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Verhaegh, Franziska Köder, Leon Geerdink, Oberto Marrama, Sjoerd Griffioen, Han
Thomas Adriaenssen, Paulien Talsma-Snellen, Bianca Bosman. For their help with tech-
nical and financial issues, I would like to thank Marga Hids, Anita Willems-Veenstra,
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Chapter 1

Introduction

This thesis explores planning from a logical point of view. Planning theory is a central
area in Artificial Intelligence (AI), and it is concerned with finding a plan (such as a
sequence of actions) to achieve goals. In AI, this theory consists of several areas each
having its own restrictive assumptions about the kind of setting in which the planning
takes place. In this thesis, we are mainly concerned with the area of planning under
uncertainty. Here the agent is uncertain about his situation. There are two main topics of
this thesis. One is to build a logical framework for capturing how the agent’s uncertainty
evolves in these planning problems. The other topic, since these planning problems
bring us some new idea of what it means to know how to achieve a goal, is to model the
new understanding of knowing how in logical systems.

1.1 Planning under uncertainty
Conformant planning is the simplest version of planning under uncertainty. Before we
introduce it, we first explain the notion of a transition system. A (labelled) transition
system is a tuple 〈S,Act,R〉 where S is a set of states, Act is a set of actions (or labels),
and R is a set of labelled transitions (i.e. a subset of S × Act × S). If S is finite, it is
called a finite transition system. The fact that (s, a, t) ∈ R (also written as s a−→ t, or
t ∈ Ra(s)) represents that there is a transition from s to t with label a. Intuitively, it
means that performing the action a in state s might result in state t. A transition system
is deterministic if the next state is completely determined by the current state and the
action executed by the agent, which is formally expressed as that (s, a, t), (s, a, t′) ∈ R
implies t = t′ (so that R is a partial function). Otherwise, it is nondeterministic.

Conformant planning Given a nondeterministic transition system 〈S,Act,R〉, an ini-
tial uncertainty set U ⊆ S, and a goal set G ⊆ S, conformant planning is to find a plan
which is a finite linear sequence of actions such that performing the plan in each state
of U will never fail and always result in states in G (cf. Ghallab et al. (2004)). Such an
action sequence is called a conformant plan.

In conformant planning, it is assumed that the agent has no sensors, i.e. the environ-
ment is unobservable. There are two kinds of uncertainty in conformant planning. The
location of the agent can be uncertain since the environment is unobservable, and the

1



2 CHAPTER 1. INTRODUCTION

results of performing an action in a state can be uncertain since the transition system is
nondeterministic. If we restrict the transition system to be deterministic and the envir-
onment is fully observable (which leads the initial uncertainty set to be a singleton), we
end up with a problem of classical planning.

Here is an example of conformant planning. Figure 1.1 depicts a transition system
which can be seen as a map, where si are places connected by corridors (r) or stairs
(u).1 Let the initial uncertainty set be {s2, s3}, that is, the agent is uncertain whether he
is now in s2 or s3, and let the goal set be {s7, s8, s5}. From Figure 1.1, we can see that
performing ru in s2 will lead to s7, and that performing ru in s3 will lead to s8. Both
s7 and s8 are in the goal set, so the planning problem is solved. Please note that the
environment is unobservable in conformant planning, which means there is no feedback
during the execution of plans. In this example, if the agent is initially uncertain about s2

or s3, he is uncertain about s3 or s4 after moving right (r).

s6 s7 s8

s1 r // s2 r //

u

>>

u

OO

s3 r //

u

OO

s4 r //

u

OO

s5

Figure 1.1

As mentioned previously, conformant planning is the simplest version of planning
under uncertainty. If we extend the transition system of conformant planning with prob-
abilities, we are in the area of conformant probabilistic planning.

Conformant probabilistic planning A probabilistic transition system is a quadruple
〈S,Act,R, Pr〉, where 〈S,Act,R〉 is a finite transition system and Pr : R → (0, 1]
is a transition probability function. Given a probabilistic transition system, an initial
uncertainty set U , an initial belief state I : U → (0, 1] which is a probability distribution
over U , and a goal set G, conformant probabilistic planning is to find a plan which is a
finite sequence of actions such that the probability of reaching the goal by performing
the plan is no less than a given threshold δ ≤ 1. If the threshold δ is 1, we end up with a
problem of conformant planning.

The following is a conformant probabilistic planning problem. Figure 1.2 depicts
a probabilistic transition system and an initial belief state of which the domain is U =
{s1, s2}. Let the goal set be {s3, s5}. There is no conformant plan in this example. We
can see that the probability of reaching the goal after performing a is 0.5×0.8 = 0.4, and
that the probability of reaching the goal after performing b is 0.5× 1 = 0.5. Therefore,
if the threshold is 0.5, the action b is a solution.

Just as conformant planning, there is no observability in conformant probabilistic
planning. If we extend conformant planning with partial observability, we are in the
area of contingent planning.

Contingent planning A partially observable model is a tuple 〈S,Act,R,O〉, where
〈S,Act,R〉 is a transition system and O is an equivalence relation on S which reflects

1This is a variant of the running example used in Wang and Li (2012).
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s1 : 0.5

a:0.8

{{
a:0.2

))

b:1

��

s2 : 0.5

b:1

��
s3 s4 s5

Figure 1.2

the features of the environment that can be observed 2. Given a partially observable
model, an initial uncertainty set U , and a goal set G, a contingent plan is a partial
function from P(S) to Act, which tells the agent which action to execute based on his
current uncertainty set, such that if the agent acts accordingly then he is guaranteed to
reach the goal after finitely many steps.

Partial observability is more general than full observability and non-observability
because if O is the identity relation then it is fully observable and if O is the universal
relation S × S then it is unobservable. Please note that a contingent plan only makes
sense under partial observability. In an unobservable model (i.e.O = S×S), there must
be a conformant plan if there exists a contingent plan.

s1 a // s2 b // s3

s4 a // s5 c // s6

Figure 1.3

Figure 1.3 depicts a partially observable model and an initial uncertainty set U =
{s1, s4}, where the equivalence relation O is represented by the dotted line and we omit
the reflexive dotted arrows. Please note that the agent is certain about his location if he
performs a and, for example arrives at s5, at which time his uncertainty set will update
to be {s5}. Even though he would be uncertain about s5 or s2 without observation after
a, he will distinguish these two states by observation.

Given a partially observable model and an initial uncertainty set, there is an extended
model in which all the possible uncertainty sets are explicit. For example, the extended
model of Figure 1.3 is depicted in Figure 1.4. Let the goal set be G = {s3, s6}. We can
see that the partial function f = {{s1, s4} 7→ a, {s2} 7→ b, {s5} 7→ c} is a contingent
plan.

We have introduced three kinds of planning problems under uncertainty: conformant
planning, conformant probabilistic planning, and contingent planning. Both conformant
probabilistic planning and contingent planning are extensions of conformant planning.
Besides these, there are many other versions of planning in AI (cf. Ghallab et al. (2004)),
such as planning that requires a successful solution to be finished in restricted time.
In this thesis, we are mainly concerned with these three kinds of planning because an
agent’s uncertainty plays an important role in these planning problems.

2In the standard formulation of contingent planning, O is an observation function from S to P(T ) where
T is a set of tokens, but we can always generate an equivalence relation based on the observation function.
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s1 a // s2 b // s3

s4 a // s5 c // s6

Figure 1.4

1.2 Logics for planning
Dynamic epistemic logic (DEL) (cf. e.g., van Ditmarsch et al. (2007)) is a standard
framework for reasoning about knowledge and change. In DEL, there is an epistemic
model which describes the initial knowledge situation, and an operation called product
update which computes a new epistemic model based on the old epistemic model and
an event model. The product update describes the change of knowledge. In recent years,
there has been a growing interest in applying DEL in planning under uncertainty, using
the update of knowledge to capture the change of uncertainty during the execution of
plans. In these DEL-based planning frameworks, states in the uncertainty set constitute
an epistemic model, actions are event models, and the state transitions are implicitly
encoded by the update product (cf. Bolander and Andersen (2011); Löwe et al. (2011)).

One advantage of this DEL-based approach is its expressiveness in handling multi-
agent planning with knowledge goals (cf. e.g., Bolander and Andersen (2011); Löwe
et al. (2011); Andersen et al. (2012); Aucher (2012); Yu et al. (2013); Pardo and Sad-
rzadeh (2013); Jensen (2014); Bolander et al. (2015); Muise et al. (2015)), while the
traditional AI planning focuses on the single-agent case. In particular, the event models
of DEL (cf. Baltag and Moss (2004)) are used to handle non-public actions that may
cause different knowledge updates for different agents. However, this expressiveness
comes at a price, as shown in Bolander and Andersen (2011); Aucher and Bolander
(2013), that multi-agent epistemic planning is undecidable in general. Many interesting
decidable fragments are found in the literature (Bolander and Andersen (2011); Löwe
et al. (2011); Yu et al. (2013); Andersen et al. (2015)), which suggests that single-agent
cases and some restrictions on the structure of event models are the keys to decidability.

Another logic framework for planning under uncertainty is the epistemic proposi-
tional dynamic logic (EPDL) proposed in Yu et al. (2016) co-authored with Qu Yu and
Yanjing Wang. The model of EPDL is simply a transition system with initial uncertainty
as in the example shown in Figure 1.1. Even though there is no event model in EPDL,
EPDL still adopts the idea of DEL by interpreting actions in the semantics as an update
on the uncertainty of the agent. EPDL also follows the idea of planning as model check-
ing explored in Giunchiglia and Traverso (2000); van der Hoek and Wooldridge (2002);
Jamroga and Ågotnes (2007). The language of EPDL is very powerful, and it reduces
the problem whether a planning problem has a solution to a model checking problem
whether a EPDL formula is true in a model.

One impressive feature of the EPDL approach is that standard conformant plan-
ning is generalized in the EPDL framework but the generalized conformant planning
is equally hard as the standard conformant planning over explicit transition systems.
EPDL generalizes the standard conformant planning problem in AI (over transition sys-
tems) in two ways, w.r.t. the goal and also the constraint on the desired plan. First, the
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planning goal can be any EPDL formula. Since in EPDL regular operators are used to
construct complex actions, we can express the goal “the agent knows that ϕ is forever
true” byK[(a+b)∗]ϕ (assuming there are only two actions a and b). Second, procedural
constraints on the desired plan specified by regular expressions can be imposed. For ex-
ample, we can require that only action sequences where b cannot be executed before a
are desired, which is expressed by (a∗; b∗). Furthermore, as pointed in Li et al. (2017),
EPDL can be naturally extended to cover contingent planning. EPDL is not included in
this thesis. For further reading about EPDL, please see Wang and Li (2012); Yu et al.
(2016); Li (2015, 2016).

Both approaches above (DEL and EPDL) are concerned with conformant planning
and contingent planning. In Chapter 2 of this thesis, we propose a logic framework
to deal with the change of belief state in conformant probabilistic planning. We ad-
opt the idea of probabilistic dynamic epistemic logic (PDEL). PDEL, presented in Ap-
pendix A.2, is a combination of probability logic and public announcement logic, which
models the change of belief due to announcements. Similar to EPDL, the logic pro-
posed in Chapter 2 is over a probabilistic transition system and an initial belief state,
where actions are interpreted in the semantics as an update on the belief state.

1.3 Logics inspired by planning

Epistemic logic presented in Appendix A.1 is a logical formalism of propositional know-
ledge, which is the knowledge expressed by the phrase of knowing that p. Epistemic
logic is commonly accepted and widely applied in many fields, such as game theory,
theoretical computer science, artificial intelligence, and so on. Besides propositional
knowledge, procedural knowledge is another kind of knowledge often discussed in epi-
stemology, which is the knowledge expressed by the phrase of knowing how to do some-
thing. However, there is no common consensus on how to formalize knowing how (cf.
the recent surveys Gochet (2013) and Ågotnes et al. (2015)).

Dating back to McCarthy and Hayes (1969); McCarthy (1979); Moore (1985); Singh
(1994); Lespérance et al. (2000); van der Hoek et al. (2000), researchers have been
looking at knowing how in the setting of propositional knowledge and actions, but the
difficulty is that simply combining the existing logics for knowing that and ability does
not lead to a genuine notion of knowing how (cf. Jamroga and Ågotnes (2007); Herzig
(2015)). For example, knowing how to achieve p is not equivalent to knowing that there
exists a strategy to make sure that p. Let ϕ(x) express that x is a way to make sure some
goal is achieved. There is a crucial distinction between the de dicto reading of knowing
how (K∃xϕ(x)) and the desired de re reading (∃xKϕ(x)) (cf. Stanley and Williamson
(2001); Jamroga and van der Hoek (2004); Ågotnes (2006)). The latter implies the
former, but not the other way round. Proposals to capture the de re reading have been
discussed in the literature, such as making the knowledge operator more constructive
(Jamroga and Ågotnes (2007)), making the strategy explicitly specified (Herzig et al.
(2013); Belardinelli (2014)), or inserting K in-between an existential quantifier and the
ability modality in seeing-to-it-that (STIT) logic (Broersen and Herzig (2015)).

Inspired by the idea of conformant planning, Wang (2015a, 2016) proposes a new
logic of knowing how presented in Appendix A.3, in which agents’ knowing how to
achieve a goal is interpreted as having a conformant plan for the goal. This approach is in
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line with the de re reading of knowing how, but he introduces a single new modality Kh
of (goal-directed) knowing how, instead of breaking it down into other modalities. The
modalityKh is a binary modality. The model of this logic is a transition system extended
with an assignment, and the modality Kh is universal on the semantics. For example,
the formula Kh(p, q), which reads as agents’ knowing how to achieve q-states from p-
states, is true in the model depicted in Figure 1.5, if and only if there is a conformant
plan with given initial uncertainty set U = {s2, s3} and goal set G = {s7, s8, s5}.

s6 s7 : q s8 : q

s1 r // s2 : p r //

u

::

u

OO

s3 : p r //

u

OO

s4 r //

u

OO

s5 : q

Figure 1.5

In Chapter 3 and Chapter 4 of this thesis, we extend the work of Wang (2015a, 2016).
In real-life contexts, constraints on how we achieve the goal often matter. For example,
we want to know how to win the game by playing fairly; people want to know how to
be rich without breaking the law. In Chapter 3, we generalize the modality Kh to be a
ternary knowing how operator to express that the agent knows how to achieve ϕ given ψ
while maintaining χ in-between. What is more, we think that, in our everyday life, the
requirement of a conformant plan might be too strong for knowing-how. For example,
considering Figure 1.5, let the initial uncertainty set remain the same as in Figure 1.1, i.e.
U = {s2, s3}, but the goal is {s5}. Intuitively we still say we know how to achieve s5

because we can get there by moving right (r) at most three times. However, the plan rrr
is not a conformant plan since performing it in s3 will fail. We call such a plan “weak
conformant plan”. In Chapter 4, we weaken the interpretation of the formula Kh(p, q)
as having a weak conformant plan for achieving q given p.

Inspired by the idea of contingent planning, Chapter 5 extends the standard epistemic
logic with a unary knowing-how modality Khs, in which the formula Khsϕ is inter-
preted as having a contingent plan to achieve ϕ. Since a contingent plan is also called a
strategy, we call the logic strategically knowing-how logic (SKH). The model of SKH is
a transition system extended with an equivalence relation, like Figure 1.4. Chapter 6 is a
preparation for making SKH epistemically dynamic. As we know, extending epistemic
logic with public announcement operators [ϕ] is a natural way to make the logic dy-
namic and to reason about knowledge change. However, it does not work for the logic
SKH because updating a model of SKH with [ϕ] might remove some states from the
model, which will change the basic transition system of the model. Besides public an-
nouncement logic, arrow update logic presented in Appendix A.4 proposes another way
to reasoning about knowledge change by removing epistemic accessibilities in a model.
This method can be applied to SKH. The limitation is that the standard arrow update
logic can only deal with public announcements. To reason about knowledge change due
to private announcements, Chapter 6 extends the standard arrow update logic.
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1.4 Overview

Each main chapter is based on a published or submitted paper. To keep each chapter
independently readable, there is some overlap among chapters. The contribution of each
chapter is briefly summarized as follows.

Chapter 2, a logic for conformant probabilistic planning, is an extended version
of joint work with Barteld Kooi and Yanjing Wang. In this chapter, we introduce a
logic framework that can be applied to conformant probabilistic planning. Conformant
probabilistic planning is to find a linear plan (a sequence of probabilistic actions) such
that the probability of achieving the goal (a certain condition) after executing the plan
is no less than a given threshold probability δ. Our logical framework can trace the
change of the belief state of the agent (which is a probability distribution over states)
during the execution of the plan. With this logic, we can enrich the standard conformant
probabilistic planning by formulating the goal as a dynamic epistemic logic formula.
We provide a complete axiomatization of the logic. Moreover, this chapter shows that
the logic is decidable.

Chapter 3, knowing how with intermediate constraints, is an extended version of
joint work with Yanjing Wang (Li and Wang (2017)). In this chapter, we propose a triple
knowing-how operator to express that the agent knows how to achieve ϕ given ψ while
maintaining χ in-between. It generalizes the knowing-how logic which is presented
in Appendix A.3. We give a sound and complete axiomatization of this logic. What
is more, this chapter introduces a filtration method on the canonical model. By the
filtration method, it is shown that this logic has a small model property, and thus the
logic is decidable.

Chapter 4, knowing how with weak conformant plans, is an updated version of the
paper Li (2017). This chapter proposes a weaker but more realistic semantics to the
modality of the knowing-how logic presented in Appendix A.3. According to this se-
mantics, an agent knows how to achieve ϕ given ψ if (s)he has a finite linear plan by
which (s)he can always end up with a ϕ-state when the execution of the plan terminates,
whether or not each part of the execution has been completed. This weaker interpreta-
tion of the knowing-how modality results in a weaker logic than the knowing-how logic.
The composition axiom of the knowing-how logic is no longer valid. This chapter also
presents a sound and complete axiomatic system and proves that this logic is decidable.

Chapter 5, strategically knowing how, is an elaborate version of joint work with Raul
Fervari, Andreas Herzig, and Yanjing Wang (Fervari et al. (2017)). In this chapter, we
extend the standard epistemic logic of knowing that with a new knowing-how operator.
The semantics of the new knowing-how operator is based on the idea that knowing how
to achieve ϕ means that there exists a (uniform) strategy such that the agent knows that
it can make sure that ϕ. We give an intuitive axiomatization of our logic and prove
the soundness, completeness and decidability of the logic. The crucial axioms relating
knowing that and knowing how illustrate our understanding of knowing how in this
setting. This logic can be used in representing both knowledge-that and knowledge-
how.

Chapter 6, privacy in arrow update logic, is based on a short paper presented on
the conference of Advances in Modal Logic 2014. This chapter develops the arrow
update logic. Arrow update logic presented in Appendix A.4 is a theory of epistemic
access elimination that can be used to reason about information change. In the arrow
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update logic, it is common knowledge among agents how each will process incoming
information. This chapter develops the basic theory of arrow update logic to deal with
private and semi-private announcements. In this framework, the information is private
for an agent group. This chapter also proposes a labelled tableau calculus for this logic
and shows that this logic is decidable.



Chapter 2

A logic for conformant
probabilistic planning1

2.1 Introduction
Automated planning is a branch of artificial intelligence concerned with devising a plan,
which might be a strategy or an action sequence, to achieve some goals. Automated
planning technology is widely applied in a variety of areas, ranging from controlling the
operations of spacecraft to playing the game of bridge. Classical planning, which is the
simplest form of automated planning, is the problem of finding a linear action sequence
in a deterministic transition system such that executing the plan in the initial state will
achieve the goal (cf. Ghallab et al. (2004)). There are two important simplifying as-
sumptions for classical planning: determinacy and full observability. Full observability
indicates that agent has complete knowledge about the system and the state in which the
system starts, which means that the set of initial states from which the plan starts is a
singleton.

Conformant planning generalizes classical planning by relaxing these two restric-
tions, namely that it allows lack of knowledge of position in the system (and lack of
ability to observe where agent is located) and it allows actions to be non-deterministic.
The former means that the set of initial states needs no longer necessarily be a singleton
(and corresponds to the agent’s initial uncertainty) but also means that one cannot at-
tain certainty regarding one’s whereabouts based on observation during plan execution.
A conformant plan is an action sequence to guarantee the agent’s arrival at one of the
goal states no matter what initial state the plan starts from and no matter how the (non-
deterministic) plan is executed (cf. Ghallab et al. (2004)). Since conformant planning
brings out an agent’s uncertainty, rather than from the traditional AI approaches, we can
profit from an epistemic-logical perspective on conformant planning.

Epistemic planning is concerned with planning under uncertainty. Dynamic epi-
stemic logic (DEL) (cf. van Ditmarsch et al. (2007)) can be used as a formal framework
to deal with epistemic planning and can provide a useful generalization of conformant
planning by allowing the planner to formulate knowledge goals within a formal lan-

1This is an extended version of joint work with Barteld Kooi and Yanjing Wang.

9
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guage. Moreover, by applying DEL in planning, we can handle multi-agent planning
with knowledge goals (cf. e.g., Andersen et al. (2012); Aucher (2012); Bolander and
Andersen (2011); Bolander et al. (2015); Jensen (2014); Löwe et al. (2011); Muise et al.
(2015); Pardo and Sadrzadeh (2013); Yu et al. (2013)). In particular, the event models of
DEL (cf. Baltag and Moss (2004)) are used to handle non-public actions that may yield
different knowledge updates for different agents. Within such DEL-based approaches,
Wang and Li (2012) proposed a dynamic epistemic logic over transition systems with
initial uncertainty. This framework is extended in Yu et al. (2016) with propositional
dynamic logic programs in such a way that the standard conformant planning problem
has the form of a model checking problem in this framework.

Conformant probabilistic planning (CPP) is another significant generalization of
conformant planning. The demands that conformant planning puts on the solution may
be too strong, in the sense that a solution has to be found for sure. It may be the case
that a solution in this sense is impossible while there may still be some plan that leads to
a goal state with very high probability. Conformant probabilistic planning generalizes
conformant planning by relaxing the conditions on solutions to planning problems. The
framework of CPP is enriched with a probability distribution over states and tells us the
probability that a certain action will lead to a certain successor state. In this way prob-
abilistic goals can be set that are easier to achieve than non-probabilistic goals, but will
still be such that they do provide a satisfactory plan that will lead to a goal state with
acceptable probability.

Let us consider the following toy example of a planning problem where we need to
take probability into account.2 Take a robot whose gripper is possibly wet. The gripper
needs to hold a block, but gripping a block while the gripper is slippery is more difficult
than when it’s dry. This can be modeled in a transition system with probabilities:

s1 : GD
0.7

s3

0.3

s2 : GD,BH s4 : BH

b:0.05

a:1

b:0.95

b:0.5

b:0.5

a:0.8

a:0.2

There are two propositions: GD stands for gripper-dry and BH for block-held, and two
actions: a stands for drying and b for picking up. We model the initial belief state by
a probability distribution over the states of the system B, which assigns the following
probabilities: B(s1) = 0.7 and B(s3) = 0.3. The action a dries a dry gripper with
probability 1, but make a wet gripper dry with probability 0.8. The action b picks up the
block with probability 0.95 if the gripper is dry and with probability 0.5 if the gripper is
wet. It is impossible to find a plan in this example that will guarantee that after executing
the plan the robot will hold a block. But for practical purposes it may be enough to find
a plan to hold the block, which succeeds at least 90% of the time.

Conformant probabilistic planning is well studied in AI literature (cf. e.g., Kush-
merick et al. (1995); Hyafil and Bacchus (2003, 2004); Bryce et al. (2008); Taig and

2This is a variant of the Slippery Gripper example reported in Kushmerick et al. (1995); Hyafil and
Bacchus (2003).



2.1. INTRODUCTION 11

Brafman (2013)). A variety of algorithms is developed to solve CPP problems, and each
algorithm has its own advantage given certain assumptions about the system. Generally,
the probability of achieving a goal state t by executing a plan π = a1 · · · an is calculated
in the following way (cf. Hyafil and Bacchus (2004)):

µπ(t) =
∑

{s0···sn|∀1≤i≤n:si−1

ai−→si,sn=t}

B(s0)×Pr(s0, a1, s1)×· · ·×Pr(sn−1, an, sn)

where Pr(si−1, ai, si) means the probability of reaching si after executing ai at si−1.
For example, in the Slippery Gripper example, the probability of achieving s2 by ex-
ecuting ab is the following:

µab(s2)

= B(s1)× Pr(s1, a, s1)× Pr(s1, b, s2) +B(s3)× Pr(s3, a, s1)× Pr(s1, b, s2)

= 0.7× 1× 0.95 + 0.3× 0.8× 0.95

= 0.665 + 0.228 = 0.893

To achieve a higher probability of holding the block, the robot has to (try to) dry the
gripper twice.

In this chapter, we build a logic framework over the CPP models so that we can en-
rich the standard CPP problems with much more powerful goal formulas and investigate
the reasoning about actions and plans in CPP. Roughly speaking, we generalize single-
agent epistemic planning and conformant probabilistic planning into one framework.
Our approach combines conformant probabilistic planning and probabilistic dynamic
epistemic logic (PDEL), which is presented in Appendix A.2 (cf. Kooi (2003); van
Benthem (2003); van Benthem et al. (2009)). In our language, there are two kinds of
modalities: action modalities [a] and probability modalities Bπ . As in PDEL, the action
modality is interpreted in the semantics as an update on the belief state which is a prob-
ability distribution. The probability modality Bπ is interpreted as µπ like in the CPP
literature.

Our framework can also distinguish different conformant probabilistic plans more
precisely. Consider the model M depicted in Figure 2.1. Let the goal be to reach p-

s1

0.5
s2

0.5

s3 : p s4 : p s5

a:0.8

a:0.2

b:1

b:1

Figure 2.1:M

states with threshold probability 0.5, then both a and b are solutions. However, although
µa(p) = µb(p) = 0.5, intuitively we feel that there are differences between these two
solutions. Plan a cannot always be successfully executed, but the agent is guaranteed to
reach a p-state when a is successfully executed. Contrary to the plan a, the plan b can
always be successfully executed, but there is only 50% probability to achieve p-states
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M|a

s1 s2

s3 : p
0.8

s4 : p
0.2 s5

a:0.8
a:0.2

b:1

b:1

M|b

s1 s2

s3 : p
s4 : p

0.5
s5

0.5

a:0.8 a:0.2

b:1
b:1

Figure 2.2

by doing b. In our framework, this can be expressed as Ba> = 0.5 ∧ [a](Bεp = 1)
and Bb> = 1 ∧ [b](Bεp = 0.5). Therefore, if we care more about the probability of
achieving goals given the successful execution of the plan, a is a better solution than b.

Our framework is significantly different from PDEL since PDEL works with event
models rather than transition systems. Moreover, there is no syntax that is directly linked
to µπ . This is because µπ can be seen as a conditional probability weighed by the
probability of π being successfully executed (and in that sense it is closer to a prior
probability), namely:

µπ(t) = Pr(t | ex(π)) · Pr(ex(π))

where Pr(ex(π)) is the probability that π can be successfully executed. Pr(t | ex(π)),
which is calculated in the updated model given the execution of π, can be expressed
in PDEL, but Pr(ex(π)) cannot be expressed in PDEL since PDEL is only concerned
with probabilities expressing belief and not with the probability of actions. However,
Pr(ex(π)) is a combination of belief probability and action probability.

The rest of this chapter is organized as follows: Section 2.2 introduces the language
and semantics, and also defines conformant probabilistic planning in terms of our logic
framework; Section 2.3 presents the axiomatics of this logic; Section 2.4 proves its
completeness; the last section concludes with some future directions.

2.2 The logic LCPP
In this section we introduce the logic of conformant probabilistic planning, and we de-
note the logic as LCPP. Besides a (somewhat limited) dynamic logic of action, the
language of LCPP also has linear inequalities of weighted probabilistic terms, which
express the probability that a sequence of actions reaches a certain set of states. This
language differs from the usual languages of PDEL in the sense that here actions are
atomic and do not have an internal structure which explicates how it changes inform-
ation. Also probabilistic expressions are indexed by sequences of actions, rather than
having no index. Of course in PDEL probability terms are indexed by agents. To keep
things simple in this chapter we focus on the single-agent case.

Definition 2.2.1 (Language) Let a countable set of propositional variables P and a
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finite set of actions Act be given. The language LLCPP is defined as the following BNF:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | [a]ϕ | q1Bπ1
ϕ1 + · · ·+ qnBπnϕn ≥ q

where p ∈ P, a ∈ Act, πi ∈ Act∗, i.e. a finite string (possible empty) of actions and
q, qi ∈ Q for each 1 ≤ i ≤ n.

Besides the usual abbreviations, we have the following.

∑n
i=1 qiBπiϕi ≥ q := q1Bπ1

ϕ1 + · · ·+ qnBπnϕn ≥ q
q1Bπ1

ϕ1 ≥ q2Bπ2
ϕ2 := q1Bπ1

ϕ1 + (−q2)Bπ2
ϕ2 ≥ 0∑n

i=1 qiBπiϕi ≤ q :=
∑n
i=1(−qi)Bπiϕi ≥ (−q)∑n

i=1 qiBπiϕi < q := ¬(
∑n
i=1 qiBπiϕi ≥ q)∑n

i=1 qiBπiϕi > q := ¬(
∑n
i=1 qiBπiϕi ≤ q)∑n

i=1 qiBπiϕi = q := (
∑n
i=1 qiBπiϕi ≥ q) ∧ (

∑n
i=1 qiBπiϕi ≤ q)∑n

i=1 qiBπiϕi 6= q := (
∑n
i=1 qiBπiϕi > q) ∨ (

∑n
i=1 qiBπiϕi < q)

Bπϕ = Bπ′ϕ
′ := 1Bπϕ− 1Bπ′ϕ

′ = 0
Kϕ := Bεϕ = 1

K̂ϕ := ¬K¬ϕ
〈a〉ϕ := ¬[a]¬ϕ
〈a1 · · · an〉ϕ := 〈a1〉 · · · 〈an〉ϕ
LaMϕ := [a]ϕ ∧ 〈a〉ϕ
La1 · · · anMϕ := La1M · · · LanMϕ
[a1 · · · an]ϕ := [a1] · · · [an]ϕ

We call formula of the form
∑n
i=1 qiBπiϕi ./ q as probability formula, where ./ is one

of ≤,≥, <,>,=, 6=.

Let us explain how to read the formulas of the language. Propositional variables
such as p express basic properties of a world, such as “the coin landed heads”. Then we
have standard negation and conjunction. We read formulas of the form [a]ϕ as “after all
executions of action a it is the case that ϕ”. In order to read linear inequality formulas
of the form q1Bπ1ϕ1 + · · · + qnBπnϕn ≥ q we first explain how to read Bπϕ. The
essential idea is that it represents the probability of getting ϕ using π. More precisely,
it consists of two parts: the probability of ϕ given the successful execution of π, and
the probability of the successful execution of π. Roughly speaking, we have Bπϕ =
Pr(ϕ | ex(π)) ·Pr(ex(π)). As will become more clear after introducing the semantics,
Pr(ϕ | ex(π)) will be calculated in the updated model given the execution of π. In other
words, Bπϕ is the non-normalized probability of ϕ in the model you get by executing
π. If π is not executable, this should be zero, and if it is executable it is the probability
of ϕ in the updated model multiplied by the probability of the executability of π in order
to undo the normalization. Now the linear equality is where we take a sum of these
terms multiplied by rational numbers and compare this sum to a rational number. The
semantics of Definition 2.2.9 will make this precise.

The language is interpreted on models which are in a sense probabilistic transition
systems. There are two kinds of probabilistic elements in these models. There is a prior
probability distribution representing the initial uncertainty of the agent, and there is a
probability function which indicates for each state and each action that can be executed
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at that state which probability one has of reaching some other state. There is one addi-
tional difference between these models and the models that also appear in some of the
CPP literature, namely that we allow actions to be unexecutable, and we allow the initial
uncertainty only to be concerned with a strict subset of the set of all states.

Definition 2.2.2 (Model) A modelM is a tuple 〈SM, RM, P rM, IM, BM, VM〉 such
that

• SM 6= ∅, a (finite) set of states;3

• RM ⊆ SM×Act×SM, a non-deterministic execution relation for each action;

• Pr : RM → Q+ is a probability function that expresses the probability that
an action will lead to another state, such that for all a ∈ Act it holds that∑
t∈RMa (s) Pr

M(s, a, t) = 1;

• IM is a non-empty subset of SM, consisting of those states that the agent con-
siders possible;

• BM : IM → Q+ is a probability distribution over states in IM expressing the
probability of being the true initial state such that

∑
s′∈IM BM(s′) = 1;

• VM : P→ P(SM), a valuation function indicating for each propositional vari-
able in which set of worlds it holds.

For each s ∈ IM, (M, s) is a pointed model.

GivenM, (s, a, t) ∈ RM is also denoted as s a−→ t, (s, t) ∈ RMa or t ∈ RMa (s).
Before we provide the semantics, we first provide the notions needed to define how

models are updated by executing a sequence of actions, since we need those models to
interpret actions and probabilistic statements. First, we define the semantic structure that
is associated with a sequence of actions, called the set of execution paths.

Definition 2.2.3 GivenM, π = a1 · · · an, we call s0a1 · · · sn, which is an alternating
sequence of states and actions, an execution path of π inM if s0 ∈ IM and si−1

ai−→ si
for each 1 ≤ i ≤ n. If the action sequence is obvious, we also write the execution path
s0a1 · · · sn as a sequence of states s0 · · · sn. The set of execution paths of π in M is
denoted as EPM(π).

After executing a sequence π, the probability the agent assigns to the states of the
model changes. Let IM|a be the set {t ∈ SM | s a−→ t for some s ∈ IM}, and
IM|π = IM|a1 · · · |an where π = a1 · · · an. We use the following auxiliary notion to
update this probability.

Definition 2.2.4 Given M and π = a1 · · · an ∈ Act∗, the function µMπ : IM|π →
(0, 1] is defined as follows: for each t ∈ IM|π ,

µMπ (t) =
∑

{s0···sn∈EPM(π)|sn=t}

(BM(s0)×Πn
i=1Pr

M(si−1, ai, si))

Given T ⊆ IM|π and π, let µMπ (T ) =
∑
t∈T µ

M
π (t), especially, µMπ (∅) = 0.

3The restriction to a finite set of states is to make the presentation more simple. We could easily remove
this restriction and use sigma-algebras and fully general probability theory, but this would only distract from
the issues we are exploring in this chapter.
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Intuitively, µMπ (t) stands for the agent’s belief degree of reaching t after the agent
performs π.

Remark 2.2.5 Similar to the forward algorithm for computing the probability of a par-
ticular observable sequence in Hidden Markov Models (cf. e.g., Rabiner (1990)), we
can also compute µMπ (t) recursively by computing µMπ′ (t

′) for all the initial segments
π′ of π and the relevant states t′.

The updated probability of the agent applies to a possibly updated set of states that
the agent considers possible. Now we define the updated probability of the agent.

Definition 2.2.6 GivenM and π = a1 · · · an ∈ Act∗ such that IM|π 6= ∅, function
BM|π : IM|π → Q is defined as follows: for each t ∈ IM|π ,

BM|π(t) =
µMπ (t)

µMπ (IM|π)

Note that in this definition both the numerator and the denominator are non-zero
given the way we set things up. Note that by assuming that IM|π is non-zero it fol-
lows that EPM(π) is non-empty. Since we assumed that the probability functions in
the model only assign positive probabilities and that t is in IM|π , both numerator and
denominator are non-zero. More formally:

Proposition 2.2.7 Given M, π = a1 · · · an and I|π 6= ∅, we have that BM|π is a
probability function from IM|π to Q+ and

∑
t∈IM|π B

M|π(t) = 1.

Given all these definitions, it is now easy to define the updated model.

Definition 2.2.8 Given modelM = 〈SM, RM, P rM, IM, BM, VM〉 and IM|π 6= ∅,
modelM|π is defined as 〈SM, RM, P rM, IM|π, BM|π, VM〉.

We use this definition of an updated model in the semantics of actions and the linear
inequalities of probabilities. The rest of the semantics is far more straightforward.

Definition 2.2.9 (Semantics) Given pointed model M, s, the truth relation is defined
as follows:

M, s � p ⇐⇒ s ∈ VM(p)
M, s � ¬ϕ ⇐⇒ M, s 2 ϕ

M, s � ϕ ∧ ψ ⇐⇒ M, s � ϕ andM, s � ψ
M, s � [a]ϕ ⇐⇒ for all s′ : s

a−→ s′ impliesM|a, s′ � ϕ
M, s �

∑n
i=1 qiBπiϕi ≥ q ⇐⇒

∑n
i=1 qiµ

M
πi (JϕiKM|

πi
) ≥ q

where JϕKM|
πi

= {s ∈ IM|πi | M|πi , s � ϕ}.

Remark 2.2.10 Note that if M, s is a pointed model, i.e., s ∈ IM, and s a−→ s′ then
M|a, s′ is also a pointed model, i.e., s′ ∈ IM|a = IM|

a

.

Proposition 2.2.11 The function µMπ is a non-normalized probability, and it has the
following properties:
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(1) µMπ (JϕKM|
π

) ≥ 0;

(2) µMπ (JϕKM|
π

) + µMπ (J¬ϕKM|
π

) = µMπ (J>KM|
π

)

(3) µMε (J>KM) = 1

(4) µMπa(J>KM|
πa

) = µMπ (J〈a〉>KM|
π

)

PROOF Since JϕKM|
π ⊆ IM|π , (1) is obvious by Definition 2.2.4. Since J¬ϕKM|

π

=
IM|π \ JϕKM|

π

and J>KM|
π

= IM|π , (2) is obvious by Definition 2.2.4. Since
µMε = BM, (3) is obvious. For (4), let π = a1 · · · an and an+1 = a then we have
the following:

µMπa(J>KM|
πa

)

=µMπa(IM|πa)

=
∑

s0···sn+1∈EPM(πa)

(BM(s0)×Πn+1
i=1 Pr

M(si−1, ai, si))

=
∑

{s0···sn∈EPM(π)|∃t:t∈RMa (sn)}

(BM(s0)×Πn
i=1Pr

M(si−1, ai, si)× (
∑

t∈RMa (sn)

PrM(sn, a, t)))

=
∑

{s0···sn∈EPM(π)|∃t:t∈RMa (sn)}

(BM(s0)×Πn
i=1Pr

M(si−1, ai, si))

=
∑

{s0···sn∈EPM(π)|sn∈J〈a〉>KM|π}

(BM(s0)×Πn
i=1Pr

M(si−1, ai, si))

=µMπ (J〈a〉>KM|
π

)

2

Proposition 2.2.12 Given π = a1 · · · an, we have that µMπ (J>KM|
π

) = 1 if and only if
M, s � KLπM>.4

PROOF Let π(i) = a1 · · · ai for each 1 ≤ i ≤ n and π(0) = ε then it is easy to show
thatM, s � KLπM> if and only ifM|π(i) , v � 〈ai+1〉> for each 0 ≤ i < n and each
v ∈ IM|π(i) .

From left to right: It follows by Proposition 2.2.11 that for each 0 ≤ i < n, we have

µMπ(i+1)
(J>KM|

π(i+1)
) = µMπ(i)

(J〈ai+1〉>KM|
π(i)

) ≤ µMπ(i)
(J>KM|

π(i)
).

Since µMπ (J>KM|
π

) = 1 and µMε (J>KM) = 1, it follows that µMπ(i)
(J〈ai+1〉>KM|

π(i)
) =

µMπ(i)
(J>KM|

π(i)
) for each 0 ≤ i < n. Assume thatM, s 2 KLπM> then it follows that

there are 0 ≤ j < n and v ∈ IM|π(j) such thatM, v 2 〈aj+1〉>. Since v ∈ IM|π(j) ,

4Please recall that La1 · · · anM> := La1M · · · LanM> and LaMϕ := 〈a〉ϕ ∧ [a]ϕ.
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it follows by Definition 2.2.4 that µMπ(j)
> 0. Thus, we have µMπ(j)

(J〈aj+1〉>KM|
π(j)

) <

µMπ(j)
(J>KM|

π(j)
). Contradiction. Therefore, we haveM, s � KLπM>.

From right to left: We will show that µMπ(i)
(J>KM|

π(i)
) = 1 for each 0 ≤ i ≤ n by

induction on i. It is obvious if i = 0. If i = j+1 where 0 ≤ j < n, µMπ(j+1)
= µMπ(j)aj+1

.
It follows by Proposition 2.2.11 that we have the following:

µMπ(j)aj+1
(J>KM|

π(j)aj+1

) = µMπ(j)
(J〈aj+1〉>KM|

π(j)
)

µMπ(j)
(J〈aj+1〉>KM|

π(j)
) + µMπ(j)

(J¬〈aj+1〉>KM|
π(j)

) = µMπ(j)
(J>KM|

π(j)
)

It follows by IH that µMπ(j)
(J>KM|

π(j)
) = 1. Therefore, we only need to show that

µMπ(j)
(J¬〈aj+1〉>KM|

π(j)
) = 0. SinceM, s � KLπM>, namely, M|π(i) , v � 〈ai+1〉>

for each 0 ≤ i < n and each v ∈ IM|π(i) , we have J¬〈aj+1〉>KM|
π(j)

= ∅. Thus,
µMπ(j)

(J¬〈aj+1〉>KM|
π(j)

) = 0. 2

Recall that [a]ϕ means that ϕ holds after executing a, and µMπi (JϕiKM|
πi

) is the
probability of reaching ϕi by executing πi. We will show how the semantics works by
working through an example.

Example 2.2.13
M

s1 : 0.5
a:0.5 //

a:0.5

$$

s4 s7 p

s2 : 0.3

a:1

$$

s5

b:1

<<

s8 p

s3 : 0.2
a:1 // s6 p

b:1

<<

M|a

s1
a:0.5 //

a:0.5

$$

s4 : 0.25 s7 p

s2
a:1

$$

s5 : 0.25

b:1 ::

s8 p

s3
a:1 // s6 : 0.5 p

b:1 ::

1. M, s1 � BεLaM> = 1

2. M, s1 � [a]Bεp = 0.5

3. M, s1 � Bap = 0.5

4. M, s1 � BεLaMLbM> = 0.5

5. M, s1 � [ab]Bεp = 1

6. M, s1 � Babp = 0.75

1. This formula shows that initially action a is executable in the set I (where I is the
set of worlds the agent considers possible, i.e. {s1, s2, s3} indicated by the dotted
line). In this sense, the agent knows or is certain that a is executable.

2. This formula shows that after all executions of action a the agent assigns probab-
ility 0.5 to the set of p-states (i.e. the singleton state s6).
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3. This formula says that the agent assigns probability 0.5 to end up in a p-state by
successfully executing a. Remember this is the probability of the executability of
a that we found above (which was 1) multiplied with the conditional probability
of p given that a was executed, which we also found above (which was 0.5). Of
course, the result is also 0.5.

4. This formula expresses that initially the sequence of actions a and then b is ex-
ecutable with probability 0.5, because the formula is only true in s2 and s3.

5. This formula expresses that after a successful execution of the sequence ab it is
certain that p, because p is true in both s7 and s8.

6. This formula expresses that the probability of ending up in a p-state by success-
fully executing ab is 0.75. In contrast to the formula in 4 we now also take into
account that s1, s5, s7 is an ab execution path.

We will use this logic as a tool to develop a framework for probabilistic conformant
planning, which we can now define in a precise way.

Definition 2.2.14 (Conformant Probabilistic planning) Given a model M, s, a goal
formula ϕ, and a threshold δ, probabilistic conformant planning for ϕ overM, s w.r.t.
δ is to find a linear plan π ∈ Act∗ such that M, s � Bπϕ ≥ δ, where π is called a
solution to the probabilistic planning problem.

According to the above definition, to verify that π is a solution is to model check
Bπϕ ≥ δ in the pointed model. In the above example, according to item 6, if δ ≤ 0.75
then ab is a solution to the probabilistic planning problem for p overM, s1 w.r.t. δ.

Proposition 2.2.15 GivenM, s and ϕ, if δ = 1 then the probabilistic conformant plan-
ning problem for a non-probabilistic ϕ over M, s w.r.t. δ is a standard conformant
planning problem for ϕ over M, s where the probabilities over the states and trans-
itions do not matter, i.e.M, s � Bπϕ = 1 ⇐⇒ M, s � KLπMϕ.

PROOF We only need to show that µMπ (JϕKM|
π

) = 1 if and only ifM, s � KLπMϕ.
From left to right: Since JϕKM|

π ⊆ J>KM|
π

, it follows that µMπ (J>KM|
π

) ≥ 1.
It follows by Proposition 2.2.11 that µMπ (J>KM|

π

) ≤ µMε (J>KM) = 1. Therefore,
µMπ (J>KM|

π

) = 1. It follows by Proposition 2.2.12 that M, s � KLπM>. Thus, we
only need to show that J¬ϕKM|

π

= ∅. Since µMπ (JϕKM|
π

) = µMπ (J>KM|
π

) = 1, it
follows by Proposition 2.2.11 that µMπ (J¬ϕKM|

π

) = 0. Therefore, J¬ϕKM|
π

= ∅.
From right to left: Since M, s � KLπMϕ, we have that M, s � KLπM> and

J¬ϕKM|
π

= ∅. It follows by Proposition 2.2.12 that µMπ (J>KM|
π

) = 1. Since J¬ϕKM|
π

=
∅, we have µMπ (J¬ϕKM|

π

) = 0. It follows by Proposition 2.2.11 that µMπ (JϕKM|
π

) = 1.
2

Example 2.2.16 (The pill or surgery problem) Please consider the following scenario.
There is a disease (let p signify that the agent has the disease), which the agent certainly
has. There are two kinds of treatment available: surgery or pills. Surgery will very likely
be effective, but unfortunately surgery comes with the risk that unpleasant side-effects
may occur (let q express that these side-effects occur). Pills will certainly work, but
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only for certain genotypes of agents. For agents with the wrong genotype, allergies will
prevent the agent being able to swallow the pills. The agent believes with probability
0.8 that she has the right genotype. If she has the right genotype, surgery will not be
as likely to succeed as when she does not have the right genotype. Let’s say that if she
has the wrong genotype surgery will succeed without any side-effects with probability
0.9 and have side-effects with probability 0.1. If she has the right genotype, surgery
will succeed without side-effects with probability 0.8 and will lead to side-effects with
probability 0.2. This situation is displayed below. Here, action b is having surgery, and
action c is taking pills. Note that not swallowing the pills means that action c is not
executable (because the agent will not be able to really take the pills).

s1 : p
0.2

b:0.1

{{
b:0.9

))

s2 : p
0.8

b:0.2
uu

b:0.8

""

c

��
s3 : q s4

Bb(¬p ∧ ¬q) = 0.8× 0.8 + 0.2× 0.9 = 0.82
Bc(¬p ∧ ¬q) = 0.8

Suppose that the goal of the agent is to become healthy with no side-effects. Let’s
say that the threshold is 0.81. Which course of action is best? As is clear from the
calculation above, plan b, i.e. surgery, will yield the desired result with probability 0.82,
whereas plan c will lead to the desired goal with probability 0.8, and so it is best for the
agent to have surgery.

2.3 A deductive system

2.3.1 Axiom system SLCPP
In this section, we provide a Hilbert-style proof system for the logic presented above. A
proof consists of a sequence of formulas such that each formula is either an instance of
an axiom or it can be obtained by applying one of the rules to formulas occurring earlier
in the sequence.

Definition 2.3.1 (SLCPP System) The axiom system SLCPP is shown in Table 2.1. We
write SLCPP ` ϕ (or sometimes just ` ϕ) to mean that the formula ϕ is derivable in
the axiomatic system SLCPP; the negation of SLCPP ` ϕ is written SLCPP 0 ϕ (or
just 0 ϕ). To say that a set D of formulas is SLCPP-inconsistent (or just inconsistent)
means that there is a finite subsetD′ ⊆ D such that ` ¬

∧
D′, where

∧
D′ :=

∧
ϕ∈D′ ϕ

if D′ 6= ∅ and
∧
ϕ∈∅ ϕ := >. To say that a set of formulas is SLCPP-consistent

(or just consistent) means that the set of formulas is not inconsistent. Consistency or
inconsistency of a formula refers to the consistency or inconsistency of the singleton set
containing the formula.

The linear inequality axioms can be found in Definition A.2.4 of Appendix A.2.1.
Let us explain how the above axioms are to be read. We only focus on those involving
probability. Axiom T expresses that truths are assigned a positive probability. This is
because the empty sequence is always executable and we defined pointed models such
that the state is always in IM, so it will always receive positive probability.
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AXIOMS
All instances of propositional tautologies
All instances of linear inequality axioms

DIST(a) [a](ϕ→ ψ)→ ([a]ϕ→ [a]ψ)
T Kϕ→ ϕ

Nonneg(π) Bπϕ ≥ 0
PRTR(ε) K>
PRF(πa) Bπaϕ ≤ Bπ〈a〉ϕ
PRFEQ(πa) Bπ(〈a〉ϕ ∧ 〈a〉¬ϕ) = 0↔ Bπaϕ = Bπ〈a〉ϕ
Add(π) Bπ(ϕ ∧ ψ) +Bπ(ϕ ∧ ¬ψ) = Bπϕ

ITSP (
∑n
i=1 qiBππ′iϕi ./ qBπ>)→ Bπ(

∑n
i=1 qiBπ′iϕi ./ q) = Bπ>

CP 〈a〉> → ([a](
∑n
i=1 qiBπiϕi ./ q)↔

∑n
i=1 qiBaπiϕi ./ qBa>)

DET 〈a〉ϕ→ [a]ϕ where ϕ is a probability formula

RULES
MP From ϕ→ ψ and ϕ, infer ψ
GEN From ϕ, infer [a]ϕ
Equivalence From ϕ↔ ψ, infer Bπϕ = Bπψ

Table 2.1: System SLCPP
(Please recall that ./ is one of ≤,≥, <,>,=, 6=.)

Axiom Nonneg(π) expresses that any formula receives a non-negative probability
(since negative probabilities don’t make sense).

Axiom PRTR(ε) expresses that the set of states that the agent considers possible is
assigned probability 1.

Axiom PRF(πa) expresses that the probability of those πa-execution paths leading
to ϕ states, is less than or equal to the probability of those π-execution paths leading
to states where a can lead to a ϕ state. This is because executing π may lead to a state
where executing amay lead to a ϕ-state, but executing a could also lead to a non-ϕ-state.

Axiom PRFEQ(πa) expresses the condition under which the above probabilities are
equal. This is the case if either all a-paths in π-reachable states lead to ϕ-states or if
all a-paths in π-reachable states lead to non-ϕ-states, or in other words whenever the
probability that executing a can lead to a ϕ-state and can lead to a non-ϕ-state is zero.

