making the composition of Cloud services and

our approach distinct in this respect. Another issue that

differentiates the two problems but we do not deal here

with is the deployment of Cloud services on multiple

servers under various resource constraints.

• We establish a formal correspondence between deploy-

ment problems and HTN planning problems. In fact, we

propose a strategy to create HTN planning problems from

deployment problems described using an existing formal

model called Aeolus [12]. The Aeolus model enables

configuring applications deployable on the Cloud.

• We encode a domain model and use our own domain-

independent HTN planner to examine it.

• We evaluate the planner’s performance under increasing

difficulty of deployment problems, and show that the

planner is able to compose applications fast. We then

compare it to the performance of an existing planner

implemented specifically to handle Aeolus-based deploy-

ment problems. As expected, the domain-specific planner

outperforms our domain-independent HTN planner, how-

ever, the results show the feasibility of HTN planning to

compose Cloud applications.

The paper is organised as follows. Section II provides brief

descriptions of HTN planning, the Aeolus model and a running

example. Section III introduces our modelling strategy and

the deployment-based HTN planning problem. Section IV

provides details on the experimental evaluation. Section V

discusses related work, followed by Section VI that concludes

the paper.

II. PRELIMINARIES

HTN planning provides the means for solving deployment

problems, and the Aeolus model enables specifying them. We

also provide a running example that helps in demonstrating

our approach.

A. HTN planning

In HTN planning, the domain model consists of tasks that

can be accomplished by operators or methods. An operator

represents a transition from a state to another one, while a

method predefines how to decompose some task into greater

details. Given an HTN planning problem, which consists of an

initial state, an initial task network and sets of operators and

methods, planning is performed by repeatedly decomposing

tasks from the initial task network until operators executable

in the initial state are reached.

A primitive task is an expression of the form pt(τ), where

pt is a primitive-task symbol, and τ = τ1, . . . , τn are terms. A

compound task is defined similarly. The set of primitive and

compound tasks is a finite set of task names TN . A state s is

a set of ground predicates with the closed-world assumption.

An operator o is a triple 〈pt(o), pre(o), eff (o)〉, where pt(o)
is a primitive task, pre(o) and eff (o) are preconditions and

effects, respectively. An operator o is applicable in a state

s iff pre(o) ⊆ s. Applying o to s results into a new state

s[o] = s ∪ eff +(o) \ eff −(o). A task t is a pair 〈ct(t),Mt〉,
where ct(t) is a compound task, and Mt is a set of methods.

A method m is a pair 〈pre(m), tn(m)〉, where pre(m) are
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Fig. 1. FSM depicting the state transitions of a component specified in UML.

preconditions and tn(m) is a task network. A method m is

applicable in a state s iff pre(m) ⊆ s. Given a task t such

that m ∈ Mt, applying m to s results into a task network

s[m] = tn(m). A task network tn is a pair 〈Tn,≺〉, where

Tn ⊆ TN , and ≺ defines the order of tasks in Tn.

Definition 1 (HTN planning problem): An HTN planning
problem P is a tuple 〈s0, tn0, O, T 〉, where s0 is an initial

state, tn0 is an initial task network, O and T are sets of

operators and tasks, respectively.

Definition 2 (Solution): Given an HTN planning problem P ,

a sequence of operators o1, . . . , on is a solution to P , if and

only if there exists a task t ∈ T0, where tn0 = 〈T0,≺0〉, such

that (t, t′) ∈ ≺0 for all t′ ∈ T0 and 1) t (or o1) is primitive

and applicable in s0 such that o2, . . . , on is a solution to

P = 〈s0[o1], tn0 \ {o1}, O, T 〉; or 2) t is compound and there

exists an applicable method m such that tn(m) = (s0[m], t),
tn′ = tn0 \ {t} ∪ tn(m), and o1, . . . , on is a solution to

P = 〈s0, tn′, O, T 〉.

B. Deployment model

We define the problem of configuring and deploying ap-

plications on the Cloud by using the Aelous model [12].

The main element of the model is a component, describing a

manageable resource that provides and requires functionalities.

