

University of Groningen

Translocation across biological membranes: activity, structure and regulation of transporters

Ruiz, Stephanie

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version Publisher's PDF, also known as Version of record

Publication date: 2017

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA): Ruiz, S. (2017). Translocation across biological membranes: activity, structure and regulation of transporters [Groningen]: University of Groningen

Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Translocation across biological membranes: activity, structure and regulation of transporters

Stephanie J. Ruiz

Cover: Transmission electron micrograph of intestinal microvilli of a cat. Images such as this were used to develop theories about the composition and organization of the plasma membrane. This image, from Susumu Ito, was published in "The Cell' (2nd Ed.) by Don W. Fawcett M.D. It is licensed under a Creative Commons Attribution, Non-Commercial, No Derivatives License and is available at http://www.cellimagelibrary.org/images/12063.

Printed by Ipskamp Printing B.V.

ISBN: 978-94-034-0008-2 (printed) ISBN: 978-94-034-0007-5 (electronic)

The work published in this thesis was carried out in the Membrane Enzymology group of the Groningen Biomolecular Sciences and Biotechnology Institute (GBB) of the University of Groningen, the Netherlands. It was financially supported by the BE-Basic R&D program, which was granted an FES subsidy from the Dutch Ministry of Economic Affairs, Agriculture and Innovation (EL&I), as well as by the Netherlands Organization for Scientific Research (NWO) and the European Research Council (ERC).

© 2017 Stephanie J. Ruiz.

All rights reserved. This book or any portion thereof may not be reproduced or used in any manner whatsoever without the express written permission of the author.

Translocation across biological membranes: activity, structure and regulation of transporters

PhD thesis

to obtain the degree of PhD at the University of Groningen on the authority of the Rector Magnificus Prof. E. Sterken and in accordance with the decision by the College of Deans.

This thesis will be defended in public on

Friday 22 September 2017 at 11.00 hours

by

Stephanie Jade Ruiz

born on 26 January 1986 in Bulli, Australia

Supervisor Prof. B. Poolman

Assessment Committee

Prof. A.J.M. Driessen Prof. I.J. van der Klei Prof. C. Govaerts

Contents

List of abbreviations	iii
Amino acids and their one- and three-letter codes	v
Chapter 1. General introduction	1
1.1 Transport of molecules across biological membranes	3
1.2 Advantages and challenges of studying transport systems	5
1.3 Amino acid transport in <i>Saccharomyces cerevisiae</i>	
1.4 Regulation of S. cerevisiae amino acid transporters	.14
1.5 Outline of this thesis	18
Chapter 2. Expression of Saccharomyces cerevisiae amino acid transporter	S
in Pichia pastoris	. 19
2.1 <i>Pichia pastoris</i> as an expression host	21
2.2 Screening amino acid transporter constructs	21
2.3 Materials and methods	31
2.4 Supplementary	42
Chapter 3. Growth inhibition by amino acids in Saccharomyces cerevisiae.	43
3.1 Introduction	45
3.2 Results and discussion	46
3.3 Conclusions	55
3.4 Materials and methods	.55
3.5 Supplementary	59
Chapter 4. A plasma membrane association module in yeast amino acid	
transporters	65
4.1 Introduction	67
4.2 Results	68
4.3 Discussion	78
4.4 Materials and methods	84
4.5 Supplementary	89
Chapter 5: Introduction to ABC transporters	99
5.1 Type I and Type II importers	102
5.2 Type III (ECF) importers	104
5.3 Exporters	104
5.4 Transport mechanism	105
5.5 Not so neatly defined	106

Chapter 6. Crystal structure of the substrate-binding domain from	Listeria
monocytogenes bile-resistance determinant BilE	109
6.1 Introduction	111
6.2 Results and discussion	112
6.3 Conclusions	122
6.4 Materials and methods	122
6.5 Supplementary	125
Chapter 7. Conclusions and outlook	
Nederlandse samenvatting	141
References	147
Acknowledgements	171

List of abbreviations

AAAP	amino acid/auxin permease
AAP	amino acid permease
AAPTII	amino acid/polyamine transporter II
ABC	ATP-binding cassette
AOX1	alcohol oxidase 1
APC	amino acid-polyamine-organocation
ARS	autonomous replication sequence
ATP	adenosine 5'-triphosphate
AVT	amino acid vacuolar transport
BLAST	basic local alignment search tool
DTT	dithiothreitol
EACA	ε-aminocaproic acid
EDTA	ethylenediaminetetraacetic acid
EGTA	ethylene glycol-bis(2-aminoethylether)-N,N,N,N-tetraacetic acid
ER	endoplasmic reticulum
FRAP	fluorescence recovery after photobleaching
GAAC	general amino acid control
GABA	γ-aminobutyric acid
GFP	green fluorescent protein
K _m	Michaelis constant
KPi	potassium phosphate
LCT	lysosomal cystine transporter
MC	mitochondrial carrier
MDR	multidrug resistance
MFS	major facilitator superfamily
NADH	nicotinamide adenine dinucleotide, reduced
NBD	nucleotide-binding domain
NCR	nitrogen catabolite repression
OD ₆₀₀	optical density at 600 nm
PCR	polymerase chain reaction
PCTP	sodium propionate, sodium cacodylate trihydrate, Bis-Tris propane
PEG	poly(ethylene glycol)
PM	plasma membrane
PMSF	phenylmethylsulfonyl fluoride

QAC	quaternary ammonium compound
RMSD	root-mean-square deviation of atomic positions
rpm	revolutions per minute
SBD	substrate-binding domain
SBP	substrate-binding protein
SDS-PAGE	sodium dodecyl sulfate polyacrylamide gel electrophoresis
SEC	size-exclusion chromatography
SPS	Ssy1-Ptr3p-Ssy5p complex
TEV	tobacco etch virus
TFE	2,2,2-trifluoroethanol
TMD	transmembrane domain
TMS	transmembrane segment
TORC1	target-of-rapamycin complex 1
Ub	ubiquitin
VBA	vacuolar basic amino acid
VM	vacuolar membrane
YAT	yeast amino acid transporter

Amino acids and their one- and three-letter codes

Alanine	А	Ala
Arginine	R	Arg
Asparagine	Ν	Asn
Aspartate	D	Asp
Cysteine	С	Cys
Glutamine	Q	Gln
Glutamate	Е	Glu
Glycine	G	Gly
Histidine	Η	His
Isoleucine	Ι	Ile
Leucine	L	Leu
Lysine	Κ	Lys
Methionine		3.4
	\mathbf{M}	Met
Phenylalanine	M F	Met Phe
Phenylalanine Proline	M F P	Met Phe Pro
Phenylalanine Proline Serine	M F P S	Met Phe Pro Ser
Phenylalanine Proline Serine Threonine	M F P S T	Met Phe Pro Ser Thr
Phenylalanine Proline Serine Threonine Tryptophan	M F P S T W	Met Phe Pro Ser Thr Trp
Phenylalanine Proline Serine Threonine Tryptophan Tyrosine	M F S T W Y	Met Phe Pro Ser Thr Trp Tyr