Axiom Add(π) expresses that probabilities are additive.
Axiom ITSP is the combination of 4 and 5. Two simple forms of ITSP are the

following.
Bεϕ ≥ q → Bε(Bεϕ ≥ q) = 1
¬(Bεϕ ≥ q)→ Bε(Bεϕ < q) = 1

Axiom CP is essentially the definition of the update using normalization, given that
a is executable. A simple form of CP is the following.

〈a〉> → ([a](Bεϕ ./ q)↔ Baϕ ./ qBa>)
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Note that DET is not valid for arbitrary ψ. It is crucial that a is not deterministic for
basic facts.

Proposition 2.3.2 ` Bπ⊥ = 0

PROOF It follows by Axiom Add(π) that ` Bπ>+ Bπ⊥ = Bπ>, namely ` Bπ>+
Bπ⊥ + (−1)Bπ> = 0. It follows by the axioms of linear inequality logic, addition of
coefficients, that ` Bπ⊥+(0)Bπ> = 0. By the 0-term axiom of linear inequality logic,
it follows that ` Bπ⊥ = 0. 2

Proposition 2.3.3 ` Bπϕ = Bπ> → Bπ¬ϕ = 0

PROOF It follows by Axiom Add(π) that ` Bπϕ + Bπ¬ϕ = Bπ>. Therefore, by
linear inequality logic, we have ` Bπϕ = Bπ> → Bπ¬ϕ = 0. 2

Proposition 2.3.4 If ` ψ ↔ χ then ` ϕ↔ ϕ(ψ/χ).

PROOF We prove it by induction on ϕ. We only focus on the case of
∑n
i=1 qiBπiϕi ≥

q; the other cases are straightforward.
If ϕ :=

∑n
i=1 qiBπiϕi ≥ q, it follows by IH that ` ϕi ↔ ϕi(ψ/χ) for each 1 ≤ i ≤

n. By Rule Equivalence presented in Table 2.1, we have that Bπiϕi = Bπiϕi(ψ/χ). It
follows by linear inequality logic that ` ϕ↔

∑n
i=1 qiBπiϕi(ψ/χ) ≥ q. 2

Proposition 2.3.5 If ` ϕ→ ψ then we have ` Bπϕ ≤ Bπψ.

PROOF It follows by ` ϕ→ ψ that ` ϕ ∨ ψ ↔ ψ. By the Equivalence rule, we have
` Bπ(ϕ∨ψ) = Bπψ. It follows by Axiom Add(π) that ` Bπ((ϕ∨ψ)∧ϕ) +Bπ((ϕ∨
ψ) ∧ ¬ϕ) = Bπ(ϕ ∨ ψ), and then ` Bπ((ϕ ∨ ψ) ∧ ϕ) + Bπ((ϕ ∨ ψ) ∧ ¬ϕ) = Bπψ.
Since ` (ϕ ∨ ψ) ∧ ϕ ↔ ϕ, it follows ` Bπ((ϕ ∨ ψ) ∧ ϕ) = Bπϕ. Thus, we
have ` Bπϕ + Bπ((ϕ ∨ ψ) ∧ ¬ϕ) = Bπψ. It follows by Axiom Nonneg(π) that
` Bπ((ϕ ∨ ψ) ∧ ¬ϕ) ≥ 0. Thus, we have ` Bπϕ ≤ Bπψ. 2

Proposition 2.3.6 ` Bπa> = Bπ〈a〉>

PROOF It follows by MP and GEN that ` 〈a〉⊥ ↔ ⊥. Thus we have ` (〈a〉> ∧
〈a〉⊥) ↔ ⊥. It follows by rule Equivalence that Bπ(〈a〉> ∧ 〈a〉⊥) = Bπ⊥. It follows
by Proposition 2.3.2 that Bπ(〈a〉> ∧ 〈a〉⊥) = 0. It follows by Axiom PRFEQ(πa) that
` Bπa> = Bπ〈a〉>. 2

Proposition 2.3.7 ` Bπ(〈a〉ϕ ∧ 〈a〉¬ϕ) > 0↔ Bπaϕ < Bπ〈a〉ϕ

PROOF (1) ` Bπ(〈a〉ϕ ∧ 〈a〉¬ϕ) 6= 0↔ Bπaϕ 6= Bπ〈a〉ϕ by Axiom PRFEQ(πa)
(2) ` Bπ(〈a〉ϕ ∧ 〈a〉¬ϕ) 6= 0↔ Bπ(〈a〉ϕ ∧ 〈a〉¬ϕ) > 0 by Axiom Nonneg(π)
(3) Bπaϕ 6= Bπ〈a〉ϕ↔ Bπaϕ < Bπ〈a〉ϕ by Axiom PRF(πa)
(4) ` Bπ(〈a〉ϕ ∧ 〈a〉¬ϕ) > 0↔ Bπaϕ < Bπ〈a〉ϕ by (1)-(3) 2
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Proposition 2.3.8 ` [a](
∑n
i=1 qiBπiϕi ./ q∨ψ)↔ (

∑n
i=1 qiBaπiϕi ./ qBa>)∨ [a]ψ

PROOF Firstly, to make the proof shorter, let χ :=
∑n
i=1 qiBπiϕi ./ q and χ′ :=∑n

i=1 qiBaπiϕi ./ q.
⇒
(1) ` [a](χ ∨ ψ) ∧ [a]¬χ→ [a]ψ by normal modal logic
(2) ` 〈a〉χ→ 〈a〉> ∧ [a]χ by normal modal logic and Axiom DET

(3) ` 〈a〉> ∧ [a]χ→ χ′ by Axiom CP

(4) ` 〈a〉χ→ χ′ by (2), (3)
(5) ` ¬χ′ → [a]¬χ by (4)
(6) ` [a](χ ∨ ψ) ∧ ¬χ′ → [a]ψ by (1) and (5)
(7) ` [a](χ ∨ ψ)→ χ′ ∨ [a]ψ by (7)
⇐
(1) ` [a]ψ → [a](χ ∨ ψ) by normal modal logic
(2) ` χ′ → (〈a〉> → [a]χ) by Axiom CP

(3) ` χ′ → [a]⊥ ∨ [a]χ by (2)
(4) ` [a]⊥ → [a]χ by normal modal logic
(5) ` χ′ → [a]χ by (3) and (4)
(6) ` χ′ → [a](χ ∨ ψ) by (5)
(7) ` χ′ ∨ [a]ψ → [a](χ ∨ ψ) by (1) and (6) 2

Proposition 2.3.9 ` ¬(
∑n
i=1 qiBππ′iϕi ./ qBπ>)→ Bπ(

∑n
i=1 qiBπ′iϕi ./ q) = 0

PROOF Let χ be the formula
∑n
i=1 qiBπ′iϕi ./ q, and let ./ denote >,<,≥,≤, 6= or

= if ./ is ≤,≥, <,>,=, or 6=, respectively. Please note that ¬χ :=
∑n
i=1 qiBπ′iϕi./q

and ¬(
∑n
i=1 qiBππ′iϕi ./ qBπ>) :=

∑n
i=1 qiBππ′iϕi./qKπ>. Then, we have the

following:
(1) ` ¬(

∑n
i=1 qiBππ′iϕi ./ qBπ>)→ Bπ¬χ = Bπ>, by Axiom ITSP.

(2) ` Bπχ+Bπ¬χ = Bπ>, by Axiom Add(π)
(3) ` Bπ¬χ = Bπ> → Bπχ = 0, by (2) and Linear Inequality Logic
(4) ` ¬(

∑n
i=1 qiBππ′iϕi ./ qBπ>)→ Bπχ = 0, by (1) and (3) 2

Proposition 2.3.10 ` Bπϕ = Bπ> → Bπ((ϕ ∨ ψ) ∧ χ) = Bπχ

PROOF (1) ` (Bπϕ ≤ Bπ(ϕ ∨ ψ)) ∧ (Bπ(ϕ ∨ ψ) ≤ Bπ>) by Proposition 2.3.6
(2) ` Bπϕ = Bπ> → Bπ> ≤ Bπ(ϕ ∨ ψ) by (1) and linear inequality logic
(3) ` Bπϕ = Bπ> → Bπ(ϕ ∨ ψ) = Bπ> by (1) and (2)
(4) ` Bπ(ϕ ∨ ψ) +Bπ¬(ϕ ∨ ψ) = Bπ> by Axiom Add(π)
(5) ` Bπ(ϕ ∨ ψ) = Bπ> → Bπ¬(ϕ ∨ ψ) = 0 by (4)
(6) ` Bπ(¬(ϕ ∨ ψ) ∧ χ) ≤ Bπ¬(ϕ ∨ ψ) by Proposition 2.3.6
(7) ` Bπ(ϕ ∨ ψ) = Bπ> → Bπ(¬(ϕ ∨ ψ) ∧ χ) ≤ 0 by (5) and (6)
(8) ` Bπ(ϕ ∨ ψ) = Bπ> → Bπ(¬(ϕ ∨ ψ) ∧ χ) = 0 by (7) and Axiom Nonneg(π)
(9) ` Bπ((ϕ ∨ ψ) ∧ χ) +Bπ(¬(ϕ ∨ ψ) ∧ χ) = Bπχ by Axiom Add(π)
(10) ` Bπ(ϕ ∨ ψ) = Bπ> → Bπ((ϕ ∨ ψ) ∧ χ) = Bπχ by (8) and (9)
(11) ` Bπϕ = Bπ> → Bπ((ϕ ∨ ψ) ∧ χ) = Bπχ by (3) and (10) 2
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Proposition 2.3.11 ` Bπϕ = 0→ Bπ(ϕ ∧ χ) = 0

PROOF (1) ` Bπ(ϕ ∧ χ) ≤ Bπϕ by Proposition 2.3.6
(2) ` Bπϕ = 0→ Bπ(ϕ ∧ χ) ≤ 0 by (1)
(3) ` Bπϕ = 0→ Bπ(ϕ ∧ χ) = 0 by Axiom Nonneg(π) and (2) 2

Proposition 2.3.12 ` Bπϕ = 0→ Bπ((ϕ ∨ ψ) ∧ χ) = Bπ(ψ ∧ χ)

PROOF Let δ0 := ϕ ∧ χ and δ1 := ψ ∧ χ. We have the followings:
(1) Bπ((ϕ ∨ ψ) ∧ χ) = Bπ(δ0 ∨ δ1) by Rule Equivalence
(2) ` Bπϕ = 0→ Bπδ0 = 0 by Proposition 2.3.11
(3) ` Bπδ1 = Bπ((δ0 ∨ δ1) ∧ δ1) by Rule Equivalence
(4) ` Bπ(δ0 ∧ ¬δ1) = Bπ((δ0 ∨ δ1) ∧ ¬δ1) by Rule Equivalence
(5) ` Bπδ0 = 0→ Bπ(δ0 ∧ ¬δ1) = 0 by Proposition 2.3.11
(6) ` Bπϕ = 0→ Bπ(δ0 ∧ ¬δ1) = 0 by (2) and (5)
(7) ` Bπϕ = 0→ Bπ((δ0 ∨ δ1) ∧ ¬δ1) = 0 by (4) and (6)
(8) ` Bϕ((δ0 ∨ δ1) ∧ δ1) +Bπ((δ0 ∨ δ1) ∧ ¬δ1 = Bπ(δ0 ∨ δ1) by Axiom Add(π)
(9) ` Bπϕ = 0→ Bπ(δ0 ∨ δ1) = Bπδ1 by (3), (7) and (8)
(10) ` Bπϕ = 0→ Bπ((ϕ ∨ ψ) ∧ χ) = Bπδ1 by (1) and (9) 2

Proposition 2.3.13 Let T :=
∑m
j=1 qjBπjψj , δ0 :=

∑n
i=1 q

′
iBπ′iϕi ./1 q, and δ1 :=∑n

i=1 q
′
iBπ′iϕi ./1 qBπ>. We have ` q0Bπ((δ0 ∨ψ)∧χ) + T ≥ q ↔ (δ1 ∧ (q0Bπχ+

T ./2 q)) ∨ (¬δ1 ∧ (q0Bπ(ψ ∧ χ) + T ./2 q)).

PROOF (1) ` δ1 → Bπδ0 = Bπ> by Axiom ITSP

(2) ` Bπδ0 = Bπ> → Bπ((δ0 ∨ ψ) ∧ χ) = Bπχ by Proposition 2.3.10
(3) ` δ1 → Bπ((δ0 ∨ ψ) ∧ χ) = Bπχ by (1) and (2)
(4) ` ¬δ1 → Bπ¬δ0 = Bπ> by Axiom ITSP

(5) ` Bπ¬δ0 = Bπ> → Bπδ0 = 0 by Proposition 2.3.3
(6) ` ¬δ1 → Bπδ0 = 0 by (4) and (5)
(7) ` Bπδ0 = 0→ Bπ((δ0 ∨ ψ) ∧ χ) = Bπ(ψ ∧ χ) by Proposition 2.3.12
(8) ` ¬δ1 → Bπ((δ0 ∨ ψ) ∧ χ) = Bπ(ψ ∧ χ) by (6) and (7)
(9) ` q0Bπ((δ0 ∨ψ)∧χ) + T ./2 q ↔ (δ1 ∧ (q0Bπχ+ T ./2 q))∨ (¬δ1 ∧ (q0Bπ(ψ ∧
χ) + T ./2 q)) by (3), (8) and linear inequality logic 2

Please note that the simplest version of Proposition 2.3.13 is

` Bε((ϕ ∨ ψ) ∧ χ) ./2 q ↔ (ϕ ∧Bεχ ./2 q) ∨ (¬ϕ ∧Bε(ψ ∧ χ) ./2 q)

where ϕ :=
∑n
i=1 qiϕi ./1 q. Therefore, we have the following proposition.

Proposition 2.3.14 If ψ :=
∑n
i=1 qiϕi ./1 q then we have

(i) ` Bε(ψ ∧ χ) ./2 q ↔ (ψ ∧Bεχ ./2 q) ∨ (¬ψ ∧Bε⊥ ./2 q)

(ii) ` Bε(ψ ∨ χ) ./2 q ↔ (ψ ∧Bε> ./2 q) ∨ (¬ψ ∧Bεχ ./2 q)

Proposition 2.3.15 ` Bπ〈a〉ϕ > 0→ Bπaϕ > 0
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PROOF (1) ` Bπ〈a〉¬ϕ ≤ Bπ〈a〉> by Proposition 2.3.5 and ` 〈a〉¬ϕ→ 〈a〉>
(2) ` Bπ〈a〉¬ϕ ≤ Bπa> by Proposition 2.3.6 and (1)
(3) ` Bπ(〈a〉¬ϕ ∧ 〈a〉ϕ) > 0→ Bπa¬ϕ < Bπ〈a〉¬ϕ by Proposition 2.3.7
(4) ` Bπ(〈a〉¬ϕ ∧ 〈a〉ϕ) > 0→ Bπa¬ϕ < Bπa> by (2) and (3)
(5) ` Bπa¬ϕ < Bπa> → Bπaϕ > 0 by Add(πa): ` Bπaϕ+Bπa¬ϕ = Bπa>
(6) ` Bπ(〈a〉¬ϕ ∧ 〈a〉ϕ) > 0→ Bπaϕ > 0 by (4) and (5)
(7) ` Bπ(〈a〉¬ϕ ∧ 〈a〉ϕ) > 0→ (Bπ〈a〉ϕ > 0→ Bπaϕ > 0) by (6) and proposi-
tional logic
(8) ` Bπ〈a〉ϕ = Bπaϕ→ (Bπ〈a〉ϕ > 0→ Bπaϕ > 0) by linear inequality logic
(9) ` Bπ(〈a〉¬ϕ ∧ 〈a〉ϕ) = 0 → (Bπ〈a〉ϕ > 0 → Bπaϕ > 0) by (8) and Axiom
PRFEQ(πa)
(10) ` Bπ(〈a〉¬ϕ ∧ 〈a〉ϕ) ≥ 0→ (Bπ〈a〉ϕ > 0→ Bπaϕ > 0) by (7) and (9)
(11) ` Bπ〈a〉ϕ > 0→ Bπaϕ > 0 by (10) and Axiom Nonneg(πa) 2

Proposition 2.3.16 If ψ ∧ χ is inconsistent then ` Bπ(ψ ∨ χ) = Bπψ +Bπχ.

PROOF Since ψ ∧ χ is inconsistent, it follows that ` ψ ∧ χ ↔ ⊥, and then `
(ψ∨χ)∧ϕ↔ ψ. It follows by Axiom Add(π) that ` Bπ(ψ∨χ)∧ψ+Bπ(ψ∨χ)∧¬ψ =
Bπ(ψ ∨ χ). Since ` (ψ ∨ χ) ∧ ¬ψ ↔ χ, we have ` Bπψ +Bπχ = Bπ(ψ ∨ χ) 2

2.3.2 Soundness
In this section we show that the axiomatization presented in the previous section is sound
with respect to the semantics provided in Section 2.2. Given that the logic is built on
well-understood modal logic, we will not show that the usual modal axioms and rules
are sound. Also the part of the axiomatization concerned with linear inequalities is well-
understood and we do not show the soundness of that part either. Instead, we will focus
on the axioms and rules that deal with the interplay between actions and probability.

The flowing shows that Axiom Nonneg(π) is valid.

Proposition 2.3.17 � Bπϕ ≥ 0

PROOF It follows by Definition 2.2.4 that µMπ (JϕKM|
π

) ≥ 0 for each modelM. 2

The flowing shows that Axiom PRTR(ε) is valid.

Proposition 2.3.18 � K>

PROOF We only need to show that � Bε> = 1. Given a modelM, since J>KM =
IM, it follows that µMε (J>KM) = 1. 2

In order to prove the soundness of PRF(πa), we first prove two auxiliary proposi-
tions. The first is about the relation between probabilities in a model after an action and
probabilities preceding the action.

Proposition 2.3.19 Given model M and IM|π 6= ∅, we have µM|
π

π′ (t) = µMππ′(t)/
µMπ (IM|π) for each t ∈ SM.
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PROOF

µ
M|π
π′ (t)

=
∑

{s0···sn∈EPM|π (π′)|sn=t}

(BM|
π

(s0)×Πn
i=1Pr

M|π (si−1, ai, si))

= 1/µMπ (IM|π)
∑

{s0···sn∈EPM|π (π′)|sn=t}

(µMπ (s0)×Πn
i=1Pr

M|π (si−1, ai, si))

= 1/µMπ (IM|π)
∑

{s0···sn∈EPM|π (π′)|sn=t}

( ∑
{s′0···s′m∈EPM(π)|s′m=s0}

BM(s0)×Πn
i=1Pr

M(s′i−1, a
′
i, s
′
i)×Πn

i=1Pr
M|π (si−1, ai, si)

)
= 1/µMπ (IM|π)

∑
{u0···um+n∈EPM(ππ′)|um+n=t}

(µMπ (u0)×Πm+n
i=1 PrM(si−1, ai, si))

= µMππ′(t)/µ
M
π (IM|π)

2

Using Proposition 2.3.19, we can prove the second auxiliary proposition that ex-
presses that updating a model with a composed action is the same as updating the model
sequentially, first with the one component of the action, then the other component.

Proposition 2.3.20 Given modelM and IM|ππ′ 6= ∅, we haveM|π|π′ =M|ππ′ .

PROOF We only need to show that BM|
π|π
′

(t) = BM|
ππ′

(t) for each t ∈ IM|ππ′ .

BM|
π|π
′

(t) =
µ
M|π
π′ (t)

µ
M|π
π′ (IM|ππ′)

=
µMππ′(t)/µ

M
π (IM|π∑

s∈IM|ππ′ µ
M
ππ′(s)/µ

M
π (IM|π)

by Proposition 2.3.19

=
µMππ′(t)∑

s∈IM|ππ′ µ
M
ππ′(s)

= BM|
ππ′

(t)

2

Using Proposition 2.3.20, we can show the soundness of PRF(πa).

Proposition 2.3.21 � Bπaϕ ≤ Bπ〈a〉ϕ.

PROOF Given modelM, we only need to show that µMπa(JϕKM|
πa

) ≤ µMπ (J〈a〉ϕKM|
π

).
If IM|πa = ∅ then µMπa(JϕKM|

πa

) = 0. Since µMπ (J〈a〉ϕKM|
π

) ≥ 0, it is obvious. If
IM|πa 6= ∅, we have that for each t ∈ JϕKM|

πa ⊆ IM|πa, there exists s ∈ IM|π such
that s a−→ t. Moreover, it follows by Definition 2.2.4 that for each t ∈ IM|πa,

µMπa(t) =
∑

{s∈IM|π|s
a−→t}

µMπ (s)× PrM(s, a, t)
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We then have the following:

µMπa(JϕKM|
πa

)

=
∑
t∈JϕKM|πa µ

M
πa(t)

=
∑
t∈JϕKM|πa

(∑
{s∈IM|π|s

a−→t} µ
M
π (s)× PrM(s, a, t)

)
=

∑
{s∈IM|π | ∃t∈JϕKM|πa :s

a−→t} µ
M
π (s)×

(∑
t∈(JϕKM|πa∩RMa (s)) Pr

M(s, a, t)
)

≤
∑
{s∈IM|π | ∃t∈JϕKM|πa :s

a−→t} µ
M
π (s)

=
∑
{s∈IM|π | ∃t∈JϕKM|π|a :s

a−→t} µ
M
π (s) by Proposition 2.3.20

=
∑
s∈J〈a〉ϕKM|π µ

M
π (s)

= µMπ (J〈a〉ϕKM|
π

)

2

The soundness of this axiom is used in the proof of the soundness of PRFEQ(πa).

Proposition 2.3.22 � Bπ(〈a〉ϕ ∧ 〈a〉¬ϕ) = 0↔ Bπaϕ = Bπ〈a〉ϕ

PROOF Given a pointed modelM, s, we only need to show thatM, s � Bπ(〈a〉ϕ ∧
〈a〉¬ϕ) = 0 iffM, s � Bπaϕ = Bπ〈a〉ϕ. This is obvious if IM|πa = ∅. Next, we only
focus on the case of IM|πa 6= ∅. We have the following:

M, s 2 Bπaϕ = Bπ〈a〉ϕ
⇔µMπa(JϕKM|

πa

) < µMπ (J〈a〉ϕKM|
π

) by Proposition 2.3.21

⇔there exists s′ ∈ IM|π such thatM|πa, t′ � ϕ for some t′ ∈ RMa (s) and( ∑
t∈(JϕKMπa∩RMa (s))

PrM(s, a, t)
)
< 1 by the proof of Proposition 2.3.21

⇔there exists s′ ∈ IM|π such thatM|πa, t′ � ϕ for some t′ ∈ RMa (s) and

M|πa, t 2 ϕ for some t ∈ RMa (s)

⇔there exists s′ ∈ IM|π such thatM|π, s � 〈a〉ϕ ∧ 〈a〉¬ϕ
⇔µMπ (J〈a〉ϕ ∧ 〈a〉¬ϕKM|

π

) > 0

⇔M, s 2 Bπ(〈a〉ϕ ∧ 〈a〉¬ϕ) = 0

2

The next axiom for which we prove soundness is ITSP. This axiom is a scheme for
many different formulas. We abstract from the (in)equality expressed. We call the ax-
iom introspection, because it is closely related to the usual axioms 4 and 5 in epistemic
logic that express positive and negative introspection, respectively. Since an inequal-
ity is a negation, this scheme captures both positive and negative introspection in our
probabilistic setting.

Proposition 2.3.23 � (
∑n
i=1 qiBππ′iϕi ./ qBπ>) → Bπ(

∑n
i=1 qiBπ′iϕi ./ q) =

Bπ>
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PROOF IfM, s �
∑n
i=1 qiBππ′iϕi ./ qBπ>, namely,

∑n
i=1 qi · µMππ′(JϕiKM|

ππ′

) ./

q · µMπ (J>KM|
π

), we need to showM, s � Bπ(
∑n
i=1 qiBπ′iϕi ./ q) = Bπ>, namely,

µMπ (J
∑n
i=1 qiBπ′iϕi ./ qK

M|π ) = µMπ (J>KM|
π

). If IM|ππ′ = ∅, it is obvious.
Next, we focus on the situation of IM|ππ′ 6= ∅. To show µMπ (J

∑n
i=1 qiBπ′iϕi ./

qKM|
π

) = µMπ (J>KM|
π

), we only need to show that J
∑n
i=1 qiBπ′iϕi ./ qKM|

π

=

IM|π . By semantics, we only need to show
∑n
i=1 qi · µ

M|π
π′i

(JϕiKM|
π|π
′
i ) ./ q. Since

IM|ππ′ 6= ∅, it follows by Propositions 2.3.20 and 2.3.19 that µM|
π

π′ (JϕiKM|
π|π
′

) =

µMππ′(JϕiK
M|ππ

′

)/µMπ (IM|π). Therefore, we have
∑n
i=1 qi · µ

M|π
π′i

(JϕiKM|
π|π
′
i ) ./ q if

and only if
∑n
i=1 qi · µMππ′(JϕiKM|

ππ′

) ./ q · µMπ (J>KM|
π

). 2

The last axiom for which we prove soundness is CP, an axiom about conditional
probability. It expresses the relation between prior and posterior probability in our set-
ting.

Proposition 2.3.24 � 〈a〉> → ([a](
∑n
i=1 qiBπiϕi ./ q)↔

∑n
i=1 qiBaπiϕi ./ qBa>)

PROOF Given a pointed M, s � and s a−→ t for some t ∈ S, we need to show
that M, s � [a](

∑n
i=1 qiBπiϕi ./ q) ↔

∑n
i=1 qiBaπiϕi ./ qBa>. Since M, s �

[a](
∑n
i=1 qiBπiϕi ./ q) if and only ifM|a, t �

∑n
i=1 qiBπiϕi ./ q. Thus, we only need

to showM|a, t �
∑n
i=1 qiBπiϕi ./ q if and only ifM, s �

∑n
i=1 qiBaπiϕi ./ qBa>.

It is obvious if IM|aπi = ∅ for all 1 ≤ i ≤ n. Next we only focus on the case of
IM|aπi 6= ∅ for all 1 ≤ i ≤ n.

M|a, t �
∑n
i=1 qiBπiϕi ./ q

⇔
∑n
i=1 qiµ

M|a
πi (JϕiKM|

a|πi ) ./ q

⇔
∑n
i=1 qiµ

M|a
πi (JϕiKM|

aπi
) ./ q by Proposition 2.3.20

⇔
∑n
i=1 qi/µ

M
a (IM|a) · µMaπi(JϕiK

M|aπi ) ./ q by Proposition 2.3.19

⇔
∑n
i=1 qiµ

M
aπi(JϕiK

M|aπi ) ./ qµMa (IM|a) due to µMa (IM|a) > 0

⇔ M, s �
∑n
i=1 qiBaπiϕi ./ qBa>

2

Now we are ready to prove the soundness lemma, which can be proven by induction
on the length of the proof. We will leave the proof to the reader.

Theorem 2.3.25 (Soundness) For each formula ϕ, ` ϕ implies � ϕ.

2.4 Completeness
In this section we show that the axiomatization presented in Section 2.3.1 is complete
with respect to the semantics we presented in Section 2.2. One important strategy that
has been employed to prove completeness for dynamic epistemic logic is to use reduc-
tion axioms (see for instance van Benthem et al. (2006)). Reduction axioms are a way
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of relating what is the case after an announcement to what is the case before an an-
nouncement. Unfortunately that strategy is not available here because the agent cannot
know beforehand what will be the case after an action without any information about
the model. We will, however, try to reduce the language to certain forms and prove
completeness with respect to this restricted language.

Our proof of the completeness for LCPP is divided into three steps: first, we reduce
the language LLCPP to its subset LBLCPP; second, we define nonstandard models and show
that each formula ϕ ∈ LBLCPP is satisfiable in nonstandard models implies it is also
satisfiable in standard models defined in Section 2.2; third, we construct a canonical
nonstandard model and show the truth lemma.

2.4.1 Normal form
In this subsection, we will show that each formula can be reduced to a certain form. Be-
fore defining the language of that form, we first define the language without probability,
which is the normal language of modal logic.

Definition 2.4.1 The language LB-FreeLCPP is defined as the following BNF:

ψ ::= p | ¬ψ | (ψ ∧ ψ) | [a]ψ

where p ∈ P and a ∈ Act.

With the language LB-FreeLCPP , we now define the language with special form.

Definition 2.4.2 The language LBLCPP is defined as the following BNF:

ϕ ::= ψ | q1Bπ1
ψ + · · ·+ qnBπnψ ≥ q | ¬ϕ | (ϕ ∧ ϕ)

where ψ ∈ LB-FreeLCPP , πi ∈ Act∗, and q, qi ∈ Q for each 1 ≤ i ≤ n.

It is obvious thatLB-FreeLCPP ⊂ LBLCPP andLBLCPP ⊂ LLCPP. Please note that for each for-
mula in LBLCPP the probability operator Bπ only appears outside a modal logic formula.
In other words, there are no nesting occurrences between Bπ and Bπ , and between Bπ
and [a].

The rest of this subsection will show that each formula ϕ ∈ LLCPP can be reduced to
be equivalent to a formula ϕ′ ∈ LBLCPP. To make the proof easier, we first define a notion
of conjunctive normal form in a similar way as it is defined in propositional logic.

Definition 2.4.3 (Conjunctive Normal Form) A formula ϕ ∈ LLCPP is in conjunctive
normal form if it is a conjunction of disjunctions of ‘literals’, where a ‘literal’ is a
formula of the form p, ¬p, [a]ψ, ¬[a]ψ,

∑n
i=1 qiBπiψi ≥ q or ¬(

∑n
i=1 qiBπiψi ≥ q),

where ψ and ψi are also in normal form.

Since modal formulas and probability formulas are seen as propositional letters in
conjunctive normal form, it is routine to show the following proposition.

Proposition 2.4.4 For each formula ϕ ∈ LLCPP, there exists a formula ϕ′ ∈ LLCPP such
that ` ϕ↔ ϕ′ and ϕ′ is in conjunctive normal form.

Next, we define a notion which reflects a formula’s complexity on the depth of nest-
ing between probability operator and action operator.
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Definition 2.4.5 (Nesting Degree) Degree of a formula or an item is defined as follows.
d(p) = 0
d(¬ϕ) = d(ϕ)
d(ϕ ∧ ψ) = max{d(ϕ), d(ψ)}

d([a]ϕ) =

{
1 + d(ϕ) if a probability term occurs in ϕ
0 else

d(
∑n
i=1 qiBπ′iϕi ≥ q) = max{d(Bπ′iϕi) | 1 ≤ i ≤ n}

d(Bπϕ) =

{
1 + d(ϕ) if a probability term occurs in ϕ
0 else

Please note that d(ϕ) = 0 for each ϕ ∈ LBLCPP. Moreover, for each ϕ ∈ LLCPP if
d(ϕ) = 0 then ϕ ∈ LBLCPP. Therefore, our task is to reduce ϕ ∈ LLCPP to a formula ϕ′

such that d(ϕ′) = 0. To make the proof shorter, we need the following two propositions.

Proposition 2.4.6 Given [a]ψ ∈ LLCPP and d([a]ψ) = 1, there exists a formula ϕ such
that d(ϕ) = 0 and ` ϕ↔ [a]ψ.

PROOF Since d([a]ψ) = 1, ψ cannot be of the form [b]χ or ¬[b]χ. Without loss of
generality, we assumeψ is in conjunctive normal form and [a]ψ := [a](ψ1∨· · ·∨ψn∨ψ′)
where d([a]ψ′) = 0 and for all 1 ≤ i ≤ n, ψi :=

∑in
j=1 qijBπijχij ≥ qi and for all

1 ≤ j ≤ in, d(Bπijχij ) = 0. By induction on n, we will show that there exists a
formula ϕ with d(ϕ) = 0 such that ` [a]ψ ↔ ϕ.

If n = 1, [a]ψ := [a](
∑m
j=1 qjBπjχj ≥ q ∨ ψ′). Let ϕ := (

∑m
j=1 qjBaπjχj ≥

qBa>)∨ [a]ψ′ then we have d(ϕ) = 0. It follows by Proposition 2.3.8 that ` [a]ψ ↔ ϕ.
If [a]ψ := [a](ψ1 ∨ · · · ∨ ψn+1 ∨ ψ′) where ψi :=

∑in
j=1 qijBπijχij ≥ qi for each

1 ≤ i ≤ n+ 1. Let ϕ′ := (
∑1n
j=1 q1jBaπ1j

χ1j ≥ q1Ba>) ∨ [a](ψ2 ∨ · · · ∨ ψn+1 ∨ ψ′)
then we have d(

∑1n
j=1 q1jBaπ1j

χ1j ≥ q1Ba>) = 0. It follows by Proposition 2.3.8
that ` [a]ψ ↔ ϕ′. By induction on n, it follows that there exists a formula ϕ′′ such that
d(ϕ′′ = 0) and ` ϕ′′ ↔ [a](ψ2 ∨ · · · ∨ ψn+1 ∨ ψ′). Let ϕ := (

∑1n
j=1 q1jBaπ1j

χ1j ≥
q1Ba>) ∨ ϕ′′ then we have d(ϕ) = 0. It follows by Proposition 2.3.4 that ` ϕ ↔ ϕ′.
Since ` [a]ψ ↔ ϕ′, it follows that ` [a]ψ ↔ ϕ. 2

Proposition 2.4.7 Given ϕ ∈ LLCPP, ϕ :=
∑n
i=1 qiBπiϕi ≥ q, and d(ϕ) = 1, there

exists a formula ϕ′ such that d(ϕ′) = 0 and ` ϕ↔ ϕ′.

PROOF Without loss of generality, assume that each ϕi (1 ≤ i ≤ n) is in con-
junctive normal form. Since d(ϕ) = 1, it follows that at least one ϕi has a probab-
ility literal for some 1 ≤ i ≤ n. Assume that ϕ1 has a probability literal, namely
ϕ1 := (

∑m
j=1Bπ′jχ

′
j ./ q

′ ∨ χ′′) ∧ χ′′′. Then ϕ is of the form q1Bπ1
((
∑m
j=1Bπ′jχ

′
j ./

q′ ∨ χ′′) ∧ χ′′′) +
∑n
i=2 qiBπiϕi ≥ q where d(Bπ′jχ

′
j) = 0 for all 1 ≤ j ≤ m. Let

k be the number of occurrences of probability literals in ϕ1, · · · , ϕn. We prove it by
induction on k.

If k = 1, it follows that d(Bπ(χ′′ ∧ χ′′′)) = 0 and d(Bπiϕi) = 0 for all 2 ≤ i ≤ n.
Letψ1 := q1Bπ1

χ′′′+
∑n
i=2Bπiϕi ≥ q andψ2 := q1Bπ1

(χ′′∧χ′′′)+
∑n
i=2Bπiχi ≥ q.

It follows that d(ψ1) = d(ψ2) = 0. Let ϕ′ := ((
∑m
j=1Bππ′jχ

′
j ./ q

′Bπ>) ∧ ψ1) ∨
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(¬(
∑m
j=1Bππ′jχ

′
j ./ q

′Bπ>) ∧ ψ2). Since d(
∑m
j=1Bππ′jχ

′
j ./ q

′Bπ>) = 0, it follows
that d(ϕ′) = 0. It follows by Proposition 2.3.13 that ` ϕ↔ ϕ′.

If k = h + 1 and h > 0, Let ψ1 := q1Bπ1
χ′′′ +

∑n
i=2Bπiϕi ≥ q and ψ2 :=

q1Bπ1
(χ′′ ∧ χ′′′) +

∑n
i=2Bπiχi ≥ q. It follows that d(ψ2) = 1 and the number of oc-

currences of probability literals in χ′′ ∧χ′′′, ϕ2, · · · , ϕn is h. It follows by IH that there
exists a formula ψ′2 such that d(ψ′2) = 0 and ` ψ2 ↔ ψ′2. If d(ψ1) = 1, it follows that
the number of occurrences of probability literals in χ′′′, ϕ2, · · · , ϕn is less than or equal
to h. It follows by IH that there exists a formula ψ′1 such that d(ψ′1) = 0 and ` ψ1 ↔ ψ′1.
Let ϕ′′ := ((

∑m
j=1Bππ′jχ

′
j ./ q

′Bπ>)∧ψ1)∨ (¬(
∑m
j=1Bππ′jχ

′
j ./ q

′Bπ>)∧ψ2) and
ϕ′ := ((

∑m
j=1Bππ′jχ

′
j ./ q

′Bπ>) ∧ ψ′1) ∨ (¬(
∑m
j=1Bππ′jχ

′
j ./ q

′Bπ>) ∧ ψ′2). Since
d(
∑m
j=1Bππ′jχ

′
j ./ q

′Bπ>) = 0, we have d(ϕ′) = 0. It follows by Proposition 2.3.13
that ` ϕ ↔ ϕ′′. It follows by Proposition 2.3.4 that ` ϕ′ ↔ ϕ′′. Therefore, we have
` ϕ↔ ϕ′. 2

Now, we are ready to prove the reduction proposition.

Proposition 2.4.8 (Reduction) For each formula ϕ ∈ LLCPP, there exists a formula
ϕ′ ∈ LBLCPP such that ` ϕ↔ ϕ′.

PROOF We only need to show that there exists ϕ′ such that d(ϕ′) = 0 and ` ϕ↔ ϕ′.
We prove this by induction on d(ϕ). It is obvious if d(ϕ) = 0. If d(ϕ) = n + 1,
without loss of generality, we assume ϕ is in conjunctive normal form. It follows by
Proposition 2.3.4 that we only need to show that for each literal ψ in ϕ there exists
a formula ψ′ such that ` ψ ↔ ψ′ and d(ψ′) = 0. By IH, this is straightforward if
d(ψ) = n. If d(ψ) = n + 1, ψ is of the form [a]ψ′, ¬[a]ψ′,

∑n
i=1 qiBπiψ

′
i ≥ q or

¬
∑n
i=1 qiBπiψ

′
i ≥ q. We only focus on the case of [a]ψ′ and

∑n
i=1 qiBπiψ

′
i ≥ q; the

other cases are similar.
If ψ := [a]ψ′ and d([a]ψ′) = n + 1, it follows that d(ψ′) = n. By IH, it follows

that there exists a formula χ′ such that ` ψ′ ↔ χ′ and d(χ′) = 0. Thus, we have
` ψ ↔ [a]χ′ and d([a]χ′) ≤ 1. If d([a]χ′) = 1, it follows by Proposition 2.4.6 that
there exists a formula χ such that ` χ↔ [a]χ′ and d(χ) = 0. It follows that ` ψ ↔ χ.

If ψ :=
∑n
i=1 qiBπiψ

′
i ≥ q and d(ψ) = n + 1, it follows that d(ψ′i) ≤ n for

all 1 ≤ i ≤ n. By IH, it follows that for each ψ′i there exists a formula χ′i such
that ` ψ′i ↔ χ′i and d(χ′i) = 0. It follows that ` ψ ↔

∑n
i=1 qiBπiχ

′
i ≥ q and

d(
∑n
i=1 qiBπiχ

′
i ≥ q) ≤ 1. If d(

∑n
i=1 qiBπiχ

′
i ≥ q) = 1, it follows by Proposition

2.4.7 that there exists a formula χ such that `
∑n
i=1 qiBπiχ

′
i ≥ q ↔ χ and d(χ) = 0.

It follows that ` ψ ↔ χ. 2

Due to the soundness of SLCPP, the above proposition also indicates that the ex-
pressive power of the full language LLCPP is the same as its fragment LBLCPP. The rest of
this chapter will focus on formulas in LBLCPP.

2.4.2 Nonstandard model
Recall the models and the semantics defined in Section 2.2. There are two kinds of
probabilities in a model, and the probability representing the agent’s initial uncertainty
needs to be updated in the semantics. These will cause too much troubles if we directly
construct the canonical model. Our strategy is working on alternative models, which
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are defined below. To avoid confusion, we call the model and the semantics defined
in Section 2.2 standard model and standard semantics. In this subsection, firstly we
will define nonstandard models and nonstandard semantics, then we will show that if
a formula ϕ ∈ LBLCPP is satisfiable in nonstandard models, then it is also satisfiable in
standard models.

Definition 2.4.9 (Nonstandard Model) A nonstandard model, denoted as M, is a tuple
M = 〈SM, RM, IM, {µM

π | π ∈ Act∗}, VM〉 such that

• SM 6= ∅ is a finite set of states,

• RM ⊆ SM ×Act× SM,

• IM is a non-empty subset of SM,

• µM
π : IM|π → [0, 1] is a function such that

1. µM
ε (IM) = 1 and µM

ε (s) > 0 for each s ∈ IM;

2. µM
πa(IM|πa) = µM

π ({s ∈ IM|π | RM
a (s) 6= ∅}) and µM

πa(s) > 0 for each
s ∈ IM|πa;

3. µM
πa(E) ≤ µM

π ({s ∈ IM|π | ∃t ∈ E : s
a−→ t}) for each E ⊆ IM|πa;

4. µM
πa(E) < µM

π ({s ∈ IM|π | ∃t ∈ E : s
a−→ t}) for each E ⊆ IM|πa such

that RM
a (s) ∩ E 6= ∅ and RM

a (s) \ E 6= ∅ for some s ∈ IM|π;

• VM : P→ P(SM).

Please note that IM|π is defined in the same way as it is in Section 2.2. There
are two differences between nonstandard models and standard models: first, there are
no transition probabilities in nonstandard models; second, the functions µπ of standard
models are calculated by two kinds of probabilities (see Definition 2.2.4) while they
are predefined in nonstandard models, but intuitively they are the same thing. The re-
quirements of the functions µM

π of nonstandard models make sure that there are indeed
transition probabilities such that µM

π are calculated in the way shown in Definition 2.2.4.

Definition 2.4.10 (Nonstandard Semantics) Let M be a nonstandard model. Given a
state s ∈ SM and a formula ψ ∈ LB-FreeLCPP , ψ being true at M, s, denoted as M, s, ψ,
is defined the same as the standard semantics. Given s ∈ IM and ϕ ∈ LBLCPP, M, s, ϕ
is defined as follows:

M, s  ¬ϕ ⇐⇒ M, s 1 ϕ
M, s  (ϕ ∧ ψ) ⇐⇒ M, s  ϕ and M, s  ψ

M, s 
∑n
i=1 qiBπiϕi ≥ q ⇐⇒

∑n
i=1 qiµ

M
πi (JϕiK

M
πi ) ≥ q

where JϕKMπi = {s ∈ IM|πi |M, s  ϕ}.

Note that a probability formula is only evaluated on states in IM. Moreover, there
is no updating in nonstandard semantics. The reason is that in nonstandard semantics
we only care about formulas in LBLCPP. Formulas in LBLCPP cannot express the agent’s
uncertainty after she performs an action. Therefore, there is no need to update the model.

The following proposition is crucial, which shows that our strategy of working on
nonstandard models does make sense.
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Proposition 2.4.11 Given ϕ ∈ LBLCPP, if it is satisfiable in nonstandard models then it
is also satisfiable in standard models.

PROOF Let M be a finite nonstandard model such that M, u  ϕ where u ∈ IM. We
need to show that there exists a standard pointed model in which ϕ is true. We only need
to show the following claims.

The only differences between standard models and nonstandard models are probab-
ilities. Recall Definition 2.2.4, and we know that in standard models, µa is calculated by
the probability B and the probability Pra. Since µε in nonstandard models is the same
as B in standard models, the first claim is to show that there exist such functions Pra
that Pra is a probability distribution and that µa in nonstandard models coincides with
µa which is calculated by this Pra and µε. The idea of the claim proof is that we list a
set of inequalities based on the probability µa in nonstandard models and the conditions
that Pra needs to satisfy, and then we show the inequality set is satisfiable by using
Theorem A.2.7.

Claim 2.4.11.1 Given πa ∈ Act∗, if IM|πa 6= ∅, there exists a function PrMπa :
RM
a |(IM|π×IM|πa) → Q+ such that

∑
t∈RM

a (s) Pr
M
πa(s, t) = 1 for each s ∈ IM|π

where a is executable at s, and that
∑
{s∈IM|π|t∈RM

a (s)} µ
M
π (s) · PrMπa(s, t) = µM

πa(t)

for each t ∈ IM|πa.

Proof of claim 2.4.11.1: Intuitively, PrMπa(s, t) represents the probability of reaching t
by performing a in s. Let IM|π = {s1, · · · , sn, · · · , sn′} such that a is executable at
each si where 1 ≤ i ≤ n and a is unexecutable at each sj where n < j ≤ n′. Let
IM|πa = {t1, · · · , tm} then the relation RM

a on IM|π× IM|πa can be roughly depicted
as follows.

IM|π s1 sn· · · · · · sn′

IM|πa t1 · · · tm

We now describe a set of linear inequalities over variables of the form x(i,j) for
(si, tj) ∈ RM

a |(IM|π×IM|πa). The variable x(i,j) represents µM
π (si) · PrMπa(si, tj). For

each (si, tj) ∈ RM
a |(IM|π×IM|πa), to make sure PrMπa(si, tj) > 0, we only need to

request that
x(i,j) > 0. (2.1)

For each 1 ≤ i ≤ n, to make sure
∑
tj∈RM

a (si)
PrMπa(si, tj) = 1, we only need to

request that ∑
tj∈RM

a (si)

x(i,j) = µM
π (si). (2.2)

For each 1 ≤ j ≤ m, to make sure
∑
{si∈IM|π|tj∈RM

a (si)} µ
M
π (si) · PrMπa(si, tj) =
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µM
πa(tj), we only need to request that∑

{si∈IM|π|tj∈RM
a (si)}

x(i,j) = µM
πa(tj). (2.3)

Next, we only need to show that the set S of linear inequalities described in (2.1) to
(2.3) has a solution. By Theorem A.2.7, we only need to show that∑

(si,tj)∈RM
a |UM|π×UM|πa

0x(i,j) > 0 (2.4)

is not a possible legal linear combination of S. If possible, let µM
π (si) = ai and

µM
πa(tj) = bj then there exists a scheme (cf. Definition A.2.6) of S as shown in Table 2.2

such that

u(i′,j′) > 0 for some (si′ , tj′) ∈ RM
a |UM|π×UM|πa ; (2.5)

d(i,j) = u(i,j) + ri + wj = 0 for each (si, tj) ∈ RM
a |UM|π×UM|πa ; (2.6)

d = −u0 + r1a1 + · · ·+ rnan + w1b1 + · · ·+ wmbm = 0 (2.7)

where ri = r′2i−1 − r′2i and wj = w′2j−1 − w′2j for all 1 ≤ i ≤ n and 1 ≤ j ≤ m.
Let a group G be a minimal subset of IM|πa such that for each t ∈ G if s a−→ t

and s a−→ t′ for some s ∈ IM|π then t′ ∈ G. It is obvious that IM|πa can be di-
vided into several such groups. Without loss of generality, assume one of these group is
{t1, · · · , th}, and we will write it as {1, · · · , h} for abbreviation. For each j ∈ G, let
Dj = {1 ≤ i ≤ n | (si, tj) ∈ RM

a |UM|π×UM|πa}, which is the set of all the numbers
i such that si ∈ IM|π and si

a−→ tj . For each i ∈ Dj , since d(i,j) = 0 and u(i,j) ≥ 0,
it follows that wj ≤ −ri. Given j ∈ G, we use rwj to denote the maximal number in
{ri | i ∈ Dj}. Since wj ≤ −ri for all i ∈ Dj , it follows that wj ≤ −rwj . Without
loss of generality, we assume that rw1 ≤ · · · ≤ rwh . We use D1,j as an abbreviation for
D1 ∪ · · · ∪Dj . It follows by Definition 2.4.9 that

∑
i∈D1,h

ai = b1 + · · ·+ bh and that∑
i∈D1,k

ai > b1 + · · ·+ bk for each k < h. We then have the following:

∑
i∈D1,h

riai +
∑h
j=1 wjbj

≤
∑
i∈D1,h

riai +
∑h
j=1−rwj bj

≤ rw1(
∑
i∈D1

ai − b1) +
∑
i∈D1,h\D1

riai +
∑h
j=2−rwj bj

≤ rw2
(
∑
i∈D1,2

ai − b1 − b2) +
∑
i∈D1,h\D1,2

riai +
∑m
j=3−rwj bj

··································································································

≤ rwh · (
∑
i∈D1,h

ai +
∑h
j=1−bj)

= 0

(2.8)

For the reason why for each 1 ≤ k < h,
rwk(

∑
i∈D1,k

ai +
∑k
j=1−bj) +

∑
i∈D1,h\D1,k

riai +
∑h
j=k+1−rwj bj

≤ rwk+1
(
∑
i∈D1,(k+1)

ai +
∑k+1
j=1 −bj) +

∑
i∈D1,h\D1,(k+1)

riai +
∑h
j=k+2−rwj bj
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u0 ≥ 0 :
∑

(si,tj)∈RM
a |UM|π×UM|πa

0x(i,j) > −1 (0, 0)

u(1,1) ≥ 0 : x(1,1) > 0 (1, 1)

··························································································
u(i,j) ≥ 0 : x(i,j) > 0 (i, j)

r′1 ≥ 0 :
∑
tj∈RM

a (s1) x(1,j) ≥ a1 (1,+)

r′2 ≥ 0 :
∑
tj∈RM

a (s1)−x(1,j) ≥ −a1 (1,−)

··························································································
r′2n−1 ≥ 0 :

∑
tj∈RM

a (sn) x(n,j) ≥ an (n,+)

r′2n ≥ 0 :
∑
tj∈RM

a (sn)−x(n,j) ≥ −an (n,−)

w′1 ≥ 0 :
∑
{si∈IM|π|t1∈RM

a (si)} x(i,1) ≥ b1 (+, 1)

w′2 ≥ 0 :
∑
{si∈IM|π|t1∈RM

a (si)}−x(i,1) ≥ −b1 (−, 1)

··························································································
w′2m−1 ≥ 0 :

∑
{si∈IM|π|tm∈RM

a (si)} x(i,m) ≥ bm (+,m)

w′2m ≥ 0 :
∑
{si∈IM|π|tm∈RM

a (si)}−x(i,m) ≥ −bm (−,m)

d(1,1)x(1,1) + · · ·+ d(i,j)x(i,j) > d (0).