Through the use of state machines, the Aeolus model provides

a way to encode specific components declaratively by spec-

ifying how functionalities are accomplished. Let us consider

a component as the Finite State Machine (FSM) shown in

Figure 1. The FSM defines the state transition processes of a

component, i.e., the states and the order in which a component

can transition from one state to another. A component is

initially in an uninstalled state. Upon start, it transitions into an

installed state, and then to a running state. State transitions are

accomplished using deployment actions. For example, given

some component in its initial state, it is installed by invoking

the startComponent action.

In most cases, however, a component can transition in some

state only if the functionalities that particular state requires

through require ports are communicated by components that

can provide them through provide ports. We can observe such

transitions in configuration patterns (see Figure 2). A pattern

contains a set of components interrelated among each other

through the ports on the level of states. The components

are abstract, meaning that they will be replaced by concrete

Fig. 2. A pattern for the Public Dashboard application.

components, or instances, at runtime. A single configuration

pattern therefore defines a number of actual compositions.

A component c is a 5-tuple 〈Q, q0, U, P,R〉, where Q is a

finite set of states, q0 is the initial state, U ⊆ Q × Q is the

set of state transitions, P is the set of provide ports, and R
is the set of require ports. We denote the set of all available

components as C, and the set of all ports as F . The set A
consists of the deployment actions used upon the elements in

C and F . A configuration D is a tuple 〈C, I, φ,B〉, where

C is a set of available components, I is a set of currently

deployed component instances, φ is a function that associates

i ∈ I with a pair 〈c, q〉, where c ∈ C and q ∈ Q is the current

component state; and B ⊆ F × I × I is a set of bindings.

A deployment problem consists of an initial configuration,

a set of deployment actions, and a request for a new con-

figuration (i.e., application). The solution to the problem is a

deployment run representing a sequence of deployment actions

on components that, when deployed, produce the required

configuration.

C. A running example

Let us consider again the application for energy manage-

ment in office buildings and suppose that its only capability

is to present energy and environment information to office

occupants on public screens using Web interfaces. We refer to

this application as Public Dashboard. Figure 2 graphically rep-

resents a simplified Aeolus pattern for composing the Public

Dashboard application in a running state. The main and top-

level component represents Dashboard, which operates using

several software services among which essential ones are a

Web server and a database. The application requires a database

to store all energy and environment information (e.g., energy

consumption, light level, weather information, etc.). Cassandra

database is preferred and commonly used, but other databases

are compatible too. A recommended server is Apache, but any

other server that supports the underlying scripting language

and database is suitable too. We use Cassandra and Apache2
as components that Dashboard depends on.
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III. DEPLOYMENT AS AN HTN PLANNING PROBLEM

Next we introduce the strategy to create an HTN planning

problem from a deployment problem. We use the Hierarchical

Planning Definition Language (HPDL) [13] when describing

the planning structures. In the following, we refer to a state

transition that does not depend on any functionality provided

by other components as simple transition. Otherwise, we use

the term complex transition.

A. Hierarchical planning domain model

Components, states and ports of components: We

encode components, instances, ports as domain types

component instance port, which are all subtypes of the type

object. In fact, each component type, such as Dashboard, is

represented as an object of type component.

While FSMs associate components with states abstractly,

component instances are the ones to be in a specific state at

planning time. We encode an instance state using a predicate

“(state instance)”, where state is a string representing the type

of an FSM state, and instance is a variable representing the

component instance. An example of a Dashboard instance d1
in an installed state is (installed d1).

A component state may be associated with require and

provide ports. To represent the association of a port to

a state, we use a predicate “(statePort component port)”,

where statePort is a string representing the type of port in

a specific state, component is a variable representing the

type of component that requires or provides a port rep-

resented by the variable port. For example, if Dashboard
requires the httpd port in the installed state, we encode it

as (installed-require dashboard httpd). Such knowledge

holds for all instances of the respective component. These

predicates are therefore grounded in the initial state and static

during planning.

Creating new component instances: One of the features

of the composition of Aeolus applications is that one or

more component instances must be created from existing

(abstract) components. We address the creation of new unini-

tialised instances using a domain function. This function

returns a number that we use to represent instance vari-

ables in a special predicate (instance ?iNum - number).

The instance-number function practically serves us as

a counter to keep track of the current value that can

be assigned for new instances. The domain function

does not take arguments. We use an additional predicate

(type ?iNum - number ?c - component) to associate the in-

stance with a particular component. We increase the instance

number, and assert the association by manipulating the effect

of the operator that creates new instances as showed in the

following encoding.