Table 2.2: Scheme
(Scheme is a systematical way to get a logical consequence of a set of inequalities (cf. A.2.6). In
this table, the inequality (0) is a logical consequence of all the inequalities above the line provided
that some u(i′,j′) is positive. Each of (0, 0) ... (−,m) stands for an inequality. For example, (1, 1)
stands for u(1,1) · x(1,1) > u(1,1) · 0 where u(1,1) is a non-negative coefficient. The inequality
(0, 0) is based on 0 > −1; each of (1, 1) to (i, j) is based on the inequality (2.1); the inequalities
(1,+) and (1,−) are based on the equation (2.2); the inequalities (+, 1) and (−, 1) are based on
the equation (2.3).)
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we have the following.

rwk(
∑
i∈D1,k

ai +
∑k
j=1−bj) +

∑
i∈D1,h\D1,k

riai +
∑h
j=k+1−rwj bj

≤ rwk(
∑
i∈D1,k

ai +
∑k
j=1−bj) + rwk+1

∑
i∈Dk+1\D1,k

ai

+
∑
i∈D1,h\D1,(k+1)

riai +
∑h
j=k+1−rwj bj

≤ rwk+1
(
∑
i∈D1,k

ai +
∑k
j=1−bj) + rwk+1

∑
i∈Dk+1\D1,k

ai

+
∑
i∈D1,h\D1,(k+1)

riai +
∑m
j=k+1−rwj bj

= rwk+1
(
∑
i∈D1,(k+1)

ai +
∑k+1
j=1 −bj) +

∑
i∈D1,h\D1,(k+1)

riai

+
∑h
j=k+2−rwj bj

(2.9)

Because of the property of group, it follows that ifG andG′ are two different groups,
and t ∈ G, t′ ∈ G′ then Dt ∩ Dt′ = ∅. Assuming IM|πa is divided into l groups, it
follows that

d = −u0 +
∑

1≤k≤l

(
∑
i∈DGk

riai +
∑
j∈Gk

wjbj) (2.10)

Since d = 0, −u0 ≤ 0 and
∑
i∈DG riai +

∑
j∈G wjbj ≤ 0 for each group G, it follows

that u0 = 0 and
∑
i∈DG riai +

∑
j∈G wjbj = 0. It follows that each inequality of (2.8)

or (2.9) equals 0, especially,∑
i∈DG

riai +
∑
j∈G

wjbj =
∑
i∈DG

riai +
∑
j∈G
−rwj bj = 0. (2.11)

Moreover, by (2.9), we have that for each 1 ≤ k < h,

rwk(
∑
i∈D1,k

ai +

k∑
j=1

−bj) = rwk+1
(
∑
i∈D1,k

ai +

k∑
j=1

−bj), (2.12)

∑
i∈Dk+1\D1,k

riai = rwk+1

∑
i∈Dk+1\D1,k

ai. (2.13)

Since
∑
i∈D1,k

ai +
∑k
j=1−bj > 0, it follows by (2.12) that rwk = rwk+1

for each
1 ≤ k < h. Next, we will show that for each 1 ≤ k ≤ h, namely tk ∈ G, i ∈ Dk

implies ri = rwk . For the case of k = 1, it is obvious from (2.8). For the case of k + 1,
if i ∈ Dk+1 \D1,k, it is obvious from (2.13). If i 6∈ Dk+1 \D1,k, it follow by IH that
ri = rwk′ for some k′ ≤ k. Since rwk = rwk+1

for all 1 ≤ k < h, it follows that r, it
follows that ri = rwk+1

.
By (2.5), we have known that u(i′,j′) > 0. Since ri = ri′ and d(i,j′) = u(i,j′) + ri +

wj′ = 0 for all i ∈ Dj′ , it follows that u(i,j′) = ui′,j′ for all i ∈ Dj′ . Since u(i′,j′) > 0,
it follows that rwj′ + wj′ < 0, namely wj′ < −rwj′ . Thus, for the group G such that
j′ ∈ G, we have the following∑

i∈DG

riai +
∑
j∈G

wjbj <
∑
i∈DG

riai +
∑
j∈G
−rwj bj .
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This is in contradiction with (2.11). Therefore, (2.4) cannot be a legal linear combination
of S, and it follows by Theorem A.2.7 that S has a solution.

Therefore, there exists a function PrMπa on RM
a |(IM|π×IM|πa) which is defined as

PrMπa(si, tj) = x(i,j)/µ
M
π (si) for each (si, tj) ∈ RM

a |(IM|π×IM|πa). It follows from
(2.1) to (2.3) that PrMπa : RM

a |(IM|π×IM|πa) → Q+ such that
∑
t∈RM

a (s) Pr
M
πa(s, t) = 1

for each s ∈ IM|π where a is executable at s, and that
∑
{s∈IM|π|t∈RM

a (s)} µ
M
π (s) ·

PrMπa(s, t) = µM
πa(t) for each t ∈ IM|πa. �

Please recall that an execution path σ ∈ EPM(a1 · · · an) is an alternating sequence
of states and actions, s0a1 · · · sn, where s0 ∈ IM and si−1

ai−→ si for each 1 ≤ i ≤ n
(see Definition 2.2.3). Given σ := s0a1 · · · sn, we use T (σ) to denote the last state
sn and ρ(σ) to the action sequence a1 · · · an. Given t ∈ IM|π , let [σ]πt denot the set
{σ ∈ EPM(π) | T (σ) = t}, which is the set of π-executions leading to t.

Next, we construct a standard model based on the execution paths of M. The stand-
ard model M• is defined as follows.

SM• = {σ ∈ EPM(π) | π ∈ Act∗}
RM• = {(σ, a, σ′) | a ∈ Act|ϕ, σ′ = σat}
PrM

•
(σ, a, σat) = PrMρ(σ)a(T (σ), t)

IM
•

= IM

BM• = µM
ε

VM•(p) = {σ | T (σ) ∈ VM(p)}

where PrMρ(σ)a is the function which is shown in Claim 2.4.11.1.

Claim 2.4.11.2 For each π ∈ Act∗ and each t ∈ IM|π , we have µM•

π ([σ]πt ) = µM
π (t).

Proof of claim 2.4.11.2: By the definition of M•, it is obvious that σ ∈ IM• |π iff T (σ) ∈
IM|π for each σ ∈ SM• . By induction on π we will show that µM•

π ([σ]πt ) = µM
π (t). It

is obvious for the case of ε. For the case of πa, we have the following.

µM•

πa ([σat]πat ) = µM•

πa ({σ′at | s ∈ IM|π, t ∈ RM
a (s), σ′ ∈ [σ]πs })

=
∑

{s∈IM|π|t∈RM
a (s)}

∑
σ′∈[σ]πs

µM•

πa (σ′at)

=
∑

{s∈IM|π|t∈RM
a (s)}

∑
σ′∈[σ]πs

µM•

π (σ′) · PrM
•
(σ′, a, σ′at)

=
∑

{s∈IM|π|t∈RM
a (s)}

∑
σ′∈[σ]πs

µM•

π (σ′) · PrMπa(s, t)

=
∑

{s∈IM|π|t∈RM
a (s)}

PrMπa(s, t)
∑

σ′∈[σ]πs

µM•

π (σ′)

=
∑

{s∈IM|π|t∈RM
a (s)}

PrMπa(s, t) · µM
π (s) (by IH)

= µM
πa(t) (by Claim 2.4.11.1)

Therefore, we have shown that µM•

π ([σ]πt ) = µM
π (t) for each t ∈ IM|π . �
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Claim 2.4.11.3 Given ψ ∈ LB-FreeLCPP , σ ∈ SM• , and π ∈ Act∗, if σ ∈ IM• |π , we have
M•|π, σ � ψ iff M, T (σ)  ψ.

Proof of claim 2.4.11.3: It is easy to show by induction on ψ. �

Claim 2.4.11.4 For each formula ψ ∈ LBLCPP and each s ∈ IM• , we have M•, s � ψ iff
M, s  ψ.

Proof of claim 2.4.11.4: We prove it by induction on ψ. For the case of ψ ∈ LB-FreeLCPP , this
has been shown in Claim 2.4.11.3. We only focus on the cases of

∑n
i=1 qiBπiψi ≥ q;

the other cases are straightforward.
For the case of ψ :=

∑n
i=1 qiBπiψi ≥ q, we only need to show µM

πi (JψiK
M
πi ) =

µM•

πi (JψiKM
•|πi ). Please note that there is no probability formula occurring in ψi since

d(ϕ) = 0. We have the following.

µM
πi (JψiK

M
πi ) =

∑
{t∈IM|πi |M,tψi}

µM
πi (t)

=
∑

{t∈IM|πi |M,tψi}

µM•

πi ([σ]πit ) (by Claim 2.4.11.2)

=
∑

t∈IM|πi

∑
{σ′∈[σ]

πi
t |M,tψi}

µM•

πi (σ′)

=
∑

t∈IM|πi

∑
{σ′∈[σ]

πi
t |M•|πi ,σ′�ψi}

µM•

πi (σ′) (by Claim 2.4.11.3)

=
∑

{σ∈IM• |πi |M•|πi ,σ�ψi}

µM•

πi (σ)

= µM•

πi (JψiKM
•|πi )

�
2

2.4.3 Canonical nonstandard model

Up to now, we have shown that each ϕ ∈ LLCPP can be reduced to a formula ϕ′ ∈ LBLCPP
(Proposition 2.4.8) and if a formula ϕ′ ∈ LBLCPP is satisfiable in nonstandard models, it
is satisfiable in standard models (Proposition 2.4.11). To show that SLCPP is complete
with respect to standard models, we only need to show that each SLCPP-consistent
formula ϕ ∈ LBLCPP is satisfiable in nonstandard models.

Let ϕ ∈ LBLCPP be consistent. Next, we will construct a canonical nonstandard model
for ϕ and show the truth lemma. The canonical model will be built by levels, and the
number of its levels will be bounded by the modal depth of ϕ. The notion of modal
depth is defined in the following.
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Definition 2.4.12 (Modal Depth) The modal depth of a formula ψ ∈ LLCPP, denoted
as md(ϕ), is defined as follows.

md(p) = 0
md(¬ψ) = md(ψ)
md(ψ ∧ ψ′) = max{md(ψ),md(ψ′)}
md([a]ψ) = 1 +md(ψ)
md(

∑n
i=1 qiBπiψi ≥ q) = max{|πi|+md(ψi) | 1 ≤ i ≤ n}

where |πi| is the length of the sequence πi.

Here are some notions before we construct the model for ϕ. We use Act|ϕ to denote
the set of actions occurring in ϕ, and (Act|ϕ)n to denote the set of sequences whose
length is no bigger than n and whose actions are in Act|ϕ. If s is a finite set of formulas,
we use ϕs to denote

∧
ψ∈s ψ. Let ∼ψ = χ if ψ = ¬χ, otherwise, ∼ψ = ¬ψ. It is

obvious that ` ¬ψ ↔ ∼ψ. We use Sub+(ϕ) to denote the set Sub(ϕ) ∪ {∼ψ | ψ ∈
Sub(ϕ)}, where Sub(ϕ) is the set of all subformulas of ϕ.

Let md(ϕ) = h. Next, we will define the canonical nonstandard model for ϕ. Note
that it is no harm to assume h > 0 since ` ϕ↔ ϕ ∧ [a]>.

Definition 2.4.13 Γϕk and Atomϕ
k (where 0 ≤ k ≤ h) are defined as follows.

• k = h

– Γϕh = {ψ ∈ sub+(ϕ) | md(ψ) = 0, ψ ∈ LB-FreeLCPP };
– Atomϕ

h = {s | s is a maximally consistent subset of Γϕ0 };

• k < h but k > 0

– Γϕk = {ψ ∈ sub+(ϕ) | md(ψ) ≤ h− k, ψ ∈ LB-FreeLCPP }
∪ {sub+(〈a〉ϕs) | a ∈ (Act|ϕ), s ∈ Atomϕ

k+1};
– Atomϕ

k = {s | s is a maximally consistent subset of Γϕk };

• k = 0

– Γϕ0 = sub+(ϕ)
∪{sub+(Bε(ψ1∧ · · ·∧ψj) ≥ 0) | ψ1, · · · , ψj ∈ sub+(ϕ)∩LB-FreeLCPP }
∪ {sub+(Bε〈π〉ϕs ≤ 0) | s ∈ Atomϕ

k , π ∈ (Act|ϕ)k, 1 ≤ k ≤ h};
– Atomϕ

0 = {s | s is a maximally consistent subset of Γϕh}

By induction on k, it is easy to show that all Γϕk and allAtomϕ
k are finite. Since each

Atomϕ
k is the set of all maximally consistent subset of Γϕk , we have the following two

propositions.

Proposition 2.4.14 For each 0 ≤ k ≤ h, we have `
∨
s∈Atomϕk

ϕs

Proposition 2.4.15 For each ψ ∈ Γϕk , we have ` ψ ↔
∨
{s∈Atomϕk |ψ∈s}

ϕs

Let u be a set in Atomϕ
h such that ϕ ∈ u. Please note it follows by Lindenbaum’s

lemma that such a set u exists.
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Definition 2.4.16 (Canonical Nonstandard Model) The canonical model Mϕ
u is defined

as follows:

• SMϕ
u = {(s, k) | s ∈ Atomϕ

k , 0 ≤ k ≤ h}

• RMϕ
u = {((s, k), a, (t, k + 1)) | ϕs ∧ 〈a〉ϕt is consistent, a ∈ Act|ϕ}

• IMϕ
u = {(s, 0) | s and u contain the same probability literals}

• VMϕ
u (p) = {(s, k) | p ∈ s} for each p ∈ sub+(ϕ)

• µMϕ
u

π is defined latter.

where a probability literal is a formula of the form
∑n
i=1 qiψi ≤ q or ¬(

∑n
i=1 qiψi ≤

q).

Proposition 2.4.17 For each (s, k) ∈ SMϕ
u and 〈a〉ψ ∈ sub+(ϕ), 〈a〉ψ ∈ s iff there

exists (t, k + 1) ∈ SMϕ
u such that ψ ∈ t and (s, k)

a−→ (t, k + 1).

PROOF We leave the proof of left-to-right to the reader. Please note that it follows by
the definition that k < h since 〈a〉ψ ∈ s and s ∈ Atomϕ

k . Assume that 〈a〉ψ ∈ s and
that there does not exist (t, k + 1) ∈ SMϕ

u such that ψ ∈ t and (s, k)
a−→ (t, k + 1).

It follows that for all t ∈ Atomϕ
k+1: if ψ ∈ t then ϕs ` [a]¬ϕt. Let t1, · · · , tn be all

the sets in Atomϕ
k+1 such that ψ is a member of them. It follows by Proposition 2.4.15

that ` ψ ↔ ϕt1 ∨ · · · ∨ ϕtn . Moreover, since ` ϕs → ([a]¬ϕt1 ∧ · · · ∧ [a]ϕtn), it
is easy to show that ` ϕs → [a]¬ψ. This is in contradiction with 〈a〉ψ ∈ s and the
assumption that s is consistent. Therefore, we have shown if 〈a〉ψ ∈ s then there exists
(t, k + 1) ∈ SMϕ

u such that ψ ∈ t and (s, k)
a−→ (t, k + 1). 2

With the proposition above, we have the following proposition immediately, which
is the “truth lemma” for formulas in LB-FreeLCPP .

Proposition 2.4.18 For each ψ ∈ sub+(ϕ)∩LB-FreeLCPP and each (s, k) ∈ SMϕ
u , we have

Mϕ
u , (s, k)  ψ iff ψ ∈ s.

Next, we will focus on the probability formulas. We will show that there exist func-
tions µMϕ

u
π to make sure the probability formulas are true.

Proposition 2.4.19 Given (s, k) ∈ SMϕ
u and π ∈ (Act|ϕ)k, (s, k) ∈ IMϕ

u |π implies
` ϕu → Bπϕs > 0.

PROOF For the case of k = 0 and π := ε, let ψ ∈ s be a probability literal, and let
χ := ∧(s \ {ψ}). By Proposition 2.3.14 and Proposition 2.3.2, it is easy to show that
` Bεϕs ≤ 0 ↔ ¬ψ ∨ Bεχ ≤ 0. Since (s, 0) ∈ IM

ϕ
u , it follows that ` ϕu → ψ.

Thus, we have ` ϕu ∧ Bεϕs ≤ 0 → Bεχ ≤ 0. Since ` ϕs → χ, it follows by
Axiom T that ` ϕs → Bεχ > 0. By Definition 2.4.13, it follows that Bεχ > 0 ∈ Γϕ0 .
Thus, we have Bεχ > 0 ∈ s, and consequently Bεχ > 0 ∈ u. Therefore, we have
` ϕu ∧Bεϕs ≤ 0→ ⊥, and consequently ` ϕu → Bεϕs > 0.

For the case of k + 1 and πa, it follows by (s, k + 1) ∈ IM
ϕ
u |πa that there exists

(w, 0) ∈ IM
ϕ
u such that (w, 0)

πa−−→ (s, k + 1). According to Proposition 2.3.15, by
induction on π, it is easy to show that ` Bε〈πa〉ψ > 0 → Bπaψ > 0. Since w and u
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share the same probability formulas and Bε〈πa〉ϕs > 0 ∈ Γϕ0 , by Axioms T, we only
need to show that 〈πa〉ϕs ∈ w. Next we will show it by induction on π. It is obvious
for the case of a. For the case of πa, we have that (w, 0)

π−→ (w′, k)
a−→ (s, k + 1)

for some (w′, k) ∈ SMϕ
u . It follows by induction on π that 〈π〉ϕw′ ∈ w. Moreover,

since 〈a〉ϕs ∈ w′, we have ` ϕw → 〈π〉ϕw′ and ` ϕw′ → 〈a〉ϕs. Therefore, we have
` ϕw → 〈πa〉ϕs, and consequently 〈πa〉ϕs ∈ w. 2

Proposition 2.4.20 If Bεψ > 0 ∈ u then there exists (s, 0) ∈ IMϕ
u such that ψ ∈ s.

PROOF Let D be the set of all the probability literals in u. We then only need to
show that D ∪ {ψ} is consistent. If it is not, we have ` ϕD → ¬ψ. It follows
by Axiom PRTR(ε) that Bε(¬ϕD ∨ ¬ψ) = 1. It follows by Proposition 2.3.14 that
` ¬ϕD ∨ Bε¬ψ = 1. Since ` ϕu → ϕD, we have ` ϕu → Bε¬ψ = 1. By Axioms
PRTR(ε) and Proposition 2.3.3, it follows that ` ϕu → Bεψ = 0. This is in contradic-
tion with Bεψ > 0 ∈ u. Therefore, D ∪ {ψ} is consistent. 2

Proposition 2.4.21 If 〈π〉ψ ∈ s for some (s, 0) ∈ SMϕ
u , there exists (t, |π|) ∈ SMϕ

u

such that (s, 0)
π−→ (t, |π|) and ψ is consistent with t.

PROOF We prove it by induction on π. It is obvious if π := ε. If it is πa, it follows by
induction on π that there exists (s′, |π|) ∈ SMϕ

u such that (s, 0)
π−→ (s′, |π|) and 〈a〉ψ is

consistent with s′. Next, we only need to show that there exists (t, |πa|) ∈ SMϕ
u such

that (s′, |π|) a−→ (t, |πa|) and ψ is consistent with t.
We construct an appropriate t ∈ Atomϕ

|πa| by forcing choices. Enumerate the for-
mulas in Γϕ|πa| as χ1, · · · , χm. Define D0 to be {ψ}. Then ϕs′ ∧ 〈a〉ϕD0 is consistent.
Suppose that Dj is a formula set such that ϕs′ ∧〈a〉ϕDj is consistent where 0 ≤ j ≤ m.
Therefore,either for D′ = Dj ∪ {χj+1} or for D′ = Dj ∪ {¬χj+1} we have that
ϕs′ ∧ 〈a〉ϕD′ is consistent. Choose Dj+1 to this consistent expansion, and let t be
Dm ∩ Γϕ|πa|. Thus, we have t ∈ Atomϕ

|πa|, ϕs′ ∧ 〈a〉ϕt is consistent and t is consistent

with ψ. Therefore, we have (s′, |π|) a−→ (t, |πa|) and (s, 0)
πa−−→ (t, |πa|). 2

Proposition 2.4.22 Given (s, k) ∈ SMϕ
u and π ∈ (Act|ϕ)k, (s, k) 6∈ IMϕ

u |π implies
` ϕu → Bπϕs = 0.

PROOF For the case of k = 0 and π := ε, without loss of generality, assuming
¬ψ ∈ u and ψ ∈ s for some probability literal ψ ∈ Γϕ0 . Let χ := ∧(s \ {ψ}). By
Proposition 2.3.14, it follows that ` Bεϕs > 0 ↔ ψ ∧ Bεχ > 0. Therefore, we have
` ϕu ∧ Bεϕs > 0 → ⊥, and consequently ` ϕu → Bεϕs ≤ 0. It follows by Axiom
Nonneg(ε) that ` ϕu → Bεϕs = 0.

For the case of k + 1 and πa, by Axiom Nonneg(ε), we only need to show `
ϕu → Bπaϕs ≤ 0. If ϕu ∧ Bπaϕs > 0 is consistent, it follows by Axiom PRF(πa)
that ϕu ∧ Bε〈πa〉ϕs > 0 is consistent. Since Bε〈πa〉ϕs > 0 ∈ Γϕ0 , it follows that
Bε〈πa〉ϕs > 0 ∈ u. It follows by Proposition 2.4.20 that 〈πa〉ϕs ∈ w for some
(w, 0) ∈ IM

ϕ
u . By Proposition 2.4.21 that there exists (v, k + 1) ∈ SMϕ

u such that
(w, 0)

πa−−→ (v, k + 1) and ϕs is consistent with v. This means that s = v, and
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then (s, k + 1) ∈ IM
ϕ
u |πa. This is in contradiction with our assumption. Therefore,

ϕu ∧Bπaϕs > 0 is not consistent, and consequently ` ϕu → Bπaϕs = 0. 2

Proposition 2.4.23 ` Bπiψi =
∑
{s∈Atomϕ|πi||ψi∈s}

Bπiϕs if
∑n
i=1 qiBπiψi ≥ q ∈

sub+(ϕ).

PROOF It can be easily shown by Proposition 2.3.16 2

As we said before, Proposition 2.4.18 is the “truth lemma” for formulas in LB-FreeLCPP .
Before we show the “truth lemma” for formulas in LBLCPP, we fist need to show the fol-
lowing proposition, which says that there exists probability functions to ensure probabil-
ity formulas. The proof idea is that based on Propositions 2.4.19 – 2.4.23, we list all the
conditions that probabilities in nonstandard models need to satisfy (cf. Definition 2.4.9)
and show that these condition formulas are consistent. Then, these consistent condition
formulas will generated a consistent set of inequalities. Finally, by the completeness of
linear inequality logic, there exists a solution for these inequalities.

Proposition 2.4.24 There exists functions µMϕ
u

π : IM
ϕ
u |π → Q+ where π ∈ Act∗ such

that Mϕ
u is a nonstandard model and that

∑n
i=1 qiBπiψi ≥ q ∈ u iff

∑n
i=1 qiµ

Mϕ
u

πi (Di) ≥
q where Di = {(s, |πi|) ∈ IM

ϕ
u |πi | ψi ∈ s} for each

∑n
i=1 qiBπiψi ≥ q ∈ sub+(ϕ).

PROOF Firstly, it follows from Proposition 2.4.14 that ` > ↔
∨
s∈Atomϕ0

ϕs. By
Axioms PRTR(ε) and Proposition 2.3.16, it follows that

`
∑

s∈Atomϕ0

Bεϕs = 1 (2.14)

By Proposition 2.4.19, for each (s, 0) ∈ IMϕ
u , we have

u ` Bεϕs > 0 (2.15)

By Proposition 2.4.22, for each (s, 0) 6∈ IMϕ
u , we have

u ` Bεϕs = 0 (2.16)

Secondly, it follows by Proposition 2.4.14 and 2.4.15 that ` > ↔
∨
s∈Atomϕ|πa|

ϕs

and ` 〈a〉> ↔
∨
{s∈Atomϕ|π||〈a〉>∈s}

ϕs. By Proposition 2.3.6 and proposition 2.3.16, it
follows that

`
∑

s∈Atomϕ|πa|

Bπaϕs =
∑

{s∈Atomϕ|π||〈a〉>∈s}

Bπϕs (2.17)

By Proposition 2.4.19, for each (s, |πa|) ∈ IMϕ
u |πa, we have

u ` Bπaϕs > 0 (2.18)

By Proposition 2.4.19, for each (s, |πa|) 6∈ IMϕ
u |πa, we have

u ` Bπaϕs = 0 (2.19)



42 CHAPTER 2. A LOGIC FOR CONFORMANT PROBABILISTIC PLANNING

Thirdly, for each state set E ⊆ IM
ϕ
u |πa, it follows by Proposition 2.3.16 that `

Bπa
∨

(t,|πa|)∈E ϕt =
∑

(t,|πa|)∈E Bπaϕt. For each (t, |πa|) ∈ E, it follows by Pro-
position 2.4.15 that ` 〈a〉ϕt ↔

∨
{s∈Atomϕ|π||〈a〉ϕt∈s}

ϕs. What is more, since `
〈a〉(

∨
(t,|πa|)∈E ϕt)↔

∨
(t,|πa|)∈E〈a〉ϕt, we have that

` 〈a〉(
∨

(t,|πa|)∈E

ϕt)↔
∨

{s∈Atomϕ|π||∃(t,|πa|)∈E:〈a〉ϕt∈s}

ϕs.

By Axiom Add(π), we have

` Bπ〈a〉(
∨

(t,|πa|)∈E

ϕt) =
∑

{s∈Atomϕ|π||∃(t,|πa|)∈E:〈a〉ϕt∈s}

Bπϕs.

By Axiom PRF(πa), we have ` Bπa
∨

(t,|πa|)∈E ϕt ≤ Bπ〈a〉(
∨

(t,|πa|)∈E ϕt). There-
fore, we have

`
∑

(t,|πa|)∈E

Bπaϕt ≤
∑

{s∈Atomϕ|π||∃(t,|πa|)∈E:〈a〉ϕt∈s}

Bπϕs (2.20)

Moreover, for each set E ⊆ IM
ϕ
u |πa, if there exists (s, |π|) ∈ IM

ϕ
u |π such that

RMϕ
u (s, |π|)∩E 6= ∅ andRMϕ

u (s, |π|)\E 6= ∅, namely (t, |πa|) ∈ E and (t′, |πa|) 6∈ E
for some (t, |πa|), (t, |πa|) ∈ RMϕ

u (s, |π|), it follows that ` ϕt → ϕE (let ϕE :=∨
(t,|πa|)∈E ϕt) and ` ϕt′ → ¬ϕE . Therefore, we have ` 〈a〉ϕt ∧ 〈a〉ϕt′ → 〈a〉ϕE ∧
〈a〉¬ϕE . Since ` ϕs → 〈a〉ϕt ∧ 〈a〉ϕt′ , it follows that ` ϕs → 〈a〉ϕE ∧ 〈a〉¬ϕE .
Therefore, we have ` Bπϕs ≤ Bπ(〈a〉ϕE ∧ 〈a〉¬ϕE). It follows by Proposition 2.4.19
that u ` Bπ〈a〉ϕE ∧ 〈a〉¬ϕE > 0. Thus, by Proposition 2.3.7, we have u ` BπaϕE <
Bπ〈a〉ϕE , namely u ` Bπa

∨
t∈E ϕt < Bπ

∨
t∈E〈a〉ϕt. Therefore, we have

u `
∑

(t,|πa|)∈E

Bπaϕt <
∑

{(s,|π|)∈IM
ϕ
u |π|∃(t,|πa|)∈E:〈a〉ϕt∈s}

Bπϕs (2.21)

Furthermore, for each χ :=
∑n
i=1 qiBπiψi ≥ q ∈ sub+(ϕ), if χ ∈ u, it follows by

Proposition 2.4.23 that

u `
n∑
i=1

(qi ·
∑

{s∈Atomϕ|πi||ψi∈s}

Bπiϕs) ≥ q (2.22)

If χ 6∈ u, we have

u `
n∑
i=1

(qi ·
∑

{s∈Atomϕ|πi||ψi∈s}

Bπiϕs) < q (2.23)

Finally, we can now construct a set of linear inequalities by replacing Bπϕs in for-
mulas of (2.14) to (2.23) by variables xπ(s,|π|), which represents µMϕ

u
π (s, |π|). Since u is

consistent, it follows that this set of linear inequalities is also consistent. By complete-
ness of the linear inequality system, this inequality set has a solution. We define µMϕ

u
π
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by assigning µMϕ
u

π (s, |π|) the value of xπ(s,|π|). It follows by (2.14) to (2.21) that Mϕ
u

is a nonstandard model. For each χ :=
∑n
i=1 qiBπiψi ≥ q ∈ sub+(ϕ), it follows by

(2.22) and (2.23) that χ ∈ u iff
∑n
i=1 qiµ

Mϕ
u

πi ({s ∈ Atomϕ
|πi| | ψi ∈ s}) ≥ q. By (2.16)

and (2.19), we have that µMϕ
u

πi (s, |π|) = 0 for each (s, |πi|) 6∈ IM
ϕ
u |πi . Therefore, we

have µMϕ
u

πi ({s ∈ Atomϕ
|πi| | ψi ∈ s}) = µ

Mϕ
u

πi (Di). 2

Proposition 2.4.25 For each formula ψ ∈ sub+(ϕ) and each (s, 0) ∈ IMϕ
u , we have

Mϕ
u , (s, 0)  ψ iff ψ ∈ s.

PROOF We prove it by induction on ψ. Since ϕ ∈ LBLCPP, it follows that sub+(ϕ) ⊂
LBLCPP. By Proposition 2.4.18, we only need to focus on the case of

∑n
i=1 qiBπiψi ≥ q.

Please note that if ψ :=
∑n
i=1 qiBπiψi ≥ q and ψ ∈ sub+(ϕ) then ψi ∈ LB-FreeLCPP . We

have the followings.

Mϕ
u , (s, 0) 

n∑
i=1

qiBπiψi ≥ q

⇐⇒
n∑
i=1

qiµ
Mϕ
u

πi JψiK
Mϕ
u

πi ≥ q

where JψiK
Mϕ
u

πi = {(t, k) ∈ IM
ϕ
u |πi |Mϕ

u , (t, k) � ψi}
(Please note that by induction on π it is easy to show

that (t, k) ∈ IM
ϕ
u |π implies k = |π|)

⇐⇒
n∑
i=1

qiµ
Mϕ
u

πi Di ≥ q

where Di = {(t, |πi|) ∈ IM
ϕ
u |πi | ψi ∈ t}

(since ψi ∈ LB-FreeLCPP , by Proposition 2.4.18 we have JψiK
Mϕ
u

πi = Di)

⇐⇒
n∑
i=1

qiBπiψi ≥ q ∈ u (by Proposition 2.4.24)

⇐⇒
n∑
i=1

qiBπiψi ≥ q ∈ s (by (s, 0) ∈ IMϕ
u )

2

By Proposition 2.4.18 and Proposition 2.4.25, the following proposition follows im-
mediately.

Proposition 2.4.26 If ϕ ∈ LBLCPP is consistent then it is satisfiable in nonstandard mod-
els.

Now we are ready for the completeness of SLCPP in standard models.

Theorem 2.4.27 (Completeness) For each formula ϕ ∈ LLCPP, � ϕ implies ` ϕ.
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PROOF We only need to show that if ¬ϕ is consistent then ¬ϕ is satisfiable in standard
models. If ¬ϕ is consistent, it follows by Proposition 2.4.8 that there exists a formula
ϕ′ ∈ LBLCPP such that ` ¬ϕ ↔ ϕ′ and ϕ′ is consistent. It follows by Proposition 2.4.26
that ϕ′ is satisfiable in nonstandard models. By Proposition 2.4.11, it follows that ϕ′

is satisfiable in standard models. It follows by the soundness that ¬ϕ is satisfiable in
standard models. 2

2.5 Decidability
This section will show that the problem whether a formula ϕ ∈ LLCPP is satisfiable
in standard models is decidable. First, we show that the problem whether a formula
ϕ ∈ LBLCPP is satisfiable in nonstandard models is decidable. Second, we show that a
formula ϕ ∈ LBLCPP is satisfiable in standard models if and only if it is satisfiable in
nonstandard models. Since each ϕ ∈ LLCPP can be reduced to be a formula ϕ′ ∈ LBLCPP,
thus the decidability of ϕ′ in nonstandard models will lead to the decidability of ϕ in
standard models.

Given ϕ ∈ LBLCPP, we use |ϕ| to denote the length of ϕ and use f(|ϕ|) to denote the
size of the canonical nonstandard model. It is obvious that f(|ϕ|) ∈ N. We use ||ϕ|| to
denote the length of the longest coefficients that appear in ϕ.

Proposition 2.5.1 If ϕ ∈ LBLCPP is satisfiable in nonstandard models then it is also
satisfiable in a nonstandard model with at most f(|ϕ|) states where the value assigned
to each state by µM

π is a rational number with size of O(r||ϕ|| + r log r), where r =
O(|ϕ||ϕ| + 2f(|ϕ|)).

PROOF If ϕ ∈ LBLCPP is satisfiable in nonstandard models, it follows by Proposi-
tion 2.4.11 that ϕ is satisfiable in standard models. By the soundness of SLCPP with
respect to standard models, we have that ϕ is consistent. As it is shown in the proof of
completeness, ϕ is satisfiable in the canonical nonstandard model whose size is f(|ϕ|).
Next, we will show that for each t ∈ IMϕ

u |π , µMϕ
u

π (t) is a rational number whose size
can be bounded by O(r||ϕ|| + r log r). Please note that we only need to care about the
action sequence π ∈ (Act|ϕ)md(ϕ).

In the proof of Proposition 2.4.24, we know that the value of µMϕ
u

π (t) is determ-
ined by the system of linear inequalities listed by (2.14)–(2.23) in the proof of Proposi-
tion 2.4.24. Next, we will show how many linear inequalities are listed by (2.14)–(2.23).

By (2.22) and (2.23), for each χ of the form
∑m
i=1 qiψi ≥ q and χ ∈ sub+(ϕ), there

is a corresponding linear inequality. Therefore, (2.22) and (2.23) list at most |ϕ| linear
inequalities into the system.

(2.14)–(2.16) are the requirements that the function µMϕ
u

ε needs to meet. They list 5
linear inequalities into the system. Please note that the linear inequality x1 + · · ·xk = q
is two inequalities in the system, that is, x1+· · ·xk ≥ q and (−1)x1+· · · (−1)xk ≤ −q.

(2.17)–(2.21) are the requirements that the function µMϕ
u

πa needs to meet for each
πa ∈ (Act|ϕ)md(ϕ). Given πa ∈ (Act|ϕ)md(ϕ), (2.17)–(2.19) list 5 linear inequalities.
(2.20)–(2.21) list 2 linear inequalities for eachE ⊆ IMϕ

u |πa. Since IM
ϕ
u |πa ⊆ SMϕ

u and
the size of SMϕ

u is f(|ϕ|), there are at most 2f(|ϕ|) such subset E. Therefore, (2.17)–
(2.21) list at most 5 + 2 × 2f(|ϕ|) linear inequalities for each πa ∈ (Act|ϕ)md(ϕ).
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Since there are at most |ϕ||ϕ|sequences in (Act|ϕ)md(ϕ), thus (2.17)–(2.21) list at most
|ϕ||ϕ|(5 + 2× 2f(|ϕ|)) linear inequalities in the system.

Therefore, (2.14)–(2.23) list at most |ϕ|+ 5 + |ϕ||ϕ|(5 + 2× 2f(|ϕ|)) linear inequal-
ities in the system of linear inequalities. Since |ϕ| + 5 + |ϕ||ϕ|(5 + 2 × 2f(|ϕ|)) ≤ r,
there are at most r linear inequalities in the system. It follows by Theorem A.2.8 that
there exists a probability function µM

π such that the value assigned to each state by µM
π

is a rational number with size of O(r||ϕ||+ r log r). 2

The following proposition follows immediately.

Proposition 2.5.2 Given ϕ ∈ LBLCPP, the problem whether ϕ is satisfiable in nonstand-
ard models is decidable.

Next, we show that the problem whether ϕ ∈ LBLCPP is satisfiable in standard models
can be reduced to the problem whether ϕ is satisfiable in nonstandard models.

Proposition 2.5.3 ϕ ∈ LBLCPP is satisfiable in standard models if and only if ϕ is satis-
fiable in nonstandard models.

PROOF Due to Proposition 2.4.11, we only need to show that if ϕ ∈ LBLCPP is satis-
fiable in standard models then it is also satisfiable in nonstandard models. Given a stand-
ard modelM = 〈SM, RM, P rM, IM, BM, VM〉 withM, s � ϕ for some s ∈ IM,
we define the nonstandard modelM• as follows.

SM
•

= SM

RM
•

= RM

IM
•

= IM

VM
•

= VM

µM
•

π = µMπ

Please note that µMπ is defined in Definition 2.2.4.
First, we need to show thatM• is indeed a nonstandard model. We need to show

the following claim.

Claim 2.5.3.1 1. µM
•

ε (IM
•
) = 1 and µM

•

ε (s) > 0 for each s ∈ IM• ;

2. µM
•

πa (IM
• |πa) = µM

•

π ({s ∈ IM• |π | RM•a (s) 6= ∅}) and µM
•

πa (t) > 0 for each
t ∈ IM• |πa;

3. µM
•

πa (E) ≤ µM•π ({s ∈ IM• |π | ∃t ∈ E : s
a−→ t}) for each E ⊆ IM• |πa;

4. µM
•

πa (E) < µM
•

π ({s ∈ IM• |π | ∃t ∈ E : s
a−→ t}) for each E ⊆ IM

• |πa such
that RM

•

a (s) ∩ E 6= ∅ and RM
•

a (s) \ E 6= ∅ for some s ∈ IM• |π .

Proof of claim 2.5.3.1:

1. Since µM
•

ε = BM, this is obvious.
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2. First, we show µM
•

πa (t) > 0 given t ∈ IM• |πa. Since t ∈ IM• |πa = IM|πa, it
follows that there is a sequence s0a1 · · · sn such that s0 ∈ IM, si

ai+1−−−→ si+1 for
all 0 ≤ i < n, and sn = t. It follows thatBM(s0) > 0, PrM(si, ai+1, si+1) > 0
for all 0 ≤ i < n. It follows by Definition 2.2.4 that µMπa(t) ≥ BM(s0) ×
Πn
i=1Pr

M(si−1, ai, si). SinceBM(s0)×Πn
i=1Pr

M(si−1, ai, si) > 0 and µM
•

πa =
µMπa, it follows that µM

•

πa (t) > 0.

Second, letD = {s ∈ IM• |π | RM•a (s) 6= ∅} then we will show µM
•

πa (IM
• |πa) =

µM
•

π (D). By the definition, we only need to show µMπa(IM|πa) = µMπ (D′) where
D′ = {s ∈ IM|π | RMa (s) 6= ∅}. If IM|πa = ∅, it is obvious. If IM|πa 6= ∅, it
follows that IM|πa = J>KM|

πa

and D′ = J〈a〉>KM|
π

. By Proposition 2.2.11, it
follows that µMπa(IM|πa) = µMπ (D′).

3. We only need to show that µMπa(E) ≤ µMπ ({s ∈ IM|π | ∃t ∈ E : s
a−→ t}) for

each E ⊆ IM|πa. Given E ⊆ IM|πa, let D = {s ∈ IM|π | ∃t ∈ E : s
a−→ t}.

If E = ∅, it is obvious. If E 6= ∅, for each t ∈ E, there exists s ∈ D such that
s
a−→ t. Moreover, it follows by Definition 2.2.4 that for each t ∈ E,

µMπa(t) =
∑

{s∈D|s
a−→t}

µMπ (s)× PrM(s, a, t)

We then have the following:

µMπa(E)

=
∑
t∈E µ

M
πa(t)

=
∑
t∈E

(∑
{s∈D|s

a−→t} µ
M
π (s)× PrM(s, a, t)

)
=

∑
s∈D µ

M
π (s)×

(∑
t∈(E∩RMa (s)) Pr

M(s, a, t)
)

≤
∑
s∈D µ

M
π (s) since 0 <

∑
t∈(E∩RMa (s)) Pr

M(s, a, t) ≤ 1

= µMπ (D)

4. Given u ∈ IM|π and E ⊆ IM|πa, there are v, v′ ∈ RMa (u) such that v ∈ E and
v′ 6∈ E. We need to show µMπa(E) < µMπ (D) where D = {s ∈ IM|π | ∃t ∈
E : s

a−→ t}. In 3. above, we have shown that µMπa(E) ≤ µMπ (D) since for each
s ∈ D:

µMπ (s)×
( ∑
t∈(E∩RMa (s))

PrM(s, a, t)
)
≤ µMπ (s)

which is due to
0 <

∑
t∈(E∩RMa (s))

PrM(s, a, t) ≤ 1.

However, since there are v, v′ ∈ RMa (u) such that v ∈ E and v′ 6∈ E, thus we
have

0 <
∑

t∈(E∩RMa (u))

PrM(u, a, t) < 1.
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Therefore, we have

µMπ (u)×
( ∑
t∈(E∩RMa (u))

PrM(u, a, t)
)
< µMπ (u).

Since u ∈ D, it follows that µMπa(E) < µMπ (D).

�
Second, by induction on the formula ψ, it is easy to show thatM•, t  ψ if and only

ifM|π, t � ψ for each ψ ∈ LB-FreeLCPP , each t ∈ SM, and each π ∈ Act∗ with t ∈ IM|π .
Third, we will showM•, u  ψ if and only ifM, u � ψ for each ψ ∈ LBLCPP and

each u ∈ IM. We prove it by induction on ψ. Please note that ψ ∈ LBLCPP. Due to the
second step, here we only focus on the case of

∑n
i=1 qiBπiψi ≥ q. Since µMπi = µM

•

πi ,
we only need to show JψiKM|

πi
= JψiKM

•

πi . Since ψi ∈ LB-FreeLCPP , it follows by the
second step that JψiKM|

πi
= JψiKM

•

πi . 2

Now, we are ready to show the decidability of LCPP in standard models.

Theorem 2.5.4 (Decidability) Given ϕ ∈ LLCPP, the problem whether ϕ is satisfiable
in standard models is decidable.

PROOF Assume the nesting degree of ϕ is d(ϕ) = k. It is obvious that k ≤ |ϕ|. Let
ϕ1, · · · , ϕi where i ≤ k be the subformulas of ϕ such that d(ϕj) = 1 for all 1 ≤ j ≤ i.
The proofs of Proposition 2.4.6 and Proposition 2.4.7 supply procedures to reduce each
ϕj to a formula ϕ′j such that ` ϕj ↔ ϕ′j and d(ϕ′j) = 0. Since the length of each
ϕj is finite, the procedures can be terminated in a finite number of steps. We can then
obtain the formula ϕ′ by replacing each ψj with ψ′j . It follows that d(ϕ′) = k − 1. By
Proposition 2.3.4, we have ` ϕ ↔ ϕ′. If k − 1 > 0, we do the same procedure for ϕ′.
Therefore, we can obtain a formula ψ in a finite number of steps such that ` ϕ↔ ψ and
d(ψ) = 0.

It follows by the soundness that ϕ is satisfiable in standard models if and only if ψ is
satisfiable in standard models. Since ψ ∈ LBLCPP, it follows by Proposition 2.5.3 that ψ
is satisfiable in standard models if and only if it is satisfiable in nonstandard models. By
Proposition 2.5.2, the problem whether ψ is satisfiable in nonstandard models is decid-
able. Therefore, the problem whether ϕ is satisfiable in standard models is decidable. 2

2.6 Conclusion
In this chapter, we developed a logical framework for conformant probabilistic planning.
As we argue, this approach differs from existing approaches to conformant probabilistic
planning by focusing on a logical language with which to specify plans. Rather than
thinking of goals of plans as subsets of the set of nodes of a probabilistic transition
system, our framework allows one to think of the goal as a formula, which may be more
convenient when we formulate goals that are probabilistic in nature. (Say: some message
should arrive with probability greater than 0.9.) We believe that this contribution to the
field of planning is very much worthwhile.
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The particular logic we developed allows for reasoning about conformant plans and
their probabilistic consequences. We provided an intuitive semantics, which makes it
clear how probabilities change as actions are undertaken. We also provided a complete
axiomatization of the logic, which shows that it is rather well-behaved for a logic that
deals with conformant probabilistic planning.

In the future, we hope to expand this work so it can deal with multi-agent scenarios,
where different agents may have different pieces of information about the state of the
transition system and where different agents may not share the same prior probability
distribution over the set of nodes of the transition system. We also hope to implement
(part of) the framework so that one can actually use it for planning, even though initially
we will only deal with toy examples. Still, even though these will be toy examples,
we believe the addition of a logical language to a conformant probabilistic planning
scenario, will already show its use in those cases.

Another direction for future research is to generalize the models by allowing states
to be partially observable through sensors that map the true state of the world onto
observable tokens, which is called Partially Observable Markov Decision Processes
(POMDPs). For POMDP planning, the plan is usually a policy mapping of belief states
onto actions (cf. (Geffner and Bonet, 2013)). Therefore, to deal with the reasoning in
POMDP planning, we also need to expand the language in order to be capable of talking
about policies.

Furthermore, with a possible implementation in mind, future research will include
determining the complexity of algorithms for model checking and planning, which will
make a comparison with standard AI approaches to planning feasible.



Chapter 3

Knowing how with intermediate
constraints1

3.1 Introduction

Standard epistemic logic proposed by Hintikka (1962) studies propositional knowledge
expressed by “knowing that ϕ”. However, there are very natural knowledge expressions
beyond “knowing that”, such as “knowing what your password is”, “knowing why he
came late”, “knowing how to go to Beijing”, and so on. In particular, knowing how
received much attention in both philosophy and AI.

In philosophy, researchers debate about whether knowledge-how is also proposi-
tional knowledge (cf. Fantl (2008)). In AI, dating back to McCarthy and Hayes (1969),
McCarthy (1979), and Moore (1985), people already started to look at it in the setting of
logics of knowledge and action. However, there still is no consensus on how to capture
the logic of “knowing how” formally (cf. the recent surveys Gochet (2013) and Ågotnes
et al. (2015)). The difficulties are well discussed in Jamroga and Ågotnes (2007) and
Herzig (2015) and simply combining the existing modalities for “knowing that” and
“ability” in a logical language like ATEL (see van der Hoek and Wooldridge (2003))
does not lead to a genuine notion of “knowing how”.

In Wang (2015a, 2016), a new approach is proposed by introducing a single new
modality Kh of goal-directed knowing how, which includes formulas Kh(ψ,ϕ) to ex-
press that the agent knows how to achieve states in which ϕ is true given a precondition
that ψ. The models are labelled transition systems which represent the agent’s abilit-
ies, inspired by Wang (2015b). Borrowing the idea from conformant planning in AI
(cf. Smith and Weld (1998); Yu et al. (2016)), Kh(ψ,ϕ) holds globally in a labelled
transition system if there is a plan such that from all the ψ-states this plan can always
be successfully executed to reach some ϕ-states. As an example, Figure 3.1 depicts
a model, where si are places connected by corridors (r) or stairs (u).2 The formula
Kh(p, q) holds in this model, since there is a plan ru which can always work to reach a
q-state from any p-state. In Wang (2015a), a sound and complete proof system is given,

1This is an extended version of joint work with Yanjing Wang (Li and Wang (2017)).
2This is a variant of the running example used in Wang and Li (2012).
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s6 s7 : q s8 : q

s1 r // s2 : p r //

u

::

u

OO

s3 : p r //

u

OO

s4 : q r //

u

OO

s5

Figure 3.1

featuring a crucial axiom capturing the compositionality of plans:

COMPKh (Kh(p, r) ∧ Kh(r, q))→ Kh(p, q)

However, as observed in Lau and Wang (2016), constraints on how we achieve the
goal often matter. For example, the ways for me to go to New York are constrained
by the money I have; we want to know how to win the game by playing fairly; people
want to know how to be rich without breaking the law. Generally speaking, actions have
costs, both financially and morally. We need to stay within our “budget” in reaching
our goals. Apparently, such intermediate constraints cannot be expressed by Kh(ψ,ϕ)
since it only cares about the starting and ending states. This motivates us to introduce a
ternary modality Khm(ψ, χ, ϕ) where χ constrains the intermediate states.

In the rest of the chapter, we first introduce the language, semantics, and a proof
system of our logic in Section 3.2; in Section 3.3, we give a non-trivial completeness
proof of the proof system; in Section 3.4, we show that our logic is decidable; in the last
section, we conclude with future directions.

3.2 The logic KHM
This section will introduce the logic of knowing how with intermediate constraints, and
we denote the logic as KHM.

3.2.1 Syntax and semantics
Firstly, we introduce the language of KHM. Besides the common boolean operators,
there is a ternary modality to express knowing how and the intermediate constraints.
This ternary modality was first proposed and discussed briefly in Wang (2016).

Definition 3.2.1 (Language) Given a countable set of proposition letters P, the lan-
guage LKHM of KHM is defined as follows:

ϕ := ⊥ | p | ¬ϕ | (ϕ ∧ ϕ) | Khm(ϕ,ϕ, ϕ)

where p ∈ P. We will often omit parentheses around expressions when doing so ought
not cause confusion. We use the standard abbreviations>, ϕ∨ψ and ϕ→ ψ, and define
Uϕ as Khm(¬ϕ,>,⊥). U is intended to be an universal modality, and it will become
clear after defining the semantics.

Khm(ψ, χ, ϕ) expresses that the agent knows how to guarantee ϕ given ψ while
taking a route that satisfies χ (excluding the start and the end). Note that the formula
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Khm(ψ ∧ χ, χ, ϕ ∧ χ) expresses knowing how with inclusive intermediate constraints.
Note that the binary know-how operator in Wang (2015b) can be defined asKh(ψ,ϕ) :=
Khm(ψ,>, ϕ).

The language is interpreted on models which are labelled transition systems. The
model illustrates what actions the agent can do in each state.

Definition 3.2.2 (Model) Given a countable set of proposition letters P, a model is
essentially a labelled transition system (S,Act,R, V ) where:

• S is a non-empty set of states;

• Act is a set of actions;

• R : Act→ 2S×S is a collection of transitions labelled by actions in Act;

• V : S → 2P is a valuation function.

We write s a−→ t if (s, t) ∈ R(a). For a sequence σ = a1 . . . an ∈ Act∗ (Act∗ is all
the finite sequence generated by actions in Act), we write s σ−→ t if there exist s2 . . . sn
such that s a1−→ s2

a2−→ · · · an−1−−−→ sn
an−−→ t. Note that σ can be the empty sequence ε

(when n = 0), and we set s ε−→ s for all s. Let σk be the initial segment of σ up to ak for
k ≤ |σ|. In particular let σ0 = ε.

Note that the labels in Act do not appear in the language. The graph in Figure 3.1
represents a model. We also call an action sequence a plan. Normally, we say that a plan
σ is executable in a state s if there exists a state t ∈ S such that s σ−→ t, which means
the agent can do σ in the state s. Next, we define a notion “strongly executable” which
means the agent will never fail if she performs a plan in a state.

Definition 3.2.3 (Strongly executable) We say σ = a1 · · · an is strongly executable at
s′ if for each 0 ≤ k < n: s′ σk−→ t implies that t has at least one ak+1-successor.

Intuitively, σ is strongly executable at s if you can always successfully finish the
whole σ after executing any initial segment of σ from s. For example, ab is not strongly
executable at s1 in the model below, though it is executable at s1.

s2 b // s4 : q
s1 : p

a
33

a ++ s3

Definition 3.2.4 (Semantics) Suppose s is a state in a modelM = (S,Act,R, V ), we
then inductively define the notion of a formula ϕ being satisfied (or true) inM at state
s as follows:

M, s � ⊥ never
M, s � p ⇐⇒ p ∈ V (s).
M, s � ¬ϕ ⇐⇒ M, s 2 ϕ.
M, s � ϕ ∧ ψ ⇐⇒ M, s � ϕ andM, s � ψ.
M, s � Khm(ψ, χ, ϕ) ⇐⇒ there exists a σ ∈ Act∗ such that for each s′ with

M, s′ � ψ, σ is strongly χ-executable
at s′ andM, t � ϕ for all t with s′ σ−→ t,
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where we say σ = a1 · · · an is strongly χ-executable at s′ if:

• σ is strongly executable at s′, and

• s′ σk−→ t impliesM, t � χ for all 0 < k < n.

It is obvious that ε is strongly χ-executable at each state s for each formula χ. Note
that Khm(ψ,⊥, ϕ) expresses that there is a σ ∈ Act ∪ {ε} such that the agent knows
doing σ in ψ-states can guarantee ϕ, namely the witness plan σ is at most one-step. As
an example, Khm(p,⊥, o) and Khm(p, o, q) hold in the following model for the witness
plans a and ab respectively. Note that the truth value of Khm(ψ, χ, ϕ) does not depend
on the designated state.

s2 : o
b ,,

s1 : p
a
22

b ,,
s4 : q

s3 : ¬o a
22

Now we can also check that the operator U defined by Khm(¬ψ,>,⊥) is indeed a uni-
versal modality:

M, s � Uϕ ⇔ for all t ∈ S,M, t � ϕ

3.2.2 A deductive system
In this subsection, we provide a Hilbert-style proof system for the logic KHM. A proof
consists of a sequence of formulas such that each formula either is an instance of an
axiom or can be obtained by applying one of the rules to formulas occurring earlier in
the sequence.

Definition 3.2.5 (Deductive System SKHM) The axioms and rules shown in Table 3.1
constitute the proof system SKHM. We write SKHM ` ϕ (or sometimes just ` ϕ) to
mean that the formula ϕ is derivable in the axiomatic system SKHM; the negation of
SKHM ` ϕ is written SKHM 0 ϕ (or just 0 ϕ). To say that a set D of formulas is
SKHM-inconsistent (or just inconsistent) means that there is a finite subset D′ ⊆ D
such that ` ¬

∧
D′, where

∧
D′ :=

∧
ϕ∈D′ ϕ if D′ 6= ∅ and

∧
ϕ∈∅ ϕ := >. To say that

a set of formulas is SKHM-consistent (or just consistent) means that the set of formulas
is not inconsistent. Consistency or inconsistency of a formula refers to the consistency
or inconsistency of the singleton set containing the formula.

Note that DISTU, NECU, TU are standard for the universal modality U . 4KhmU and
4KhmU are introspection axioms reflecting that Khm formulas are global. EMPKhm cap-
tures the interaction between U and Khm via the empty plan. COMPKhm is the new com-
position axiom for Khm. UKhm shows how we can weaken the knowing how claims.
ONEKhm is the characteristic axiom for SKHM compared to the system for binary Kh,
and it expresses the condition for the necessity of the intermediate steps.

Remark 3.2.6 Note that the corresponding axioms for COMPKhm, EMPKhm and UKhm in
the setting of binary Kh are the following:

COMPKh Kh(p, q) ∧ Kh(q, r)→ Kh(p, r)
EMPKh U(p→ q)→ Kh(p, q)
UKh U(p′ → p) ∧ U(q → q′) ∧ Kh(p, q)→ Kh(p′, q′)
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Axioms

TAUT all tautologies of propositional logic

DISTU (Up ∧ U(p→ q))→ Uq
TU Up→ p

4KhmU Khm(p, o, q)→ UKhm(p, o, q)
5KhmU ¬Khm(p, o, q)→ U¬Khm(p, o, q)
EMPKhm U(p→ q)→ Khm(p,⊥, q)
COMPKhm (Khm(p, o, r) ∧ Khm(r, o, q) ∧ U(r → o))→ Khm(p, o, q)
ONEKhm (Khm(p, o, q) ∧ ¬Khm(p,⊥, q))→ Khm(p,⊥, o)
UKhm (U(p′ → p) ∧ U(o→ o′) ∧ U(q → q′) ∧ Khm(p, o, q))

→ Khm(p′, o′, q′)
Rules

MP
ϕ,ϕ→ ψ

ψ
NECU

ϕ

Uϕ
SUB

ϕ(p)

ϕ[ψ/p]

Table 3.1: System SKHM

In the system SKH of Wang (2015a), UKh (which is called WKKh there) can be de-
rived using COMPKh and EMPKh. However, UKhm cannot be derived using COMPKhm and
EMPKhm. In particular, Khm(p′,⊥, p) ∧ Khm(p, o, q) → Khm(p′, o, q) is not valid due
to the lack of U(p → o), in contrast with the SKH-derivable Kh(p′, p) ∧ Kh(p, q) →
Kh(p′, q) which is crucial in the derivation of UKh in SKH.

Below we derive some theorems and rules that are useful in the later proofs.

Proposition 3.2.7 We can derive the following in SKHM:

4U Up→ UUp
5U ¬Up→ U¬Up

ULKhm (U(p′ → p) ∧ Khm(p, o, q))→ Khm(p′, o, q)
UMKhm (U(o→ o′) ∧ Khm(p, o, q))→ Khm(p, o′, q)
URKhm (U(q → q′) ∧ Khm(p, o, q′))→ Khm(p, o, q′)
UNIV U¬p→ Khm(p,⊥,⊥)
REU from ϕ↔ ψ prove Uϕ↔ Uψ
RE from ϕ↔ ψ prove χ↔ χ′

where χ′ is obtained by replacing some occurrences of ϕ in χ by ψ.

PROOF REU is immediate given DISTU and NECU. 4U and 5U are special cases of 4KhmU
and 5KhmU respectively. ULKhm, UMKhm, URKhm are the special cases of UKhm. To prove
UNIV, first, note that U¬p ↔ U(p → ⊥) due to REU. Then due to EMPKhm, we have
U¬p → Khm(p,⊥,⊥). RE can be obtained by an inductive proof on the shape of χ,
which uses UKhm and NECU for the case of Khm(·, ·, ·). 2
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Next, we will show that SKHM is sound with respect to the semantics provided in
Section 3.2.1. Firstly we show that axioms EMPKhm, COMPKhm, ONEKhm, and UKhm are
valid.

Proposition 3.2.8 � U(p→ q)→ Khm(p,⊥, q)

PROOF Assuming thatM, s � U(p → q), it means thatM, t � p → q for all t ∈ S.
GivenM, t � p, it follows thatM, t � q. Thus, we have ε is strongly ⊥-executable at t.
Therefore, we haveM, s � Khm(p,⊥, q). 2

Proposition 3.2.9 � Khm(p, o, r) ∧ Khm(r, o, q) ∧ U(r → o)→ Khm(p, o, q)

PROOF AssumingM, s � Khm(p, o, r)∧Khm(r, o, q)∧U(r → o), we will show that
M, s � Khm(p, o, q). SinceM, s � Khm(p, o, r), it follows that there exists σ ∈ Act∗
such that for eachM, u � p, σ is strongly o-executable at u and thatM, v � r for each
v with u σ−→ v. SinceM, s � Khm(r, o, q), it follows that there exists σ′ ∈ Act∗ such
that for eachM, v′ � r, σ′ is strongly o-executable at v′ and thatM, t � q for each t
with v′ σ−→ t. In order to showM, s � Khm(p, o, q), we only need to show that σσ′ is

strongly o-executable at u and thatM, t′ � q for each t′ with u σσ′−−→ t′, where u is a
state withM, u � p.

By assumption, we know that σ is strongly o-executable at u, and for each v with
u

σ−→ v, it follows by assumption that M, v � r and σ′ is strongly o-executable at v.
Moreover, sinceM, s � U(r → o), it follows thatM, v � o for each v with u σ−→ v.

Thus, σσ′ is strongly o-executable at u. What is more, for each t′ with u σσ′−−→ t′, there

is v such that u σ−→ v
σ′−→ t′ and M, v � r, it follows by assumption that M, t′ � q.

Therefore, we haveM, s � Khm(p, o, q). 2

Proposition 3.2.10 � Khm(p, o, q) ∧ ¬Khm(p,⊥, q)→ Khm(p,⊥, o)

PROOF AssumingM, s � Khm(p, o, q) ∧ ¬Khm(p,⊥, q), we will show thatM, s �
Khm(p,⊥, o). SinceM, s � Khm(p, o, q), it follows that there exists σ ∈ Act∗ such that
for eachM, u � p, σ is strongly o-executable at u andM, v � q for all v with u σ−→ v.
If σ ∈ Act ∪ {ε}, it follows thatM, s � Khm(p,⊥, q). SinceM, s � ¬Khm(p,⊥, q),
it follows that σ 6∈ Act ∪ {ε}. Thus, σ = a1 · · · an where n ≥ 2. Let u be a state such
thatM, u � p. Since σ = a1 · · · an is strongly o-executable at u, it follows that a1 is
executable at u. Moreover, since n ≥ 2, we haveM, v � o for each v with u a1−→ v.
Therefore, we haveM, s � Khm(p,⊥, o). 2

Proposition 3.2.11 � U(p′ → p) ∧ U(o → o′) ∧ U(q → q′) ∧ Khm(p, o, q) →
Khm(p′, o′, q′)

PROOF Assuming M, s � U(p′ → p) ∧ U(o → o′) ∧ U(q → q′) ∧ Khm(p, o, q),
we will show that M, s � Khm(p′, o′, q′). Since M, s � Khm(p, o, q), it follows that
there exists σ ∈ Act∗ such that for eachM, u � p: σ is strongly o-executable at u and
M, v � q for each v with u σ−→ v. Let s′ be a state withM, s′ � p′. Next we will show
that σ is strongly o′-executable at s′ andM, v′ � q′ for all v′ with s′ σ−→ v′.
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SinceM, s � U(p′ → p), it follows thatM, s′ � p. Thus, σ is strongly o-executable
at s′ andM, v′ � q for each v′ with s′ σ−→ v′. SinceM, s � U(o → o′), it follows that
σ is strongly o′-executable at s′. SinceM, s � U(q → q′), it follows thatM, v′ � q′

for each v′ with s′ σ−→ v′. 2

Since U is a universal modality, DISTU and TU are obviously valid. Since the mod-
ality Khm is not local, it is easy to show that 4KhmU and 5KhmU are valid. Moreover, by
Propositions 3.2.8–3.2.11, we have that all axioms are valid. Due to a standard argument
in modal logic, we know that the rules MP, NECU and SUB preserve a formula’s validity.
The soundness of SKHM follows immediately.

Theorem 3.2.12 (Soundness) SKHM is sound w.r.t. the class of all models.

3.3 Deductive completeness
This section will prove that SKHM is complete w.r.t. the class of all models. For the
same reason as in Wang (2015a), we will build a canonical model for a given maximally
consistent set (MCS). The reason is that the semantics of Khm formulas does not depend
on the current state. Thus if they are true, they are true everywhere in the model. It
follows that we cannot build a single canonical model to realize all the consistent sets
of LKHM formulas simultaneously. Instead, for each maximally consistent set of LKHM
formulas we build a separate canonical model.

However, the canonical model here is much more complicated. The reason is that in
the canonical model in Wang (2015a), each knowing-how formula Kh(ψ,ϕ) is realized
by a one-step witness plan, which does not work here. Some knowing-how formulas
here, such as Khm(ψ, χ, ϕ) ∧ ¬Khm(ψ,⊥, ϕ), require their witness plans to have more
than one step. Therefore, we need a new method to construct the canonical model. There
are two new features for the canonical model here. Firstly, the state of the canonical
model is a pair consisting of a maximally consistent set and a marker which will play
an important role in defining the witness plan for Khm-formulas. Secondly, formulas of
the formKhm(ψ,⊥, ϕ) are realized by one-step plans, and formulas likeKhm(ψ, χ, ϕ)∧
¬Khm(ψ,⊥, ϕ) are realized by two-step plans. Moreover, we deal with the second step
of the plan differently from the first step of the plan.These features will become clear in
the following context.

Definition 3.3.1 We say that a set ∆ of formulas is maximally consistent in LKHM if ∆
is consistent, and any set of formulas properly containing Γ is inconsistent. If ∆ is a
maximally consistent set of formulas then we say it is an MCS.

Let Γ be an MCS in LKHM. In the following, we will build a canonical model for Γ.
We first prepare ourselves with some auxiliary notions and some handy propositions.

Given a set of LKHM formulas ∆, let ∆|Khm and ∆|¬Khm be the collections of its
positive and negative Khm formulas:

∆|Khm = {θ | θ = Khm(ψ, χ, ϕ) ∈ ∆};

∆|¬Khm = {θ | θ = ¬Khm(ψ, χ, ϕ) ∈ ∆}.
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Definition 3.3.2 Let ΦΓ be the set of all MCS ∆ such that ∆|Khm = Γ|Khm .

Note that ΦΓ is the set of all MCSs that share the same Khm formulas with Γ. The
canonical model for Γ will be based on the MCSs in ΦΓ. Since every ∆ ∈ ΦΓ is
maximally consistent, the following proposition shows an obvious property of ΦΓ.

Proposition 3.3.3 For each ∆ ∈ ΦΓ, we have that Khm(ψ, χ, ϕ) ∈ Γ if and only if
Khm(ψ, χ, ϕ) ∈ ∆ for all Khm(ψ, χ, ϕ) ∈ LKHM.

By a standard argument of Lindenbaum’s lemma (cf. Blackburn et al. (2001)), we
have the following proposition.

Proposition 3.3.4 If ∆ is consistent then there is an MCS Γ such that ∆ ⊆ Γ.

The following proposition reveals a crucial property of ΦΓ, which will be used re-
peatedly later.

Proposition 3.3.5 If ϕ ∈ ∆ for all ∆ ∈ ΦΓ then Uϕ ∈ ∆ for all ∆ ∈ ΦΓ.

PROOF Suppose ϕ ∈ ∆ for all ∆ ∈ ΦΓ, then by the definition of ΦΓ, ¬ϕ is not
consistent with Γ|Khm ∪ Γ|¬Khm , for otherwise Γ|Khm ∪ Γ|¬Khm ∪ {¬ϕ} can be extended
into a maximally consistent set in ΦΓ due to Proposition 3.3.4. Thus there are formulas
Khm(ψ1, χ1, ϕ1), . . . , Khm(ψk, χk, ϕk) ∈ Γ|Khm and formulas ¬Khm(ψ′1, χ′1, ϕ′1), . . . ,
¬Khm(ψ′l, χ′l, ϕ′l) ∈ Γ|¬Khm such that

` (
∧

1≤i≤k

Khm(ψi, χi, ϕi) ∧
∧

1≤j≤l

¬Khm(ψ′j , χ′j , ϕ′j))→ ϕ.

By NECU,

` U((
∧

1≤i≤k

Khm(ψi, χi, ϕi) ∧
∧

1≤j≤l

¬Khm(ψ′j , χ′j , ϕ′j))→ ϕ).

By DISTU we have:

` U(
∧

1≤i≤k

Khm(ψi, χi, ϕi) ∧
∧

1≤j≤l

¬Khm(ψ′j , χ′j , ϕ′j))→ Uϕ.

Since Khm(ψ1, χ1, ϕ1), . . . , Khm(ψk, χk, ϕk) ∈ Γ, we have UKhm(ψ1, χ1, ϕ1), . . . ,
UKhm(ψk, χk, ϕk) ∈ Γ due to 4KhmU and the fact that Γ is a maximally consistent set.
Similarly, we have U¬Khm(ψ′1, χ′1, ϕ′1), . . . , U¬Khm(ψ′l, χ′l, ϕ′l) ∈ Γ due to 5KhmU. By
DISTU and NECU, it is easy to show that ` U(p ∧ q) ↔ Up ∧ Uq. Then due to a slight
generalization, we have:

U(
∧

1≤i≤k

Khm(ψi, χi, ϕi) ∧
∧

1≤j≤l

¬Khm(ψ′j , χ′j , ϕ′j)) ∈ Γ.

Now it is immediate that Uϕ ∈ Γ. Due to Proposition 3.3.3, Uϕ ∈ ∆ for all ∆ ∈ ΦΓ. 2

Proposition 3.3.6 Given Khm(ψ,>, ϕ) ∈ Γ and ∆ ∈ ΦΓ, if ψ ∈ ∆ then there exists
∆′ ∈ ΦΓ such that ϕ ∈ ∆′.
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PROOF Assuming Khm(ψ,>, ϕ) ∈ Γ and ψ ∈ ∆ ∈ ΦΓ, if there does not exist
∆′ ∈ ΦΓ such that ϕ ∈ ∆′, then ¬ϕ ∈ ∆′ for all ∆′ ∈ ΦΓ. It follows by Pro-
position 3.3.5 that U¬ϕ ∈ Γ, namely Khm(ϕ,>,⊥) ∈ Γ. Since U(ϕ → ⊥) and
Khm(ψ,>, ϕ) ∈ Γ, it follows by COMPKhm that Khm(ψ,>,⊥) ∈ Γ namely, U¬ψ ∈ Γ.
By Proposition 3.3.3, we have that U¬ψ ∈ ∆. It follows by TU that ¬ψ ∈ ∆. This is in
contradiction with ψ ∈ ∆. Therefore, there exists ∆′ ∈ ΦΓ such that ϕ ∈ ∆′. 2

Before building the canonical model for Γ, we firstly define the set of actions that
would be part of the canonical model.

Definition 3.3.7 The set of action symbols ActΓ is defined as below.

ActΓ ={〈ψ,⊥, ϕ〉 | Khm(ψ,⊥, ϕ) ∈ Γ}∪
{〈χψ, ϕ〉 | Khm(ψ, χ, ϕ),¬Khm(ψ,⊥, ϕ) ∈ Γ}

The first part of ActΓ is meant to handle the formulas Khm(ψ,⊥, ϕ). These formu-
las can be witnessed by plans whose length are at most 1, and there are no intermediate
states in such plans. The second part of ActΓ is to handle the cases where the interme-
diate state is indeed necessary: ¬Khm(ψ,⊥, ϕ) makes sure that you cannot have a plan
to guarantee ϕ in less than two steps.

In the following we build a separate canonical model for the MCS Γ, for it is not
possible to satisfy allKhm formulas simultaneously in a single model since those formu-
las are evaluated globally. Even if Khm(ψ, χ, ϕ) and ¬Khm(ψ, χ, ϕ) are both consistent,
they cannot be true in the same model. Because the later proofs are quite technical, it
is very important to first understand the ideas behind the canonical model construction.
Note that to satisfy a Khm(ψ, χ, ϕ) formula, there are two cases to be considered:

(1) Khm(ψ,⊥, ϕ) holds and we just need a one-step witness plan, which can be
handled similarly using the techniques developed in Wang (2015a);

(2) Khm(ψ,⊥, ϕ) does not hold, and we need to have a witness plan which at least
involves an intermediate χ-stage. By ONEKhm, Khm(ψ,⊥, χ) holds. It is then tempting
to reduce Khm(ψ, χ, ϕ) to Khm(ψ,⊥, χ) ∧ Khm(χ, χ, ϕ). However, this is not correct
since we may not have a strongly χ-executable plan to reach a ϕ-state from every χ-
state. Note that Khm(ψ, χ, ϕ) and Khm(ψ,⊥, χ) only ensure that we can reach ϕ-states
from χ-states that result from the witness plan for Khm(ψ,⊥, χ). However, we cannot
refer to such χ-states in the language of LKHM. This is why we include χψ markers in
the building blocks of the canonical model. A label χψ roughly tells us where this state
“comes from”. 3

Definition 3.3.8 (Canonical Model) The canonical model for Γ is a quadrupleMc
Γ =

〈Sc, ActΓ, Rc, V c〉 where:

• Sc = {(∆, χψ) | χ ∈ ∆ ∈ ΦΓ, and (〈χψ, ϕ〉 ∈ ActΓ for some ϕ or 〈ψ,⊥, χ〉 ∈
ActΓ)}. We write the pair in S as w, v, · · · , and refer to the first entry of w ∈ S
as L(w), to the second entry as R(w);

• w 〈ψ,⊥,ϕ〉−−−−−→c w
′ iff ψ ∈ L(w) and R(w′) = ϕψ;

3In Wang (2015a), the canonical models are much simpler: the state of the canonical model is just MCS
and the canonical relations are simply labelled by 〈ψ,ϕ〉 for Kh(ψ,ϕ) ∈ Γ.
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• w 〈χψ,ϕ〉−−−−→c w
′ iff R(w) = χψ and ϕ ∈ L(w′);

• p ∈ V c(w) iff p ∈ L(w).

For each w ∈ S, we also call w a ψ-state if ψ ∈ L(w).

In the above definition, R(w) marks the use of w as an intermediate state. The same
maximally consistent set ∆ may have different uses depending on different R(w). We

will make use of the transitions w
〈ψ,⊥,χ〉−−−−−→c v

〈χψ,ϕ〉−−−−→c w
′ where R(v) = χψ . Note

that if R(w) = χψ then w
〈χψ,ϕ〉−−−−→c v for each ϕ-state v. The non-trivial part of the later

proof of the truth lemma is to show that adding such transitions and making them to be
composed arbitrarily will not cause some Khm(ψ, χ, ϕ) 6∈ L(w) to hold at w.

We first show that each ∆ ∈ ΦΓ appears as L(w) for some w ∈ Sc.

Proposition 3.3.9 For each ∆ ∈ ΦΓ, there exists w ∈ Sc such that L(w) = ∆.

PROOF Since ` > → >, it follows by NECU that ` U(> → >). Thus, we have
U(> → >) ∈ Γ. It follows by EMPKhm that Khm(>,⊥,>) ∈ Γ. It follows that a =
〈>,⊥,>〉 ∈ ActΓ. Since > ∈ ∆, it follows that (∆,>>) ∈ Sc. 2

Since Γ ∈ ΦΓ, it follows by Proposition 3.3.9 that Sc 6= ∅.

Proposition 3.3.5 helps us to prove the following two handy propositions which will
play crucial roles in the completeness proof. Note that according to Proposition 3.3.5,
to obtain that Uϕ in all the ∆ ∈ ΦΓ, we just need to show that ϕ is in all the ∆ ∈ ΦΓ,
not necessarily in all the w ∈ Sc.

Proposition 3.3.10 Given a = 〈ψ′,⊥, ϕ′〉 ∈ ActΓ, If for each ψ-state w ∈ Sc we have
that a is executable at w, then U(ψ → ψ′) ∈ Γ.

PROOF Suppose that every ψ-state has an outgoing a-transition, then by the definition
of Rc, ψ′ is in all the ψ-states. For each ∆ ∈ ΦΓ, either ψ 6∈ ∆, or ψ ∈ ∆ thus ψ′ ∈ ∆.
Now by the fact that ∆ is maximally consistent it is not hard to show ψ → ψ′ ∈ ∆
in both cases. By Proposition 3.3.5, U(ψ → ψ′) ∈ ∆ for all ∆ ∈ ΦΓ. It follows by
Γ ∈ ΦΓ that U(ψ → ψ′) ∈ Γ. 2

Proposition 3.3.11 Given w ∈ Sc and a = 〈ψ,⊥, ϕ′〉 or 〈χψ, ϕ′〉 ∈ ActΓ such that a
is executable at w, if ϕ ∈ L(w′) for each w′ with w a−→ w′ then U(ϕ′ → ϕ) ∈ Γ.

PROOF Firstly, we focus on the case of a = 〈ψ,⊥, ϕ′〉. For each ∆ ∈ ΦΓ with
ϕ′ ∈ ∆, we have v = (∆, ϕ′ψ) ∈ Sc. Since 〈ψ,⊥, ϕ′〉 is executable at w, it means
that ψ ∈ L(w). By the definition, it follows that w a−→ v. Since ϕ ∈ L(w′) for each w′

with w a−→ w′, it follows that ϕ ∈ L(v). Therefore, we have ϕ ∈ ∆ for each ∆ ∈ ΦΓ

with ϕ′ ∈ ∆, namely ϕ′ → ϕ ∈ ∆ for all ∆ ∈ ΦΓ. It follows by Proposition 3.3.5 that
U(ϕ′ → ϕ) ∈ Γ.

Secondly, we focus on the case of a = 〈χψ, ϕ′〉. For each ∆ ∈ ΦΓ with ϕ′ ∈ ∆,
it follows by Proposition 3.3.9 that there exists v ∈ Sc such that L(v) = ∆. Since a is
executable at w, it follows that w a−→ v. Since ϕ ∈ L(w′) for each w′ with w a−→ w′, it
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follows that ϕ ∈ L(v). Therefore, we have shown that ϕ′ ∈ ∆ implies ϕ ∈ ∆ for all
∆ ∈ ΦΓ. It follows by Proposition 3.3.5 that U(ϕ′ → ϕ) ∈ Γ. 2

To make the proof of the truth lemma shorter, we need the following proposition.

Proposition 3.3.12 Given a non-empty sequence σ = a1 · · · an ∈ Act∗Γ where ai =

〈ψi,⊥, ϕi〉 or ai = 〈χψii , ϕi〉 for each 1 ≤ i ≤ n, we have Khm(ψ, χ, ϕi) ∈ Γ for all
1 ≤ i ≤ n if for each ψ-state w ∈ Sc:

• σ is strongly executable at w;

• w σj−→ t′ implies χ ∈ L(t′) for all 1 ≤ j < n.

PROOF If there is no ψ-state in Sc, it follows that ¬ψ ∈ L(w′) for each w′ ∈ Sc. It
follows by Proposition 3.3.9 that ¬ψ ∈ ∆ for all ∆ ∈ ΦΓ. By Proposition 3.3.5, we
have U¬ψ ∈ Γ. By UNIV, Khm(ψ,⊥,⊥) ∈ Γ. Since ` ⊥ → χ and ` ⊥ → ϕ. Then by
NECU, we have ` U(⊥ → χ) and ` U(⊥ → ϕ). By UMKhm and URKhm, it is obvious that
Khm(ψ, χ, ϕ) ∈ Γ.

Next, assuming v ∈ Sc is a ψ-state, we will show Khm(ψ, χ, ϕ) ∈ Γ. There are two
cases: n = 1 or n ≥ 2. For the case of n = 1, we will prove it directly; for the case of
n ≥ 2, we will prove it by induction on i.

• n = 1. If a1 is of the form 〈χψ1

1 , ϕ1〉, by the definition of
〈χψ1

1 ,ϕ1〉−−−−−−→ it fol-
lows that R(w) = χψ1

1 for each ψ-state w. Let χ0 be a formula satisfying that
` χ0 ↔ χ1 and χ0 6= χ1. By the rule of Replacement of Equals RE, it follows
that 〈χψ1

0 , ϕ1〉 ∈ ActΓ. Let w′ = (L(v), χψ1

0 ) then it follows that w′ ∈ Sc. Since
ψ ∈ L(v), then we have ψ ∈ L(w′). However, since R(w′) = χψ1

1 6= χψ1

0 ,
σ = 〈χψ1

1 , ϕ1〉 is not executable at the ψ-state w′. This is in contradiction with
the assumption that σ is strongly executable at all ψ-states. Therefore, we know
that a1 cannot be of the form 〈χψ1

1 , ϕ1〉.

If a1 = 〈ψ1,⊥, ϕ1〉, it follows that Khm(ψ1,⊥, ϕ1) ∈ Γ. Since a1 is executable
at each ψ-state, it follows by Proposition 3.3.10 that U(ψ → ψ1) ∈ Γ. Since
Khm(ψ1,⊥, ϕ1) ∈ Γ, it follows by ULKhm that Khm(ψ,⊥, ϕ1) ∈ Γ. By NECU and
UMKhm, it is clear that Khm(ψ, χ, ϕ1) ∈ Γ.

• n ≥ 2. By induction on i, next we will show that Khm(ψ, χ, ϕi) ∈ Γ for each
1 ≤ i ≤ n. For the case of i = 1, with the similar proof as in the case of n = 1,
we can show that a1 can only be 〈ψ1,⊥, ϕ1〉 and U(ψ → ψ1) ∈ Γ. Therefore
by UKhm we have Khm(ψ, χ, ϕ1) ∈ Γ. Under the induction hypothesis (IH) that
Khm(ψ, χ, ϕi) ∈ Γ for each 1 ≤ i ≤ k, we will show that Khm(ψ, χ, ϕk+1) ∈ Γ,
where 1 ≤ k ≤ n− 1. Because σ is strongly executable at v, it follows that there
are w′, v′ ∈ Sc such that

v
a1 // · · ·

ak−1
// w′

ak // v′
ak+1
// · · · an // t.

Moreover, for each t′ with w′ ak−→ t′ we have χ ∈ L(t′). It follows by Proposition
3.3.11 that U(ϕk → χ) ∈ Γ (N). Proceeding, there are two cases of ak+1:
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– ak+1 = 〈ψk+1,⊥, ϕk+1〉. Since σ is strongly executable at v, it follows that
for each t′ with w′ ak−→ t′ we know that ak+1 is executable at each t′. It

follows by the definition of
〈ψk+1,⊥,ϕk+1〉−−−−−−−−−−→ that ψk+1 ∈ L(t′). Moreover,

since ak is executable at w′, it follows by Proposition 3.3.11 that U(ϕk →
ψk+1) ∈ Γ. Since ak+1 ∈ ActΓ, it then follows thatKhm(ψk+1,⊥, ϕk+1) ∈
Γ. It follows by ULKhm that Khm(ϕk,⊥, ϕk+1) ∈ Γ. Since ` U(⊥ → χ),
it follows by UMKhm that Khm(ϕk, χ, ϕk+1) ∈ Γ. Since by IH we have that
Khm(ψ, χ, ϕk) ∈ Γ, It follows from (N) and COMPKhm thatKhm(ψ, χ, ϕk+1) ∈
Γ.

– ak+1 = 〈χψk+1

k+1 , ϕk+1〉. Since σ is strongly executable at v, it follows that
for each t′ with w′ ak−→ t′ we know that ak+1 is executable at t′. Then we
have that R(t′) = χ

ψk+1

k+1 for each t′ with w′ ak−→ t′.
Note that the action ak cannot be of the form 〈χψkk , ϕk〉. Suppose it can
be, let v′′ = (L(v′), χ

ψk+1

0 ) where ` χ0 ↔ χk+1 and χ0 6= χk+1. Since
w′

ak−→ v′, it follows that ϕk ∈ L(v′). Then it follows by the definition of
transitions that w′ ak−→ v′′. However, we know that R(v′′) 6= χ

ψk+1

k+1 thus
ak+1 = 〈χψk+1

k+1 , ϕk+1〉 is not executable at v′′. This is in contradiction with
the strong executability. Therefore, we know that ak cannot be of the form
〈χψkk , ϕk〉.
Now ak = 〈ψk,⊥, ϕk〉. Since w′ ak−→ v′ and ak+1 = 〈χψk+1

k+1 , ϕk+1〉 is
executable at v′, we have R(v′) = ϕψkk = χ

ψk+1

k+1 by definition of transitions.
It follows that ψk = ψk+1 and ϕk = χk+1. Since ak+1 ∈ ActΓ, it follows
that Khm(ψk+1, χk+1, ϕk+1) ∈ Γ. Thus, we have Khm(ψk, ϕk, ϕk+1) ∈ Γ.
By (N) and UMKhm we then have that Khm(ψk, χ, ϕk+1) ∈ Γ (H). If k = 1,
by Proposition 3.3.10 it is easy to show that U(ψ → ψ1) ∈ Γ. Then by
ULKhm we haveKhm(ψ, χ, ϕk+1) ∈ Γ. If k > 1, there is a state w′′ such that

v
a1 // · · ·

ak−2
// w′′

ak−1
// w′

ak // v′
ak+1
// · · · an // t.

Since σ is strongly executable at v, it follows that for each t′ with w′′
ak−1−−−→

t′ we have ak is executable at t′. It follows by the definition of
〈ψk,⊥,ϕk〉−−−−−−→,

it follows that ψk ∈ L(t′) for each t′ with w′′
ak−1−−−→ t′. Since ak−1 is

executable at w′′, it follows by Proposition 3.3.11 that U(ϕk−1 → ψk) ∈
Γ.Moreover, since v

σk−1−−−→ t′ for each t′ with w′′
ak−1−−−→ t′, it follows that

χ ∈ L(t′). Thus by Proposition 3.3.11 again, we have U(ϕk−1 → χ) ∈ Γ.
Since we have proved (H), it follows by ULKhm that Khm(ϕk−1, χ, ϕk+1) ∈
Γ. Since by IH we have Khm(ψ, χ, ϕk−1) ∈ Γ, it follows by COMPKhm that
Khm(ψ, χ, ϕk+1) ∈ Γ.

2

Now we are ready to prove the truth lemma.

Lemma 3.3.13 (Truth Lemma) For each ϕ and each w ∈ Sc, we haveMc
Γ, w � ϕ iff

ϕ ∈ L(w).
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PROOF Boolean cases are trivial, and we only focus on the case of Khm(ψ, χ, ϕ).
Left to Right: If there is no state w′ such thatMc

Γ, w
′ � ψ, it follows by IH that

¬ψ ∈ L(w′) for each w′ ∈ Sc. It follows by Proposition 3.3.9 that ¬ψ ∈ ∆ for all
∆ ∈ ΦΓ. By Proposition 3.3.5, we have U¬ψ ∈ L(w). By UNIV,Khm(ψ,⊥,⊥) ∈ L(w).
Since ` ⊥ → χ and ` ⊥ → ϕ. Then by NECU, we have ` U(⊥ → χ) and ` U(⊥ → ϕ).
By UMKhm and URKhm, it is obvious that Khm(ψ, χ, ϕ) ∈ L(w).

Next, assumingMc
Γ, v � ψ for some v ∈ Sc, we will show Khm(ψ, χ, ϕ) ∈ L(w).

SinceMc
Γ, w � Khm(ψ, χ, ϕ), it follows that there exists σ ∈ Act∗ such that for each

Mc
Γ, w

′ � ψ: σ is strongly χ-executable at w′ andMc
Γ, v
′ � ϕ for all v′ with w′ σ−→ v′.

There are two cases: σ is empty or not.

• σ = ε. This means thatMc
Γ, w

′ � ϕ for eachMc
Γ, w

′ � ψ. It follows by IH that
ψ ∈ L(w′) implies ϕ ∈ L(w′). Thus, we have ψ → ϕ ∈ L(w′) for allw′ ∈ Sc. By
Proposition 3.3.9, we have ψ → ϕ ∈ ∆ for all ∆ ∈ ΦΓ. It follows by Proposition
3.3.5 that U(ψ → ϕ) ∈ L(w). It then follows by EMPKhm that Khm(ψ,⊥, ϕ) ∈
L(w). By NECU and UMKhm, it is easy to show that Khm(ψ, χ, ϕ) ∈ L(w).

• σ = a1 · · · an where for each 1 ≤ i ≤ n, ai = 〈ψi,⊥, ϕi〉 or ai = 〈χψii , ϕi〉.
Since σ is strongly χ-executable at eachw′ withMc

Γ, w
′ � ψ, it follows by IH that

for each ψ-state w′: σ is strongly executable at w′ and w′
σj−→ t′ implies χ ∈ L(t′)

for all 1 ≤ j < n. By Proposition 3.3.12, we have that Khm(ψ, χ, ϕn) ∈ L(v).
SinceMc

Γ, v � ψ and σ is strongly χ-executable at v andMc
Γ, v
′′ � ϕ for each

v′′ with v σ−→ v′′, it follows that there exists v′ such that an is executable at v′

andMc
Γ, v
′′ � ϕ for each v′′ with v′ an−−→ v′′. (Please note that v′ = v if n = 1.)

Note that an is either 〈ψn,⊥, ϕn〉 or 〈χψnn , ϕn〉. It follows by Proposition 3.3.11
and IH that if U(ϕn → ϕ) ∈ Γ, then we have U(ϕn → ϕ) ∈ L(v). It follows by
URKhm and Proposition 3.3.3 that Khm(ψ, χ, ϕ) ∈ L(w).

This completes the proof for w � Khm(ψ, χ, ϕ) implies Khm(ψ, χ, ϕ) ∈ L(w).

Right to Left: Suppose that Khm(ψ, χ, ϕ) ∈ L(w). We need to show thatMc
Γ, w �

Khm(ψ, χ, ϕ). There are two cases: there is a state w′ ∈ Sc such thatMc
Γ, w

′ � ψ or
not. If there is no such state, it followsMc

Γ, w � Khm(ψ, χ, ϕ).
For the second case, let w′ be a state such thatMc

Γ, w
′ � ψ. It follows by IH that

ψ ∈ L(w′). Since we already haveKhm(ψ, χ, ϕ) ∈ L(w), it follows by Proposition 3.3.3
thatKhm(ψ, χ, ϕ) ∈ Γ. Since ` U(χ→ >), it follows by UMKhm thatKhm(ψ,>, ϕ) ∈ Γ.
It follows by Proposition 3.3.6 that there exists ∆′ ∈ ΦΓ such that ϕ ∈ ∆′. There are
two cases: Khm(ψ,⊥, ϕ) ∈ Γ or not.

• Khm(ψ,⊥, ϕ) ∈ Γ. It follows that a = 〈ψ,⊥, ϕ〉 ∈ ActΓ. Therefore, we have
v = (∆′, ϕψ) ∈ Sc. Since ψ ∈ L(w′), it follows that w′ a−→ v. Thus, a is
strongly χ-executable at w′. What is more, ϕ ∈ L(v′) for each v′ with w′ a−→ v′

by the definition of the transition. It follows by IH thatMc
Γ, v
′ � ϕ for all v′ with

w′
a−→ v′. Therefore, we haveMc

Γ, w � Khm(ψ, χ, ϕ) witnessed by a single step
σ.

• ¬Khm(ψ,⊥, ϕ) ∈ Γ. It follows by ONEKhm that Khm(ψ,⊥, χ) ∈ Γ. We then
have a = 〈ψ,⊥, χ〉 ∈ ActΓ and b = 〈χψ, ϕ〉 ∈ ActΓ. Since Khm(ψ,⊥, χ) ∈ Γ
and ` U(⊥ → >), it follows by UMKhm that Khm(ψ,>, χ) ∈ Γ. It follows by
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Proposition 3.3.6 that there exists ∆′′ ∈ ΦΓ such that χ ∈ ∆′′. Therefore, we
have t = (∆′′, χψ) ∈ Sc. Since there exists ∆′ ∈ ΦΓ with ϕ ∈ ∆′, it follows by
Proposition 3.3.5 that there is t′ ∈ Sc such that L(t′) = ∆′. Now, starting with
any ψ-state, a is clearly executable and it will lead to a χ-state, and then by a b
step we will reach all the ϕ states. Therefore, by IH, we have that ab is strongly
χ-executable at w′, and that for all v′ with w′

ab−→ v′ we have Mc
Γ, v
′ � ϕ.

Therefore, we haveMc
Γ, w � Khm(ψ, χ, ϕ). Note that we do need a 2-step σ in

this case.

2

Now due to Proposition 3.3.4, each SKHM-consistent set of formulas can be ex-
tended to a maximally consistent set Γ. Due to the Truth Lemma 3.3.13, we have
Mc

Γ, (Γ,>>) � Γ. The completeness of SKHM follows immediately.

Theorem 3.3.14 (Completeness) SKHM is strongly complete w.r.t. the class of all
models.

3.4 Decidability
In this section, we will show that the problem whether a formula ϕ0 is satisfiable is
decidable. The idea is that we will show that ϕ0 has a bounded small model if ϕ0 is
satisfiable. From the truth lemma and the completeness theorem, we already know that
if ϕ0 is satisfiable then it is satisfiable in a canonical model. However, a canonical model
is infinite. Our method is to make the filtration of a canonical model through a finite set
generated by ϕ0 and to show the filtration model is a bounded small model.

Firstly, we will define the set through which we will make the filtration of a canonical
model. Different from the standard filtration method in modal logic (see Blackburn et al.
(2001)), this set is not only closed under subformulas, but we add Khm(ψ,⊥, ϕ) and
Khm(ψ,⊥, χ) for each formula Khm(ψ, χ, ϕ) in the set.

Definition 3.4.1 (Subformula Closed) A set of formulas ∆ is closed under subformulas
if for all formulas ϕ,ψ, χ: if ¬ϕ ∈ ∆ then ϕ ∈ ∆; if ϕ∧ψ ∈ ∆ then ϕ ∈ ∆ and ψ ∈ ∆;
if Khm(ψ, χ, ϕ) ∈ ∆ then ψ ∈ ∆, χ ∈ ∆ and ϕ ∈ ∆.

Definition 3.4.2 Let Φ be a subformula closed set. cl(Φ) is the smallest set such that:

• Φ ⊆ cl(Φ);

• if Khm(ψ, χ, ϕ) ∈ Φ and χ 6= ⊥ then ±Khm(ψ,⊥, ϕ),±Khm(ψ,⊥, χ) ∈ cl(Φ).

If Φ is a set generated by a single formula, it is obvious that cl(Φ) is finite. The
formula set cl(Φ) is the set we need for our filtration method.

Before building the filtration model, we firstly define the action set that is to be part
of the filtration model. From the proof of the truth lemma, we know that each formula
Khm(ψ, χ, ϕ) that is true in a canonical model is witnessed by the plan 〈ψ,⊥, ϕ〉 or the
plan 〈ψ,⊥, χ〉〈χψ, ϕ〉. Since in the filtration model we only care about the formulas
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in the closure cl(Φ), thus we only need the actions in ActΓ∩cl(Φ). Remember Defini-
tion 3.3.7:

ActΓ∩cl(Φ) ={〈ψ,⊥, ϕ〉 | Khm(ψ,⊥, ϕ) ∈ (Γ ∩ cl(Φ))}∪
{〈χψ, ϕ〉 | Khm(ψ, χ, ϕ),¬Khm(ψ,⊥, ϕ) ∈ (Γ ∩ cl(Φ))}

It is obvious that ActΓ∩cl(Φ) ⊆ ActΓ.
Let Γ be a maximally consistent set and let Mc

Γ be the model defined in Defini-
tion 3.3.8. Next we will define the filtration ofMc

Γ through cl(Φ). Before that, we first
define an equivalence relation!cl(Φ) over the state set Sc. Let s, t be two states in Sc.
The equivalence relation!cl(Φ) is defined as below.

s!cl(Φ) t ⇐⇒Mc
Γ, s � ϕ iffMc

Γ, t � ϕ for all ϕ ∈ cl(Φ), and
a is executable on s iff a is executable on t for all a ∈ ActΓ∩cl(Φ).

We denote the equivalence class of a state s ofMc
Γ with respect to!cl(Φ) by |s|cl(Φ),

or simply |s| if no confusion will arise.

Definition 3.4.3 (Filtration) The filtration ofMc
Γ through cl(Φ), denoted by (Mc

Γ)f =
〈Sf , Actf , Rf , V f 〉, is defined as below.

• Sf = {|s|cl(Φ) | s ∈ Sc}.

• Actf = ActΓ∩cl(Φ).

• For all a ∈ Actf , |s| a−→ |t| iff there are s′ ∈ |s| and t′ ∈ |t| such that s′ a−→ t′.

• For all p ∈ cl(Φ), p ∈ V f (|s|) iffMc
Γ, s � p.

To show the filtration lemma, the key is to show that a formula has a strongly ex-
ecutable plan in the original canonical model if and only if it has a strongly executable
plan in the filtration model, which is what the following two propositions show.

Proposition 3.4.4 Given σ = a1 · · · an ∈ (Actf )∗, n ∈ N and |s| ∈ Sf , if σ is strongly
executable on |s| in (Mc

Γ)f then σ is strongly executable on all s′ ∈ |s| inMc
Γ.

PROOF We prove it by induction on the length of σ. It is obvious if σ = ε. Next we
will show that the proposition holds for σ = a1 · · · an+1.

If a1 · · · an+1 is strongly executable on |s|, it is obvious that a1 · · · an is strongly
executable on |s|. It follows by the IH that a1 · · · an is strongly executable on all s′ ∈
|s|. Given s′ ∈ |s|, we will show that a1 · · · an+1 is strongly executable on s′. Since
a1 · · · an is strongly executable on |s|, by Definition 3.2.3, we only need to show that if
s
σn−−→ t then an+1 is executable on t.

If s σn−−→ t, that is, s a1−→ s1 · · ·
an−−→ t, it follows that |s| σn−−→ |t|. Since a1 · · · an+1

is strongly executable on |s|, it follows that an+1 is executable on |t|. Therefore, there
exists t′ ∈ |t| such that an+1 is executable on t′. It follows by the definition of! that
an+1 is executable on t. 2



64 CHAPTER 3. KNOWING HOW WITH INTERMEDIATE CONSTRAINTS

Proposition 3.4.5 Given a = 〈ψ,⊥, χ〉 ∈ Actf , b = 〈χψ, ϕ〉 ∈ Actf , and s ∈ Sc, the
following two propositions hold.

1. If ab is strongly executable on s then ab is strongly executable on |s|.

2. If |s| a−→ |t| and |t| b−→ |v| for some |t|, |v| ∈ Sf then there exits t′ ∈ |t| and

v′ ∈ |v| such that s a−→ t′ and t′ b−→ v′.

PROOF In the following, we will prove the two propositions, respectively.

1. If ab is strongly executable at s, it follows that there are t, v ∈ Sc such that s a−→ t

and t
b−→ v. What is more, by the form of the actions a and b, it follows by

Definition 3.3.8 that t = (∆, χψ), ψ ∈ L(s), and ϕ ∈ L(v).

Since a is executable on s, it follows that a is also executable on |s|. To show
that ab is strongly executable on |s|, we only need to show that b is executable on
each |t0| ∈ Sf with |s| a−→ |t0|. If |s| a−→ |t0|, it follows that there are s′ ∈ |s|
and t′ ∈ |t0| such that s′ a−→ t′. By the form of a, it follows that t′ = (∆′, χψ).
Since ϕ ∈ L(v), it follows by Definition 3.3.8 that t′ b−→ v. Therefore, we have
|t′| b−→ |v|, that is, |t0|

b−→ |v|. Thus, b is executable on |t0|.

2. If |s| a−→ |t|, it follows that a is executable on some s′ ∈ |s|. By Definition 3.3.8
and the form of the action a, it follows that ψ ∈ L(s′) because a is executable on
s′. It follows by the truth lemma thatMc

Γ, s
′ � ψ. Since s′ ∈ |s|, it follows that

Mc
Γ, s � ψ. By the truth lemma again, we have ψ ∈ L(s).

If |t| b−→ |v|, it follows that there are t′ ∈ |t| and v′ ∈ |v| such that t′ b−→ v′. By
Definition 3.3.8 and the form of the action b, it follows that t′ = (∆′, χψ). Since
ψ ∈ L(s), it follows that s a−→ t′. Thus, we have s a−→ t′ and t′ b−→ v′.

2

Now we are ready to prove the filtration lemma.

Lemma 3.4.6 (Filtration Lemma) For each formula ϕ ∈ cl(Φ), (Mc
Γ)f , |s0| � ϕ iff

Mc
Γ, s0 � ϕ.

PROOF We prove it by induction on ϕ. We restrict our attention to the case of
Khm(ψ, χ, ϕ); the other cases are trivial.

Left-to-Right. If (Mc
Γ)f , |s0| � Khm(ψ, χ, ϕ), next we will show that Mc

Γ, s0 �
Khm(ψ, χ, ϕ). Firstly it follows that there exists σ ∈ Actf such that for all |s′| with
(Mc

Γ)f , |s′| � ψ: σ is strongly χ-executable on |s′| and (Mc
Γ)f , |t′| � ϕ for all |t′| with

|s′| σ−→ |t′|.
To show Mc

Γ, s0 � Khm(ψ, χ, ϕ), let s be a state such that Mc
Γ, s � ψ. Then we

only need to show that σ is strongly χ-executable on s and Mc
Γ, t � ϕ for all t with

s
σ−→ t. Since Mc

Γ, s � ψ, it follows by the IH that (Mc
Γ)f , |s| � ψ. Therefore, σ is

strongly executable on |s|. It follows by Proposition 3.4.4 that σ is strongly executable
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on s. Let σ = a1 · · · an, then for each 0 ≤ k ≤ n: s σk−→ t implies |s| σk−→ |t|. It follows
by the IH that σ is strongly χ-executable on s andMc

Γ, t � ϕ for all t with s σ−→ t.
Right-to-Left. If Mc

Γ, s0 � Khm(ψ, χ, ϕ), next we will show that (Mc
Γ)f , |s0| �

Khm(ψ, χ, ϕ). IfMc
Γ, s0 � Khm(ψ, χ, ϕ), it follows by the truth lemma thatKhm(ψ, χ, ϕ) ∈

S0, and then Khm(ψ, χ, ϕ) ∈ Γ. There are two cases.

• χ = ⊥. We have Khm(ψ,⊥, ϕ) ∈ Γ, and then 〈ψ,⊥, ϕ〉 ∈ ActΓ. Since
Khm(ψ,⊥, ϕ) ∈ s0, by the proof of the truth lemma, it follows that for all s
withMc

Γ, s � ψ: 〈ψ,⊥, ϕ〉 is strongly executable on s andMc
Γ, t � ϕ for all t

with s
ψ,⊥,ϕ−−−−→ t.

Since we also have 〈ψ,⊥, ϕ〉 ∈ Actf , to show (Mc
Γ)f , |s0| � Khm(ψ, χ, ϕ), we

only need to show that for all |s| with (Mc
Γ)f , |s| � ψ: 〈ψ,⊥, ϕ〉 is strongly ex-

ecutable on |s| and (Mc
Γ)f , |t| � ϕ for all |t| with |s| ψ,⊥,ϕ−−−−→ |t|. If (Mc

Γ)f , |s| �
ψ, it follows by the IH thatMc

Γ, s � ψ. Therefore, 〈ψ,⊥, ϕ〉 is (strongly) execut-

able on s, and thus it is (strongly) executable on |s|. If |s| ψ,⊥,ϕ−−−−→ |t|, it follows

that there are s′ ∈ |s| and t′ ∈ |t| such that s′
ψ,⊥,ϕ−−−−→ t′. By the IH, we know that

Mc
Γ, s
′ � ψ. Therefore, we haveMc

Γ, t
′ � ϕ, and it follows by the IH again that

(Mc
Γ)f , |t| � ϕ.