(:action createInstance
:parameters (?c - component)
:precondition ()
:effect (and (instance (instance-number))

(type (instance-number) ?c)
(increase (instance-number) 1)))

Deployment actions: In addition to createInstance, we

consider the actions that accomplish simple transitions. These

are the deployment actions, including the binding ones. The

binding actions are responsible for low-level binding of ports –

the require ports are bound to the provide ports. We encode all

these actions as HPDL operators. The parameters of operators

corresponds either to a component instance variable or to

variables of a port and two instances (in the case of binding

actions). The preconditions and effects of each operator cap-

ture the semantics of the respective action. The following is an

operator that corresponds to the startComponent deployment

action, which makes the state of a instance to become installed

and activates all the ports associated with the installed state

of the component which the current instance belongs to.

(:action start
:parameters (?i - instance)
:precondition (and (not (installed ?i)))
:effect (and (installed ?i)

(forall (?p - port) (when
(and (installed-provide ?c ?p)

(type ?i ?c))(active ?p ?i)))))

Other deployment actions are encoded similarly. As for the

binding ones, the bind operator creates a binding between the

provide port of some instance and the require port of another

one, and the unbind operator deletes an already established

binding between two components’ instances.
Configuration processes: Although each different type of an

application has its own installation and running configuration

pattern, the process of configuring applications is general and

can be abstracted away. Let us detail how we can accomplish

that.
The process of configuring an application requires satis-

faction of the dependencies to functionalities provided by

components. Let us assume that an instance in an uninstalled

state cannot have requirements to be satisfied. We may then

consider two abstractions for complex transitions of compo-

nents. The first abstraction refers to acquiring a component

functionality in the installed state, while the second one refers

to establishing a functionality in the running state. We point

out that complex transitions representing other configuration

types can be easily incorporated in the current domain model

with minor modifications. HTNs naturally enable encoding

knowledge at different levels of abstraction. This support

for modularity enables us to focus on a particular level at

a time [6]. We can formulate tasks and encode high-level

strategies in the methods of these tasks before reasoning on

low-level tasks (operators).
We encode each abstraction as a task in the domain model,

namely install and run tasks. Each method of these tasks

encodes a specific case. One such method involves port

activation. If a component state is associated with one or more

require ports, the port activation process makes sure that

the need of the current instance for specific functionalities

is addressed. That is, if the current component instance has

require ports that are not active, the method first activates

each port and calls recursively its corresponding task until

all necessary ports are activated. The actual process of port

84



activation is encoded in a separate task. The task not only

activates a required functionality, but also finds and installs

(or runs) a component instance that provides that functionality.

An instance with active require ports can then use the func-

tionalities of other components with active provide ports. This

is accomplished by another method that involves port binding.

The process of port binding binds require ports to appropriate

provide ports. For this process, the method depends directly

on the binding actions. Once we have methods that involve

port activation and binding, we can proceed to the method

that deals with the case when all require ports are active and

bound. To address the satisfaction of all require ports, we use

a forall expression in the method for both tasks, install and

run. The following expression is used for the install task.

(forall (?p - port)
(and (installed-require ?c ?p)

(bound ?p ?i ?i1))))

After this constraint check, we are ready to start or run

an instance. In the case of the run task, when running an

instance, we have to deactivate the ports that will be no longer

provided by the instance in the installed state. The process of

port deactivation is accomplished using a separate task with

multiple methods. Each method represents a different case to

be handled, such as a provide port that is bound but needed

for the running state, a provide port free to be unbound, etc.

The port deactivation task uses port unbinding. The process of

port unbinding is more complex than the binding one, and

requires checking for constraint violation. That is, we have to

take care of active provide ports bound to active require ports.

We use a separate task for this process, that is, unbindPorts.

This task does nothing when the port is bound and needed for

the next transition. When all necessary constraints are satisfied,

it unbinds a specific port and recursively calls itself, shown in

the following encoding. Being a recursive task, it includes a

base case that performs phantomisation [6].

:tasks (sequence (unbind ?p ?i ?i1)
(unbindPorts ?i))

There are methods in the install and run tasks that deal

with the case when there are no required functionalities for

an instance. This means that we have a simple transition

which can be handled by installing the component instance

directly. In the case of running an instance, we invoke the

port deactivation task to ensure a valid transition to the running

state.