• χ 6= ⊥. If we still haveMc
Γ, s0 � Khm(ψ,⊥, ϕ), by the same proof, we will have

(Mc
Γ)f , |s0| � Khm(ψ,⊥, ϕ), and thus (Mc

Γ)f , |s0| � Khm(ψ, χ, ϕ). Next we
will focus on the situation ofMc

Γ, s0 2 Khm(ψ,⊥, ϕ). IfMc
Γ, s0 2 Khm(ψ,⊥, ϕ),

it follows by the truth lemma that ¬Khm(ψ,⊥, ϕ) ∈ Γ. By Definition 3.4.2, we
know that Khm(ψ, χ, ϕ) and ¬Khm(ψ,⊥, ϕ) are also members of cl(Φ). Thus we
have b = 〈χψ, ϕ〉 ∈ Actf . What is more, since Khm(ψ, χ, ϕ) and ¬Khm(ψ,⊥, ϕ)
are in Γ, it follows by Axiom ONEKhm that Khm(ψ,⊥, χ) ∈ Γ. Since we also have
Khm(ψ,⊥, χ) ∈ cl(Φ) by Definition 3.4.2, it follows that a = 〈ψ,⊥, χ〉 ∈ Actf .

It is obvious that the actions a and b are also in ActΓ. By the proof of the truth
lemma, we know that for all s withMc

Γ, s � ψ: ab is strongly χ-executable on s

andMc
Γ, t � ϕ for all t with s ab−→ t. To show that (Mc

Γ)f , |s0| � Khm(ψ, χ, ϕ),
next we will show that for all |s| with (Mc

Γ)f , |s| � ψ: ab is strongly executable
on |s|, and (Mc

Γ)f , |t| � χ and (Mc
Γ)f , |v| � ϕ for all |t| and |v| with |s| a−→ |t|

and |t| b−→ |v|. If (Mc
Γ)f , |s| � ψ, it follows by the IH thatMc

Γ, s � ψ. Therefore,
ab is strongly executable on s. It follows by Proposition 3.4.5 that ab is strongly
executable on |s|. If |s| a−→ |t| b−→ |v|, it follows by Proposition 3.4.5 that there
are t′ ∈ |t| and v′ ∈ |v| such that s a−→ t′

b−→ v′. Thus we haveMc
Γ, t
′ � χ and

Mc
Γ, v
′ � ϕ. It follows by the IH that (Mc

Γ)f , |t| � χ and (Mc
Γ)f , |v| � ϕ.

2

Proposition 3.4.7 (Small Model Property) If ϕ0 is satisfiable then it is satisfiable in
a model with at most 22k states where k = |cl(Φ)| and Φ is the subformula closure
generated by ϕ0.

PROOF If ϕ0 is satisfiable, it follows by soundness that it is consistent. By Linden-
baum’s lemma, ϕ0 can be extended to be a maximally consistent set Γ. By the truth



66 CHAPTER 3. KNOWING HOW WITH INTERMEDIATE CONSTRAINTS

lemma, we have Mc
Γ, s � ϕ0 where s = (Γ,>>). It follows by the filtration lemma

that ϕ0 is satisfiable in the model (Mc
Γ)f . Each state |t| in (Mc

Γ)f corresponds to a pair
(∆, X) where ∆ ⊆ cl(Φ) is the set of formulas that are true in |t| and X ⊆ Actf is the
set of actions that are executable on |t|. Since there are at most k actions in σf , there
are at most 2k action set X . Since there are also at most 2k formula set ∆, there are at
most 22k pairs of (∆, X). Therefore, there are at most 22k states in the filtration model
(Mc

Γ)f . 2

Theorem 3.4.8 (Decidability) KHM is decidable.

PROOF With the small model property, this can be proved by a standard argument
presented in Blackburn et al. (2001). 2

3.5 Conclusion
In this chapter, we generalized the knowing how logic presented in Wang (2015a) and
proposed a ternary modal operator Khm(ψ, χ, ϕ) to express that the agent knows how to
achieve ϕ given ψ while taking a route that satisfies χ. We also presented a sound and
complete axiomatization of this logic. Compared to the completeness proof in Wang
(2015a), the proof here is more complicated. The essential difference is that, to handle
the intermediate constraints, a state of the canonical model here is a pair consisting of a
maximally consistent set and a marker of the form χψ which indicates that this state has
a 〈ψ,⊥, χ〉-predecessor.

Moreover, we showed that the logic KHM is decidable via a filtration method. The
filtration here is defined on the canonical model, and it cannot be extended to all models.
That is because the Khm-formulas have special witness plans in the canonical model,
which allows us to select a subset of the whole action set. This filtration method can
be applied to the logic presented in Wang (2015a) and shows that the logic with binary
knowing-how operator Kh is decidable.

One interesting topic related to this chapter’s topic is relaxing the strong execut-
ability in the semantics. Intuitively, strongly executable plans may be too strong for
knowledge-how in some cases. For example, if there is an action sequence σ in the
model such that doing σ at a ψ-state will always make the agent stop on ϕ states, we can
probably also say the agent knows how to achieve ϕ given ψ. For instance, I know how
to start the engine in that old car given the precondition that it is in good condition. I just
need to turn the key several times until it starts, and five times should suffice, at most.
Please note that there are two kinds of states in which the agent might stop: either states
that the agent achieves after doing σ successfully, or states on which the agent is unable
to continue executing the remaining actions. In Chapter 4, we will discuss the logic of
knowing how with this kind of plans.

Another interesting related topic is to consider contingent plans which involve con-
ditions based on the knowledge of the agent. A contingent plan is a partial function on
the agent’s belief space. Such plans make more sense when the agent has the ability of
observations during the execution of the plan. To consider contingent plans, we need to
extend the model with an epistemic relation. We can then express knowledge-that and
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knowledge-how at the same time, and discuss their interactions in one unified logical
framework. We discuss the logic of knowing how with contingent plans in Chapter 5.

For future research, besides the obvious questions of model theory of the logic, we
can extend this logic with the public announcement operator. Intuitively, [θ]ϕ says that
ϕ holds after the information θ is provided. The update of the new information amounts
to the change of the background knowledge throughout the model, and this may affect
the knowledge-how. For example, a doctor may not know how to treat a patient with
the disease since he is worried that the only available medicine might cause some very
bad side-effects. Let p mean that the patient has the disease, and let r mean that there
are bad side-effects. Then this can be expressed as ¬Khm(p,¬r,¬p). Suppose a new
scientific discovery shows that the side-effect is not possible under the relevant circum-
stance, then the doctor should know how to treat the patient, which can be expressed as
[¬r]Khm(p,¬r,¬p).4

4However, the announcement operator [ϕ] is not reducible in LKHM as discussed in Wang (2016).
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Chapter 4

Knowing how with weak
conformant plans1

4.1 Introduction
Epistemic logic proposed by Hintikka (1962) is a modal logic concerned with reasoning
about knowledge. It formalizes propositional knowledge, the knowledge of the form
“knowing that”, by means of a modal formula Kϕ which expresses that the agent knows
that ϕ holds. It interprets knowledge-that in terms of agents’ uncertainty. The agent
knows that ϕ at a state s if and only if he can rule out all the ¬ϕ epistemic possibil-
ities at s. Epistemic logic is widely applied in theoretical computer science, artificial
intelligence, economics, and linguistics (see van Ditmarsch et al. (2015)).

However, knowledge is not only expressed by “knowing that”, but also by other ex-
pressions, such as “knowing how”, “knowing what”, “knowing why”, and so on. Among
all these expressions, “knowing how” (and the knowledge-how that it expresses) is the
most discussed.

In artificial intelligence, beginning from McCarthy and Hayes (1969) and McCarthy
(1979), researchers started to study what it means for a computer program to “know
how” to achieve a state of affairs ϕ in terms of its ability. In particular, Moore (1985) is
highly influential on representation of and reasoning about knowledge-how and ability.
Please note that Moore did not clearly distinguish between knowledge-how and ability.
According to Moore, there are two possible ways to define the agent’s knowledge-how:

(I) There exists an action a such that the agent knows that the performance of a will
result in ϕ;

(II) The agent knows that there exists an action a such that the performance of a will
result in ϕ.

Let ϕ(a) express that performing a will make sure that ϕ. The first is a de re definition
of knowledge-how (∃a : Kϕ(a)), and the second is a de dicto definition (K∃a : ϕ(a)).
Moore pointed out that the first definition is too strong and the second is too weak. For

1This is based on the paper Li (2017).
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example, if we only know that there exists a method to guarantee that ϕ but without
knowing the identity of the method, we cannot say that we know how to make sure
that ϕ. On the other hand, in real-life context, we might say to a friend that “I can be
at your house at 8pm” without knowing in advance exactly what action we will adopt.
Therefore, Moore proposed an adapted, but very complicated version of the definition.
Moore’s formalism has inspired a large body of work in artificial intelligence on know-
ledge and ability (see the surveys by Gochet (2013) and Ågotnes et al. (2015)).

In logic, the framework of Alternating-time Temporal Logic (ATL) (cf. Alur et al.
(2002)) is concerned with reasoning about agents’ abilities in game structures. By
adding the knowledge operator to this framework, ATEL (van der Hoek and Wooldridge
(2003)) can express that the agent knows that there is a strategy to enforce ϕ from the
current state. However, the reading is still a de dicto reading of knowledge-how, and
it is too weak to define knowledge-how. To solve this problem, researchers proposed
different solutions (cf. Herzig et al. (2013); Belardinelli (2014); Herzig (2015)), such
as making the strategy uniform, or specifying the explicit actions in the modality (e.g.,
knowing that performing abc will achieve ϕ).

In the above-mentioned works, knowledge-how is usually expressed in a very rich lo-
gical language involving quantifiers or various complicated modalities. However, start-
ing from Plaza (1989), Hart et al. (1996), and van der Hoek and Lomuscio (2003), logi-
cians attempted to formalize some knowledge-wh, such as “knowing whether”, “know-
ing what” etc., as a whole modality, in a similar way in which epistemic logic deals with
knowledge-that. The recent works Fan et al. (2014), Fan et al. (2015), Gu and Wang
(2016), and Wang (2015a) are in line with this idea.

In particular, Wang (2015a) proposed a single-agent logic of knowing how, which
includes the modal formula Kh(ψ,ϕ) to express that the agent knows how to achieve
ϕ given the precondition ψ. The models are labelled transition systems which reflect
an agent’s ability. Thus the models are also called ability maps. The formula Kh(ψ, χ)
is interpreted in a de re reading of knowledge-how: there exists an action sequence
(also called a plan) σ such that (1) performing σ at each ψ-state the agent will achieve
a ϕ-state; and (2) the plan is not supposed to fail during the execution. In automated
planning, such a plan is called a conformant plan (cf. Smith and Weld (1998); Ghallab
et al. (2004)). Consider Figure 4.1 which represents a map of a floor in a building where
the agent can go right(r) or up(u).2 According to Wang’s interpretation of knowledge-
how, the agent here knows how to achieve q given p because there is a conformant plan
ru (first moving right then moving up) for achieving q-states from p-states.

s6 s7 : q s8 : q

s1 r // s2 : p

u

::

r //

u

OO

s3 : p r //

u

OO

s4 r //

u

OO

s5 : q

Figure 4.1

However, the demands that a conformant plan asks may be too strong, in the sense
that the execution of the plan will never fail. Intuitively, we are still comfortable to say

2This is a variant of the running example used in Wang and Li (2012).
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“we know how to achieve ϕ given ψ” if we will always end up with a ϕ-state when
the execution of the plan terminates, whether or not all parts of the plan have been
completed. For example, let q be true only on the state s5 in Figure 4.1. Then there
will be no conformant plans for achieving the only q-state s5 from p-states, but we
still say that “we know how to achieve the q-state from p-states” because we can get
there by moving right at most three times. The plan of moving right three times is
not a conformant plan since the execution of the plan starting from s3 will fail at s5,
but this plan will still guarantee our achieving the q-state s5 in the sense that we will
always end up with s5 when the execution of the plan terminates. We call it a weak
conformant plan. A weak conformant plan for achieving ϕ-states from ψ-states is a
finite linear action sequence such that the execution of the action sequence at each ψ-
state will always terminate on a ϕ-state, either successfully or not. Intuitively, a weak
conformant plan is enough for our knowing how to achieve ϕ given ψ.

In this chapter, we interpret knowledge-how as there being a weak conformant plan
for the agent achieving the goal. Compared to the interpretation of Wang (2015a), our
interpretation is weaker, but more realistic. We also present a sound and complete ax-
iomatic system. It shows that this weaker interpretation results in a weaker logic. The
composition axiom in Wang (2015a)

(Kh(p, r) ∧ Kh(r, q))→ Kh(p, q)

is not valid under this weaker interpretation. Even though the logic is weaker, the proof
of its completeness is non-trivial. We also define an alternative nonstandard semantics.
By reducing a decidable problem on our weaker semantics to a decidable problem on
this alternative nonstandard semantics, we show that this logic is decidable.

The rest of the chapter is organized as follows: Section 4.2 introduces the language
and semantics and presents a deductive system; Section 4.3 shows the completeness of
the deductive system; Section 4.4 proposes an alternative semantics for our logic and
shows that our logic is decidable; in the last section, we conclude with future directions.

4.2 The logic KHW
This section will introduce the logic of knowing how with weak conformant plans, and
we denote the logic as KHW.

4.2.1 Syntax and semantics
In this section, we will introduce the language and the semantics. The language has first
been proposed in Wang (2015a). Differently from the knowing-how modality Kh used
in Wang (2015a), we use the modality Khw here, and the superscript indicates that this
logic is weaker.

Definition 4.2.1 (Language) Given a countable set of proposition letters P, the lan-
guage LKHW is defined as follows:

ϕ := > | p | ¬ϕ | (ϕ ∧ ϕ) | Khw(ϕ,ϕ)

where p ∈ P. We will often omit parentheses around expressions when doing so should
not cause confusion. We use the standard abbreviations⊥, ϕ∨ψ and ϕ→ ψ. We define
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Uϕ as Khw(¬ϕ,⊥). U is intended to be a universal modality, and it will become clear
after we define the semantics.

Intuitively, the formula Khw(ψ,ϕ) expresses that the agent knows how to guarantee
ϕ given ψ since she has a weak conformant plan to achieve ϕ-states from each ψ-state.

The language is interpreted on models which are labelled transition systems. The
model is also called an ability map because it represents the agent’s abilities, i.e. it
illustrates what actions the agent can do in each state.

Definition 4.2.2 (Model) A model (also called an ability map) is essentially a labelled
transition system (S,Act,R, V ) where:

• S is a non-empty set of states;

• Act is a set of actions (or labels);

• R : Act→ 2S×S is a collection of transitions labelled by actions in Act;

• V : S → 2P is a valuation function.

We write s a−→ t or t ∈ Ra(s) if (s, t) ∈ R(a). For a sequence σ = a1 . . . an ∈ Act∗,
we write s σ−→ t if there exist s2 . . . sn such that s a1−→ s2

a2−→ · · · an−1−−−→ sn
an−−→ t. Note

that σ can be the empty sequence ε (when n = 0), and we set s ε−→ s for any s. Let σk
be the initial segment of σ up to ak for k ≤ |σ|. In particular let σ0 = ε. We say that σ
is executable at s if there is t such that s σ−→ t.

Note that the labels in Act do not appear in the language. The graph in Figure 4.1
represents a model. We also call an action sequence a plan. We say a plan σ is executable
in a state s if there exists a state t such that s σ−→ t.

As discussed in Section 4.1, we will interpret knowledge-how as there being a weak
conformant plan for achieving the goal, that is, the agent will always terminate on a goal
state when performing the plan. Next, we will formally define the set of states on which
the agent will terminate when performing a plan.

Definition 4.2.3 (Terminal States) Given a state s ∈ S and an action sequence σ =
a1 · · · an ∈ Act∗, TermiSs(s, σ) is the set of states on which the agent might terminate
if she performs σ in s. Formally, it is defined as

TermiSs(s, σ) = {t | s σ−→ t, or ∃i < n : s
σi−→ t and t has no ai+1 successor}.

In particular, let TermiSs(s, ε) = {s}. If s σ−→ t for all t ∈ TermiSs(s, σ), we say σ
is strongly executable at s.

Considering the following model, we have TermiSs(s1, ab) = {s3, s4}.

s2 b // s4 : q
s1 : p

a
33

a ++ s3

Definition 4.2.4 (Semantics) Suppose s is a state in a model M = (S,Act,R, V ).
Then we inductively define the notion of a formula ϕ being satisfied (or true) inM at
state s as follows:
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M, s � > always
M, s � p ⇐⇒ p ∈ V (s).
M, s � ¬ϕ ⇐⇒ M, s 2 ϕ.
M, s � (ϕ ∧ ψ) ⇐⇒ M, s � ϕ andM, s � ψ.
M, s � Khw(ψ,ϕ) ⇐⇒ there exists σ ∈ Act∗ such that for each w ∈ JψK

and each t ∈ TermiSs(w, σ) we haveM, t � ϕ.

where JψK = {s ∈ S | M, s � ψ}.

We also call the semantics defined here as the standard semantics, to distinguish it
from the nonstandard semantics defined in Section 4.4. Now we can also check that the
operator U defined by Khw(¬ϕ,⊥) is indeed a universal modality:

M, s � Uϕ ⇔ for all t ∈ S,M, t � ϕ

Under this semantics, the composition axiom in Wang (2015a),

(Khw(p, r) ∧ Khw(r, q))→ Khw(p, q),

is not valid. The following example presents a model in which the composition axiom
is not true.

Example 4.2.5 ModelM is depicted as follows.

s1 : p a // s3 : r b // s5 : q

s2 : p, r b // s4 : q

• M, s1 � Khw(p, r) since there is a weak conformant plan a. Please note that
after executing a on s2 the agent will terminate on s2 itself.

• M, s1 � Khw(r, q) since there is a weak conformant plan b. After executing b on
each r-states, either s3 or s2, the agent will achieving on a q-state.

• M, s1 2 Khw(p, q) since there are no weak conformant plans for achieving q-
states from p-states. Particularly, ab is not a weak conformant plan. The perform-
ance of ab on s1 will result in a q-state s5, but executing ab on p-state s2 will
terminate on s2 itself.

The composition of two weak conformant plans might not be a weak conformant
plan any more. Just as shown in Example 4.2.5, a is a weak conformant plan for achiev-
ing r-states from p-states, and b is a weak conformant plan for achieving q-states from
r-states, but the composition ab is not a weak conformant plan for achieving q-states
from p-states. There is no weak conformant plan for achieving q-states from p-states in
this example.

4.2.2 A deductive system
In this subsection, we provide a Hilbert-style proof system for the logic KHW and show
it is sound on the standard semantics.
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Definition 4.2.6 (SWKH System) The axiomatic system SWKH is shown in Table 4.1.
We write SWKH ` ϕ (or sometimes just ` ϕ) to mean that the formula ϕ is derivable
in the axiomatic system SWKH; the negation of SWKH ` ϕ is written SWKH 0 ϕ (or
just 0 ϕ). To say that a set D of formulas is SWKH-inconsistent (or just inconsistent)
means that there is a finite subsetD′ ⊆ D such that ` ¬

∧
D′, where

∧
D′ :=

∧
ϕ∈D′ ϕ

if D′ 6= ∅ and
∧
ϕ∈∅ ϕ := >. To say that a set of formulas is SWKH-consistent

(or just consistent) means that the set of formulas is not inconsistent. Consistency or
inconsistency of a formula refers to the consistency or inconsistency of the singleton set
containing the formula.

Axioms
TAUT Tautologies for propositional logic

DISTU (Up ∧ U(p→ q))→ Uq
TU Up→ p

4WKhU Khw(p, q)→ UKhw(p, q)
5WKhU ¬Khw(p, q)→ U¬Khw(p, q)
EMPWKh U(p→ q)→ Khw(p, q)
UWKh (U(p′ → p) ∧ U(q → q′) ∧ Khw(p, q))→ Khw(p′, q′)
Rules

MP
ϕ,ϕ→ ψ

ψ

NECU
ϕ

Uϕ
SUB

ϕ

ϕ[ψ/p]

Table 4.1: System SWKH

All the axioms here except UWKh are also axioms in the axiomatic system addressed
in Wang (2015a), where UWKh is deducible from the composition axiom. As observed
in Example 4.2.5, the composition axiom is not valid by our semantics. This means that
the system here is strictly weaker than Wang (2015a)’s system, which is in line with the
fact that here knowledge-how is interpreted in a weaker way. However, even though the
system is weaker, the proof of its completeness is non-trivial. We will explain why in
the next section.

Proposition 4.2.7 ` Uχ ∧ Uψ → U(χ ∧ ψ)

PROOF
(1) ` χ→ (ψ → (χ ∧ ψ)) by propositional logic
(2) ` U(χ→ (ψ → (χ ∧ ψ))) by Rule NECU
(3) ` Uχ→ U(ψ → (χ ∧ ψ)) by Axiom DISTU

(4) ` U(ψ → (χ ∧ ψ))→ (Uψ → U(χ ∧ ψ)) by Axiom DISTU

(5) ` Uχ→ (Uψ → U(χ ∧ ψ)) by (3) and (4)
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(6) ` Uχ ∧ Uψ → U(χ ∧ ψ) by propositional logic 2

Next, we show that SWKH is sound with respect to the standard semantics.

Proposition 4.2.8 � U(p′ → p) ∧ U(q → q′) ∧ Khw(p, q)→ Khw(p′, q′)

PROOF Assuming thatM, s � U(p′ → p)∧U(q → q′)∧Khw(p, q), we need to show
thatM, s � Khw(p′, q′). SinceM, s � Khw(p, q), it follows that there exists σ ∈ Act∗
such that for each w ∈ JpK and each t ∈ TermiSs(w, σ) we have M, t � q (∗).
In order to show M, s � Khw(p′, q′), we only need to show that M, t′ � q′ for each
w′ ∈ Jp′K and each t′ ∈ TermiSs(w′, σ).

Given w′ ∈ Jp′K, it follows byM, s � U(p′ → p) that w′ ∈ JpK. Due to (∗), we
have that for each t′ ∈ TermiSs(w′, σ): M, t′ � q, namely t′ ∈ JqK. Moreover, since
M, s � U(q → q′), we have JqK ⊆ Jq′K. Therefore, we have that t′ ∈ Jq′K, namely
M, t′ � q′, for each t′ ∈ TermiSs(w′, σ). Thus, we have thatM, s � Khw(p′, q′). 2

Since U is a universal modality, DISTU, TU and EMPWKh are obviously valid. Because
the modality Khw is not local, it is easy to show that 4WKhU and 5WKhU are valid. Along
with Proposition 4.2.8, we have that all axioms are valid. Moreover, due to a standard
argument in modal logic, we know that the rules MP, NECU and SUB preserve a formula’s
validity. Therefore, the soundness of SWKH follows immediately.

Theorem 4.2.9 (Soundness) SWKH is sound on the standard semantics.

4.3 Deductive completeness
This section will show that SWKH is complete with respect to the standard semantics.
For the same reason as in Wang (2015a), we will build a canonical model for a given
maximally consistent set (MCS). The reason is that the semantics of Khw formulas does
not depend on the current state. Thus if they are true, they are true everywhere in the
model. It follows that we cannot build a single canonical model to realize all the consist-
ent sets of LKHW formulas simultaneously because bothKhw(ψ,ϕ) and ¬Khw(ψ,ϕ) can
be consistent. Instead, for each maximally consistent set of LKHW formulas, we build a
separate canonical model.

However, the canonical model in Wang (2015a) does not work here because the
composition axiom is not valid here, just as shown in Example 4.2.5. We need a new
method to construct the canonical model. The canonical model here is also based on a
given maximally consistent set Γ, but there are some critical differences. First, the state
of the canonical model is a pair consisting of a maximally consistent set and a marker.
The marker plays an important role in defining the binary relations of actions. Second,
each knowing-how formula is realized by a weak conformant plan consisting of two
actions.

Definition 4.3.1 We say that a set ∆ of formulas is maximally consistent in LKHW if ∆
is consistent, and any set of formulas properly containing Γ is inconsistent. If ∆ is a
maximally consistent set of formulas then we say it is an MCS.

Let Γ be an MCS in LKHW. In the following, we will build a canonical model for Γ.
We first prepare ourselves with some auxiliary notions and some handy propositions.
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Given a set of LKHW formulas ∆, let ∆|Khw and ∆|¬Khw be the collections of its
positive and negative Khw formulas:

∆|Khw = {θ ∈ ∆ | θ is of the form Khw(ψ,ϕ)};
∆|¬Khw = {θ ∈ ∆ | θ is of the form ¬Khw(ψ,ϕ)}.

Definition 4.3.2 Let ΦΓ be the set of all MCS ∆ such that ∆|Khw = Γ|Khw .

Note that ΦΓ is the set of all MCSs that share the same Khm formulas with Γ. The
canonical model for Γ will be based on the MCSs in ΦΓ. Since every ∆ ∈ ΦΓ is
maximally consistent, the following proposition shows an obvious property of ΦΓ.

Proposition 4.3.3 For each ∆ ∈ ΦΓ, we haveKhw(ψ,ϕ) ∈ Γ if and only ifKhw(ψ,ϕ) ∈
∆ for all Khw(ψ,ϕ) ∈ LKHW.

By a standard argument of Lindenbaum’s lemma (cf. Blackburn et al. (2001)), we
have the following proposition.

Proposition 4.3.4 If ∆ is consistent then there is an MCS Γ such that ∆ ⊆ Γ.

The following proposition reveals a crucial property of ΦΓ, which will be used re-
peatedly later on.

Proposition 4.3.5 If ϕ ∈ ∆ for all ∆ ∈ ΦΓ then Uϕ ∈ ∆ for all ∆ ∈ ΦΓ.

PROOF Suppose ϕ ∈ ∆ for all ∆ ∈ ΦΓ, then by the definition of ΦΓ, ¬ϕ is not con-
sistent with Γ|Khw∪Γ|¬Khw , for otherwise Γ|Khw∪Γ|¬Khw∪{¬ϕ} can be extended into a
maximally consistent set in ΦΓ due to Proposition 4.3.4, which contradicts the assump-
tion that ϕ ∈ ∆ for all ∆ ∈ ΦΓ. Thus there areKhw(ψ1, ϕ1), . . . ,Khw(ψk, ϕk) ∈ Γ|Khw

and ¬Khw(ψ′1, ϕ′1), . . . , ¬Khw(ψ′l, ϕ′l) ∈ Γ|¬Khw such that

`
∧

1≤i≤k

Khw(ψi, ϕi) ∧
∧

1≤j≤l

¬Khw(ψ′j , ϕ′j)→ ϕ.

By NECU,
` U(

∧
1≤i≤k

Khw(ψi, ϕi) ∧
∧

1≤j≤l

¬Khw(ψ′j , ϕ′j)→ ϕ).

By DISTU we have:

` U(
∧

1≤i≤k

Khw(ψi, ϕi) ∧
∧

1≤j≤l

¬Khw(ψ′j , ϕ′j))→ Uϕ.

Since Khw(ψ1, ϕ1), . . . , Khw(ψk, ϕk) ∈ Γ|Khw , it follows that UKhw(ψ1, ϕ1), . . . ,
UKhw(ψk, ϕk) ∈ Γ due to 4WKhU and the fact that Γ is a maximally consistent set.
Similarly, we have U¬Khw(ψ′1, ϕ′1), . . . , U¬Khw(ψ′j , ϕ′j) ∈ Γ due to 5WKhU. By Pro-
position 4.2.7, it follows that

U(
∧

1≤i≤k

Khw(ψi, ϕi) ∧
∧

1≤j≤l

¬Khw(ψ′j , ϕ′j)) ∈ Γ.

Now it is immediate that Uϕ ∈ Γ. Due to Proposition 4.3.3, Uϕ ∈ ∆ for all ∆ ∈ ΦΓ. 2
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Proposition 4.3.6 Given Khw(ψ,ϕ) ∈ Γ and ∆ ∈ ΦΓ, if ψ ∈ ∆ then there exists
∆′ ∈ ΦΓ such that ϕ ∈ ∆′.

PROOF Assuming Khw(ψ,ϕ) ∈ Γ and ψ ∈ ∆ ∈ ΦΓ, if there does not exist ∆′ ∈ ΦΓ

such that ϕ ∈ ∆′, it means that ¬ϕ ∈ ∆′ for all ∆′ ∈ ΦΓ. It follows by Proposition
4.3.5 that U¬ϕ ∈ Γ, and then U(ϕ→ ⊥) ∈ Γ. Since U(ϕ→ ⊥) and Khw(ψ,ϕ) ∈ Γ, it
follows by UWKh that Khw(ψ,⊥) ∈ Γ, namely U¬ψ ∈ Γ. By Proposition 4.3.3, we have
that U¬ψ ∈ ∆. It follows by TU that ¬ψ ∈ ∆. This is in contradiction with ψ ∈ ∆.
Therefore, there exists ∆′ ∈ ΦΓ such that ϕ ∈ ∆′. 2

Next, we will construct the canonical model for the MCS Γ. It is crucial first
to understand the ideas behind the canonical model construction. Besides satisfying
Khw(ψ,ϕ), the canonical model also needs to meet the following two requirements.

(1) Generally, Khw(ψ,ϕ) cannot be satisfied by a one-step plan. Otherwise, the
canonical model will always satisfy the formula that Khw(p,¬p) ∧ Khw(¬p, q) →
Khw(p, q) which is not a valid formula. Therefore, in the canonical model, Khw(ψ,ϕ)
will be realized by a two-step plan 〈ψ,ψϕ〉〈ψϕ,ϕ〉. If we already reach a ϕ-state by the
first step 〈ψ,ψϕ〉, we do not need to go further anymore. If we arrive at a ¬ϕ-state by
〈ψ,ψϕ〉, then we need to make sure that doing the second step 〈ψϕ,ϕ〉 on this state will
achieve only ϕ-states.

(2) If 〈ψ,ψϕ〉〈ψϕ,ϕ〉 is a weak conformant plan for Khm(ψ,ϕ), then 〈ψ,ψϕ〉 must
be executable on at least one ¬ψ-state. The reason is that if 〈ψ,ψϕ〉 is only executable
at ψ-states then the canonical model will always satisfy Khw(ψ,ϕ) → Khw(ψ ∨ ϕ,ϕ)
which is not a valid formula. If we allow 〈ψ,ψϕ〉 also executable at ¬ψ-states, we must
treat the step from ψ-states and ¬ψ-states differently. Otherwise, the canonical model
will always satisfy Khw(ψ,ϕ) → Khw(>, ϕ). Our method is that the step 〈ψ,ψϕ〉
starting from ψ-states will reach only states marked with ψϕ. This is why we include
ψϕ markers in the building blocks of the canonical model besides maximally consistent
set.3

Definition 4.3.7 (Canonical Model) The canonical model for Γ is a quadrupleMc
Γ =

〈Sc, ActΓ, Rc, V c〉 where:

• Sc = {(∆, ψϕ) | ∆ ∈ ΦΓ,Khw(ψ,ϕ) ∈ Γ}. We write the pair in S as w, v, · · · ,
and refer to the first entry of w ∈ S as L(w), to the second entry as R(w);

• ActΓ = {〈ψ,ψϕ〉, 〈ψϕ,ϕ〉 | Khw(ψ,ϕ) ∈ Γ};

• w 〈ψ,ψϕ〉−−−−→c w
′ ⇐⇒ If ψ ∈ L(w) then R(w′) = ψϕ;

• w 〈ψϕ,ϕ〉−−−−→c w
′ ⇐⇒ R(w) = R(w′) = ψϕ, ¬ϕ ∈ L(w) and ϕ ∈ L(w′);

• p ∈ V c(w) ⇐⇒ p ∈ L(w).

For each w ∈ S, we also call w a ψ-state if ψ ∈ L(w).

3In Wang (2015a), the canonical models are much simpler: we just need MCSs and the canonical relations
are simply labelled by 〈ψ,ϕ〉 for Kh(ψ,ϕ) ∈ Γ.
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Please note that Sc is non-empty because (Γ,>>) ∈ Sc. We first show that each
∆ ∈ ΦΓ appears as L(w) for some w ∈ Sc.

Proposition 4.3.8 For each ∆ ∈ ΦΓ, there exists w ∈ Sc such that L(w) = ∆.

PROOF Since ` > → >, it follows by NECU that ` U(> → >). Thus, we have
U(> → >) ∈ Γ. It follows by EMPWKh that Khw(>,>) ∈ Γ. Thus, we have that
(∆,>>) ∈ Sc. 2

Since Γ ∈ ΦΓ, it follows by Proposition 4.3.8 that Sc 6= ∅.
The following proposition indicates that in the canonical model each knowing-how

formula Kh(ψ,ϕ) is realized by a plan whose length is no more than 2.

Proposition 4.3.9 If there is σ = a1 · · · an ∈ Act∗Γ where n ≥ 3 such that for each
ψ-state w ∈ Sc and each state t ∈ TermiSs(w, σ) we have ϕ ∈ L(t), then there exists
σ′ = a′1 · · · a′k ∈ Act

∗
Γ where k ≤ n − 1 such that for each ψ-state w ∈ Sc and each

state t ∈ TermiSs(w, σ) we have ϕ ∈ L(t).

PROOF Let s be a ψ-state such that s σ−→c t for some t ∈ Sc. If there is no such a
state, it is easy to show that TermiSs(w, σ) = TermiSs(w, σn−1) for each ψ-state
w, and then σ′ = a1 · · · an−1 satisfies the conditions. Next we proceed the proof by
considering the following two cases according to the form of a1.

• a1 = 〈ψ1ϕ1, ϕ1〉We will show that σ′ = ε satisfies that for each ψ-state w ∈ Sc
and each state t ∈ TermiSs(w, σ′) we have ϕ ∈ L(t). We only need to show
that ψ → ϕ ∈ ∆ for each ∆ ∈ ΦΓ. If not, there exists ∆′ ∈ ΦΓ such that
{ψ,¬ϕ} ⊂ ∆′. Let χ be a formula such that ` χ ↔ ψ1 and χ 6= ψ1. Since
` χ → >, it follows by NECU and EMPWKh that Khw(χ,>) ∈ Γ. Then we have a
ψ-state w′ = (∆′, χ>) ∈ Sc. Since χ 6= ψ1, a1 is not executable on w′, and then
we have {w′} = TermiSs(w′, σ). Since ¬ϕ ∈ L(w′), this is in contradiction
with our assumption. Thus we have ψ → ϕ ∈ ∆ for each ∆ ∈ ΦΓ.

• a1 = 〈ψ1, ψ1ϕ1〉 There are two cases based on the form of a2:

– a2 = 〈ψ2, ψ2ϕ2〉 There are two cases: U¬ψ2 ∈ Γ or not.

∗ There is no ∆ ∈ ΦΓ such that ¬ψ2 ∈ ∆. Let σ′ = a2 · · · an. Given a ψ-
state w, next we will show that if t ∈ TermiSs(w, σ′) then ϕ ∈ L(t).
For each t ∈ TermiSs(w, σ′) we have w a2−→c t

′ · · · ak−→c t where
2 ≤ k ≤ n. Duo to ψ2 ∈ L(w), it follows by the definition of a2−→c

that t′ = (∆′, ψ2ϕ2) for some ∆′ ∈ ΦΓ. What is more, for each s′

with s a1−→c s
′, we have s′ a2−→c t

′ duo to ψ2 ∈ L(s′). (Please note s
is the state we mentioned at the beginning of the proof.) It follows that
t ∈ TermiSs(s, σ). It follows by assumption that ϕ ∈ L(t).

∗ There exists ∆ ∈ ΦΓ such that ¬ψ2 ∈ ∆. Let s′ = (∆, ψ1ϕ1) for some
¬ψ2 ∈ ∆. It follows that s a1−→c s

′ and s′ a2−→c t
′ for each t′ ∈ Sc.

Let σ′ = a3 · · · an. Given a ψ-state w, we have s a1−→c s
′ a2−→c w. For

each t ∈ TermiSs(w, σ′), it follows that t ∈ TermiSs(s, σ). Thus,
we have ϕ ∈ L(t). Therefore, σ′ satisfies the conditions.
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– a2 = 〈ψ2ϕ2, ϕ2〉 There are two cases: U(ψ → ψ1) ∈ Γ or not.

∗ There exists ∆ ∈ ΦΓ such that ψ,¬ψ1 ∈ ∆. In this case, it must be
that ϕ ∈ ∆′ for each ∆′ ∈ ΦΓ. If not, let t = (∆′, ψ′2ϕ2) where
¬ϕ ∈ ∆′, ` ψ2 ↔ ψ′2 and ψ2 6= ψ2. Let w be a state such that
{ψ,¬ψ1} ⊂ L(w). It follows that w a1−→c t and a2 is not executable
at t. Thus, t ∈ TermiSs(w, σ). By assumption, we have ϕ ∈ L(t).
Contradiction. Therefore, we have ϕ ∈ ∆′ for each ∆′ ∈ ΦΓ. Then,
σ′ = ε satisfies that for each ψ-state w and each t ∈ TermiSs(w, σ′)
we have ϕ ∈ L(t).

∗ There is no ∆ ∈ ΦΓ such that ψ,¬ψ1 ∈ ∆. Thus, we have ψ1 ∈ L(s).
(Please note s is the state mentioned at the beginning of the proof.)
Since s a1−→c s1

a2−→c s2 for some s1, s2 ∈ Sc, it follows by the defin-
ition of a1 and a2 that ψ1 = ψ2 and ϕ1 = ϕ2. Firstly we will show
that ϕ1 → ϕ ∈ ∆ for all ∆ ∈ ΦΓ. If not, there is ∆′ ∈ ΦΓ such
that {ϕ1,¬ϕ} ⊂ ∆′. Let t = (∆′, ψ1ϕ1) then we have s a1−→c t and
a2 is not executable at t. Thus, we have t ∈ TermiSs(s, σ). Since
¬ϕ ∈ L(t), it is in contradiction with our assumption. Therefore, we
have ϕ1 → ϕ ∈ ∆ for all ∆ ∈ ΦΓ (??).
Let σ′ = a1a2. Given a ψ-state w, for each t ∈ TermiSs(w, σ′), there
are two cases: w a1−→c t and a2 is not executable at t, or w a1−→c w

′ a2−→c

t. Both of them have that ϕ1 ∈ L(t). It follows by (??) that ϕ ∈ L(t).

2

Now we are ready to prove the truth lemma.

Lemma 4.3.10 (Truth Lemma) For each ϕ, we haveMc
Γ, w � ϕ iff ϕ ∈ L(w).

PROOF Boolean cases are trivial, and we only focus on the case of Khw(ψ,ϕ).
Left to Right: Supposing Khw(ψ,ϕ) ∈ L(w), let a1 = 〈ψ,ψϕ〉 and a2 = 〈ψϕ,ϕ〉,

then we will show thatMc
Γ, t � ϕ for each w ∈ JψK and each t ∈ TermiSs(w, a1a2).

Given w ∈ JψK and t ∈ TermiSs(w, a1a2), we will show thatMc
Γ, t � ϕ. By IH, we

only need to show that ϕ ∈ L(t). For t ∈ TermiSs(w, a1a2), there are two cases:

• w a1−→c t and a2 is not executable at t. Since w ∈ JψK, it follows by IH that
ψ ∈ L(w).By the definition of a1−→c, we have R(t) = ψϕ. Due to ψ ∈ L(w) and
Khw(ψ,ϕ) ∈ Γ, it follows by Proposition 4.3.6 that ϕ ∈ ∆′ for some ∆′ ∈ ΦΓ.
Thus, (∆′, ψϕ) is a state in Sc. Then, there is only one reason left for a2 not
executable at t, that is, ¬ϕ 6∈ L(t). Therefore, we have ϕ ∈ L(t).

• w a1−→c w
′ a2−→c t for some w′ ∈ Sc. By the definition of a2−→c, it follows that

ϕ ∈ L(t).

Right to Left: IfMc
Γ, w � ϕ, we assume that σ = a1 · · · an ∈ Act∗Γ is the shortest

action sequence such thatMc
Γ, t � ϕ for each w ∈ JψK and each t ∈ TermiSs(w, σ).

It follows by Proposition 4.3.9 and IH that n ≤ 2. Let us consider the following two
cases: n = 0 or n > 0.
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• n = 0 It means σ = ε. It follows by IH that ψ ∈ ∆ implies ϕ ∈ ∆ for all ∆ ∈ ΦΓ.
Therefore, we have ψ → ϕ ∈ ∆ for all ∆ ∈ ΦΓ. It follows by Proposition 4.3.5
that U(ψ → ϕ) ∈ Γ. By EMPWKh, we have that Khw(ψ,ϕ) ∈ Γ. It follows by
Proposition 4.3.3 that Khw(ψ,ϕ) ∈ L(w).

• n > 0 There are three cases.

– a1 cannot be of the form 〈ψ1ϕ1, ϕ1〉. If a1 = 〈ψ1ϕ1, ϕ1〉, we can show
that ψ → ϕ ∈ ∆ for all ∆ ∈ ΦΓ. If not, there is ∆ ∈ ΦΓ such that
{ψ,¬ϕ} ⊂ ∆. Let χ be a formula such that ` ψ1 ↔ χ and ψ1 6= χ. Due
to U(χ → >) ∈ Γ, it follows that Khw(χ,>) ∈ Γ. Thus t = (∆, χ>) is a
state in Sc. By IH, we haveMc

Γ, t � ψ. Since a1 is not executable at t, we
have t ∈ TermiSs(t, σ). Therefore,Mc

Γ, t � ϕ. By IH, we have ϕ ∈ L(t).
Contradiction. Thus, we have ψ → ϕ ∈ ∆ for all ∆ ∈ ΦΓ. By IH, we have
thatMc

Γ, t � ϕ for each w′ ∈ JψK and each t ∈ TermiSs(w′, ε). This is in
contradiction with our assumption that σ is the shortest and n > 0.

– an cannot be of the form 〈ψn, ψnϕn〉. If an = 〈ψn, ψnϕn〉, we can show
that ϕ ∈ ∆ for all ∆ ∈ ΦΓ. Otherwise, there is ∆′ ∈ ΦΓ such that ¬ϕ ∈ ∆′.
let t = (∆′, ψnϕn). Since σ is the shortest, it follows that there is a state w′

such thatMc
Γ, w

′ � ψ, w′
σn−1−−−→c v and an is executable at v. Then we have

v
an−−→c t. Thus, we have that w′ σ−→c t. It follows that t ∈ TermiSs(w′, σ).

Thus, we haveMc
Γ, t � ϕ. It follows by IH that ϕ ∈ L(t). Contradiction.

Thus, we have ϕ ∈ ∆ for all ∆ ∈ ΦΓ. By IH, we have thatMc
Γ, t � ϕ for

each w′ ∈ JψK and each t ∈ TermiSs(w′, ε). This is in contradiction with
our assumption that σ is the shortest and n > 0.

– a1 = 〈ψ1, ψ1ϕ1〉 and a2 = 〈ψ2ϕ2, ϕ2〉.
Firstly, we show that there is no ∆ ∈ ΦΓ such that {ψ,¬ψ1} ⊂ ∆, namely
U(ψ → ψ1) ∈ Γ. If there is such a MCS ∆, let w be state such that L(w) =

∆. It follows that w a1−→c t for all t ∈ Sc. Then, it must be that ϕ ∈ ∆′ for
all ∆′ ∈ ΦΓ. Otherwise, let t = (∆′, ψ′2ϕ2) where ¬ϕ ∈ ∆′, ` ψ′2 ↔ ψ2

and ψ′2 6= ψ2. It follows that w a1−→c t and a2 is not executable at t, namely
t ∈ TermiSs(w, a1a2). It follows that Mc

Γ, t � ϕ, and then by IH that
ϕ ∈ L(t) = ∆′. Contradiction. Thus, we have ϕ ∈ ∆′ for all ∆′ ∈ ΦΓ.
Then, σ′ = ε satisfies that for each w ∈ JψK and each t ∈ TermiSs(w, ε)
we haveMc

Γ, t � ϕ. This is in contradiction with σ = a1a2 is the shortest
one. Therefore, we have there is no ∆ ∈ ΦΓ such that {ψ,¬ψ1} ⊂ ∆. It,
then, follows by Proposition 4.3.5 that U(ψ → ψ1) ∈ Γ.
Next, we will show that there is no ∆ ∈ ΦΓ such that {ϕ1,¬ϕ} ⊂ ∆,
namely U(ϕ1 → ϕ) ∈ Γ. Since σ is the shortest, we assume that w′, t1, t2
are states such that w′ a1−→c t1

a2−→c t2 and w′ ∈ JψK. It follows that
ψ1 = ψ2 and ϕ1 = ϕ2. If there is ∆ ∈ ΦΓ such that {ϕ1,¬ϕ} ⊂ ∆,
let t = (∆, ψ1ϕ1). It follows that w′ a1−→c t1

a2−→c t. Thus, we have
t ∈ TermiSs(w′, a1a2). It follows that Mc

Γ, t � ϕ, and then by IH that
ϕ ∈ L(t) = ∆. Contradiction. Thus, we have shown that there is no ∆ ∈
ΦΓ such that {ϕ1,¬ϕ} ⊂ ∆, and then by Proposition 4.3.5 that U(ϕ1 →
ϕ) ∈ Γ. Due to a1 ∈ ActΓ, we have Khw(ψ1, ϕ1) ∈ Γ. Since we have
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shown that U(ψ → ψ1) ∈ Γ and U(ϕ1 → ϕ) ∈ Γ, it follows by UWKh that
Khw(ψ,ϕ) ∈ Γ, and then Khw(ψ,ϕ) ∈ L(w).

2

The key of the completeness proof is to show that each SWKH-consistent set is
satisfiable. Due to a standard Lindenbaum-like argument, each SWKH-consistent set of
formulas can be extended to a maximally consistent set Γ. Due to the truth lemma, we
have thatMc

Γ, (Γ,>>) � Γ. The completeness of SWKH follows immediately.

Theorem 4.3.11 (Strong Completeness) SWKH is strongly complete on the standard
semantics.

4.4 Decidability
This section will show that the problem whether a formula ϕ is valid with respect to
the standard semantics is decidable. The strategy is that we firstly define a nonstandard
semantics and then show that ϕ is valid with respect to the standard semantics if and
only if ϕ is valid with respect to the nonstandard semantics. Next, we show that ϕ has a
bounded small model if ϕ is satisfiable with respect to the nonstandard model.

Definition 4.4.1 (Nonstandard semantics) Given a pointed modelM, s and a formula
ϕ, we writeM, s  ϕ to mean that ϕ is true atM, s with respect to the nonstandard
semantics . The nonstandard semantics  is defined by the following induction on
formula construction.

M, s  > always
M, s  p ⇐⇒ s ∈ V (p).
M, s  ¬ϕ ⇐⇒M, s  ϕ.
M, s  ϕ ∧ ψ ⇐⇒M, s  ϕ andM, s  ψ.
M, s  Khw(ψ,ϕ) ⇐⇒ there exists a ∈ Act• such that for allM, u  ψ :

a is executable at u andM, v  ϕ for all v ∈ Ra(u)

where Act• = Act ∪ {ε}. To say ϕ is valid with respect to the nonstandard semantics,
written  ϕ, meansM, s  ϕ for all pointed modelM, s.

In this nonstandard semantics, the knowledge-how is interpreted almost the same
as in Moore’s first interpretation (I). The only difference is that the witness action for
the knowledge-how might be epsilon ε. Intuitively, this means that if ϕ is true in each
ψ-state then we know how to achieve ϕ given ψ trivially by doing nothing.

LetM, s  Uϕ be defined asM, u  ϕ for all u ∈ S. It is easy to show that

M, s  Uϕ ⇐⇒ M, s  Khw(¬ϕ,⊥)

To show that � ϕ if and only if  ϕ, since the axiom system SWKH is sound and
complete with respect to the standard semantics, we only need to show that SWKH is
also sound and complete on the nonstandard semantics.

Since Khw is also a universal modality, it is easy to verify that SWKH is sound on
the nonstandard semantics.
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Proposition 4.4.2 (Soundness w.r.t. nonstandard semantics) If ` ϕ then  ϕ.

Next, we will show that SWKH is complete on the nonstandard semantics. The key
is to construct a model for a given consistent formula ϕ such that ϕ is satisfiable in the
model on the nonstandard semantics.

Here are some notions before we construct the model for ϕ. We use Sub(ϕ) to
denote the set of all sub-formulas of ϕ. Let ∼ψ = χ if ψ = ¬χ, otherwise, ∼ψ = ¬ψ.
It is obvious that ` ¬ψ ↔ ∼ψ. We use Sub+(ϕ) to denote the set Sub(ϕ)∪{∼ψ | ψ ∈
Sub(ϕ)}.

Similar to the completeness of SWKH to the standard semantics, the model we are
going to construct here is based on maximally consistent sets in the set Sub+(ϕ).

Proposition 4.4.3 If Γ is a consistent subset of Sub+(ϕ) then there exists an MCS B in
Sub+(ϕ) such that Γ ⊆ B.

PROOF Let Φ be the set of all MCSs in Sub+(ϕ). It is easy to show that `
∨
A∈ΦA.

Assume that there is no A ∈ Φ such that Γ ⊆ A. It follows that there is ψ ∈ Γ such that
∼ψ ∈ A. Thus, we have A ` ¬ψ. Since ` ¬ψ → ¬

∧
Γ, it follows that A ` ¬

∧
Γ.

Therefore, `
∨
A∈ΦA → ¬

∧
Γ, and then we have ` ¬

∧
Γ. This is in contradiction

with Γ being consistent. Thus, we have that there exists A ∈ Φ such that Γ ⊆ A. 2

As we did in Section 4.3, here we will construct the model based on a given MCS in
Sub+(ϕ). Let A be an MCS in Sub+(ϕ). We use ΘA to denote A|Khw ∪ A|¬Khw . The
model based on A is defined in the following.

Definition 4.4.4 The modelMA = 〈SA, ActA, RA, V A〉 is defined as follows.

• SA = {B is an MCS in Sub+(ϕ) | (B|Khw ∪B|¬Khw) = ΘA};

• ActA = {〈χ, ψ〉 | Khw(χ, ψ) ∈ ΘA};

• B 〈χ,ψ〉−−−→ B′ ⇐⇒ χ ∈ B and ψ ∈ B′, for each 〈χ, ψ〉 ∈ ActA;

• p ∈ V A(B) ⇐⇒ p ∈ B, for each p ∈ Sub+(ϕ).

The domain SA is non-empty because A ∈ SA. Next, we will show the truth lemma
for this model. Before that, we first prepare ourselves with some useful handy proposi-
tions.

Proposition 4.4.5 ΘA ` U
∧

ΘA

PROOF Let
∧

ΘA := θ1 ∧ θ2 where θ1 := Khw(χ1, ψ1) ∧ · · · ∧ Khw(χn, ψn) and
θ2 := ¬Khw(χ′1, ψ′1) ∧ · · · ∧ ¬Khw(χ′m, ψ′m). It follows by Axiom 4WKhU and Propos-
ition 4.2.7 that ` θ1 → Uθ1. It follows by Axiom 5WKhU and Proposition 4.2.7 that
` θ2 → Uθ2. Again by Proposition 4.2.7, we have ` θ1 ∧ θ2 → U(θ1 ∧ θ2). Thus, we
have ΘA ` U

∧
ΘA. 2

Proposition 4.4.6 For each ψ ∈ Sub+(ϕ), if ψ ∈ B for all B ∈ SA then ΘA ` Uψ.
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PROOF Since ψ ∈ B for all B ∈ SA, it follows that ΘA ∪ {¬ψ} is inconsistent. It
follows that `

∧
ΘA → ψ. By Rule NECU, it follows that ` U(

∧
ΘA → ψ). It follows

by Axiom DISTU that ` U
∧

ΘA → Uψ. By Proposition 4.4.5, it follows that Therefore,
ΘA ` Uψ. 2

Proposition 4.4.7 Given χ ∈ Sub+(ϕ) and B ∈ SA, if χ ∈ B implies that 〈χ′, ψ′〉 ∈
ActA is executable at B then we have ΘA ` U(χ→ χ′).

PROOF Assume that ΘA ∪{χ,∼χ′} is consistent. It follows that there exists C ∈ SA
such that ΘA ∪ {χ,∼χ′} ⊆ C. It follows that χ ∈ C and 〈χ′, ψ′〉 is not executable at
C. Contradiction. Therefore, ΘA ∪{χ,∼χ′} is inconsistent. Thus, we have `

∧
ΘA →

(χ→ χ′). It follows by Rule NECU and Axiom DISTU that ` U
∧

ΘA → U(χ→ χ′). It
follows by Proposition 4.4.5 that ΘA ` U(χ→ χ′). 2

Proposition 4.4.8 Given ψ ∈ Sub+(ϕ), 〈χ′, ψ′〉 ∈ Sub+(ϕ) and B ∈ SA, if 〈χ′, ψ′〉
is executable at B, and ψ ∈ B′ for each B′ ∈ SA with B

〈χ′,ψ′〉−−−−→ B′, then we have
ΘA ` U(ψ′ → ψ).

PROOF Assume that ΘA∪{ψ′,∼ψ} is consistent. It follows that there exists C ∈ SA

such that ΘA ∪ {ψ′,∼ψ} ⊆ C. It follows that B
χ′,ψ′−−−→ C. It follows that ψ ∈ C.

Contradiction. Therefore, ΘA ∪ {ψ′,∼ψ} is inconsistent. Thus, we have `
∧

ΘA →
(ψ′ → ψ). It follows by Rule NECU and Axiom DISTU that ` U

∧
ΘA → U(ψ′ → ψ).

It follows by Proposition 4.4.5 that ΘA ` U(ψ′ → ψ). 2

Now we are ready to prove the truth lemma for the model defined in Definition 4.4.4.

Proposition 4.4.9 For each ψ ∈ Sub+(ϕ),MA, B  ψ iff ψ ∈ B.

PROOF Boolean cases are trivial; we only focus on the case of Khw(χ, ψ).
Right to Left: It follows that 〈χ, ψ〉 ∈ ActA. Given MA, C  χ, it follows that

ψ ∈ C ′ if C
〈χ,ψ〉−−−→ C ′. It follows by IH that MA, C ′  ψ. Thus, we only need to

show that 〈χ, ψ〉 is executable at C, namely there exists C ′ ∈ SA such that ψ ∈ C ′.
Assume that there is no C ′ ∈ SA such that ψ ∈ C ′. It follows by Proposition 4.4.6
that ΘA ` U∼ψ. Thus, we have ΘA ` U(ψ → ⊥). Since ΘA ⊆ C, it follows that
C ` U(ψ → ⊥). Since Khw(χ, ψ) ∈ B, it follows that Khw(χ, ψ) ∈ ΘA, and that
Khw(χ, ψ) ∈ C. Therefore, it follows by Axiom UWKh that C ` Khw(χ,⊥), namely
C ` U∼χ. It follows by Axiom TU that C ` ∼χ, namely C ` ¬χ. Contradiction.
Therefore, there exists C ′ ∈ SA such that ψ ∈ C ′.

Left to Right: IfM, B  Khw(χ, ψ), it follows that there exists a ∈ (ActA)• such
that for eachM, C  χ, we have a is executable at C andM, C ′  ψ for all C ′ ∈ SA
with C a−→ C ′. There are three cases:

• a = ε. It follows that M, C  ψ if M, C  χ. By IH, we have that χ ∈ C
implies ψ ∈ C for all C ∈ SA. Therefore, we have ΘA ∪{χ,¬ψ} is inconsistent.
It follows that ΘA ` χ → ψ. It follows by Rule NECU, Axiom DISTU, and
Proposition 4.4.5 that ΘA ` U(χ → ψ). It follows by Axiom EMPWKh that ΘA `
Khw(χ, ψ). Therefore, Khw(χ, ψ) ∈ B.
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• a = 〈χ′, ψ′〉 ∈ ActA and there is no C ∈ SA such that χ ∈ C. It follows that
ΘA ∪ {∼χ} is inconsistent. Thus, we have ΘA ` ¬χ. It follows by Rule NECU,
Axiom DISTU, and Proposition 4.4.5 that ΘA ` U¬χ, namely ΘA ` Khw(χ,⊥).
Since ` U(⊥ → ψ), it follows by Axiom UWKh that ΘA ` Khw(χ, ψ). Thus, we
have Khw(χ, ψ) ∈ B.

• a = 〈χ′, ψ′〉 ∈ ActA and χ ∈ C for some C ∈ SA. It follows by IH that for
each χ ∈ B′ we have 〈χ′, ψ′〉 is executable at B′. It follows by Proposition 4.4.7
that ΘA ` U(χ → χ′). It follows by IH that ψ ∈ C ′ for each C ′ ∈ SA with

C
〈χ′,ψ′〉−−−−→ C ′. It follows by Proposition 4.4.8 that ΘA ` U(ψ′ → ψ). Since

〈χ′, ψ′〉 ∈ ActA, it follows that ΘA ` Khw(χ′, ψ′). It follows by Axiom UWKh

that ΘA  Khw(χ, ψ). Thus, we have Khw(χ, ψ) ∈ B.

2

Proposition 4.4.10 (Completeness w.r.t. nonstandard semantics) If  ϕ then ` ϕ.

PROOF We only need to show that if ϕ is consistent then ϕ is satisfiable with respect
to the nonstandard semantics . If ϕ is consistent, it follows by Proposition 4.4.3 that
there is an MCS A in Sub+(ϕ) such that ϕ ∈ A. It follows by Proposition 4.4.9 that
M, A  ϕ. 2

Proposition 4.4.11 (Small model property) If ϕ is satisfiable with respect to the non-
standard semantics, then there is a modelM such thatM, s  ϕ and the model is of
size at most 2k, where k = |Sub+(ϕ)|.

PROOF If ϕ is satisfiable with respect to the nonstandard semantics, it follows by Pro-
position 4.4.2 that ϕ is consistent. Then by Definition 4.4.4, we can construct a model
MA where A is an MCS in Sub+(ϕ) and ϕ ∈ A. It follows by Proposition 4.4.10 that
MA, A  ϕ. It is obvious that |MA| ≤ O(2|ϕ|). 2

It follows by Propositions 4.4.2 and 4.4.10 that SWKH is sound and complete with
respect to the nonstandard semantics . Since SWKH is also sound and complete with
respect to the standard semantics �, we have the following lemma.

Proposition 4.4.12 � ϕ if and only if  ϕ.

Theorem 4.4.13 (Decidability) The problem whether ϕ is valid on the standard se-
mantics is decidable.

PROOF To decide whether ϕ is valid on the standard semantics, it follows by Proposi-
tion 4.4.12 that we only need to decide whether ϕ is valid on the nonstandard semantics.
In other words, we only need to decide whether ¬ϕ is satisfiable on the nonstandard
semantics. It follows by Proposition 4.4.11 that the problem whether ¬ϕ is satisfiable
on the nonstandard semantics is decidable. 2
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4.5 Conclusion
In this chapter, we interpret the knowing-how formula Khw(ψ,ϕ) as that the agent has a
weak conformant plan for achieving ϕ given ψ, and a weak conformant plan for achiev-
ing ϕ-states from ψ-states is a finite linear action sequence such that the performance of
the action sequence at each ψ-state will always end up with a ϕ-state, whether or not all
parts of the plan have been completed. Our interpretation of knowledge-how is weaker
than the one in Wang (2015a), where knowledge-how is interpreted as that the agent has
a conformant plan, but our interpretation is more realistic. We also presented a sound
and complete axiomatic system. This shows that this system is weaker than the system
addressed in Wang (2015a). We also showed that this logic is decidable by reducing the
problem to a decidable problem to the nonstandard semantics.

One more interesting thing is that the canonical model is more complicated than
the one of Wang (2015a) even though the axiomatic system is weaker. Mainly, Khw
formulas are realized by a two-step plan in our canonical model while they are realized
by a one-step plan in the canonical model in Wang (2015a). This also affords us some
useful ideas about how to construct the decision procedure for the logic with a tableau
method. For example, for the tableau system of our logic, it is not enough to consider
only one-step plans.

The nonstandard semantics played a major role in this paper not only because it is the
key step in the proof of the decidability but also because it reveals the fact that our form-
alization of knowledge-how is in principle the same as in Moore’s first interpretation. It
also shows that Moore’s interpretation does not contain the trivial case of knowing how
to guarantee a state of affairs by doing nothing.

For future directions, we can express the existence of a weak conformant plan in the
logic framework proposed in Yu et al. (2016) where the existence of a conformant plan
can be expressed by a formula. Moreover, we can study the knowing-how logic under a
fixed action set. In our model, the action setAct is a part of the model, but it is clear that
for different Act we will get different logics. For example, if Act is empty, Khw(ψ,ϕ)
is equivalent to U(ψ → ϕ). If Act is a singleton, the formula Khw(p, q) ∧ Khw(q, r)→
Khw(p, r) will be valid under our standard semantics. The more interesting thing is to
compare the logic containing a finite Act with the logic containing an infinite Act.

Another exciting research field is the multi-agent version of Khw. We can also con-
sider group notions of “knowing how”. Especially, the distributed knowledge-how will
be very useful. If you know how to achieve B from A and I know how to achieve C from
B, we two together should know how to achieve C from A. Moreover, it also makes good
sense to extend our language with a public announcement operator. The update of the
new information will result in the change of the background information throughout the
model, and this will affect the knowledge-how.
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Chapter 5

Strategically knowing how1

5.1 Introduction
Standard epistemic logic focuses on reasoning about propositional knowledge expressed
by knowing that ϕ (see Hintikka (1962)). However, in natural language, various other
knowledge expressions are also frequently used, such as knowing what, knowing how,
knowing why, and so on.

In particular, knowing how receives much attention in both philosophy and AI. Epi-
stemologists debate about whether knowledge-how is also propositional knowledge (see
Fantl (2008)), e.g., whether knowing how to swim can be rephrased in terms of knowing
that. In AI, it is crucial to let autonomous agents know how to accomplish certain goals
in robotics, game playing, decision making, and multi-agent systems. In fact, a large
body of AI planning can be viewed as finding algorithms to let the autonomous planner
know how to achieve some propositional goals, i.e., to obtain goal-directed knowledge-
how (see Gochet (2013)). Here, both propositional knowledge and knowledge-how mat-
ter, especially in the planning problems where initial uncertainty and non-deterministic
actions are present. From a logician’s point of view, it is interesting to see how know-
ing how interacts with knowing that, and how they differ in their reasoning patterns. A
logic of knowing how also helps us find a notion of consistency regarding knowledge
databases.

Example 5.1.1 Consider the scenario where a doctor needs a plan to treat a patient and
cure his pain, under the uncertainty about some possible allergy. If there is no allergy,
then simply taking some pills can cure the pain, and the surgery is not a legitimate
option. On the other hand, in presence of the allergy, the pills may cure the pain or have
no effect at all, while the surgery can cure the pain for sure. Let p denote that the patient
has the pain, and let q denote that there is an allergy. The model in Figure 5.1 represents
this scenario with an additional action of testing whether q. The dotted line represents
the initial uncertainty about q, and the test on q can eliminate this uncertainty (there is
no dotted line between s3 and s4). According to the model, to cure the pain (guarantee
¬p) at the end, it makes sense to take the surgery if the result of the test whether q

1This is based on the paper Fervari et al. (2017) that is co-authored with Raul Fervari, Andreas Herzig,
and Yanjing Wang.
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s1 : p,¬q test // s3 : p,¬q pills
// s5 : ¬p,¬q

s2 : p, q
test // s4 : p, q

surgery
--

pills

��

pills
11 s6 : ¬p, q

Figure 5.1: A scenario representing how to cure the pain.

happens to be positive and take the pills otherwise. We can say that the doctor in this
case knows how to cure the pain.

How can we formalize the knowledge-how of the agent in such scenarios with uncer-
tainty? In the early days of AI, people already started to look at it in the setting of logics
of knowledge and action (see McCarthy and Hayes (1969); McCarthy (1979); Moore
(1985); Singh (1994); Lespérance et al. (2000); van der Hoek et al. (2000)). However,
there has been no consensus on how to capture the logic of “knowing how” formally (cf.
the recent surveys Gochet (2013) and Ågotnes et al. (2015)). The difficulties are well
discussed in Jamroga and Ågotnes (2007) and Herzig (2015) and simply combining the
existing modalities for “knowing that” and “ability” in a logical language like ATEL (see
van der Hoek and Wooldridge (2003)) does not lead to a genuine notion of “knowing
how”, e.g., knowing how to achieve p is not equivalent to knowing that there exists a
strategy to make sure p. It does not work even when we replace the notion of strategy by
the notion of uniform strategy where the agent has to choose the same action on indis-
tinguishable states (see Jamroga and Ågotnes (2007)). Let ϕ(x) express that x is a way
to make sure some goal is achieved and let K be the standard knowledge-that modality.
There is a crucial distinction between the de dicto reading of knowing how (K∃xϕ(x))
and the desired de re reading (∃xKϕ(x)) endorsed also by linguists and philosophers
(see Quine (1953); Stanley and Williamson (2001)). The latter implies the former, but
not the other way round. For example, consider a variant of Example 1.1 where no
test is available: then the doctor has de dicto knowledge-how to cure, but not the de
re one. Proposals to capture the de re reading have been discussed in the literature,
such as making the knowledge operator more constructive (see Jamroga and Ågotnes
(2007)), making the strategy explicitly specified (see Herzig et al. (2013); Belardinelli
(2014)), or inserting K in-between an existential quantifier and the ability modality in
seeing-to-it-that (STIT) logic (see Broersen and Herzig (2015)).

In Wang (2015a, 2016), a new approach is proposed by introducing a single new
modality Khs of (conditional) goal-directed knowing how, instead of breaking it down
into other modalities. This approach is in line with other de re treatments of non-standard
epistemic logics of knowing whether, knowing what and so on (cf. Wang (2017) for a
survey). The semantics of Khs is inspired by the idea of conformant planning based
on linear plans (see Smith and Weld (1998); Yu et al. (2016)). It is shown that Khs is
not a normal modality, e.g, knowing how to get drunk and knowing how to drive does
not entail knowing how to drive when drunk. The work is generalized further in Li and
Wang (2017) and Li (2017). However, in these previous works, there was no explicit
knowing that modality K in the language and the semantics of Khs is based on linear
plans, which does not capture the broader notion allowing branching plans or strategies
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that are essential in the scenarios like Example 5.1.1.
In this chapter, we extend this line of work in the following aspects:

• Both the knowing how modality Khs and knowing that modality K are in the
language.

• In contrast to the state-independent semantics in Wang (2015a), we interpret Khs
locally w.r.t. the current uncertainty.

• Instead of linear plans in Wang (2015a), the semantics of our Khs operator is
based on strategies (branching plans).

The intuitive idea behind our semantics of Khs is that the agent knows how to achieve
ϕ iff (s)he has an executable uniform strategy σ such that the agent knows that:

• σ guarantees ϕ in the end given the uncertainty;

• σ always terminates after finitely many steps.

Note that for an agent to know how to make sure ϕ, it is not enough to find a plan
which works de facto, but the agent should know it works in the end. This is a strong re-
quirement inspired by planning under uncertainty, where the collection of final possible
outcomes after executing the plan is required to be a subset of the collection of the goal
states (see Geffner and Bonet (2013)).

Technically, our contributions are summarized as follows:

• A logical language with bothKhs andK operators with a semantics which fleshes
out formally the above intuitions about knowing how.

• A complete axiomatization with intuitive axioms.

• Decidability of our logic.

This chapter is organized as follows: Section 5.2 lays out the language and semantics
of our framework; Section 5.3 proposes the axiomatization and proves its soundness;
we prove the completeness of our proof system and show the decidability of the logic in
Section 5.4 before we conclude with future work.

5.2 The logic SKH
In this section, we will introduce our logic of knowing how with strategy, and we denote
the logic as SKH. Firstly, we introduce the language of SKH. Besides the common
boolean operators, there are a knowing-that modality K and a strategically knowing-
how modality Khs.

Definition 5.2.1 (Language) Let P be a countable set of propositional symbols. The
language is defined by the following BNF where p ∈ P:

ϕ := p | ¬ϕ | (ϕ ∧ ϕ) | Kϕ | Khsϕ.

We use ⊥,∨,→ as usual abbreviations and write K̂ for ¬K¬.
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The formula Kϕ reads “the agent knows that ϕ”. The formula Khsϕ reads “the
agent strategically knows how to guarantee ϕ”, that is, the agent has a strategy such that
she knows that performing the strategy will make her know that ϕ.

Definition 5.2.2 (Models) A model M is a quintuple 〈W,Act,∼, { a−→| a ∈ Act}, V 〉
where:

• W is a non-empty set,

• Act is a set of actions,

• ∼ ⊆W ×W is an equivalence relation on W ,

• a−→⊆W ×W is a binary relation on W , and

• V : W → 2P is a valuation.

Note that the labels in Act do not appear in the language. The graph in Figure 5.1.1
represents a model with omitted self-loops of ∼ (dotted lines), and the equivalence
classes induced by ∼ are {s1, s2}, {s3}, {s4}, {s5}, {s6}. In this chapter we do not
require any properties linking ∼ and a−→ to lay out the most general framework. We will
come back to particular assumptions like perfect recall at the end of the chapter. Given
a model and a state s, if there exists t such that s a−→ t, we say that a is executable at
s. Also note that the actions can be non-deterministic. For each s ∈ W , we use [s] to
denote the equivalence class {t ∈ W | s ∼ t}, and we use [W ] to denote the collection
of all the equivalence classes on W w.r.t. ∼. We use [s]

a−→ [t] to indicate that there are
s′ ∈ [s] and t′ ∈ [t] such that s′ a−→ t′. If there is a t ∈ W such that [s]

a−→ [t], we say a
is executable at [s].

Definition 5.2.3 (Strategies) Given a model, a (uniformly executable) strategy is a par-
tial function σ : [W ] → Act such that σ([s]) is executable at all s′ ∈ [s]. Particularly,
the empty function is also a strategy, the empty strategy.

Note that the executability is as crucial as uniformity, without which the knowledge-
how may be trivialized. We use dom(σ) to denote the domain of σ. Function σ can be
seen as a binary relation on [W ] × Act such that ([s], a), ([s], b) ∈ σ implies a = b.
Therefore, given strategies σ and τ with τ ⊆ σ, it follows that dom(τ) ⊆ dom(σ), and
τ([s]) = σ([s]) for all [s] ∈ dom(τ).

Definition 5.2.4 (Executions) Given a strategy σ w.r.t a model M, a possible exe-
cution (or just execution) of σ is a possibly infinite sequence of equivalence classes

δ = [s0][s1] · · · such that [si]
σ([si])−−−−→ [si+1] for all 0 ≤ i < |δ|. Particularly, [s] is a

possible execution if [s] 6∈ dom(σ). If the execution is a finite sequence [s0] · · · [sn], we
call [sn] the leaf-node, and [si](0 ≤ i < n) an inner-node w.r.t. this execution. If it is
infinite, then all [si](i ∈ N) are inner-nodes. A possible execution of σ is complete if it
is infinite or its leaf-node is not in dom(σ).

Given δ = [s0] · · · [sn] and µ = [t0] · · · [tm], we use δ v µ to denote that µ extends
δ, i.e., n ≤ m and [si] = [ti] for all 0 ≤ i ≤ n. If δ v µ, we define δ t µ = µ. We
use CELeaf(σ, s) to denote the set of all leaf-nodes of all the complete executions of
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s1 a //

a

  

a

��

s2 b // s3

s4 b
gg s5 b // s6

Figure 5.2

σ (which can be many due to non-determinism) starting from [s], and CEInner(σ, s)
to denote the set of all the inner-nodes of complete executions of σ starting from [s].
CELeaf(σ, s) ∩ CEInner(σ, s) = ∅ since if [s] is a leaf-node of a complete execution
then σ is not defined at [s].

The following is an example to help us get familiar with the notions defined above.

Example 5.2.5 Consider the model depicted in Figure 5.2. Let σ be a function defined
as σ = {{s1} 7→ a, {s2, s5} 7→ b, {s4} 7→ b}. We have the following results.

• σ is a strategy.

• All the complete executions of σ starting from [s1] are:

{s1}{s2, s5}{s3}
{s1}{s2, s5}{s6}
{s1}{s4}{s4} · · · · · ·

• CEInner(σ, s1) = {{s1}, {s2, s5}, {s4}}

• CELeaf(σ, s1) = {{s3}, {s6}}

Definition 5.2.6 (Semantics) Given a pointed modelM, s, the satisfaction relation �
is defined as follows:

M, s � p ⇐⇒ p ∈ V (s)
M, s � ¬ϕ ⇐⇒ M, s 2 ϕ
M, s � ϕ ∧ ψ ⇐⇒ M, s � ϕ andM, s � ψ
M, s � Kϕ ⇐⇒ for all s′ : s∼s′ impliesM, s′ � ϕ
M, s � Khsϕ ⇐⇒ there exists a strategy σ such that

1.[t]⊆JϕK for all [t]∈CELeaf(σ, s)
2. all its complete executions
starting from [s] are finite,

where JϕK = {s ∈W | M, s � ϕ}.

Note that the two conditions for σ in the semantics of Khs reflect our two intu-
itions mentioned in the introduction. The implicit role of K in Khs will become more
clear when the axioms are presented. Going back to Example 5.1.1, we can verify
that Khs¬p holds in s1 and s2 due to the strategy σ = {{s1, s2} 7→ test, {s3} 7→
pills, {s4} 7→ surgery}. Note that CELeaf(σ, s) = {[s5], [s6]} = {{s5}, {s6}}
and J¬pK = {s5, s6}. On the other hand, Khs¬q is not true in s1: although the agent
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can guarantee ¬q de facto in s1 by taking a strategy such that {s1, s2} 7→ test and
{s3} 7→ pills, he cannot know it beforehand since nothing works at s2 to make sure
¬q. Readers may also verify that Khs(p ↔ q) holds at s1 and s2 (hint: a strategy is a
partial function).

The following example shows that (Khsϕ ∧ Khs(ϕ→ ψ))→ Khsψ is not valid.

Example 5.2.7 Let the modelM be depicted as below. It is easy to verify thatM, s �
Khsp due to the strategy σ1 = {{s} 7→ a} and thatM, s � Khs(p → q) due to the
empty strategy. Since there is no strategy to get to a state where q is true, thus we have
M, s � ¬Khsq.

s : ¬p,¬q a // t : p,¬q

5.3 A deductive system
In this subsection, we provide a Hilbert-style proof system for the logic SKH and show
it is sound.

5.3.1 Axiom system SKHS
Definition 5.3.1 (SKH System) The axiomatic system SKH is shown in Table 5.1. We
write SKH ` ϕ (or sometimes just ` ϕ) to mean that the formula ϕ is derivable in the
axiomatic system SKH; the negation of SKH ` ϕ is written SKH 0 ϕ (or just 0 ϕ). To
say that a set D of formulas is SKH-inconsistent (or just inconsistent) means that there
is a finite subset D′ ⊆ D such that ` ¬

∧
D′, where

∧
D′ :=

∧
ϕ∈D′ ϕ if D′ 6= ∅ and∧

ϕ∈∅ ϕ := >. To say that a set of formulas is SKH-consistent (or just consistent) means
that the set of formulas is not inconsistent. Consistency or inconsistency of a formula
refers to the consistency or inconsistency of the singleton set containing the formula.

Axioms
TAUT all axioms of propositional logic
DISTK Kp ∧ K(p→ q)→ Kq
T Kp→ p
4 Kp→ KKp
5 ¬Kp→ K¬Kp
AxKtoKh Kp→ Khsp
AxKhtoKhK Khsp→ KhsKp
AxKhtoKKh Khsp→ KKhsp
AxKhKh KhsKhsp→ Khsp
AxKhbot Khs⊥ → ⊥

Rules:

MP
ϕ,ϕ→ ψ

ψ
NECK

ϕ

Kϕ
MONOKh

ϕ→ ψ

Khsϕ→ Khsψ
SUB

ϕ(p)

ϕ[ψ/p]

Table 5.1: System SKHS
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Note that we have S5 axioms forK. AxKtoKh says if p is known then you know how
to achieve p by doing nothing (we allow the empty strategy). AxKhtoKhK reflects the first
condition in the semantics that the goal is known after the complete executions. We will
come back to this axiom at the end of the chapter. Note that the termination condition
is not fully expressible in our language but AxKhbot captures part of it by ruling out
strategies that have no terminating complete executions at all. AxKhKh essentially says
that the strategies can be composed. Its validity is quite involved, to which we devote
the next subsection. Finally, AxKhtoKKh is the positive introspection axiom for Khs,
whose validity is due to uniformity of the strategies on indistinguishable states. The
corresponding negative introspection can be derived by using AxKhtoKKh, 5 and T:

Proposition 5.3.2 ` ¬Khsp→ K¬Khsp.

PROOF
(1) ¬KKhsp→ ¬Khsp AxKhtoKKh

(2) K¬KKhsp→ K¬Khsp (1), NECK
(3) ¬KKhsp→ K¬KKhsp 5

(4) ¬KKhsp→ K¬Khsp (2), (3), MP
(5) ¬Khsp→ ¬KKhsp T

(6) ¬Khsp→ K¬Khsp (4), (5), MP
2

Note that we do not have the K axiom for Khs because it is not valid (see Ex-
ample 5.2.7). Instead, we have the monotonicity rule MONOKh. In fact, the logic is not
normal, as desired, e.g., (Khsp∧Khsq)→ Khs(p∧q) is not valid: the existence of two
different strategies for different goals does not imply the existence of a unified strategy
to realize both goals.

5.3.2 Soundness
In this subsection, we show that the axiom system SKH is sound with respect to the
semantics provided in Section 5.2. Given that the knowing-that modalityK is interpreted
in the same way as epistemic logic, we will not show that the S5 axioms and rules for
K are sound. Also since the logic is built on a well-understood modal logic, we will not
show that the rules MP and SUB are sound. We will focus on the axioms and rules with
the knowing-how modality Khs.

The following proposition shows the axiom AxKtoKh is valid.

Proposition 5.3.3 � Kϕ→ Khsϕ

PROOF If M, s � Kϕ, it follows that [s] ⊆ JϕK. Let σ be the empty strategy. It
follows that [s] is the only complete execution of σ starting from [s]. Thus, we have
CELeaf = {[s]}. Since [s] ⊆ JϕK, it follows thatM, s � Khsϕ. 2

The following proposition shows the axiom AxKhtoKhK is valid.

Proposition 5.3.4 � Khsϕ→ KhsKϕ

PROOF If M, s � Khsϕ, it follows that there exists a strategy σ such that all its
complete executions starting from [s] are finite. Moreover, for each [t] ∈ CELeaf(σ, s),
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we have [t] ⊆ JϕK, and then we haveM, t′ � Kϕ for all t′ ∈ [t]. Therefore, we have
[t] ⊆ JKϕK for each [t] ∈ CELeaf(σ, s). Thus, we haveM, s � KhsKϕ. 2

The following proposition shows that the axiom AxKhtoKKh is valid.

Proposition 5.3.5 � Khsϕ→ KKhsϕ

PROOF IfM, s � Khsϕ, it follows that there exists a strategy σ such that all its com-
plete executions starting from [s] are finite. Moreover, for each [t] ∈ CELeaf(σ, s), we
have [t] ⊆ JϕK. Given s′ ∈ [s], since [s] = [s′], it follows that all complete executions
of σ starting from [s′] are the same as all complete executions of σ starting from [s].
Thus, we have CELeaf(σ, s) = CELeaf(σ, s′). Therefore, we haveM, s′ � Khsϕ for
all s′ ∈ [s]. It follows thatM, s � KKhsϕ. 2

The following proposition shows that the axiom AxKhbot is valid.

Proposition 5.3.6 � Khs⊥ → ⊥

PROOF We only need to show � ¬Khs⊥. Assuming that M, s � Khs⊥ for some
pointed modelM, s. It follows that there exists a strategy σ such that all its complete
executions starting from [s] are finite and [t] ⊆ J⊥K for each [t] ∈ CELeaf(σ, s). No
matter whether [s] ∈ dom(σ) or not, we always have CELeaf(σ, s) 6= ∅. It follows that
there exists [t] ∈ CELeaf(σ, s) such that [t] ⊆ J⊥K. Since [t] 6= ∅ and J⊥K = ∅, it is
a contradiction that [t] ⊆ J⊥K. Therefore,Khs⊥ is not satisfiable, and thus � ¬Khs⊥. 2

The following proposition shows that the rule MONOKh preserves the validity.

Proposition 5.3.7 If � ϕ→ ψ then we have � Khsϕ→ Khsψ.

PROOF If � ϕ → ψ and M, s � Khsϕ, we need to show M, s � Khsψ. It fol-
lows by M, s � Khsϕ that there exists a strategy σ such that all its complete exe-
cutions starting from [s] are finite. Moreover, for each [t] ∈ CELeaf(σ, s), we have
[t] ⊆ JϕK. Since � ϕ→ ψ, it follows that JϕK ⊆ JψK. Thus, we have [t] ⊆ JψK for each
[t] ∈ CELeaf(σ, s). Therefore, we haveM, s � Khsψ. 2

The axiom AxKhKh is about the “sequential” compositionality of strategies. Suppose
on some pointed model there is a strategy σ to guarantee that we end up with the states
where on each s of them we have some other strategy σs to make sure p (KhsKhsp).
Since the strategies are uniform, we only need to consider some σ[s] for each [s]. Now to
validate AxKhKh, we need to design a unified strategy to compose σ and those σ[s] into
one strategy to still guarantee p (Khsp). The general idea is actually simple: first order
those leafnodes [s] (using Axiom of Choice); then by transfinite induction adjust σ[s]

one by one to make sure these strategies can fit together as a unified strategy θ; finally,
merge the relevant part of σ with θ into the desired strategy. We make this idea precise
below. First we need an observation:

Proposition 5.3.8 Given strategies τ and σ with τ ⊆ σ, if [s] ∈ dom(τ) and dom(σ) ∩
CELeaf(τ, s) = ∅, then a sequence is a complete execution of σ from [s] if and only if it
is a complete execution of τ from [s].
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PROOF Left to Right: Let [s0] · · · [sn] · · · be a complete execution of σ from [s]. We
will show that it is also a complete execution of τ from [s]. Firstly, we show that it is
possible to execute τ from [s]. If it is not, then there exists [si] such that [si] is not the
leaf-node of this execution and that [si] 6∈ dom(τ). Let [sj ] be the minimal equivalence
class in the sequence with such properties. It follows that [sj ] ∈ CELeaf(τ, s) and
[sj ] ∈ dom(σ). These are contradictory with dom(σ) ∩ CELeaf(τ, s) = ∅.

Next we will show that [s0] · · · [sn] · · · forms a complete execution of τ from [s].
This is obvious if the sequence is infinite. If it is finite, let the leaf-node be [sm]. It
follows that [sm] 6∈ dom(σ). Since τ ⊆ σ, it follows [sm] 6∈ dom(τ). Therefore, the
execution is complete given τ .

Right to Left: Let [s0] · · · [sn] · · · be a complete execution of τ from [s]; we will
show that it is also a complete execution of σ from [s]. Since τ ⊆ σ, it is also a possible
execution given σ. If the execution is infinite, this is obvious. If it is finite, let the leaf-
node be [sm]. It follows that [sm] ∈ CELeaf(τ, s). Since dom(σ) ∩ CELeaf(τ, s) = ∅,
it follows that [sm] 6∈ dom(σ). Therefore, the execution is also complete given σ. 2

Now, we are ready to show that the axiom AxKhKh is valid.

Proposition 5.3.9 � KhsKhsϕ→ Khsϕ.

PROOF SupposingM, s � KhsKhsϕ, we will show thatM, s � Khsϕ. It follows by
the semantics that there exists a strategy σ such that all complete executions of σ from
[s] are finite and [t] ⊆ JKhsϕK for all [t] ∈ CELeaf(σ, s) (∗). If [s] 6∈ dom(σ), then
CELeaf(σ, s) = {[s]}, and then it is trivial thatM, s � Khsϕ. Next we focus on the
case of [s] ∈ dom(σ).

According to the well-ordering theorem (equivalent to Axiom of Choice), we assume
CELeaf(σ, s) = {Si | i < γ} where γ is an ordinal number and γ ≥ 1. Let si be an
element in Si; then [si] = Si. Since M, si � Khsϕ for each i < γ, it follows that
for each [si] there exists a strategy σi such that all complete executions of σi from [si]
are finite and [v] ⊆ JϕK for all [v] ∈ CELeaf(σi, si) (J). Next, in order to show
M, s � Khsϕ, we need to define a strategy τ . The definition consists of the following
steps.

Step I. By induction on i, we will define a set of strategies τi where 0 ≤ i < γ. Let fi =⋃
β<i τβ andDi = CEInner(σi, si)\ (dom(fi)∪{[v] ∈ CELeaf(fi, t) | [t] ∈ dom(fi)})

we define:

• τ0 = σ0|CEInner(σ0,s0);

• τi = fi ∪ (σi|Di) for i > 0.

Claim 5.3.9.1 We have the following results:

1. For each 0 ≤ i < γ, τj ⊆ τi if j < i;

2. For each 0 ≤ i < γ, τi is a partial function;

3. For each 0 ≤ i < γ, dom(τi) ∩ CELeaf(τj , t) = ∅ where t ∈ dom(τj) if j < i;

4. For each 0 ≤ i < γ, if δ = [t0] · · · is a complete execution of τi from [t] ∈ dom(τi)
then |δ| = n for some n ∈ N and [tn] ⊆ JϕK;
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5. For each 0 ≤ i < γ, [si] ∈ dom(τi) or [si] ⊆ JϕK.

Proof of claim 5.3.9.1:

1. It is obvious.

2. We prove it by induction on i. For the case of i = 0, it is obvious. For the case
of i = α > 0, it follows by the IH that τβ is a partial function for each β < α.
Furthermore, it follows by 1. that τβ1

⊆ τβ2
for all β1 < β2 < α. Thus, we have

fα =
⋃
β<α τβ is a partial function. Since σα is a partial function, in order to

show τα is a partial function, we only need to show that dom(fα)∩Dα = ∅. Since
Dα = CEInner(σα, sα) \ dom(fα) \ {[v] ∈ CELeaf(fα, t) | t ∈ dom(fα)}, it is
obvious that dom(fα) ∩Dα = ∅.

3. We prove it by induction on i. It is obvious for the case of i = 0. For the case
of i = α > 0, given j < α and t ∈ dom(τj), we need to show that dom(τα) ∩
CELeaf(τj , t) = ∅. Supposing [v] ∈ CELeaf(τj , t), we will show that [v] 6∈
dom(τα), namely [v] 6∈ dom(fα) ∪ Dα. Since j < α and fα =

⋃
β<α τα, it

follows t ∈ dom(fα). Moreover, due toDα = CEInner(σα, sα)\dom(fα)\{[v] ∈
CELeaf(fα, t) | t ∈ dom(fα)}, it follows [v] 6∈ Dα.

Next, we only need to show [v] 6∈ dom(fα). Assuming [v] ∈ dom(fα), it follows
that [v] ∈ dom(τβ) for some β < α. There are two cases: j < β or j ≥ β. If j <
β, it follows by the IH that dom(τβ)∩CELeaf(τj , t) = ∅. Contradiction. If j ≥ β,
it follows by 1. that τβ ⊆ τj . Due to [v] ∈ dom(τβ), it follows [v] ∈ dom(τj). This
contradicts with [v] ∈ CELeaf(τj , t). Thus, we have [v] 6∈ dom(fα).

4. We prove it by induction on i. For the case of i = 0, due to the fact that dom(τ0) =
CEInner(σ0, s0), it follows that there is a σ0’s possible execution [s0] · · · [sm]
such that m ∈ N and [sm] = [t]. Let µ = [s0] · · · [sm−1] ◦ δ. (If m = 0
then µ = δ). Since δ is a complete execution of τ0 from [t], it follows that µ is
a complete execution of σ0 from [s0]. It follows by (J) that µ is finite. Thus,
δ = [t0] · · · [tn] for some n ∈ N. Since [tn] ∈ CELeaf(σ0, s0), it follows by (J)
that [tn] ⊆ JϕK.

For the case of i = α > 0, there are two situations: [t] ∈ dom(fα) or [t] ∈ Dα.
If [t] ∈ dom(fα), it follows that [t] ∈ dom(τβ) for some β < α. By 3, we have
dom(τα) ∩ CELeaf(τβ , t) = ∅. Since δ is a complete execution of τα, it follows
by Proposition 5.3.8 that δ is also a complete execution of τβ from [t]. It follows
by the IH that |δ| = n for some n ∈ N and [tn] ⊆ JϕK.

If [t] ∈ Dα, there are two cases: there exist k < |δ| and β < α s.t. [tk] ∈ dom(τβ),
or there do not exist such k and β. (Please note that |δ| > 1 due to the fact that
δ = [t0] · · · is a complete execution of τα from [t] ∈ dom(τα)).

– [tk] ∈ dom(τβ) for some k < |δ| and some β < α: It follows that µ =
[tk] · · · is a complete execution of τα from [tk]. By 3. and Proposition 5.3.8,
µ is a complete execution of τβ from [tk]. By IH, µ = [tk] · · · [tk+n] for
some n ∈ N and [tk+n] ⊆ JϕK. Therefore, |δ| = k + n.

– If there do not exist k < |δ| and β < α s.t. [tk] ∈ dom(τβ), it follows
that δ = [t0] · · · is a σα’s possible execution from [t]. Since [t] ∈ Dα ⊆
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CEInner(σα, sα), then there is a σα’s possible execution [s0] · · · [sm] s.t.
m ∈ N, [s0] = [sα] and [sm] = [t]. Let µ = [s0] · · · [sm−1] ◦ δ. (If m = 0
then µ = δ). It follows that µ is σα’s possible execution from sα. By (J),
all complete executions of σα from sα are finite. Thus, µ is finite. Therefore,
δ = [t0] · · · [tn] for some n ∈ N.
We continue to show that [tn] ⊆ JϕK. Since δ = [t0] · · · [tn] is a complete
execution of τα from t and it is also a possible execution of σα from t,
there are two cases: [tn] ∈ CELeaf(fα, t

′) for some t′ ∈ dom(fα), or δ
is a complete execution of σα from t. If [tn] ∈ CELeaf(fα, t

′) for some
t′ ∈ dom(fα), then there exists β < α s.t. [t] ∈ CELeaf(τβ , t

′) and [t′] ∈
dom(β). By IH, [tn] ⊆ JϕK. If δ is a complete execution of σα from t, it
follows that µ is a complete execution of σα from [sα]. Then by (J), we
have [tn] ⊆ JϕK.

5. If [si] 6∈ dom(σi), it follows by (J) that [si] ⊆ JϕK. Otherwise, there are two
cases: i = 0 or i = α > 0. If i = 0, it follows by [s0] ∈ dom(σ0) that [s0] ∈
CEInner(σ0, s0). Thus, [s0] ∈ dom(τ0).

If i = α > 0 and [sα] ∈ dom(σα), we will show that if [sα] 6∈ dom(τα) then
[sα] ⊆ JϕK. Firstly, we have that [si] ∈ CEInner(σα, sα). Since [sα] 6∈ dom(τα),
it follows that [sα] ∈ CELeaf(fα, t) for some [t] ∈ dom(fα). It follows that there
exists β < α such that [sα] ∈ CELeaf(τβ , t) and t ∈ dom(τβ). It follows by 4.
that [si] ⊆ JϕK.

�

Step II. We define τγ =
⋃
i<γ τi. It follows by 1. and 2. of Claim 5.3.9.1 that τγ is

indeed a partial function. Then we prove the following claim.

Claim 5.3.9.2 If δ = [t0] · · · is a complete execution of τγ from [t] ∈ dom(τγ) then
|δ| = n for some n ∈ N and [tn] ⊆ JϕK

Proof of claim 5.3.9.2: Since [t] ∈ dom(τγ), it follows that [t] ∈ dom(τi) for some i < γ.
It follows by 5. of Claim 5.3.9.1 that all complete executions of τi from [t] are finite.
Thus, there exists µ v δ such that |µ| = n for some n ∈ N and µ is a complete execution
of τi from [t]. It follows by 5. of Claim 5.3.9.1 that [tn] ⊆ JϕK.

Next, we only need to show δ = µ. If not, then δ = [t0] · · · [tn][tn+1] · · · . We
then have that there exists j < γ such that {tk | 0 ≤ k ≤ n} ⊆ dom(τj). It cannot
be that j ≤ i. Otherwise, µ is not a complete execution of τi since τj ⊆ τi by 1.
of Claim 5.3.9.1. Thus, we have j > i. Since we also have that [tn] ∈ dom(τj),
[tn] ∈ CELeaf(τi, t) and t ∈ dom(τi), this is contradictory with 3. of Claim 5.3.9.1.
Therefore, we have δ = µ. �

Step III. We define τ as τ = τγ ∪ (σ|C) where C = CEInner(σ, s) \ (dom(τγ)∪{[v] ∈
CELeaf(τ ′, t) | [t] ∈ dom(τγ)}) and σ is the strategy mentioned at (∗). Since both τγ
and σ|C are partial functions, τ is also a partial function. We then prove the following
claim.

Claim 5.3.9.3 If δ = [t0] · · · is a complete execution of τ from [t] ∈ dom(τ) then
|δ| = n for some n ∈ N and [tn] ⊆ JϕK.
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Proof of claim 5.3.9.3: Since dom(τ) = dom(τγ)∪C, there are two cases: [t] ∈ dom(τγ)
or [t] ∈ C.

If [t] ∈ dom(τγ), it follows that CELeaf(τγ , t) ∩ C = ∅. Moreover, we have
CELeaf(τγ , t) ∩ dom(τγ) = ∅. Thus, we have CELeaf(τγ , t) ∩ dom(τ) = ∅. It fol-
lows by Proposition 5.3.8 that δ is a complete execution of τγ from from [t]. It follows
by Claim 5.3.9.2 |δ| = n for some n ∈ N and [tn] ⊆ JϕK

If [t] ∈ C, there are two cases: there exists k < |δ| such that [tk] ∈ dom(τγ), or
there does not exists such k. (Please note that |δ| > 1 due to the fact that δ = [t0] · · · is
complete execution of τ from [t] ∈ dom(τ)).

• [tk] ∈ dom(τγ) for some k < |δ|: It follows that µ = [tk] · · · is a complete execu-
tion of τ from [tk]. Since dom(τ)∩CELeaf(τγ , tk) = ∅. It follows by Proposition
5.3.8 that µ is a complete execution of τγ from [tk]. It follows by Claim 5.3.9.2
that µ = [tk] · · · [tk+n] for some n ∈ N and [tk+n] ⊆ JϕK. Therefore, |δ| = k+n.

• If there does not exist k < |δ| s.t. [tk] ∈ dom(τγ), then δ = [t0] · · · is a σ’s
possible execution from [t]. Since [t] ∈ C ⊆ CEInner(σ, s), then there is a
σ’s possible execution [s0] · · · [sm] s.t. m ∈ N, [s0] = [s] and [sm] = [t]. Let
µ = [s0] · · · [sm−1] ◦ δ. (If m = 0 then µ = δ). It follows that µ is σ’s possible
execution from s. By (∗), all complete executions of σ from s are finite. Thus, µ
is finite. Therefore, δ = [t0] · · · [tn] for some n ∈ N.

We continue to show that [tn] ⊆ JϕK. Since δ = [t0] · · · [tn] is a complete ex-
ecution of τ from t and it is also a σ’s possible execution from t, there are two
cases: [tn] ∈ CELeaf(τγ , t

′) for some t′ ∈ dom(τγ), or δ is a complete execution
of σ from t. If [tn] ∈ CELeaf(τγ , t

′) for some [t′] ∈ dom(τγ), it follows by Claim
5.3.9.2 that [tn] ⊆ JϕK. If δ is a complete execution of σ from t, it follows that µ is
a complete execution of σ from [s]. It follows that [tn] = Si for some 0 ≤ i < γ.
Since δ = [t0] · · · [tn] is a complete execution of τ from [t] ∈ dom(τγ), it follows
[tn] 6∈ dom(τγ). We then have [tn] 6∈ dom(τi), namely Si 6∈ τi. It follows by 5. of
Claim 5.3.9.1 that Si ⊆ JϕK, namely [tn] ⊆ JϕK.

�
Next, we continue to show thatM, s � Khsϕwith the assumption that [s] ∈ dom(σ).

Since [s] ∈ dom(σ), we have [s] ∈ CEInner(σ, s). There are two cases: [s] ∈ dom(τ)
or not. If [s] ∈ dom(τ), it follows by claim 5.3.9.3 thatM, s � Khsϕ. If [s] 6∈ dom(τ),
due to [s] ∈ CEInner(σ, s), it follows that [s] ∈ CELeaf(τγ , t) for some [t] ∈ dom(τγ).
It follows by Claim 5.3.9.2 that [s] ⊆ JϕK. It follows thatM, s � Kϕ. It is obvious that
M, s � Khsϕ. 2

Now we are ready to prove the soundness, which can be proven by induction on the
length of the proof.

Theorem 5.3.10 (Soundness) If ` ϕ then � ϕ.

5.4 Completeness and decidability
Let Φ be a set of formulas such that it is closed under subformula and ∼ϕ ∈ Φ for
each ϕ ∈ Φ, where ∼ϕ = χ if ϕ = ¬χ, otherwise, ∼ϕ = ¬ϕ. It is obvious that Φ is
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countable since the whole language itself is countable. Given a set of formulas ∆, let

∆|K = {Kϕ | Kϕ ∈ ∆}
∆|¬K = {¬Kϕ | ¬Kϕ ∈ ∆}
∆|Khs = {Khsϕ | Khsϕ ∈ ∆}

∆|¬Khs = {¬Khsϕ | ¬Khsϕ ∈ ∆}

Below we define the closure of Φ, and use it to build a canonical model w.r.t. Φ. We
will show that when Φ is finite then we can build a finite model.

Definition 5.4.1 cl(Φ) is the smallest set such that:

• Φ ⊆ cl(Φ);

• if ϕ ∈ Φ then Kϕ,¬Kϕ ∈ cl(Φ).

Definition 5.4.2 (Atom) Let cl(Φ) = {ψi | i ∈ N}. The formula set ∆ = {Yi | i ∈ N}
is an atom of cl(Φ) if

• Yi = ψi or Yi = ∼ψi for all ψi ∈ cl(Φ);

• ∆ is consistent.

An atom of Φ is also called an maximally consistent subset of Φ. Note that if Φ is
the whole language then an atom is simply a maximally consistent set. By a standard
inductive construction, we can obtain the Lindenbaum-like result in our setting:

Proposition 5.4.3 Let Γ be a consistent subset of cl(Φ) and ϕ ∈ cl(Φ). If Γ ∪ {±ϕ} is
consistent then there is an atom ∆′ of cl(Φ) such that (Γ∪{±ϕ}) ⊆ ∆′, where±ϕ = ϕ
or ±ϕ = ∼ϕ.

PROOF Let ψ1, · · · , ψn, · · · be all the formulas in cl(Φ) \ Γ \ {ϕ}. We define Γi as
below.

Γ0 = Γ ∪ {±ϕ}

Γi+1 =

{
Γi ∪ {ψi} if Γi ∪ {ψi} is consistent
Γi ∪ {∼ψi} otherwise

Firstly, we will show that Γi is consistent for all i ∈ N. Since Γ0 is consistent, we
only need to show that if Γi is consistent then Γi+1 is consistent, i.e. either Γi ∪ {ψi} or
Γi∪{∼ψi} is consistent. Assuming both Γi∪{ψi} and Γi∪{¬ψi} are not consistent, it
follows that Γi ` ¬ψi and Γi ` ψi. That is, Γi is inconsistent. Contradiction. Therefore,
either Γi ∪ {ψi} or Γi ∪ {∼ψi} is consistent.

Let ∆′ =
⋃
i∈N Γi. It follows that ∆′ is consistent. It is obvious that either ψ ∈ ∆′

or ∼ψ ∈ ∆′ for all ψ ∈ cl(Φ). Therefore, ∆′ is an atom of cl(Φ). 2

Next, we are going to build a canonical model w.r.t. Φ.

Definition 5.4.4 Given a subformula-closed Φ, the canonical modelMΦ = 〈W,Act,∼
, { x−→| x ∈ Act}, V 〉 is defined as:
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• W = {∆ | ∆ is an atom of cl(Φ)};

• Act = {ϕ | Khsϕ ∈ Φ};

• ∆ ∼ ∆′ iff ∆|K = ∆′|K;

• for each ϕ ∈ Act, ∆
ϕ−→ ∆′ iff Khsϕ,¬Kϕ ∈ ∆ and Kϕ ∈ ∆′;

• for each p ∈ Φ, p ∈ V (∆) iff p ∈ ∆.

Note that we use formulas that the agent knows how to achieve as the action labels,
and we introduce an action transition if it is necessary, i.e., Khsϕ but ¬Kϕ (the empty
strategy does not work). Requiring Kϕ ∈ ∆′ is to reflect the first condition in the
semantics of Khs. Using NECK, DISTK and Proposition 5.4.3, it is routine to show the
existence lemma for K:

Proposition 5.4.5 Let ∆ be a state in MΦ, and Kϕ ∈ cl(Φ). If Kϕ 6∈ ∆ then there
exists ∆′ ∈ [∆] such that ∼ϕ ∈ ∆′.