The modelling of the transitions from a running state to an

installed state and further to an uninstalled state is analogous

to the encoding of the tasks we described so far.

One of the features of these kinds of compositions is that

a cycle may occur between states of different component

instances. That is, an instance is expected to provide a func-

tionality at a specific point in the composition, but it is not

possible because at the same point the instance is required to

change its state [3]. We address this feature using the process

of instance duplication. Instance duplication deals with such

cycles by creating as many instances of the same component

as needed, and deploying them in different states at the same

time. We encode instance duplication as a separate method.

The method makes sure that the current component instance

is in a specific state and it has at least one provide port bound.

Consequently, a new component instance is created either in

an installed state or in a running state, depending on the type

of configuration.

Algorithm 1 shows the high-level steps of the strategy we

described for the creation of an HTN domain model.

Algorithm 1 Transformation of an Aeolus model into an HTN

planning domain model

Input: a set of components C, a set of deployment actions A
Output: HTN planning domain model 〈O, T 〉
1: Encode component, instance, port as types
2: Choose c = 〈Q, q0, U, P,R〉 from C
3: for j = 1 to |Q| do
4: Create state predicate and port predicates for qj , qj ∈ Q
5: end for
6: Encode an operator o for creating instances
7: for j = 1 to |A| do
8: Encode aj as an operator oj , aj ∈ A
9: end for

10: Ask the user questions regarding the configuration processes in 〈C,A〉,
and encode the corresponding tasks

B. Deployment-based HTN planning problem

A deployment problem PD is a tuple 〈D0, A,G〉, where

D0 is the initial configuration, A is the set of deployment

actions, and G is the requested configuration. δ is a satisfying

deployment run for PD if and only if δ is a sequence of

deployment actions that transform D0 into G. A requested

configuration, G, is achievable if and only if there exists at

least one satisfying deployment run for it.

Given a deployment problem PD, we define the correspond-

ing deployment-based HTN planning problem P according to

Definition 1, where 1) s0 is the initial state consisting of a

list of the following ingredients derived from D0: components

and ports as objects, component states, currently deployed

instances, the current state of deployed instances and bindings

as the special predicates we defined in the HTN planning

domain model. s0 also contains a domain function initialised

to 0. 2) tn0 is the initial task network encoding the requested

configuration G; 3) O is the set of operators that represent

actions in A, and T is the set of tasks derived from the

configuration processes with respect to Algorithm 1. A plan

π is a solution to P according to Definition 2.

Theorem 1: Let PD be a deployment problem and P be

the corresponding HTN planning problem. If a requested

configuration G is achievable, then there exist a plan π for

P .

Let δ be a satisfying deployment run for PD such that G
is achievable. Under the assumption that the user provides

reasonable answers – there is a correspondence between PD

and P as defined previously, then there must exist a solution

for P .
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We can now obtain that the solution of the deployment-

based HTN planning problem is a deployment run for the

corresponding deployment problem.

Theorem 2: Let PD be a deployment problem and P be the

corresponding HTN planning problem such that Theorem 1

holds. We can then construct a sequence of deployment actions

based on π that is a satisfying deployment run for PD.

Let us present a constructive proof for which we consider

the deployment problem PD shown in Figure 2. Let P be

the corresponding deployment-based HTN planning problem.

Furthermore, consider the following plan for P: [create-

Instance(d0), createInstance(a1), start(a1), bind(httpd,d0,a1),

start(d0), createInstance(c2), start(c2), run(c2), bind(cass-

up,d0,a2), run(d0)]. We can construct a deployment run in

which the actions from the plan are deployment actions. The

resulting deployment run is a satisfying deployment run for

PD.

IV. EXPERIMENTAL EVALUATION

Motivation: Consider extending the application for manag-

ing office buildings and suppose that its capabilities go beyond

those of the Public Dashboard. Typically, such an application

consists of a number of primary components responsible for

implementing core processes, and several secondary compo-

nents that complete the operation cycle of the application [1].

The primary and secondary components are all highly inter-

dependent. Say that some building is equipped with numerous

heterogeneous devices, such as sensors and actuators. A pri-

mary component wraps up and interacts with these devices

in such a way that it gathers the information they provide

(e.g., light level), and executes low-level commands (e.g., turn

on a lamp). Some of these functionalities are used by another

component that amasses the device information and provides

it as unified raw data to other interested components. Among

those, an essential one processes the raw data and exposes it as

meaningful context information. The component that provides

automated control reasons over the context information and

selects device actions that achieve some building objective.