PROOF Let Γ = ∆|K∪∆|¬K∪{∼ϕ}. Γ is consistent. If not, there areKϕi, · · · ,Kϕn
and ¬Kψ1, · · · ,¬Kψm in ∆ such that

` (Kϕ1 ∧ · · · ∧ Kϕn ∧ ¬Kψ1 ∧ · · · ∧ ¬Kψm)→ ϕ.

Following by NECK and DISTK, we have

` K(Kϕi ∧ · · · ∧ Kϕn ∧ ¬Kψ1 ∧ · · · ∧ ¬Kψm)→ Kϕ.

Since the epistemic operator K is distributive over ∧ and ` KKϕi ↔ Kϕi for all 1 ≤
i ≤ n and ` K¬Kψi ↔ ¬Kψi for all 1 ≤ i ≤ m, we have

` (Kϕi ∧ · · · ∧ Kϕn ∧ ¬Kψ1 ∧ · · · ∧ ¬Kψm)→ Kϕ.

Since Kϕi, · · · ,Kϕn and ¬Kψ1, · · · ,¬Kψm are all in ∆ and Kϕ ∈ cl(Φ), it follows
that Kϕ ∈ ∆. It is contradictory with the assumption that Kϕ 6∈ ∆. Therefore, Γ is
consistent. It follows by Proposition 5.4.3 that there exists an atom ∆′ of cl(Φ) such
that Γ ⊆ ∆′. Since (∆|K ∪∆|¬K) ⊆ ∆′, we have ∆′ ∼ ∆, that is, ∆′ ∈ [∆]. 2

Proposition 5.4.6 Let ∆ and ∆′ be two states in MΦ such that ∆ ∼ ∆′. We have
∆|Khs = ∆′|Khs .

PROOF For each Khsϕ ∈ ∆, by Definition 5.4.1, Khsϕ ∈ Φ, and then KKhsϕ ∈
cl(Φ). For each Khsϕ ∈ ∆, by Axiom AxKhtoKKh, we have KKhsϕ ∈ ∆. Since ∆ ∼
∆′, then KKhsϕ ∈ ∆′, and by Axiom T, Khsϕ ∈ ∆′. So we showed that Khsϕ ∈ ∆
implies Khsϕ ∈ ∆′. Similarly we can prove Khsϕ ∈ ∆′ implies Khsϕ ∈ ∆. Hence,
∆|Khs = ∆′|Khs . 2

The following is a crucial observation for proofs.

Proposition 5.4.7 Let ∆ be a state in MΦ and ψ ∈ Act be executable at [∆]. If

Khsϕ ∈ ∆′ for all ∆′ with [∆]
ψ−→ [∆′] then Khsϕ ∈ ∆.
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PROOF First, we show that Kψ is not consistent with ¬Khsϕ. It is obvious that
Khsϕ ∈ cl(Φ). Since ψ is executable at [∆], there are atoms Γ1 and Γ2 s.t. Γ1

ψ−→ Γ2.
Then Kψ ∈ Γ2. Assuming that Kψ is consistent with ¬Khsϕ, by Proposition 5.4.3
there exists an atom Γ of cl(Φ) s.t. {Kψ,¬Khsϕ} ⊆ Γ. Since ψ ∈ Act is executable at

[∆], then by definition of
ψ−→,∼ and Proposition 5.4.6, Khsψ,¬Kψ ∈ ∆. It follows that

∆
ψ−→ Γ, then [∆]

ψ−→ [Γ]. This is contradictory with the assumption that Khsϕ ∈ ∆′

for all ∆′ with [∆]
ψ−→ [∆′]. Then Kψ is not consistent with ¬Khsϕ. Hence, ` Kψ →

Khsϕ.
Since ` Kψ → Khsϕ, it follows by Rule MONOKh and Axiom AxKhtoKhK that

` Khsψ → KhsKhsϕ. Moreover, it follows by Axiom AxKhKh that ` Khsψ → Khsϕ.

Since ψ is executable at [∆], it follows by the definition of
ψ−→ and Proposition 5.4.6 that

Khsψ ∈ ∆. Therefore, we have Khsϕ ∈ ∆. 2

Lemma 5.4.8 For each ϕ ∈ cl(Φ),MΦ,∆ � ϕ iff ϕ ∈ ∆.

PROOF We prove it by induction on ϕ. We only focus on the cases of Kϕ and Khsϕ;
the other cases are straightforward.

• Case of Kϕ. IfMΦ,∆ � Kϕ, we will show Kϕ ∈ ∆. Assuming Kϕ 6∈ ∆, it
follows by Proposition 5.4.5 that there exists ∆′ ∈ [∆] such that ¬ϕ ∈ ∆′. It
follows by IH that MΦ,∆′ � ¬ϕ. It is contradictory with MΦ,∆ � Kϕ and
∆′ ∈ [∆]. Thus we have Kϕ ∈ ∆.

If Kϕ ∈ ∆, we will show MΦ,∆ � Kϕ. Assuming MΦ,∆ 2 Kϕ, it follows
that there is ∆′ ∈ [∆] such thatMΦ,∆′ � ¬ϕ. It follows by IH that ¬ϕ ∈ ∆′. It
must be the case of ¬Kϕ ∈ ∆′ because Kϕ ∈ ∆′ implies ϕ ∈ ∆′. It follows that
¬Kϕ ∈ ∆. Contradiction. Thus we haveMΦ,∆ � Kϕ.

• Case of Khsϕ. Note that if Khsϕ ∈ cl(Φ) then ϕ ∈ cl(Φ) thus by Definition
5.4.1 Kϕ ∈ cl(Φ).

Right to Left: If Khsϕ ∈ ∆, we will showMΦ,∆ � Khsϕ. Firstly, there are
two cases: Kϕ ∈ ∆ or Kϕ 6∈ ∆. If Kϕ ∈ ∆, then Kϕ,ϕ ∈ ∆′ for all ∆′ ∈ [∆].
Since ϕ ∈ Φ, it follows by IH that MΦ,∆′ � ϕ for all ∆′ ∈ [∆]. Therefore,
MΦ,∆ � Kϕ. It follows by Axiom AxKtoKh and the soundness of SKH that
MΦ,∆ � Khsϕ. If ¬Kϕ ∈ ∆, we first show that Kϕ is consistent. If not,
namely ` Kϕ → ⊥, it follows by Rule MONOKh that ` KhsKϕ → Khs⊥. It
follows by Axiom AxKhbot that ` KhsKϕ → ⊥. Since Khsϕ ∈ ∆, it follows
by Axiom AxKhtoKhK that ∆ ` ⊥, which is contradictory with the fact that ∆ is
consistent. Therefore, Kϕ is consistent.

By Proposition 5.4.3 there exists an atom ∆′ s.t. Kϕ ∈ ∆′. Note that ϕ ∈ Act.
Thus, we have ∆

ϕ−→ ∆′, then [∆]
ϕ−→ [∆′]. Let [∆′′] be an equivalence class s.t.

[∆]
ϕ−→ [∆′′], which indicates Γ

ϕ−→ Γ′′ for some Γ ∈ [∆] and Γ′′ ∈ [∆′′]. By
definition of

ϕ−→ and ∼ we get Kϕ ∈ Θ for all Θ ∈ [∆′′]. By IH,MΦ,Θ � ϕ for
all Θ ∈ [∆′′], namely [∆′′] ⊆ JϕK. Moreover,

ϕ−→ is not a loop on [∆] because
¬Kϕ ∈ ∆. Thus, the partial function σ = {[∆] 7→ ϕ} is a strategy s.t. all
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its complete executions starting from [∆] are finite and [∆′′] ⊆ JϕK for each
[∆′′] ∈ CELeaf(σ,∆). Then,MΦ,∆ � Khsϕ.

Left to Right: Suppose MΦ,∆ � Khsϕ, we will show Khsϕ ∈ ∆. By the
semantics, there exists a strategy σ s.t. all complete executions of σ starting from
[∆] are finite and [Γ] ⊆ JϕK for all [Γ] ∈ CELeaf(σ,∆). By IH, ϕ ∈ Γ′ for all
Γ′ ∈ [Γ] and [Γ] ∈ CELeaf(σ,∆). By Proposition 5.4.5, we get Kϕ ∈ Γ for all
[Γ] ∈ CELeaf(σ,∆). By Axiom AxKtoKh and Proposition 5.4.6, Khsϕ ∈ Γ for
all [Γ] ∈ CELeaf(σ,∆).

If [∆] 6∈ dom(σ), it is obvious that Khsϕ ∈ ∆ because [∆] ∈ CELeaf(σ,∆).
Next, we consider the case of [∆] ∈ dom(σ), then [∆] ∈ CEInner(σ,∆). In order
to show Khsϕ ∈ ∆, we will show a more strong result that Khsϕ ∈ ∆′ for all
[∆′] ∈ CEInner(σ,∆). Firstly, we show the following claim:

Claim 5.4.8.1 If there exists [∆′] ∈ CEInner(σ,∆) such that ¬Khsϕ ∈ ∆′ then
there exists an infinite execution of σ starting from [∆].

Proof of claim 5.4.8.1: Let X be the set {[Θ] ∈ CEInner(σ,∆) | ¬Khsϕ ∈ Θ}.
It follows that [∆′] ∈ X and X ⊆ dom(σ). We define a binary relation R on X as

R = {([Θ], [Θ′]) | [Θ]
σ([Θ])−−−−→ [Θ′]}.

For each [Θ] ∈ X , we have that σ([Θ]) is executable at [Θ]. Since ¬Khsϕ ∈ Θ,

by Proposition 5.4.7 there exists an atom Θ′ s.t. [Θ]
σ([Θ])−−−−→ [Θ′] and ¬Khsϕ ∈

Θ′. Since Khsϕ ∈ Γ for all [Γ] ∈ CELeaf(σ,∆) and [Θ] ∈ CEInner(σ,∆),we
have [Θ′] ∈ CEInner(σ,∆). Then [Θ′] ∈ X . Therefore, R is an entire binary re-
lation onX , namely for each [Θ] ∈ X there is [Θ′] ∈ X such that ([Θ], [Θ′]) ∈ R.
Then by Axiom of Dependent Choice there exists an infinite sequence [Θ0][Θ1] · · ·
s.t. ([Θn], [Θn+1]) ∈ R for all n ∈ N.

From the definition of R, [Θ0][Θ1] · · · is a complete execution of σ starting from
[Θ0]. Since [Θ0] ∈ CEInner(σ,∆) and all complete execution of σ from [∆]
are finite, there is a possible execution [∆0] · · · [∆j ] for some j ∈ N s.t. [∆0] =
[∆] and [∆j ] = [Θ0]. Therefore, [∆0] · · · [∆j ][Θ1] · · · is an infinite complete
execution of σ from [∆]. �

Therefore, we have Khsϕ ∈ ∆′ for all [∆′] ∈ CEInner(σ, s). Otherwise, by
claim 5.4.8.1 there is an infinite complete execution given σ from [∆]. This is
contradictory with the fact that if all complete execution of σ from [∆] are finite,
then Khsϕ ∈ ∆′ for all [∆′] ∈ CEInner(σ, s). Since [∆] ∈ dom(σ), we get
[∆] ∈ CEInner(σ,∆). Then Khsϕ ∈ ∆.

2

Please note that in the proofs above it does not matter whether the domain ofMΦ is
finite or not. Therefore, let Φ be the set of all formulas, then each maximally consistent
set ∆ is actually an atom which satisfies all its formulas inMΦ, according to the above
truth lemma. Completeness then follows immediately.

Theorem 5.4.9 SKH is strongly complete.
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Note that if Φ is the set of all subformulas of a given formula ϕ, then cl(Φ) is still
finite. Due to the soundness of SKH and Proposition 5.4.3, a satisfiable formula ϕ must
be consistent thus appearing in some atom, and thus ϕ is satisfiable in MΦ. It is not
hard to see that |MΦ| ≤ 22|ϕ| where 2|ϕ| is the bound on the size of cl(Φ). This gives
us a small model property of our logic, so decidability follows.

Proposition 5.4.10 (Small model property) If ϕ0 is satisfiable then it is satisfiable in
a model with at most 2k states where k = |cl(Φ)| and Φ is the subformula closure
generated by ϕ0.

Theorem 5.4.11 SKH is decidable.

PROOF With the small model property, this can be proved by a standard argument
presented in Blackburn et al. (2001). 2

5.5 Conclusion
In this chapter, we propose an epistemic logic of both (goal-directed) knowing how and
knowing that, and capture the interaction of the two. We have shown that this logic is
sound and complete, as well as decidable. We hope that the axioms are illuminating
towards a better understanding of knowing how.

Note that we do not impose any special properties between the interaction of a−→ and
∼ in the models so far. In the future, it would be interesting to see whether assuming
properties of perfect recall (K[a]ϕ→ [a]Kϕ) and/or no learning ([a]Kϕ→ K[a]ϕ) (cf.
e.g., Fagin et al. (1995); Wang and Li (2012)) can change the logic or not.

Our notion of knowing how is relatively strong, particularly evidenced by the axiom
AxKhtoKhK : Khsϕ → KhsKϕ, which is due to the first condition of our semantics
for Khs, inspired by planning with uncertainty. We believe that this is reasonable for
the scenarios where the agent has perfect recall (or, say, never forgets), which is usually
assumed implicitly in the discussions on planning (cf. Yu et al. (2016)). However, for
a forgetful agent it may not be intuitive anymore, e.g., I know how to get drunk when
sober but I may not know how to get to the state that I know I am drunk, assuming drunk
people do not know they are drunk. Another obvious next step is to consider knowing
how in multi-agent settings.
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Chapter 6

Privacy in arrow update logic1

6.1 Introduction
Information plays an important role in several fields of scientific research, such as philo-
sophy, game theory, and artificial intelligence. In this chapter, the notion of information
is confined to the kind of information in one’s mind, which can also be called belief or
knowledge. In real-life contexts, information is often communicated. This leads to a
change of agents’ information without any change in the bare facts of the world. One
kind of these communicative events is announcement. This chapter will focus on reas-
oning about information change due to announcements.

In a multi-agent system, there are at least three types of announcements: public,
private and semi-private (cf. e.g., Baltag and Moss (2004)). Imagine a scenario where
two agents a and b are in a room, and in front of them, there is a coin in a closed
box. Neither of them knows whether the coin is lying heads up or tails up. A public
announcement occurs when the box is opened for both to see. This changes not only the
agent’s information about the bare facts (basic information) but also agents’ information
about each other (higher-order information). When a secretly opens the box and b does
not suspect that anything happened, the effect is the same as the effect that the truth is
privately announced to a. This changes only a’s basic and higher-order information.
A semi-private announcement occurs when a opens the box and b observes a’s action
but b does not see the coin. This changes a’s basic information and the higher-order
information of both.

There are a great number of modal logic theories which formalize reasoning about
information change. Plaza’s logic (see Plaza (1989, 2007)) is concerned with reasoning
about information change due to public announcement, in which a public announce-
ment of a statement eliminates all epistemic possibilities in which the statement does
not hold. Gerbrandy and Groeneveld develop a more general dynamic epistemic logic
in Gerbrandy and Groeneveld (1997), which formalizes reasoning about information
change produced by public and private announcements. The dynamic epistemic logic
with action models (DEL), due to Baltag et al. (1998) (see also Baltag and Moss (2004);
van Ditmarsch et al. (2007)), is a powerful tool to formalize reasoning about informa-
tion change. An action model is a Kripke model-like object that describes agents’ beliefs

1This is based on a short paper presented on the conference of Advances in Modal Logic 2014.
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about incoming information. All public, private and semi-private announcement can be
modeled in DEL.

Kooi and Renne’s Arrow Update Logic (AUL) (see Kooi and Renne (2011a)) can
also formalize reasoning about information change produced by public and semi-private
announcement. Different from other logical frameworks, AUL models information
change by updating the epistemic access relation, without changing the domain of the
model. This makes AUL very suitable for modeling information change on knowledge-
how. Recall Example 5.1.1 in Chapter 5. If a new scientific discovery announces that
the pill will certainly cure the pain no matter whether there is an allergy or not. In AUL,
this announcement is formalized as removing the reflexive arrow on s4. The doctor then
will know that he can treat the patient by pill without any surgery. However, in AUL,
it is common knowledge among agents how each will process incoming information.
This assumption of common update policy is dropped in its extension, Generalized Ar-
row Update Logic (see Kooi and Renne (2011b)) (GAUL), which can capture the same
information change that can be modeled in DEL.

Although DEL and GAUL are much more expressive than AUL, the great express-
ive power does not come for free. Their update operators are much more complex than
the update operator of AUL. This chapter presents a variation of AUL, Private Ar-
row Update Logic (PAUL), which also drops the common update-policy assumption of
AUL (so that private announcement can be expressed) and keeps the update operator
as simple and intuitive as AUL. This logic framework is also inspired by the context-
indexed semantics developed in Wang (2011) and Wang and Cao (2013). As we will
see, PAUL can formalize reasoning about information change due to public, private and
semi-private announcement.

The rest of the chapter is organized as follows: Section 6.2 proposes the language
and semantics of PAUL, and works out some examples; Section 6.3 presents the tableau
calculus for PAUL and show soundness and completeness; Section 6.4 shows PAUL is
decidable; Section 6.5 concludes with some directions for further research.

6.2 The logic PAUL

6.2.1 Syntax and semantics
In this section, we introduce the language of this logic. This language differs from the
language of AUL in the sense that each update information is only visible to an agent
group.

Definition 6.2.1 (PAUL Language) Let Agt be a nonempty finite set of agents, and let
P be a countable set of atomic propositions. The PAUL language is generated by the
following BNF:

ϕ ::= > | p | ¬ϕ | (ϕ ∧ ϕ) | [U,G]ϕ | 2aϕ
U ::= {(ϕ, a, ϕ)} | {(ϕ, a, ϕ)} ∪ U

where p ∈ P, a ∈ Agt and G ⊆ Agt is a superset of the set of agents occurring in U .

We will often omit parentheses around expressions when doing so ought not cause
confusion. The expression ϕ is called a PAUL-formula (or just formula). The expression
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[U,G] occurring in a formula is called a PAUL-update (or just update), which consists
of an update core U and an agent group G to which the update is visible. We let LPAUL
denote the set of formulas and updates. Given formulas ϕ and ψ and an agent a ∈ Agt,
the syntactic object (ϕ, a, ψ) ∈ U is called an a-arrow specification. As usual, we use
the following abbreviations: ⊥ := ¬>, ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ), ϕ → ψ := ¬ϕ ∨ ψ,
3aϕ := ¬2a¬ϕ.

Intuitively, the formula 2aϕ expresses that agent a believes ϕ. The formula [U,G]ϕ
expresses that ϕ holds after the arrow update [U,G]. The update [U,G] means that the
update is visible only to agents in G. Please note that the update in AUL has only one
part, that is [U ], which is visible for all agents. Therefore, the update [U ] in AUL is the
same as the update [U,Agt] here.

Definition 6.2.2 (Kripke Model) A Kripke modelM is a tuple 〈WM, RM, VM〉, con-
sisting of a nonempty set WM of worlds, a function RM assigning each agent a ∈ Agt
a binary relation RMa ⊆WM×WM (RMa can also be seen as a function from WM to
2W
M

), and a function VM : P → P(WM). A pointed Kripke model is a pair (M, s)
consisting of a Kripke modelM and a world s ∈ WM; the world s is called the point
of (M, s).

Given a Kripke modelM, we call WM the domain of the model. For each agent
a ∈ Agt, we call RMa a’s possibility relation since it defines what worlds agent a con-
siders possible in any given world. Please note that updates considered in this chapter do
not change any bare facts but only the agent’s beliefs. Therefore, when an update hap-
pens, we do not have to change the domain of the model but only change the possibility
relations (or ‘arrows’).

Definition 6.2.3 Let ρ = [U1, G1] · · · [Un, Gn] be an update sequence (or just sequence),
and ρ = ε if n = 0. The update sequence ρ|a is defined by the following induction on n.

ε|a = ε

(ρ[U,G])|a =

{
ρ|a a 6∈ G
ρ|a[U,G] a ∈ G

The sequence ρ|a means the updates visible to the agent a.

Definition 6.2.4 (PAUL Semantics) Given a pointed Kripke model (M, s), an update
sequence ρ and a formula ϕ, we writeM, s �ρ ϕ to mean that ϕ is true atM, s after
updates ρ, and we write M, s 2ρ ϕ for the negation of M, s �ρ ϕ. The relation
(notation: �ρ) is defined by the following induction on formula construction.

M, s �ρ >
M, s �ρ p iff s ∈ V (p)
M, s �ρ ¬ϕ iff M, s 2ρ ϕ
M, s �ρ (ϕ ∧ ψ) iff M, s �ρ ϕ andM, s �ρ ψ
M, s �ρ [U,G]ϕ iff M, s �ρ[U,G] ϕ
M, s �ρ 2aϕ iff ∀t ∈WM : (s, t) ∈ RMa ∗ (ρ|a) impliesM, t �ρ|a ϕ

RMa ∗ ε
def
= RMa

RMa ∗ (ρ′[U,G])
def
= {(s, t) ∈ RMa ∗ ρ′ | there exists (ϕ, a, ψ) ∈ U :

M, s �ρ′ ϕ andM, t �ρ′ ψ}
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We also writeM, s �ε ϕ asM, s � ϕ. To say that a formula ϕ is valid, written as � ϕ,
means that M, s � ϕ for each pointed Kripke model (M, s). The negation of � ϕ is
written as 2 ϕ. To say that a formula ϕ is satisfiable means there exists a pointed model
(M, s) such thatM, s � ϕ.

The binary relation RMa ∗ ρ|a is a’s possibility relation after the announcement se-
quence ρ. Compared to product semantics, such as in DEL and GAUL, the context-
indexed semantics here has the following characteristics. Firstly, we know that updates
change only agents’ beliefs but not bare facts. This feature is more clear in this se-
mantics because only the possibility relation is updated when 2-formulas are evaluated.
Moreover, product semantics always update the domain of the model when an update
happens, which means that the size of the model may grow rapidly along with the length
of update sequence ρ, but this is not the case here. This is because when 2a-formulas
are evaluated, we do not change the domain of the model but only update a’s possibility
relation with respect to the update sequence visible to a, namely ρ|a.

Kooi and Renne (2011a) present an axiomatic theory for AUL, in which the most
important axiom states that an agent’s belief after an update can be reduced to his (her)
belief before the update. The following proposition shows that the PAUL version of this
reduction axiom also holds.

Proposition 6.2.5 � [U,G]2aϕ↔
∧

(ψ,a,χ)∈U (ψ → 2a(χ→ [U,G]ϕ)) if a ∈ G.

PROOF Let (M, s) be a pointed Kripke model. Firstly, we show that if M, s �
[U,G]2aϕ then M, s �

∧
(ψ,a,χ)∈U (ψ → 2a(χ → [U,G]ϕ)). In order to show that

M, s �
∧

(ψ,a,χ)∈U (ψ → 2a(χ → [U,G]ϕ)), we only need to show that M, t �

[U,G]ϕ if there are (ψ, a, χ) ∈ U and t ∈ RMa (s) such thatM, s � ψ andM, t � χ.
Following by the assumption of M, s � [U,G]2aϕ, we then have M, t �[U,G] ϕ.
Therefore, we haveM, t � [U,G]ϕ.

Secondly, we show that if M, s �
∧

(ψ,a,χ)∈U (ψ → 2a(χ → [U,G]ϕ)) then
M, s � [U,G]2aϕ. Assume that M, s 2 [U,G]2aϕ. It follows that there exists
t ∈WM such that (s, t) ∈ RMa ∗ [U,G] andM, t 2[U,G] ϕ. Since (s, t) ∈ RMa ∗ [U,G],
it follows that (s, t) ∈ RMa and there exists (ψ, a, χ) ∈ U such that M, s � ψ
and M, t � χ. Moreover, since M, s �

∧
(ψ,a,χ)∈U (ψ → 2a(χ → [U,G]ϕ)),

we then have M, t � [U,G]ϕ, namely M, t �[U,G] ϕ. This is in contradiction with
M, t 2[U,G] ϕ. Therefore, we have if M, s �

∧
(ψ,a,χ)∈U (ψ → 2a(χ → [U,G]ϕ))

thenM, s � [U,G]2aϕ. 2

The following proposition shows that if an update is not visible for an agent, then
her belief after the update is the same as her belief before the update.

Proposition 6.2.6 � [U,G]2aϕ↔ 2aϕ if a 6∈ G.

PROOF We have the following:

M, s � [U,G]2aϕ

⇔M, s �[U,G] 2aϕ

⇔ for all (s, t) ∈ Ra ∗ ([U,G]|a) :M, t �[U,G]|a ϕ

⇔ for all (s, t) ∈ Ra :M, t � ϕ due to [U,G]|a = ε
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⇔M, s � 2aϕ

2

6.2.2 Announcements in PAUL
In this section, we will show how public, private and semi-private announcement are
captured in PAUL. Let us consider the following scenario of a concealed coin, which is
a tweaked version of an example used in Baltag and Moss (2004).

Example 6.2.7 (Basic scenario) Two agents a and b enter a large room which contains
a remote-controlled mechanical coin flipper. One of them presses a button, and the coin
spins through the air and lands in a small box on a table with heads or tails lying up.
The box is closed and they are too far away to see the coin.

H
p

T
¬p

a, b
a, b a, b

Figure 6.1: the basic modelM

Just as in Baltag and Moss (2004), this can be modelled by a Kripke model M,
which is pictured in Figure 6.1. The possible world H ∈ WM represents the possible
fact that the coin is lying heads up, and T ∈WM represents tails up. The proposition p
means that the coin is lying heads up, so it is only true in H . The possibility relations of
a and b indicate that both of them do not know whether the coin is lying heads or tails
up.

Example 6.2.8 (Public announcement) After the basic scenario, one of them opens
the box and puts the coin on the table for both to see. The effect of this event on their
beliefs is the same as that of a truthful statement publicly announced to them that the
coin is lying heads or tails up.

H
p

T
¬p

a, b a, b

Figure 6.2: RMa ∗ ([U1, G1]|a) and RMb ∗ ([U1, G1]|b)

After the truthful announcement that the coin is lying heads or tails up, both of them
think there is only one possibility in any given world. Thus only their epistemic accesses
to any given world should be preserved. This announcement is visible for both, since it is
publicly announced. Therefore, this public and truthful announcement can be captured
by the update [U1, G1] where U1 = {(p, a, p), (¬p, a,¬p), (p, b, p), (¬p, b,¬p)} and
G1 = {a, b}. After the update [U1, G1], the possibility relations of a and b turn out
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to be as shown in Figure 6.2. Moreover, since the update is visible to both of them,
a’s possibility relation in b’s opinion is the same as a’s real possibility relation, namely
RMa ∗ ([U1, G1]|b|a) = RMa ∗ ([U1, G1]|a). If H is the actual world, after this public
and truthful announcement, both of them believe that the coin is lying heads up and that
the other also believes so. We can check the following formulas.

• M, H � [U1, G1](2ap ∧2bp)

• M, H � [U1, G1](2a2bp ∧2b2ap)

Example 6.2.9 (Private announcement) After the basic scenario of Example 6.2.7, a
secretly opens the box herself. Agent b does not observe that a opens the box, and indeed
a is certain that b does not suspect that anything happened. The effect of this on their
beliefs is the same as secretly and privately announcing the truth to a.

H Ta a

(a) RM
a ∗ ([U2, G2]|a)

H T
b

b b

(b) RM
b ∗ ([U2, G2]|b)

H T
a

a a

(c) RM
a ∗ ([U2, G2]|b|a)

Figure 6.3: The possibility relations after the update [U2, G2]

After the truth is announced to a, she thinks that there is only one possibility from
any given world. Thus a’s epistemic accesses to the world itself should be preserved
after the announcement. Since the announcement is secret and private, it is visible only
to a. This private and truthful announcement can be captured by the update [U2, G2]
which is defined as U2 = {(p, a, p), (¬p, a,¬p)} and G2 = {a}.

After the update [U2, G2], a’s possibility relation (Figure 6.3a) will change, but b’s
possibility relation (Figure 6.3b) will remain the same as before. Moreover, since b
does not suspect that anything happened, a’s possibility relation in b’s opinion (Figure
6.3c) does not change at all after the announcement. After this private and truthful
announcement to a, only a believes the truth while nothing happened to b’s beliefs. We
can check the following formulas.

• M, H � [U2, G2](2ap ∧ ¬2bp)

• M, H � [U2, G2]¬2b(2ap ∨2a¬p)

Example 6.2.10 (Semi-private announcement) After the basic scenario of Example
6.2.7, agent a opens the box herself. Agent b observes that a opens the box but does not
see the coin. Agent a also does not disclose whether it is heads or tails. The effect of
this on their beliefs is the same as a semi-private announcement to a, which means that
the truth is announced to a only, but b notices what happened.
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H Ta a

(a) RM
a ∗ ([U3, G3]|a)

H T
b

b b

(b) RM
b ∗ ([U3, G3]|b)

H Ta a

(c) RM
a ∗ ([U3, G3]|b|a)

Figure 6.4: The possibility relations after the update [U3, G3]

Since the truth is announced to a, she will know the truth after the announcement.
The situation of b is a little complex. Firstly, b’s possibility relation will remain the
same as before since b is not announced the truth. Secondly, a’s possibility relation
in b’s opinion will change since he observed that a is announced the truth. This semi-
private announcement can be captured by the update [U3, G3] which is defined as U3 =
{(p, a, p), (¬p, a,¬p), (>, b,>)} and G3 = {a, b}.

Agent a’s possibility relation (Figure 6.4a) will change to the reflexive relation after
the update. Since the announcement is not disclosed to b, b’s possibility relation (Figure
6.4b) will not change after the update. However, after the update, a’s possibility relation
in b’s opinion (Figure 6.4c) will change because b observes the announcement. After
the announcement, b believes that a believes the truth, but b still could not distinguish
between the fact that a believes p and the fact that a believes ¬p. We can check the
following formulas.

• M, H � [U3, G3](2ap ∧ ¬2bp)

• M, H � [U3, G3]2b(2ap ∨2a¬p)

6.3 Tableau method
This section will present a proof method for PAUL that uses analytic tableaux. As a
typical tableau method, given a formula ϕ, it systematically tries to construct a model
for it. When it fails, ϕ is inconsistent and thus its negation is valid.

The tableau method in this chapter will manipulate tableau terms, which consist of
two parts: the first part is an update sequence; the second part is a formula, or a check
mark, or a cross mark. In addition, each term is prefixed by a label which stands for
a possible world in the model under construction. A similar method is used in Fitting
(1983); Massacci (2000); Balbiani et al. (2010); Aucher and Schwarzentruber (2013).

Definition 6.3.1 (Term) A term (or tableau term) is a pair (ρ, x) where ρ is a finite
update sequence [U1, G1] · · · [Un, Gn] (ρ = ε if n = 0) and x is a check markX, a cross
mark X or a formula ϕ ∈ LPAUL.

Definition 6.3.2 (Length of term) The length of a formula is defined as follows:

l(p) = 1

l(¬ϕ) = l(ϕ) + 1
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l(ϕ ∧ ψ) = l(ϕ) + l(ψ) + 1

l(2aϕ) = l(ϕ) + 1

l([U,G]ϕ) = l(U) + |G|+ l(ϕ) + 1

l(U) =
∑

(ψ,a,χ)∈U
(l(ψ) + l(χ))

The length of an update sequence is defined as follows:

l(ε) = 0; l(ρ[U,G]) = l(ρ) + l(U) + |G|.

The length of a term is defined as follows:

l(ρ,X) = l(ρ,X) = l(ρ); l(ρ, ϕ) = l(ρ) + l(ϕ).

Please note that the length of the term (ε, ϕ) is the same as the length of ϕ.

Definition 6.3.3 (Labelled term) A label is an alternating sequence of integers and
agents, namely σ ::= n | σan where n ∈ N and a ∈ Agt. A labelled term is a
pair consisting of a label and a term, and we also write it as a triple 〈σ, ρ, x〉.

Each label represents a possible world in a Kripke model. Moreover, a label σan
occurring on a branch of a tableau also indicates that there is an a-arrow from the pos-
sible world σ to the possible world σan. A labelled term 〈σ, ρ, ϕ〉 means ϕ is true at
the possible world σ after the announcements ρ. A labelled term 〈σan, ρ,X〉 means the
a-arrow from σ to σan is preserved after the update sequence ρ. Conversely, a labelled
term 〈σan, ρ,X〉 means the a-arrow is not preserved.

Definition 6.3.4 (Branch) A branch is a set of labelled terms. A label σ is new in a
branch b if there is no term in b that is labelled with σ.

Definition 6.3.5 (Tableau) A tableau forϕ0 ∈ L is a set of branches inductively defined
as follows.

• T = {{(0, ε, ϕ0)}}. This is called the initial tableau for ϕ0.

• T = (T ′ \ {b}) ∪ B, where T ′ is a tableau for ϕ0 that contains the branch b
and B is a finite set of branches generated by applying one of the tableau rules
in Table 6.1 on b. For instance, let b = {〈σ, ρ,¬(ϕ ∧ ψ)〉} then B = {b ∪
{〈σ, ρ,¬ϕ〉}, b ∪ {〈σ, ρ,¬ψ〉}}

Rules (¬¬), (¬∧) and (∧) are exactly as for propositional logic. Rules (¬2a) and
2a are different from their counterparts commonly used in tableau calculi for normal
modal logic. The intuition behind Rule (¬2a) is that if the possible world that σ stands
for satisfied ¬2aϕ after the update sequence ρ then it needs to satisfy the following
conditions: there exists a possible world that is represented by σan (the form of σan
indicates that there is an a-arrow from σ to σan); 〈σan, ρ|a,X〉means the a-arrow from
σ to σan will be preserved after the update sequence ρ|a; 〈σan, ρ|a,¬ϕ〉 means ¬ϕ is
true in σan after the update sequence ρ|a. Similarly, Rule (2a) means that 2aϕ is true
in σ after ρ if and only if for each possible world that is accessible by a-arrow from σ:
either the a-arrow is removed after ρ|a, or ϕ is true in it after ρ|a.



6.3. TABLEAU METHOD 113

〈σ, ρ,¬¬ϕ〉
(¬¬)

〈σ, ρ, ϕ〉

〈σ, ρ,¬(ϕ ∧ ψ)〉
(¬∧)

〈σ, ρ,¬ϕ〉 | 〈σ, ρ,¬ψ〉

〈σ, ρ, ϕ ∧ ψ〉
(∧)

〈σ, ρ, ϕ〉
〈σ, ρ, ψ〉

〈σ, ρ,¬2aϕ〉
(¬2a) σan is new.〈σan, ρ|a,X〉

〈σan, ρ|a,¬ϕ〉

〈σ, ρ,2aϕ〉
(2a) σan is used.〈σan, ρ|a, ϕ〉 | 〈σan, ρ|a,X〉

〈σ, ρ,¬[U,G]ϕ〉
(¬[U,G])

〈σ, ρ[U,G],¬ϕ〉
〈σ, ρ, [U,G]ϕ〉

([U,G])
〈σ, ρ[U,G], ϕ〉

〈σan, ρ[U,G],X〉
(X1) (ψi, a, χi) ∈ U for each 1 ≤ i ≤ k

〈σan, ρ,X〉
〈σ, ρ, ψ1〉
〈σan, ρ, χ1〉

∣∣∣∣∣∣. . .
∣∣∣∣∣∣
〈σan, ρ,X〉
〈σ, ρ, ψk〉
〈σan, ρ, χk〉

〈σan, ρ[U,G],X〉
(X2) there are no ψ and χ such that (ψ, a, χ) ∈ U

〈σan, ε,X〉
〈σan, ε,X〉

〈σan, ρ[(ψ, a, χ), G],X〉
(X1)

〈σan, ρ,X〉 | 〈σ, ρ,¬ψ〉 | 〈σan, ρ,¬χ〉

〈σan, ρ[U,G],X〉
(X2)

|U | = k, k ≥ 2 and (ψi, ai, χi) ∈ U
for each 1 ≤ i ≤ k〈σan, ρ[(ψ1, a1, χ1), G],X〉

...
〈σan, ρ[(ψk, ak, χk), G],X〉

Table 6.1: Tableau rules
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1. 〈0, ε, [(q, b, q), b]2ap ∧ ¬2ap〉
2. 〈0, ε, [(q, b, q), b]2ap〉 (Rule (∧): 1)
3. 〈0, ε,¬2ap〉 (Rule (∧): 1)
4. 〈0, [(q, b, q), b],2ap〉 (Rule ([U,G]): 2)
5. 〈0a1, ε,X〉 (Rule (¬2a): 3)
6. 〈0a1, ε,¬p〉 (Rule (¬2a): 3)

7. 〈0a1, ε, p〉 (Rule (2a): 4) 8. 〈0a1, ε,X〉 (Rule (2a): 4)
closed (6, 7) closed (5, 8)

Figure 6.5: Closed tableau for the formula [(q, b, q), b]2ap ∧ ¬2ap

Rule (¬[U,G]) and Rule ([U,G]) reflect the feature of the semantics that the updates
are just remembered and they are used to update the possibility relation only when 2a
formulas are evaluated. Rule (X1) means that the a-arrow is preserved after ρ[U,G] if
and only if it is firstly preserved after ρ and then preserved by some a-arrow specification
in U . Rule (X2) says it is not possible that the a-arrow from σ to σan is preserved after
ρ[U,G] if there is no a-arrow specifications in U . Rule (X1) and Rule (X2) specify
the conditions under which the a-arrow from σ to σan will be removed. It is removed
after ρ[(ψ, a, χ), G] if either it is already removed after ρ, or it cannot be preserved the
specification (ψ, a, χ). Rule (X2) corresponds to the semantics that Ra ∗ (ρ[U,G]) =⋃

(ψ,a,χ)∈U Ra ∗ (ρ[(ψ, a, χ), G]). Please note that it is trivially true that any a-arrow
will be remove after ρ[(ψ, a′, χ), G] if a′ 6= a.

The following proposition is obvious according to the tableau rules.

Proposition 6.3.6 Given a tableau T and a branch b ∈ T , if 〈σ, ρ, x〉 ∈ b and x = X/X
then σ = σ′an for some label σ′, a ∈ A and n ∈ N.

Definition 6.3.7 (Closed tableau) A branch b is closed if and only if we have either
{〈σ, ρ, p〉, 〈σ, ρ′,¬p〉} ⊆ b for some σ, ρ, ρ′ and p, or {〈σan, ε,X〉, 〈σan, ε,X〉} ⊆ b
for some σan, otherwise it is open. A tableau is closed if and only if all its branches are
closed, otherwise it is open.

Example 6.3.8 In Figure 6.5, the tableau method is used to show the validity of one
instance of the formula of Proposition 6.2.6. The rightmost column shows which tableau
rule is applied in each line.

Next, we will show the soundness, but first we need another definition.

Definition 6.3.9 (Satisfiable branch) Given a Kripke modelM and a branch b, let f
be a function from the labels used in b to WM. We say b is satisfied byM and f if the
followings hold.

• M, f(σ) �ρ ϕ for each 〈σ, ρ, ϕ〉 ∈ b;

• (f(σ), f(σan)) ∈ RMa ∗ ρ for each 〈σan, ρ,X〉 ∈ b;

• (f(σ), f(σan)) 6∈ RMa ∗ ρ for each 〈σan, ρ,X〉 ∈ b.
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If there are such Kripke models and functions, we say b is satisfiable.

It is obvious that if b is satisfiable then all ϕ with (σ, ε, ϕ) ∈ b is satisfiable.

Theorem 6.3.10 (Soundness) If there is a closed tableau for ¬ϕ0, then ϕ0 is valid.

PROOF We show that if ϕ0 is satisfiable then there is no closed tableau for ϕ0. If
ϕ0 is satisfiable, it is obvious that the branch in the initial tableau for ϕ0 is satisfiable.
Therefore, it is enough to show that all tableau rules preserve satisfiability, that is, if a
branch b is satisfiable then at least one branch in B is satisfiable where B is the branch
set generated by applying a tableau rule on b.

Suppose that there are a Kripke modelM and a function f by which the branch b is
satisfied. Next we will show all tableau rules in Table 6.1 that are applicable to b preserve
satisfiability. The rules (¬¬), (¬∧) and (∧) are analogues to the rules commonly used
for propositional logic; we restrict our attention to the other rules.

1. Rule (¬2a): By the assumption, we have that 〈σ, ρ,¬2aϕ〉 ∈ b, B = {b ∪
{〈σan, ρ|a,X〉, 〈σan, ρ|a,¬ϕ〉}} where σan is new in b. SinceM, f(σ) �ρ ϕ, it
follows that there exists t ∈ WM such that (f(σ), t) ∈ RMa ∗ ρ|a andM, t �ρ|a
¬ϕ. Now consider the function f ′ such that f ′(σ′) = f(σ′) for all σ′ used in b and
f ′(σan) = t. We then have (f ′(σ), f ′(σan)) ∈ RMa ∗ ρ|a andM, f ′(σan) �ρ|a
¬ϕ. Therefore, the branch in B is satisfiable.

2. Rule (2a): For each σan which is used in b, we have either (f(σ), f(σan)) ∈
RMa ∗ ρ|a or (f(σ), f(σan)) 6∈ RMa ∗ ρ|a. It follows by 〈σ, ρ,2aϕ〉 ∈ b that
M, f(σ) �ρ 2aϕ. If (f(σ), f(σan)) ∈ RMa ∗ ρ|a then we haveM, f(σan) �ρ|a
ϕ. Thus, the branch b∪ {〈σan, ρ|a, ϕ〉} is satisfiable. If (f(σ), f(σan)) 6∈ RMa ∗
ρ|a, the branch b ∪ {〈σan, ρ|a,X〉} is satisfiable.

3. Rule (¬[U,G]): Since 〈σ, ρ,¬[U,G]ϕ〉 ∈ b, it follows by the assumption that
M, f(σ) �ρ ¬[U,G]ϕ. By semantics, it follows thatM, f(σ) �ρ ¬[U,G]ϕ iff
M, f(σ) 2ρ [U,G]ϕ iff M, f(σ) 2ρ[U,G] ϕ iff M, f(σ) �ρ[U,G] ¬ϕ. Since
B = {b ∪ {〈σ, ρ[U,G],¬ϕ〉}}, the branch in B is satisfiable.

4. Rule ([U,G]): Since 〈σ, ρ, [U,G]ϕ〉 ∈ b, it follows by the assumption thatM, f(σ) �ρ
[U,G]ϕ. By semantics, it follows thatM, f(σ) �ρ [U,G]ϕ iffM, f(σ) �ρ[U,G]

ϕ. Because of B = {b ∪ {〈σ, ρ[U,G], ϕ〉}}, thus the branch in B is satisfiable.

5. Rule (X1): Since we have 〈σan, ρ[U,G],X〉 ∈ b, it follows by the assumption
that (f(σ), f(σan)) ∈ RMa ∗ρ[U,G]. It follows by semantics that (f(σ), f(σan)) ∈
RMa ∗ρ and there exists (ψ, a, χ) ∈ U such thatM, f(σ) �ρ ψ andM, f(σan) �ρ
χ. Let b′ = b∪{〈σan, ρ,X〉, 〈σ, ρ, ψ〉, 〈σan, ρ, χ〉}, we then have b′ is satisfiable.
Due to b′ ∈ B, thus one branch in B is satisfiable.

6. Rule (X2): Since b is satisfied byM and f , it is obvious that Rule (X2) is not
applicable to b.

7. Rule (X1): Since 〈σan, ρ[(ψ, a, χ), G],X〉 ∈ b, it follows by the assumption
that (f(σ), f(σan)) 6∈ RMa ∗ ρ[(ψ, a, χ), G]. It follows by the semantics that
(f(σ), f(σan)) 6∈ RMa ∗ ρ or M, f(σ) 2ρ ψ or M, f(σan) 2ρ χ. There-
fore, we have that one branch of B = {b ∪ {〈σan, ρ,X〉}, b ∪ {〈σ, ρ,¬ψ〉}, b ∪
{〈σan, ρ,¬χ〉}} is satisfiable.
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8. Rule (X2): Since 〈σan, ρ[U,G],X〉 ∈ b, it follows that (f(σ), f(σan)) 6∈ RMa ∗
ρ[U,G]. It follows by the semantics that RMa ∗ ρ[U,G] =

⋃
(ψ,a,χ)∈U R

M
a ∗

ρ[(ψ, a, χ), G]. Therefore, we have (f(σ), f(σan)) 6∈ RMa ∗ ρ[(ψ, a′, χ), G] for
each (ψ,′ a, χ) ∈ U and a′ = a. If (ψ, a′, χ) ∈ U and a′ 6= a, it follows thatRMa ∗
(ρ[(ψ, a′, χ), G]) = ∅. Thus we have that the branch b∪{〈σan, ρ[(ψ, a′, χ), G],X〉 |
(ψ, a′, χ) ∈ U} is satisfiable.

2

In the rest of the section, we prove completeness. First, we need another auxiliary
definition.

Definition 6.3.11 (Saturated tableau) A branch b is saturated if and only if it is satur-
ated under all tableau rules, as defined below:

1. b is saturated under Rule (¬¬) if and only if 〈σ, ρ,¬¬ϕ〉 ∈ b implies 〈σ, ρ, ϕ〉 ∈ b;

2. b is saturated under Rule (¬∧) if and only if 〈σ, ρ,¬(ϕ∧ψ)〉 ∈ b implies 〈σ, ρ,¬ϕ〉 ∈
b or 〈σ, ρ,¬ψ〉 ∈ b;

3. b is saturated under Rule (∧) if and only if 〈σ, ρ, (ϕ∧ψ)〉 ∈ b implies 〈σ, ρ, ϕ〉 ∈ b
and 〈σ, ρ, ψ〉 ∈ b;

4. b is saturated under Rule (¬2a) if and only if 〈σ, ρ,¬2aϕ〉 ∈ b implies that
{〈σan, ρ|a,X〉, 〈σan, ρ|a,¬ϕ〉} ⊂ b for some n ∈ N;

5. b is saturated under Rule (2a) if and only if 〈σ, ρ,2aϕ〉 ∈ b implies that for each
σan occurring in b we have 〈σan, ρ|a,X〉 ∈ b or 〈σan, ρ|a, ϕ〉 ∈ b;

6. b is saturated under Rule (¬[U,G]) if and only if 〈σ, ρ,¬[U,G]ϕ〉 ∈ b implies
〈σ, ρ[UG],¬ϕ〉 ∈ b;

7. b is saturated under Rule ([U,G]) if and only if 〈σ, ρ, [U,G]ϕ〉 ∈ b implies
〈σ, ρ[UG], ϕ〉 ∈ b;

8. b is saturated under Rule (X1) if and only if 〈σan, ρ[U,G],X〉 ∈ b implies
{〈σan, ρ,X〉, 〈σ, ρ, ψ〉, 〈σan, ρ, χ〉} ⊂ b for some (ψ, a, χ) ∈ U ;

9. b is saturated under Rule (X2) if and only if 〈σan, ρ[U,G],X〉 ∈ b implies
{〈σan, ε,X〉, 〈σ, ε,X〉, } ⊂ b;

10. b is saturated under Rule (X1) if and only if 〈σan, ρ[(ψ, a, χ), G],X〉 ∈ b implies
〈σan, ρ,X〉 ∈ b or 〈σ, ρ,¬ψ〉 ∈ b or 〈σan, ρ,¬χ〉 ∈ b.

11. b is saturated under Rule (X2) if and only if 〈σan, ρ[U,G],X〉 ∈ b implies that
{〈σan, ρ[(ψ, a′, χ), G],X〉 | (ψ, a′, χ) ∈ U} ⊂ b, where there are at least two
specifications in U .

We say a tableau is saturated if and only if all its branches are saturated.

The following two propositions are obvious by the tableau rules.
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Proposition 6.3.12 Given a saturated tableau T and a branch b ∈ T , if 〈σan, ρ,X〉 ∈ b
then 〈σan, ε,X〉 ∈ b.

Proposition 6.3.13 Given a saturated tableau T and a branch b ∈ T , if a label σan
occurs in b then 〈σan, ε,X〉 ∈ b.

Now, we are ready to prove the completeness.

Theorem 6.3.14 (completeness) If ϕ0 is valid, there is a closed tableau for ¬ϕ0.

PROOF We only need to show that if all tableaux for ϕ0 are open then ϕ0 is satisfiable.
Since each tableau for ϕ0 can be extended to be saturated and there is at least one tableau
for ϕ0, i.e. the initial tableau, there exists an open and saturated tableau for ϕ0 if all its
tableaux are open.

Let T be an open and saturated tableau for ϕ0 and b be an open and saturated branch
of T . In order to show ϕ0 is satisfiable, we only need to show that the branch b is
satisfiable in the sense of Definition 6.3.9. Next we will construct a modelMc and we
will show that b is satisfied byMc. The modelMc = 〈W,R, V 〉 is defined as follows.

W = {σ | σ is used in b}
Ra = {(σ, σan) | (σan, ε,X) ∈ b} for each a ∈ Agt

V (p) = {σ | (σ, ρ, p) ∈ b for some ρ}

Please note that if σan is used in b then so is σ.
By induction on the length of terms, we will show that b is satisfied byMc and I ,

where I is the function I(σ) = σ. For abbreviation, we will write I(σ) as σ. For the
case of l(ρ, x) = 0, the term (ρ, x) can only be of the form (ε,X) or (ε,X). Furthermore,
it cannot be of the form (ε,X). Assuming (σan, ε,X) ∈ b for some label σan, it follows
by Proposition 6.3.13 that (σan, ε,X) ∈ b, this is in contradiction with that b is open.
Therefore, in this case, we only need to show that (σ, σan) ∈ Ra for each σan with
(σan, ε,X) ∈ b, which is obvious by the definition of the modelMc.

With the inductive hypothesis that each labelled term (σ, ρ, x) ∈ b with l(ρ, x) < n
satisfies the conditions declared in Definition 6.3.9, we will show that each labelled term
(σ, ρ, x) ∈ b with l(ρ, x) = n also satisfies the conditions, where n ≥ 1.

If x is a formula, there are different cases according to the form of the formula, as
below:

1. (σ, ρ, p) ∈ b: It is obvious thatMc, σ �ρ p.

2. (σ, ρ,¬p) ∈ b: Assuming σ ∈ V (p), it follows that (σ, ρ′, p) ∈ b for some ρ′.
This is in contradiction with the assumption that b is open. Therefore, we have
σ 6∈ V (p), namelyMc, σ �ρ ¬p.

3. (σ, ρ,¬¬ϕ) ∈ b: Since b is saturated, it follows that (σ, ρ, ϕ) ∈ b. Since l(ρ, ϕ) <
l(ρ,¬¬ϕ), it follows by IH thatMc, σ �ρ ϕ. Therefore, we haveMc, σ �ρ ¬¬ϕ.