These actions are further processed by another component and

send out to the component responsible for executing low-level

commands. Other primary components may focus on more

specific issues, such as collection and measurement of only

electricity consumption of devices. As secondary components,

different databases are used, for example, one for storing raw

and context data and another for saving descriptive information

about the building; message brokers are used for asynchronous

communication between the components, etc.

The primary and secondary components are implemented

as Cloud services, which can be in all three states described

earlier. We see that services are dependent among each other,

thus they have require and provide ports. We consider the

degree of dependence a computational factor. Furthermore, the

final application is intended to be deployed in a private Cloud.

Given that such an application may be run in environments of

varying size (e.g., small and large office buildings), the number

of components involved in the application may reach relatively

high. We therefore evaluate the efficiency of our approach

under increasing number of components. Finally, components

may have multiple instances running, for instance, to cover

different building spaces (e.g., floors, offices, common spaces,

etc.). The need for instance duplication increases the difficulty

of planning problems too.

Set-up: We make planning problems more interesting and

challenging with respect to component interdependencies by

having the requested configuration of applications to appear

deeply in the right of the search space. We use a set of

components c1, . . . , cn, where each ci has require and provide

ports as follows. Given that we want to have the rightmost

component cn in its running state, the dependencies between

components will require to first create instances for compo-

nents from c1 to cn, then to perform transition from uninstalled

to installed state in the reverse order of component instances,

and finally, to transition from installed to running state in

the order from c1 to cn. Then, we increase the difficulty of

planning problems with respect to the number of components

by varying the number from 3 to 300, resulting in more than

50 problems. These constitute our first test case.

Using the setting of the first test case, we create a second

test case to increase the difficulty of planning problems in

such a way that configurations require instance duplication.

We randomly select several components and, for a selected

component ci, we remove the activation of a provide port p1i
from its running state. The removal requires another instance

of ci to be created so as to satisfy the requirements of ci−1

and ci+1.
We use our own HTN planner, called Scalable Hierarchical

(SH) planning system [14], to solve the planning problems

of the two test cases and to evaluate the feasibility of HTN

planning for composing Cloud applications. SH is a domain-

independent HTN planner implemented entirely in the Scala

programming language. It consists of two main modules,

namely HPDL processor and Planner. HPDL problem and

domain descriptions are transformed into programming-level

constructs through the HPDL processor. The Planner includes

the main algorithm which is based on depth-first search. SH
shares similarities with two existing HTN planners: the support

for HPDL with SIADEX [15] and the search mechanism with

SHOP2 [16].

We run SH on a Intel Core i7-3517U @1.90GHz, 8GB

RAM machine running Windows 8.1 and Java 1.8.0 31.

To assess the impact of using HTN planning, we compare

the results of the performance of SH with the results of the

performance of a planner developed specifically for solving

Aeolus-based deployment problems [3]. This domain-specific

planner is evaluated in an experimental set-up similar to ours,

thus we use their reported results directly.

Results: Figure 3 shows the results of the both planners,

where the number of generated instances equates to the

number of components. Even though SH shows worse perfor-

mance than the domain-specific planner, which is expected,

deployment problems with 200 components can be solved in

less than 15 seconds.
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Fig. 3. Performance of our domain-independent HTN planner and a domain-
specific planner on deployment problems without instance duplication.

Fig. 4. Performance of our domain-independent HTN planner and a domain-
specific planner on deployment problems with instance duplication.

Figure 4 shows the results of our planner and the domain-

specific planner when used in the second test case. The number

of created instances is strictly greater than the number of

components. With the creation of a new instance, the size of

the state is increased by adding two predicates, and the state

is modified by updating the domain function. Here too, the

performance of SH falls behind the one of the domain-specific

planner. Additionally, when the number of components is

larger than 120, the need for instance duplication degrades the

performance of SH as compared to the case without instance

duplication.

On a side note, Lascu et al. [3] report on the performance of

two domain-independent (non-HTN) planners on the same set

of deployment problems. One planner can solve deployment

problems with 3 components without instance duplication in

0.05 seconds. The other planner solves problems with up to 7

components without instance duplication in 7.22 seconds, and

up to 5 components with instance duplication in 3.44 seconds.