4. (σ, ρ, ϕ∧ψ) ∈ b: Since b is saturated, it follows that (σ, ρ, ϕ) ∈ b and (σ, ρ, ψ) ∈
b. Since l(ρ, ϕ), l(ρ, ψ) < l(ρ, ϕ ∧ ψ), it follows by IH that Mc, σ �ρ ϕ and
Mc, σ �ρ ψ. Therefore, we haveMc, σ �ρ ϕ ∧ ψ.
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5. (σ, ρ,¬(ϕ ∧ ψ)) ∈ b: Since b is saturated, it follows that (σ, ρ,¬ϕ) ∈ b or
(σ, ρ,¬ψ) ∈ b. Since l(ρ,¬ϕ), l(ρ,¬ψ) < l(ρ,¬(ϕ ∧ ψ)), it follows by IH
thatMc, σ �ρ ¬ϕ orMc, σ �ρ ¬ψ. Therefore, we haveMc, σ �ρ ¬(ϕ ∧ ψ).

6. (σ, ρ,¬2aϕ) ∈ b: Since b is saturated, it follows that (σan, ρ|a,¬ϕ) ∈ b and
(σan, ρ|a,X) ∈ b for some n ∈ N. Since l(ρ|a,¬ϕ), l(ρ|a,X) < l(ρ,¬2aϕ),
it follows by IH that (σ, σan) ∈ Ra ∗ (ρ|a) andMc, σ �ρ|a ¬ϕ. Therefore, we
haveMc, σ �ρ ¬2aϕ.

7. (σ, ρ,2aϕ) ∈ b: Let σ′ ∈W be a state with (σ, σ′) ∈ Ra∗(ρ|a). In order to show
Mc, σ �ρ 2aϕ, we need to show thatMc, σ′ �ρ|a ϕ. Since Ra ∗ (ρ|a) ⊆ Ra, it
follows that σ′ = σan for some n ∈ N. Assuming (σan, ρ|a,X) ∈ b, it follows
by IH that (σ, σan) 6∈ Ra∗(ρ|a). This is in contradiction with the assumption that
(σ, σ′) ∈ Ra ∗ (ρ|a). Therefore, we have (σan, ρ|a,X) 6∈ b. Since b is saturated,
it follows that (σan, ρ|a, ϕ) ∈ b. It follows by IH thatMc, σan �ρ|a ϕ.

8. (σ, ρ,¬[U,G]ϕ) ∈ b: Since b is saturated, it follows that (σ, ρ[U,G],¬ϕ) ∈ b.
Since l(ρ[U,G],¬ϕ) < l(ρ,¬[U,G]ϕ), it follows by IH thatMc, σ �ρ[U,G] ¬ϕ.
Therefore, we haveMc, σ �ρ ¬[U,G]ϕ.

9. (σ, ρ, [U,G]ϕ) ∈ b: Since b is saturated, it follows that (σ, ρ[U,G], ϕ) ∈ b. Since
l(ρ[U,G], ϕ) < l(ρ, [U,G]ϕ), it follows by IH thatMc, σ �ρ[U,G] ϕ. Therefore,
we haveMc, σ �ρ [U,G]ϕ.

If x in the term (ρ, x) is of the form X or X, we have ρ is not ε because l(ρ, x) ≥ 1.
There are different cases, as below:

1. (σan, ρ[U,G],X) ∈ b and there exists an a-arrow specification in U : Since b
is saturated, it follows that {〈σan, ρ,X〉, 〈σ, ρ, ψ〉, 〈σan, ρ, χ〉} ⊂ b for some
(ψ, a, χ) ∈ U . Since l(ρ,X), l(ρ, ψ), l(ρ, χ) < l(ρ[U,G],X), it follows by
IH that (σ, σan) ∈ Ra ∗ ρ, Mc, σ �ρ ψ and Mc, σan �ρ χ. It follows that
(σ, σan) ∈ Ra ∗ (ρ[U,G]).

2. (σan, ρ[U,G],X) ∈ b and there are no a-arrow specifications in U : Due to Rule
(X2) and the fact that b is open and saturated, this case is impossible.

3. (σan, ρ[(ψ, a′, χ), G],X) ∈ b: If a′ 6= a, it follows that Ra ∗ (ρ[(ψ, a′, χ), G]) =
∅. It is obvious (σ, σan) 6∈ Ra ∗ (ρ[(ψ, a′, χ), G]). If a′ = a, it follows by
Rule (X1) that 〈σan, ρ,X〉 ∈ b, or 〈σ, ρ,¬ψ〉 ∈ b, or 〈σan, ρ,¬χ〉 ∈ b. Since
l(ρ,X), l(ρ,¬ψ), l(ρ,¬χ) < l(ρ[(ψ, a, χ), G],X), it follows by IH that (σ, σan) 6∈
Ra ∗ ρ, or Mc, σ �ρ ¬ψ, or Mc, σan �ρ ¬χ. Each of them can derive that
(σ, σan) 6∈ Ra ∗ (ρ[(ψ, a, χ), G]).

4. (σan, ρ[U,G],X) ∈ b and |U | ≥ 2: If there are no a-arrow specifications in U , it
is obvious that (σ, σan) 6∈ Ra ∗ (ρ[U,G]) since Ra ∗ (ρ[U,G]) = ∅. Otherwise,
let (ψ1, a, χ1), · · · , (ψk, a, χk) be all the a-arrow specifications in U . Since b
is saturated, it follows by Rule (X2) that 〈σan, ρ[(ψi, a, χi), G],X〉 ∈ b for all
1 ≤ i ≤ k. Since l(ρ[(ψi, a, χi), G],X) < l([U,G],X) for all 1 ≤ i ≤ k due
to |U | ≥ 2, it follows by IH that (σ, σan) 6∈ Ra ∗ (ρ[(ψi, a, χi), G]) for all
1 ≤ i ≤ k. Since Ra ∗ (ρ[U,G]) =

⋃
1≤i≤k Ra ∗ (ρ[(ψi, a, χi), G]), we have

(σ, σan) 6∈ Ra ∗ (ρ[U,G]).
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We have shown that all labelled terms in b satisfy the conditions declared in Defini-
tion 6.3.9. Since 〈0, ε, ϕ0〉 ∈ b, thus we haveMc, 0 � ϕ0. 2

6.4 Decidability
In this section, we will show that PAUL is decidable, that is, the problem whether an
PAUL formula ϕ is satisfiable can be answered in a finite number of steps. Our method
is to show that PAUL has small model property. We will show that each satisfiable
PAUL formula ϕ has a bounded small model in which ϕ is true. From the proof of
Theorem 6.3.14, we have seen that we can construct a model for ϕ based on a saturated
open branch if ϕ is satisfiable, and each state in the model is exactly a label used in the
branch. Therefore, the key is to show that there are only finitely many labels used in the
tableau branch.

For the commonly used tableau calculus for normal modal logic, each formula oc-
curring in the tableau is a subformula of the destination formula, and this feature plays an
important role to show the decidability of normal modal logic through tableau method.
Similarly, we will define the notation of subterm here, and we will show that all terms
occurring in the tableau are subterms.

Definition 6.4.1 (Subterm) Given a term (ρ, x), the set of subterm of (ρ, x), denoted
as sub(ρ, x), is defined as below.

sub(ε,X/X) = {(ε,X/X)}
sub(ρ[(ψ, a, χ), G],X/X) = {(ρ[(ψ, a, χ), G],X/X)} ∪ sub(ρ, ψ) ∪ sub(ρ, χ)

sub(ρ[U,G],X/X) = {(ρ[U,G],X/X)} ∪
⋃

(ψ,a,χ)∈U

sub(ρ[(ψ, a, χ), G],X/X)

where |U | ≥ 2

sub(ρ, p) = {(ρ, p)} ∪ sub(ρ,X) ∪ sub(ρ,X)

sub(ρ,¬ϕ) = {(ρ,¬ϕ)} ∪ sub(ρ, ϕ)

sub(ρ, ϕ ∧ ψ) = {(ρ, ϕ ∧ ψ)} ∪ sub(ρ, ϕ) ∪ sub(ρ, ψ)

sub(ρ,2aϕ) = {(ρ,2aϕ)} ∪ sub(ρ|a, ϕ)

sub(ρ, [U,G]ϕ) = {(ρ, [U,G]ϕ)} ∪ sub(ρ[U,G], ϕ)

Let sub+(ρ, x) be the set {(ρ,¬ϕ) | (ρ, ϕ) ∈ sub(ρ, x)} ∪ sub(ρ, x).

The following proposition states some properties of the subterm set.

Proposition 6.4.2 We have the following results.

• sub(ρ, x) is finite;

• (ρ,X/X) ∈ sub(ρ, ϕ);

• (ρ, x) ∈ sub(ρ′, x′) implies sub(ρ, x) ⊆ sub(ρ′, x′).

Proposition 6.4.3 Let T be a tableau for ϕ0 and b be a branch of T . If (σ, ρ, x) ∈ b
then (ρ, x) ∈ sub+(ε, ϕ0).
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PROOF According to Definition 6.3.5, we prove this by induction on the process of
construction of T . For the initial tableau {{(0, ε, ϕ0)}}, it is obvious. Next, we only
need to show that all the tableau rules in Table 6.1 preserve the subterm property. The
cases of the rules (¬¬), (¬∧), (∧), ([U,G]) and (X2) are obvious; we will restrict our
attention to the other rules.

1. Rule (¬2a): If (ρ,¬2aϕ) ∈ sub+(ε, ϕ0), then we have (ρ,2aϕ) ∈ sub(ε, ϕ0).
Because (ρ|a, ϕ) ∈ sub(ρ,2aϕ), it follows by Proposition 6.4.2 that (ρ|a,X),
(ρ|a, ϕ) ∈ sub+(ε, ϕ0).

2. Rule (2a): If (ρ,2aϕ) ∈ sub+(ε, ϕ0), then we have (ρ,2aϕ) ∈ sub(ε, ϕ0).
Because (ρ|a, ϕ) ∈ sub(ρ,2aϕ), it follows by Proposition 6.4.2 that (ρ|a,X),
(ρ|a, ϕ) ∈ sub+(ε, ϕ0).

3. Rule (¬[U,G]): If (ρ,¬[U,G]ϕ) ∈ sub+(ε, ϕ0), then we have (ρ, [U,G]ϕ) ∈
sub(ε, ϕ0). Since (ρ[U,G], ϕ) ∈ sub(ρ, [U,G]ϕ), it follows by Proposition 6.4.2
that (ρ[U,G], ϕ) ∈ sub(ρ, ϕ0). Therefore, we have (ρ[U,G],¬ϕ) ∈ sub+(ρ, ϕ0).

4. Rule (X1): If (ρ[U,G],X) ∈ sub+(ε, ϕ0) then (ρ[U,G],X) ∈ sub(ε, ϕ0). Let
(ψ, a, χ) ∈ U . We have (ρ[(ψ, a, χ), G],X) ∈ sub(ε, ϕ0). Since (ρ, ψ), (ρ, χ) ∈
sub(ρ[(ψ, a, χ), G],X), we have (ρ, ψ), (ρ, χ) ∈ sub(ε, ϕ0). It follows by Pro-
position 6.4.2 that (ρ,X) ∈ sub(ρ, ψ), thus we also have (ρ,X) ∈ sub(ρ, ϕ0).

5. Rule (X2): It follows by Proposition 6.4.2 that (ε,X), (ε,X) ∈ sub(ε, ϕ0).

6. Rule (X1): If (ρ[(ψ, a, χ), G],X) ∈ sub+(ε, ϕ0), then (ρ[(ψ, a, χ), G],X) ∈
sub(ε, ϕ0). Since (ρ, ψ), (ρ, χ) ∈ sub(ρ[(ψ, a, χ), G],X), we have (ρ, ψ), (ρ, χ) ∈
sub(ε, ϕ0). Therefore, we have (ρ,¬ψ), (ρ,¬χ) ∈ sub+(ε, ϕ0). It follows by
Proposition 6.4.2 that (ρ,X) ∈ sub(ρ, ψ), thus we also have (ρ,X) ∈ sub(ρ, ϕ0).

2

Proposition 6.4.4 Let T be a tableau for ϕ0, and let b be a branch of T . If σ is a label
present in b, then there are at most k labels present in b with the form of σan for some
n ∈ N, where k = |sub+(ε, ϕ0)|.

PROOF It follows by Definition 6.3.5 that each label σan present in b is generated by
applying the rule (¬2a) to a labelled term (σ, ρ,¬2aϕ) ∈ b. According to Proposition
6.4.3, there are at most k terms labelled with σ in b. Therefore, there are at most k labels
present in b with the form of σan for some n ∈ N. 2

Definition 6.4.5 (Length of label) The length of a label σ, denoted by |σ|, is defined by
induction on σ: |n| = 0; |σan| = |σ|+ 1.

Proposition 6.4.6 Let T be a tableau for ϕ0 and b be a branch of T . If (σ, ρ, x) ∈ b
then |σ| ≤ l(ϕ0)− l(ρ, x).

PROOF Following Definition 6.3.5, the proof is by induction on the process of con-
struction of T . For the initial tableau {{(0, ε, ϕ0)}}, it is obvious. Next we will show
that this property is preserved by all the tableau rules. The cases of the rules (¬¬), (¬∧),
(∧) and (X2) are obvious; we will restrict our attention to the other rules.



6.4. DECIDABILITY 121

1. Rule (¬2a): If |σ| ≤ l(ϕ0)−l(ρ,¬2aϕ), we have l(ϕ0)−l(ρ,¬2aϕ) ≤ l(ϕ0)−
l(ρ|a,¬ϕ)−1 because l(ρ,¬2aϕ) ≥ l(ρ|a,¬ϕ)+1. Thus we have |σ| ≤ l(ϕ0)−
l(ρ|a,¬ϕ) − 1. It follows that |σan| ≤ l(ϕ0) − l(ρ|a,¬ϕ). What is more, since
l(ρ,¬2aϕ) ≥ l(ρ|a,X)+1, we have l(ϕ0)−l(ρ,¬2aϕ) ≤ l(ϕ0)−l(ρ|a,X)−1.
It follows |σ| ≤ l(ϕ0)− l(ρ|a,X)− 1. Thus we have |σan| ≤ l(ϕ0)− l(ρ|a,X).

2. Rule (2a): Suppose |σ| ≤ l(ϕ0) − l(ρ,2aϕ), we have l(ϕ0) − l(ρ,2aϕ) ≤
l(ϕ0) − l(ρ|a, ϕ) − 1 because l(ρ,2aϕ) ≥ l(ρ|a, ϕ) + 1. Therefore, we have
|σan| ≤ l(ϕ0) − l(ρ|a, ϕ). What is more, since l(ρ|a, ϕ) ≥ l(ρ|a,X), we have
|σan| ≤ l(ϕ0)− l(ρ|a,X).

3. Rule (¬[U,G]): If |σ| ≤ l(ϕ0)−l(ρ,¬[U,G]ϕ), we have l(ϕ0)−l(ρ,¬[U,G]ϕ) ≤
l(ϕ0)− l(ρ[U,G],¬ϕ) because l(ρ,¬[U,G]ϕ) = l(ρ[U,G],¬ϕ) + 1. Therefore,
we have |σ| ≤ l(ϕ0)− l(ρ[U,G],¬ϕ).

4. Rule ([U,G]): Since l(ρ, [U,G]ϕ) = l(ρ[U,G], ϕ)+1, if |σ| ≤ l(ϕ0)−l(ρ, [U,G]ϕ),
we have |σ| ≤ l(ϕ0)− l(ρ[U,G], ϕ).

5. Rule (X1): Assume |σan| ≤ l(ϕ0) − l(ρ[U,G],X). Since l(ρ[U,G],X) ≥
l(ρ,X), it follows that |σan| ≤ l(ϕ0) − l(ρ,X). Let (ψ, a, χ) ∈ U . We have
l(ρ[U,G],X) ≥ l(ρ, ψ) − 1 because l(ρ[U,G],X) ≥ l(ρ, ψ). It follows that
l(ϕ0) − l(ρ[U,G],X) ≤ l(ϕ0) − l(ρ, ψ) + 1. Thus we have |σan| ≤ l(ϕ0) −
l(ρ, ψ) + 1. It follows that |σ| ≤ l(ϕ0)− l(ρ, ψ).

What is more, since l(ρ[U,G],X) ≥ l(ρ, χ), it follows that l(ϕ0)−l(ρ[U,G],X) ≤
l(ϕ0)− l(ρ, χ). Thus we have |σan| ≤ l(ϕ0)− l(ρ, χ).

6. Rule (X1): Assume that |σan| ≤ l(ϕ0) − l(ρ[(ψ, a, χ), G],X). Since we have
l(ρ[(ψ, a, χ), G],X) ≥ l(ρ,X), it follows that |σan| ≤ l(ϕ0)− l(ρ,X).

What is more, since l(ρ[(ψ, a, χ), G],X) ≥ l(ρ,¬ψ) and l(ρ[(ψ, a, χ), G],X) ≥
l(ρ,¬χ), it follows that l(ϕ0) − l(ρ[(ψ, a, χ), G],X) ≤ l(ϕ0) − l(ρ,¬ψ) and
l(ϕ0) − l(ρ[(ψ, a, χ), G],X) ≤ l(ϕ0) − l(ρ,¬χ). Therefore, we have |σan| ≤
l(ϕ0)− l(ρ,¬ψ) and |σan| ≤ l(ϕ0)− l(ρ,¬ψ). Since |σ| ≤ |σan|, it is obvious
|σ| ≤ l(ϕ0)− l(ρ,¬ψ).

7. Rule (X2): Assume |σan| ≤ l(ϕ0) − l(ρ[U,G],X) and |U | ≥ 2. Suppose that
(ψ, a′, χ) ∈ U , we have l(ρ[U,G],X) ≥ l(ρ[(ψ, a′, χ), G],X). It follows that
l(ϕ0) − l(ρ[U,G],X) ≤ l(ϕ0) − l(ρ[(ψ, a′, χ), G],X). Thus we have |σan| ≤
l(ϕ0)− l(ρ[(ψ, a′, χ), G],X).

2

Lemma 6.4.7 (Small model property) If ϕ0 is satisfiable then ϕ0 is satisfiable in a
model which is bounded by kO(m), where k = |sub+(ε, ϕ0)| and m = l(ϕ0).

PROOF It follows by Theorem 6.3.10 that all tableaux for ϕ0 are open. According to
the proof of Theorem 6.3.14, we can construct a modelMc from a saturated branch b
such that ϕ0 is satisfied inMc. By the definition ofMc, we know that each state inMc

is a label present in b. Please note that all labels present in b form a tree. It follows by
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Proposition 6.4.4 that each label in the tree has at most k children. It follows by Pro-
position 6.4.6 that the depth of the tree is bounded by m. Therefore, there are at most
kO(m) labels used in b. 2

Theorem 6.4.8 (Decidability) The problem whether ϕ0 is satisfiable is decidable.

PROOF It follows by Lemma 6.4.7 that we only need to check all the models no bigger
than kO(m) where k = |sub+(ε, ϕ0)| and m = l(ϕ0), and this procedure can terminate
in finitely many steps. 2

6.5 Conclusion
This chapter presented the theory PAUL of Private Arrow Update Logic, which extends
the arrow update of AUL with a relativized subgroup of agents. Public, private and semi-
private announcements can be modeled in this framework. PAUL still is a particular case
of GAUL, since some information change, like cheating, cannot be modeled in PAUL.
This chapter also provided a sound and complete tableau method of PAUL and showed
that PAUL is decidable.

In Kooi and Renne (2011a), an axiomatic theory for AUL is provided by the reduc-
tion axiom method of DEL (see also Baltag and Moss (2004); Baltag et al. (1998); Ger-
brandy (1999); Plaza (2007); van Benthem et al. (2006); van Ditmarsch et al. (2007)).
Similarly, we can have the PAUL version reduction axioms. Especially, the reduction
axioms of 2a formula are as below.

[U,G]2aϕ↔
∧

(ψ,a,χ)∈U

(ψ → 2a(χ→ [U,G]ϕ)) a ∈ G

[U,G]2aϕ↔ 2aϕ a 6∈ G

Propositions 6.2.5 and 6.2.6 have shown that these two formulas are valid. Therefore, we
can have an axiomatic theory for PAUL. The only difference is that there is a reduction
axiom for the composition of two updates in Kooi and Renne (2011a), but we cannot
generally combine two updates [U1, G1][U2, G2] here, because it might be the case that
G1 6= G2. However, this will not be a problem. It is shown in Wang and Cao (2013)
that the reduction axiom of composing two update operators is not necessary. Without
the composition axiom, we can still complete the reduction by defining the reduction
function as r([U1, G1][U2, G2]ϕ) = r([U1, G1]r([U2, G2]ϕ)). Therefore, the reduction
axiom method indeed works for PAUL. Since most of the proofs are similar to those for
AUL in Kooi and Renne (2011a), we do not prove it in this chapter.

For future research, we can try to give an optimal algorithm for the satisfiability
problem of PAUL by taking a depth-first search strategy on the tableau method. Since
each AUL formula can be equivalently translated into a PAUL formula by replacing the
update [U ] by [U,Agt], the tableau method presented in this chapter can apply to AUL.
Therefore, the optimal algorithm for PAUL (if there is one) will also be an algorithm for
AUL and might also be optimal.

Another direction for future research is to apply Arrow Update Logic to knowing
how. The main feature of Arrow Update Logic is that it updates information but does
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not eliminate states. This makes it more suitable for modeling information update in
knowing how. For example, a doctor may not know how to treat a patient since the only
two available medicines a and b may cause some very bad side-effect. That is, there
is an a-arrow and a b-arrow from the current state to the bad side-effect state. If the
information is updated, for example, a new scientific discovery shows that a will not
cause the bad effect, then the doctor should know how to treat the patient. This kind of
information update will eliminate arrows but not states.
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Chapter 7

Conclusion

This thesis investigates planning under uncertainty from a logical point of view. In arti-
ficial intelligence, conformant planning, which is the simplest version of planning under
uncertainty, is to find a linear sequence of actions to achieve goals, where the agent
is uncertain about his situation. Conformant probabilistic planning extends conform-
ant planning by extending the uncertainties with probability distributions. Contingent
planning generalizes the solution of conformant planning to be a strategy, a partial func-
tion from belief spaces to actions. Chapter 2 proposes a logical framework to capture
how the probability distribution (which stands for the agent’s uncertainty) updates along
the execution of a plan in conformant probabilistic planning. Chapter 3 and 4 build
knowing-how logics by developing the idea of interpreting knowing how to achieve a
goal as having a conformant plan for achieving the goal. Chapter 5 proposes a knowing-
how logic by adopting the idea of reducing knowledge-how as having a contingent plan.
Chapter 6 extends the theory of arrow update logic (AUL) with the motivation that AUL
provides a proper way to model the information change in the knowing-how logic pro-
posed in Chapter 5.

Chapter 2 developed a logical framework for conformant probabilistic planning.
This approach differs from existing approaches to conformant probabilistic planning
by focussing on a logical language with which to specify plans and goals. The particular
logic also allows for reasoning about the change of the belief state of the agent (which
is a probability distribution over states) during the execution of actions. In this logic, we
can enrich conformant probabilistic planning by thinking of the goal as a formula, which
may be more convenient when we formulate goals that are probabilistic in nature. We
provided a complete axiomatization of the logic, which shows it is rather well-behaved
for a logic that deals with conformant probabilistic planning. We also proved this logic
to be decidable.

Chapter 3 and 4 extended Wang’s knowing-how logic, in which knowing how to
achieve a goal is interpreted as having a conformant plan. Chapter 3 extended the ori-
ginal binary knowing-how modality to be a ternary modality, which can express that the
agent knows how to achieve a goal from a specific position while taking a route that
satisfies some constraints. We presented a sound and complete axiomatization for this
extended knowing-how logic and showed this logic to be decidable by using the filtration
method. Chapter 4 weakens the binary knowing-how logic by interpreting knowing how
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to achieve a goal as having a weak conformant plan. The demands that a conformant
plan puts on the plan may be too strong, in the sense that a plan is not supposed to fail
during the execution. A weak conformant plan, on the other hand, is a plan that will al-
ways result in the goals when the execution of the plan terminates, even if the execution
is not completed. We argued that it is sufficient to say that one knows how to achieve
a goal if he (she) has a weak conformant plan for achieving the goal. We presented a
sound and complete axiomatization for this weaker logic and showed that this logic to
be decidable.

Inspired by contingent planning, Chapter 5 extended epistemic logic with a unary
knowing-how modality which is interpreted as having a strategy for achieving goals. It
is called strategically knowing-how logic. In this logic framework, we investigated the
interactions between knowledge-that and knowledge-how. We also presented a sound
and complete axiomatization of this logic and showed this logic to be decidable. To
reason about information change due to announcements in the strategically knowing-
how logic, Chapter 6 investigated arrow update logic. The standard arrow update logic
cannot describe information change caused by private events. Chapter 6 extended it to
deal with private announcements. We presented a sound and complete tableau system
for this extended logic and showed it is decidable.

There is a lot more to explore. Even though in each chapter we have shown the
logic to be decidable, we have not touched upon the issue of complexity. How is the
model theory of each logic? For instance, what kinds of model classes are definable in
the logic, and what kinds of structure are not distinguished by the logic (i.e. what is the
“bisimulation” of the logic)? Besides these, there are two that I think are very much
worth while.

The first one is to cast all the standard AI planning problems into one unified lo-
gical framework to facilitate careful comparisons and classification. As it is mentioned
in Chapter 1.2, EPDL can apply for conformant planning. Moreover, the language of
EPDL is powerful enough to express contingent plans. The logic proposed in Chapter 2
of this thesis can apply for conformant probabilistic planning. If we merge these two
logics and generalize the model with partial observability, the logical framework can
deal with all kinds of planning problems under uncertainty: conformant planning, con-
formant probabilistic planning, contingent planning, and contingent planning extended
with probabilities. We will then see clearly how the form of the goal formula, the con-
structor of the plan, and the observational ability matter in the theoretical and practical
complexity of planning, which is in line with the research pioneered in Bäckström and
Jonsson (2011).

The other is to consider knowing how in multi-agent settings and to model the group
notions of knowing how. One of the main reasons that contribute to epistemic logic’s
great success is that it is very useful when applied to situations involving more than one
agent. It can model the group notions of propositional knowledge, such as common
(propositional) knowledge and distributed (propositional) knowledge. Similarly, there
are also such group notions of knowledge-how. For example, if you know how to reach
s2 from s1 and I know how to reach s3 from s2, then we two together will know how to
reach s3 from s1. This is a distributed knowledge-how. Distributed knowledge-how can
be viewed as the ability that a “highly skilled person” in a group has, one who can do all
the actions that each member of the group can do. Common knowledge-how of a group
can be viewed as the ability that every member of the group has.



Appendix A

Logical background

A.1 Epistemic logic
Epistemic logic proposed by Hintikka (1962) is a modal logic concerned with reasoning
about knowledge expressed by knowing that p, where p is a proposition. This subsection
will introduce the language, the semantics and the proof system S5 of epistemic logic.
Moreover, we will introduce some basic logical concepts, such as validity, consistency,
soundness, completeness.

Let P be a countable set of proposition letters.

Definition A.1.1 (Language) The language of epistemic logic is defined as below.

ϕ ::= > | p | ¬ϕ | (ϕ ∧ ϕ) | Kϕ

where p ∈ P. We use the following abbreviations: ⊥ := ¬>, ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ),
ϕ→ ψ := ¬ϕ ∨ ψ.

Intuitively, the formula Kϕ means that the agent knows that ϕ holds. The language
of epistemic logic is interpreted on models defined below.

Definition A.1.2 (Models) A model is a tripleM = 〈S,∼, V 〉 where

• S 6= ∅ is a set of states;

• ∼ is an equivalence relation on S;

• V : S → 2P is a valuation function.

For each s ∈ S, (M, s) is called a pointed model.

Definition A.1.3 (Semantics) Let (M, s) be a pointed model. A formula ϕ being truth
inM, s, denoted asM, s � ϕ, is defined as below.

M, s � > always
M, s � p ⇐⇒ p ∈ V (s).
M, s � ¬ϕ ⇐⇒ M, s 2 ϕ.
M, s � (ϕ ∧ ψ) ⇐⇒ M, s � ϕ andM, s � ψ.
M, s � Kϕ ⇐⇒ M, t � ϕ for each t with s ∼ t
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Next, we introduce the concept of validity, which is a crucial notion of the semantics
of a logic framework.

Definition A.1.4 (Semantic consequence) Let Γ be a set of formulas. We write “M, s �
ψ for all ψ ∈ Γ” asM, s � Γ. We say ϕ is a semantic consequence of Γ, denoted as
Γ � ϕ, ifM, s � Γ impliesM, s � ϕ for each pointed model (M, s).

We say a formula ϕ is valid, denoted as � ϕ, if ∅ � ϕ. In other words, ϕ is valid if
M, s � ϕ for each pointed model (M, s). We say ϕ is satisfiable if there exists (M, s)
such thatM, s � ϕ.

The following is the deductive system of epistemic logic, which is known as S5.

Definition A.1.5 (Deductive system S5) The axioms and rules shown in Table A.1 con-
stitute the deductive system S5.

AXIOMS
All instances of propositional tautologies

DISTK K(ϕ→ ψ)→ (Kϕ→ Kψ)
T Kϕ→ ϕ
4 Kϕ→ KKϕ
5 ¬Kϕ→ K¬Kϕ

RULES
MP From ϕ→ ψ and ϕ, infer ψ
GEN From ϕ, infer Kϕ

Table A.1: System S5

Next, we introduce the concept of derivation, which is a core notion of the deductive
system of a logic framework.

Definition A.1.6 (Derivation) A finite sequence of formulas ϕ1 · · ·ϕn is called a deriv-
ation if each ϕi (1 ≤ i ≤ n) is either an instance of an axiom of S5 or following from
the preceding formulas in the sequence by a rule of S5. We say ϕ is derivable in S5,
written as S5 ` ϕ or sometimes just ` ϕ, if there is a derivation ϕ1 · · ·ϕnϕ. Otherwise,
we say ϕ is not derivable in S5 (written as 0 ϕ).

Let Γ be a set of formulas. We say ϕ is derivable from Γ (written as Γ ` ϕ) if there
are finite formulas ϕ1, · · · , ϕn ∈ Γ such that ` (ϕ1 ∧ · · · ∧ ϕn) → ϕ. Otherwise, we
say ϕ is not derivable from Γ (written as Γ 0 ϕ). We say Γ is S5-consistent (or just
consistent) if Γ 0 ⊥. Otherwise, we say Γ is inconsistent.

The following concepts, soundness and completeness, connect the deductive system
and the semantics. If the deductive system is sound and complete, it means the formulas
derived in the deductive system coincide with the formulas valid to the semantics.

Definition A.1.7 (Soundness and completeness) We say S5 is sound with respect to
the semantics if ` ϕ implies � ϕ for each formula ϕ.

We say S5 is complete with respect to the semantics if � ϕ implies ` ϕ for each
formula ϕ. We say S5 is strongly complete if Γ � ϕ implies Γ ` ϕ.
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Theorem A.1.8 S5 is sound and strongly complete with respect to the semantics of
Definition A.1.3.

A.2 Probabilistic dynamic epistemic logic
Probabilistic dynamic epistemic logic (PDEL) proposed by Kooi (2003) is a combination
of the public announcement logic Plaza (2007) (which is a simple and intuitive kind
of dynamic epistemic logic) and the probabilistic logic by Fagin et al. (1990), which
focuses on reasoning about probability, information, and information change and takes
higher order information into account. Just like the probabilistic logic, PDEL is an
extension of the linear inequality logic. This subsection will introduce the language, the
semantics, and the deductive system of PDEL. Before that, we first introduce the linear
inequality logic.

A.2.1 Linear inequality logic
The linear inequality logic proposed in Fagin et al. (1990) is a logic for reasoning about
linear inequalities. Fagin et al. introduced the linear inequality logic in their paper about
probabilistic logic because the atomic probabilistic formula is a linear inequality. The
probabilistic logic proposed in Fagin et al. (1990) is an extension of linear inequality
logic. In this part, we first introduce the language, the semantics, and the deductive
system of linear inequality logic, and second, we introduce some important properties
(on solvability and decidability) of linear inequalities.

Let X be a countable set of variables.

Definition A.2.1 (Language) The language is defined as below.

ϕ ::=a0x0 + · · ·+ anxn ≥ q | ¬ϕ | (ϕ ∧ ϕ)

where n ∈ N, xi ∈ X and ai, q ∈ Q for all 0 ≤ i ≤ n. We call formulas of the forms
a0x0 + · · ·+ anxn ≥ q or ¬(a0x0 + · · ·+ anxn ≥ q) linear inequalities.

Please note that¬(a0x0+· · ·+anxn ≥ q) can also be written as a0x0+· · ·+anxn <
q or (−1)a0x0 + · · ·+ (−1)anxn > q.

Definition A.2.2 (Model) A modelA is an assignment function that assigns a real num-
ber to every variable x ∈ X .

Definition A.2.3 (Semantics) The satisfaction relation between an assignment and a
formula is defined as below.

A � a0x0 + · · ·+ anxn ≥ q ⇐⇒ a0A(x0) + · · ·+ anA(xn) ≥ q.
A � ¬ϕ ⇐⇒ A 2 ϕ.
A � (ϕ ∧ ψ) ⇐⇒ A � ϕ and A � ψ.

We say ϕ is satisfiable/solvable if there exists an assignment A such that A � ϕ.

Definition A.2.4 (Deductive system) The axioms and rules shown in Table A.2 consti-
tute the deductive system SLIL.
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AXIOMS
All instances of propositional tautologies

Linear inequality axioms
Identity x ≥ x
0 terms

∑n
i=1 qixi ≥ q ↔

∑n
i=1 qixi + 0x′ ≥ q

Permutation
∑n
i=1 qixi ≥ q →

∑n
i=1 qkixki ≥ q

where k1, · · · kn is a permutation of 1, · · ·n.
Addition (

∑n
i=1 qixi ≥ q) ∧ (

∑n
i=1 q

′
ixi ≥ q′)→∑n

i=1(qi + q′i)xi ≥ q + q′

Multiplication
∑n
i=1 qixi ≥ q ↔

∑n
i=1 dqixi ≥ dq where d is positive rational.

Dichotomy (x ≥ q) ∨ (x ≤ q)
Monotonicity (x ≥ q)→ (x > q′) where q > q′

RULE
MP From ϕ→ ψ and ϕ, infer ψ

Table A.2: System SLIL

The following theorem is proved in Fagin et al. (1990).

Theorem A.2.5 SLIL is sound and complete with respect to the semantics of Defini-
tion A.2.3.

Next, we introduce two properties of linear inequalities on the solvability and the
decidability of linear inequalities. Before that, we first introduce the following auxiliary
notion.

Definition A.2.6 (Legal linear combination Kuhn (1956)) Let S be a set of linear in-
equalities, which can be written as

ai1x1 + · · ·+ ainxn >ai (i = 1, · · · , p)
bj1x1 + · · ·+ bjnxn ≥bj (j = 1, · · · , q)

where aik, ai, bjk and bj (i = 1, · · · , p; j = 1, · · · , q; k = 1, · · · , n) are given rational
numbers. A multiplier scheme of S is formed with non-negative multipliers at the left
and the sum below:

u0 ≥ 0 : 0x1 + · · ·+ 0xn > −1
u1 ≥ 0 : a11x1 + · · ·+ a1nxn > a1

·····················································
up ≥ 0 : ap1x1 + · · ·+ apnxn > ap
v1 ≥ 0 : b11x1 + · · ·+ b1nxn ≥ b1
·····················································
vq ≥ 0 : bq1x1 + · · ·+ bqnxn ≥ bq

d1x1 + · · ·+ dnxn > d.
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The coefficients of the sum are calculated to be:

d1 = u1a11 + · · ·+ upap1 + v1b11 + · · · vqbq1
····································································
dn = u1a1n + · · ·+ upapn + v1b1n + · · · vqbqn
d = −u0 + u1a1 + · · ·+ upap + v1b1 + · · · vqbq.

An inequality,
d1x1 + · · ·+ dnxn > d,

that is formed in this manner from S is called a legal linear combination of the inequal-
ities of S provided that some ui is positive (i = 0, 1, · · · , p).

The following theorem is proved in Kuhn (1956).

Theorem A.2.7 If a set of linear inequalities S is not solvable, then the inequality 0x1+
· · ·+ 0xn > 0 is a legal linear combination of the inequalities of S.

The size of a rational number a/b, where a and b are integers and relatively prime,
is defined to be the sum of the lengths of a and b, when written in binary. The following
theorem is proved in Fagin et al. (1990).

Theorem A.2.8 If a system of r linear inequalities with integer coefficients each of
length at most l has a nonnegative solution, then it has a nonnegative solution with
at most r entries positive, and where the size of each member of the solution is O(rl +
r log(r)).

A.2.2 Probabilistic dynamic epistemic logic
In the following, we will introduce the language, the semantics, and the deductive system
of PDEL.

Let P be a countable set of proposition letters and Agt be a nonempty finite set of
agents.

Definition A.2.9 (Language) The language of PDEL is defined as below.

ϕ ::= > | p | ¬ϕ | (ϕ ∧ ϕ) | 2aϕ | [ϕ]ϕ | q1Praϕ1 + · · ·+ qnPraϕn ≥ q

where p ∈ P and a ∈ Agt.

Definition A.2.10 (Model) A model is a tuple 〈S,R, P, V 〉 where

• S 6= ∅ is a set of states;

• R : Agt→ 2S×S is a collection of transitions labelled by actions in Agt;

• V : S → 2P is a valuation function;

• P : (S ×Agt) → (S → [0, 1]) assigns a probability function to each agent on
each state such that for each a ∈ Agt and each s ∈ S:∑

t∈S
P (s, a)(t) = 1.

.
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For each s ∈ S, (M, s) is a pointed model.

Definition A.2.11 (Semantics) Given a pointed model (M, s) and a formula ϕ, ϕ be-
ing true in (M, s) (written asM, s � ϕ) is defined by induction on ϕ:

M, s � > always
M, s � p ⇐⇒ p ∈ V (s).
M, s � ¬ϕ ⇐⇒ M, s 2 ϕ.
M, s � (ϕ ∧ ψ) ⇐⇒ M, s � ϕ andM, s � ψ.
M, s � 2aϕ ⇐⇒ M, t � ϕ for each t with (s, t) ∈ R(a)
M, s �

∑n
i=1 qiPraϕi ≥ q ⇐⇒

∑n
i=1 qiP (a, s)JϕiK ≥ q

where JϕK = {s ∈ S | M, s � ϕ} and P (a, s)JϕiK =
∑
t∈JϕK P (a, s)(t).

Definition A.2.12 (Deductive system SPDEL) The axioms and rules shown in Table A.3
constitute the deductive system SPDEL.

AXIOMS
All instances of propositional tautologies
All instances of linear inequality axioms

2a-distribution 2a(ϕ→ ψ)→ (2aϕ→ 2aψ)

Update axioms
[ϕ]-distribution [ϕ](ψ → χ)→ ([ϕ]ψ → [ϕ]χ)
Atomic Permanence [ϕ]p↔ (ϕ→ p)
Functionality ¬[ϕ]ψ ↔ [ϕ]¬ψ
2a-update [ϕ]2aψ ↔ 2a(ϕ→ [ϕ]ψ)
Probability update1 Praϕ > 0→ ([ϕ]

∑n
i=1 qiPraϕi ≥ q ↔∑n

i=1 qiPra(ϕ ∧ [ϕ]ϕi) ≥ qPraϕ)
Probability update2 Praϕ = 0→ ([ϕ]

∑n
i=1 qiPraϕi ≥ q ↔∑n

i=1 qiPra([ϕ]ϕi) ≥ q)

Probability axioms
Nonnegativity Praϕ ≥ 0
Probability of truth Pra> = 1
Additivity Pra(ϕ ∧ ψ) + Pra(ϕ ∧ ¬ψ) = Praϕ

RULES
MP From ϕ→ ψ and ϕ, infer ψ
2a-GEN From ϕ, infer 2aϕ
[ϕ]-GEN From ψ, infer [ϕ]ψ
Equivalence From ϕ↔ ψ, infer Praϕ = Praψ

Table A.3: System SPDEL

The following theorem is proved in Kooi (2003).
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Theorem A.2.13 SPDEL is sound and complete with respect to the semantics of Defin-
ition A.2.11.

A.3 Knowing-how Logic
Wang (2015a) proposed a modal logic for reasoning about knowledge expressed by
knowing how to achieve that p. In this thesis, we will call it knowing-how logic (KHL).
This subsection will introduce the language, the semantics, and the deductive system of
KHL.

Let P be a countable set of proposition letters.

Definition A.3.1 (Language) The language of KHL is defined as below.

ϕ ::= > | p | ¬ϕ | (ϕ ∧ ϕ) | Kh(ϕ,ϕ)

where p ∈ P.

The language of KHL is interpreted on models defined below.

Definition A.3.2 (Model) A model is a quadrupleM = 〈S,Act,R, V 〉 where

• S 6= ∅ is a set of states;

• Act is a set of actions;

• R : Act→ 2S×S is a collection of transitions labelled by actions in Act;

• V : S → 2P is a valuation function.

For each s ∈ S, (M, s) is called a pointed model.

Please note that the action set is part of the model. We use Act∗ to denote all the
finite sequences of members of Act. We write s a−→ t if (s, t) ∈ R(a). For a sequence
σ = a1 . . . an ∈ Act∗, we write s σ−→ t if there exist s2 . . . sn such that s a1−→ s2

a2−→
· · · an−1−−−→ sn

an−−→ t. Note that σ can be the empty sequence ε (when n = 0), and we set
s
ε−→ s for any s. Let σk be the initial segment of σ up to ak for k ≤ |σ|. In particular let

σ0 = ε.
Before defining the semantics of KHL, we first introduce the following auxiliary

notion.

Definition A.3.3 (Strongly executable) We say σ = a1 · · · an is strongly executable at
s′ if for each 0 ≤ k < n: s′ σk−→ t implies that t has at least one ak+1-successor.

Definition A.3.4 (Semantics) Let (M, s) be a pointed model. A formula ϕ being true
inM, s, denoted asM, s � ϕ, is defined as below.

M, s � > always
M, s � p ⇐⇒ p ∈ V (s).
M, s � ¬ϕ ⇐⇒ M, s 2 ϕ.
M, s � (ϕ ∧ ψ) ⇐⇒ M, s � ϕ andM, s � ψ.
M, s � Kh(ψ,ϕ) ⇐⇒ there exists a σ ∈ Act∗ such that for all s′ ∈ JψK :

σ is strongly executable at s′ and
M, t � ϕ for all t with s′ σ−→ t
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where JψK = {s′ ∈ S | M, s′ � ψ}.

By the semantics above, we can see that the modality Kh is a universal operator.
Furthermore, it is easy to check that

M, s � Kh(¬ϕ,⊥) ⇐⇒ M, s′ � ϕ for each s′ ∈ S.

Therefore, the formula Kh(¬ϕ,⊥) is also written as Uϕ, which means that ϕ is true in
each state of the modelM.

Definition A.3.5 (Deductive system) The axioms and rules shown in Table A.4 consti-
tute the deductive system SKH.

AXIOMS
TAUT all tautologies of propositional logic
DISTU Up ∧ U(p→ q)→ Uq
TU Up→ p
4KU Kh(p, q)→ UKh(p, q)
5KU ¬Kh(p, q)→ U¬Kh(p, q)
EMPKh U(p→ q)→ Kh(p, q)
COMPKh (Kh(p, r) ∧ Kh(r, q))→ Kh(p, q)

RULES
MP From ϕ→ ψ and ϕ, infer ψ
GEN From ϕ, infer Uϕ
SUB From ϕ, infer ϕ[ψ/p]

Table A.4: System SKH

The following theorem is proved in Wang (2015a).

Theorem A.3.6 SKH is sound and strongly complete with respect to the semantics of
Definition A.3.4.

A.4 Arrow update logic
Arrow update logic proposed in Kooi and Renne (2011a) is a dynamic epistemic logic
concerned with reasoning about information change by eliminating epistemic accesses.
This subsection will introduce the language, the semantics, and the deductive system of
arrow update logic.

Let P be a countable set of proposition letters and Agt be a nonempty finite set of
agents.

Definition A.4.1 (Language) The language of arrow update logic is defined as below.

ϕ ::=> | p | ¬ϕ | (ϕ ∧ ϕ) | 2aϕ | [U ]ϕ

U ::=(ϕ, a, ϕ) | (ϕ, a, ϕ), U

where p ∈ P and a ∈ Agt.
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Intuitively, the formula 2aϕ means that the agent a believes that ϕ holds, and the
formula [U ]ϕ means that ϕ holds after the model is updated with U .

Definition A.4.2 (Model) A model is a tripleM = 〈S,R, V 〉 where

• S 6= ∅ is a set of states;

• R : Agt→ 2S×S is a collection of transitions labelled by actions in Agt;

• V : S → 2P is a valuation function.

For each s ∈ S, (M, s) is called a pointed model.

Definition A.4.3 (Semantics) Given a modelM = 〈S,R, V 〉, let s be a state in S. A
formula ϕ being truth inM, s, denoted asM, s � ϕ, is defined as below.

M, s � > always
M, s � p ⇐⇒ p ∈ V (s).
M, s � ¬ϕ ⇐⇒ M, s 2 ϕ.
M, s � (ϕ ∧ ψ) ⇐⇒ M, s � ϕ andM, s � ψ.
M, s � 2aϕ ⇐⇒ M, t � ϕ for each t with (s, t) ∈ R(a)
M, s � [U ]ϕ ⇐⇒ M∗ U, s � ϕ
RM∗U = {(w, v) | ∃(ψ, a, χ) ∈ U :M, w � ψ andM, v � χ}

whereM∗ U = 〈S,RM∗U , V 〉.

M∗U is the resulting model after updatingM with U . Please note that the updated
modelM∗U shares the same domain and the same valuation function with the original
model M. The transitions of M ∗ U is a subset of the transitions of M because the
update U deletes some transitions ofM.

Definition A.4.4 (Deductive system AUL) The axioms and rules shown in Table A.5
constitute the deductive system AUL.

The following theorem is proved in Kooi and Renne (2011a).

Theorem A.4.5 AUL is sound and complete with respect to the semantics of Defini-
tion A.4.3.
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AXIOMS
TAUT all tautologies of propositional logic
DISTU 2ap ∧2a(p→ q)→ 2aq
U1 [U ]p↔ p for p ∈ P ∪ {⊥,>}
U2 [U ]¬ϕ↔ ¬[U ]ϕ
U3 [U ](ϕ ∧ ψ)↔ [U ]ϕ ∧ [U ]ψ
U4 [U ]2aϕ↔

∧
(ψ,a,χ)∈U (ψ → 2a(χ→ [U ]ϕ))

U5 [U1][U2]ϕ↔ [U1 ◦ U2]ϕ
where [U1 ◦ U2] = {(ψ ∧ [U1]ψ′, a, χ ∧ [U1]χ′) | ∃(ψ, a, χ) ∈ U1 and

∃(ψ′, a, χ′) ∈ U2}

RULES
MP From ϕ→ ψ and ϕ, infer ψ
GENK From ϕ, infer 2aϕ
GENU From ϕ, infer [U ]ϕ

Table A.5: System AUL
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Samenvatting1

In dit proefschrift wordt vanuit logisch perspectief het maken van plannen en proced-
urele kennis (weten hoe) onderzocht. Binnen de kunstmatige intelligentie verstaat men
onder de term conformant planning het proces van het maken van een plan om een be-
paald doel te bereiken. Zo’n plan wordt door een persoon of andere handelende entiteit,
een zogeheten agent, uitgevoerd. Een agent die doelgerichte procedurele kennis heeft
weet hoe zij haar doel kan bereiken. In dit proefschrift wordt doelgerichte procedurele
kennis opgevat als (i) het hebben van een plan en (ii) weten dat het uitvoeren van dat
plan het doel zal bereiken.

In Hoofdstuk 2 introduceer ik een logisch raamwerk waarin precies kan worden
bijgehouden hoe de overtuigingstoestand van een agent (inclusief probabilistische in-
formatie) verandert tijdens het uitvoeren van een plan. Deze benadering verschilt van
bestaande benaderingen voor conformant probabilistic planning doordat het zich richt
op een logische taal waarin plannen en doelen gespecificeerd worden.

In hoofdstuk 3 and 4 worden logica’s gepresenteerd voor procedurele kennis ge-
baseerd op het idee dat weten hoe je een doel bereikt neerkomt op het hebben van een
conformant plan om dat doel te bereiken. In hoofdstuk 3 wordt een logisch systeem
gepresenteerd waarbij niet alleen het doel van het plan centraal staat maar ook de wijze
waarop dat doel bereikt wordt, d.w.z. het plan zelf moet aan bepaalde voorwaarden vol-
doen behalve dat het zijn doel bereikt. In hoofdstuk 4 wordt een logica voor procedurele
kennis gepresenteerd waarbij de kennis om een doel te bereiken wordt opgevat als het
hebben van een zwak conformant plan. De vereisten die een conformant plan stelt aan
het plan kunnen namelijk te sterk zijn, in die zin dat er bij het uitvoeren van een plan
niets hoort mis te gaan. Een zwak conformant plan is een plan dat altijd tot een bepaald
doel leid als het uitvoeren van het plan ophoudt, zelfs als de uitvoering van het plan nog
niet voltooid is.

In hoofdstuk 5 wordt een logisch raamwerk voor procedurele kennis gepresenteerd
waarbij weten hoe je een doel bereikt opgevat wordt als het hebben van een contingent
plan om een doel te bereiken. Anders dan een conformant plan, wat een lineaire reeks
handelingen is, is een contingent plan een partiële functie van overtuigingstoestanden
naar handelingen. Binnen dit logische raamwerk onderzoeken we ook de interactie
tussen propositionele kennis (weten dat) en procedurele kennis (weten hoe).

Arrow update logic (AUL) is een logisch raamwerk dat geschikt is om redenerin-
gen over informatieverandering te formaliseren. In AUL wordt informatieverandering
gemodelleert door de epistemische toegankelijkheidsrelatie over mogelijke werelden te

1This is a summary of this thesis in Dutch, and everything here is also explained in the chapter of intro-
duction.
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wijzigen. Deze manier van modeleren maakt het een geschikte manier om informatiev-
erandering te modeleren in logica’s voor procedurele kennis omdat het domein van een
model (de verzameling mogelijke werelden) niet wijzigt in tegenstelling tot andere ben-
aderingen. In AUL is het echter gemeenschappelijke kennis hoe elke agent nieuwe in-
formatie zal verwerken. In hoofdstuk 6 wordt de theorie van AUL uitgebreid in die zin
dat de nieuwe informatie beperkt blijft tot een bepaalde groep agents.
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