Our HTN planner outperforms both planners significantly,

though their results seem symptomatic and unexpected even

for pure domain-independent planners.

From a perspective of computational complexity, HTN

planning problems are generally hard to solve. On one end

of the spectrum, when various restrictions are imposed on

HTN planning problems to reduce their complexity, it takes

polynomial time to check whether there exist a plan for

such problems. On the other end of the spectrum, when no

restrictions are imposed on tasks, variables and the domain,

checking whether there is a solution to a given HTN planning

problem becomes undecidable [6].

V. RELATED WORK

The problem of composing applications ready for deploy-

ment via automated planning has been addressed, to the best

of our knowledge, in two studies:

• Arshad et al. describe a problem of deploying software

systems, and uses a temporal-based planner to search for

an optimal plan with respect to plan duration [2]. While

we also deal with configuring software application, we

tackle two important issues, not addressed in this study,

namely new instance creation and modelling configura-

tion processes, making it possible to apply planning to

Cloud-based applications. In addition, we use a formal

model for the Cloud to derive planning problems, we

allow for more than once instance of a service to exist at

a time, and the goal does not need to include the ports for

connection – the planner figures that out automatically.

• Lascu et al. describe a deployment problem based on

the Aeolus formal model and presents a domain-specific

planner to search for a solution [3]. This means that all

configuration processes and features are implemented and

embodies in the planning process. We however encode all

domain-specific knowledge in the domain model, making

the approach flexible and extensible to new features and

capabilities. Also, our approach does not require the

initial configuration to be empty.

More generally, the problem of composing Cloud services

have a close resemblance with the problem of Web service

composition. Various aspects of Web service composition have

already been addressed by numerous planning approaches,

e.g., [17]–[19]. Existing approaches however overlook an

important characteristic about the Web service composition: a

Web service can represent either an abstract Web service type

or one or more instances of a specific Web service [4]. In the

existing approaches, the Web service composition consists of

synthesising a Web service type, which seems to be sufficient

for the scenarios considered – too small to involve multiple

service instances. In practice, however, there is a choice among

many instances of a Web service. One of the distinct features

of our approach is the creation of new and multiple instances

of Cloud services during runtime.

Looking at HTN planning, it is employed to represent and

compose Web services in several studies summarised in [6].

Common among those studies is the assumption that Web
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services are represent in OWL-S and can be transformed

into HTNs. OWL-S is a language specifically designed to

support the discovery, composition and monitoring of Seman-

tic Web services. In reality, however, the language supports

essentially only behavioural descriptions of services [7], [20].

Such descriptions seem insufficient to be correctly translated

into HTNs, and moreover, inappropriate to reason over. This

drawback prevents OWL-S from being used in practical and

real-world cases at all. On the other hand, our approach is

not dependent on a specific modelling language, but on a

formal model that captures the semantics of current and future

controlled Cloud infrastructures. Additionally, the studies as-

sume the existence of OWL-S compound Web services which

can be translated to HTN methods and compound tasks (for

details, see [17]). On the other hand, we do not use any

compound Cloud services, but we use compound tasks to

model configuration processes.

Contrary to the approach taken in [21], where assignment

expressions encoded in the precondition of SHOP2’s operators

are used to create new streams, we create new instances using

domain functions and numerical fluents modelled in the effects

of HPDL actions. It would be interesting to analyse whether

there are performance benefits from these two different en-

coding approaches. Additionally, we allow for existence of

multiple instances.

In Cloud computing, the problem of managing intercon-

nected machines has been addressed by many tools, such as

Wrangler [22], SmartFrog [23], CFEngine [24], Puppet [25],

Chef,1, and Ansible.2 These tools support specifying the com-

ponents, together with their configuration files, to be installed

on machines, and then, by using various mechanisms, deploy

the components accordingly. The task of specifying which

component to deploy where, and how to interconnect it to

other components is however left to the user. Furthermore,

ConfSolve [26] is used to search for an optimal allocation

of virtual machines on servers and applications on virtual

machines. However, the tool does not handle the problem of

composing interdependent services. Juju3 and Engage [27] are

focused on a problem similar to ours, avoiding some issues

related to the connection between components. For example,

while our approach supports circular dependencies, these

cannot be defined in Engage. In Juju, circular dependencies

must be resolved manually.

VI. CONCLUSIONS

We examined the connections between the task of compos-

ing Cloud applications and automated planning. We proposed

the use of HTN planning, described a deployment problem

based on a formal model for the Cloud, and presented how to

model an HTN planning problem from the deployment one.

We showed that HTN planning offers a possibility to express

various constraints on the composition, dynamic instance

1https://www.chef.io/chef/
2https://www.ansible.com/
3https://jujucharms.com/

creation, recursion through the use of tasks, and instance

duplication provided in the domain model.

The experimental evaluation illustrated that HTN planning

can compose Cloud applications of 100 components in less

than 4 seconds, and applications of 200 components in about

15 seconds. This gives a concrete advantage of automated

planning over the popular tools used in Cloud computing.

We also showed that our domain-independent HTN planner

is comparable to a planner developed specifically for this type

of problems. In contrast to prior findings [3], we showed that

even domain-independent planners are able to compose Cloud

applications fast.

The advantages of our approach include the modularity

and flexibility of the approach to further improvements and

developments; the speed of computation; and the amount of

effort spent to model HTN planning problems as compared to

the effort spent developing (and extending) a domain-specific

planner and/or tool. The contributions of our study include

the establishment of a stronger relationship between Cloud

computing and HTN planning; a model of deployment-based

HTN planning problems; the dynamic instance creation; and

the support for instance duplication.

As part of the future work, we would like to improve the

performance of the SH planner and to compare the planner

with other types of AI planners known for performing fast

in general planning problems. In addition, we would like to

apply our proposed solution to a real-life setting.
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“Efficiently handling temporal knowledge in an HTN planner,” in
International Conference on Automated Planning and Scheduling, 2006,
pp. 63–72.

[16] D. S. Nau, O. Ilghami, U. Kuter, J. W. Murdock, D. Wu, and F. Yaman,
“SHOP2: An HTN planning system,” Journal of Artificial Intelligence
Research, vol. 20, no. 1, pp. 379–404, 2003.

[17] E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. S. Nau, “HTN planning
for Web service composition using SHOP2,” Web Semantic, vol. 1, pp.
377–396, 2004.

[18] S. Sohrabi, N. Prokoshyna, and S. A. Mcilraith, “Web service com-
position via generic procedures and customizing user preferences,” in
International Semantic Web Conference, 2006, pp. 597–611.

[19] E. Kaldeli, A. Lazovik, and M. Aiello, “Continual planning with
sensing for Web service composition,” in AAAI Conference on Artificial
Intelligence, 2011, pp. 1198–1203.

[20] S. Balzer, T. Liebig, and M. Wagner, “Pitfalls of owl-s: A practical
semantic web use case,” in International Conference on Service Oriented
Computing, 2004, pp. 289–298.

[21] S. Sohrabi, O. Udrea, and A. Riabov, “HTN planning for the composition
of stream processing applications,” in International Conference on
Automated Planning and Scheduling, 2013, pp. 443–451.

[22] G. Juve and E. Deelman, “Automating application deployment in infras-
tructure clouds,” in IEEE International Conference on Cloud computing
technology and science, ser. CloudCom, 2011, pp. 658–665.

[23] J. Kirschnick, J. M. Alcaraz Calero, P. Goldsack, A. Farrell, J. Guijarro,
S. Loughran, N. Edwards, and L. Wilcock, “Towards an architecture for
deploying elastic services in the cloud,” Softw. Pract. Exper., vol. 42,
no. 4, pp. 395–408, 2012.

[24] M. Burgess, “Cfengine: A site configuration engine,” Computing sys-
tems, vol. 8, no. 2, pp. 309–337, 1995.

[25] L. Kanies, “Puppet: Next-generation configuration management,” Com-
puting systems, vol. 31, no. 1, pp. 19–25, 2006.

[26] J. A. Hewson, P. Anderson, and A. D. Gordon, “A declarative approach
to automated configuration,” in Large Installation System Administration
Conference, 2012, pp. 51–66.

[27] J. Fischer, R. Majumdar, and S. Esmaeilsabzali, “Engage: A deployment
management system,” SIGPLAN Not., vol. 47, no. 6, pp. 263–274, 2012.

89


