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ABSTRACT

It is thought that variation in natural light levels affect people with Seasonal 
Affective Disorder (SAD). Several meteorological factors related to luminance 
can be forecast but little is known about which factors are most indicative of 
worsening SAD symptoms. The aim of this meteorological analysis is to 
determine which factors are linked to SAD symptoms. The symptoms of 291 
individuals with SAD in and near Groningen have been evaluated over the 
period 2003 to 2009. Meteorological factors linked to periods of low natural 
light (sunshine, global radiation, horizontal visibility, cloud cover and mist) and 
others (temperature, humidity and pressure) were obtained from weather 
observation stations. A Bayesian zero adjusted auto-correlated multilevel 
Poisson model was carried out to assess which variables influence the SAD 
symptom score BDI-II. The outcome of the study suggests that the variable 
sunshine duration, for both the current and previous week, and global 
radiation for the previous week, are significantly linked to SAD symptoms.
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1. Introduction

The influence of weather conditions on general wellbeing has been reported 
in several studies, but there is no consistent evidence for these relationships 
(Barnston, 1988; Watson, 2000; Geoffrey et al., 2014). It is also difficult to 
distinguish between the impacts of different weather conditions on wellbeing 
because some of them are often highly correlated (Young et al., 1997).

Seasonal differences in hospital admissions for people with mood disorders 
and admissions of people with a bipolar disorder because of mania compared 
to depressive states as a reason for admission are described in a number of 
studies There is some evidence that meteorological factors trigger bipolar 
symptoms and that admissions of mania are related to the seasons, mostly 
spring or summer (Shapira et al., 2004; Volpe et al., 2009; Medici et al., 
2016). In unipolar depressive disorders, no differences were found (Shapira et 
al., 2004).

In a study using daily self-reported mood ratings in bipolar disorder no 
seasonal variation in mood was reported (Bauer et al., 2009). In a review 
article, Geoffrey et al. (2014) concluded that there is some evidence of 
seasonality and that meteorological conditions may trigger bipolar depression 
symptoms (Geoffrey et al., 2014).

Besides photoperiodism (sunshine / daylight hours), the other environmental 
aspects of weather conditions are not firmly related to wellbeing and mood 
(Geoffrey et al., 2014). There are studies that show that there is a relationship 
between humidity and affective disorders (Morrissey et al., 1996; Salib and 
Sharp, 2002). Temperature has been shown to have a relationship with mood 
in some studies (Morrissey et al., 1996) but this relationship was not present 
in another study (Garvey et al., 1988). In a large scale screening programme 
in the general population (n = 14,748), the data of people with depression 
were compared to a number of meteorological factors such as temperature, 
sunshine and rainfall. Weather conditions were not found to be associated 
with mood (Huibers et al., 2010). Another study reported only a very small 
effect of weather on mood (Denissen et al., 2008). Although most studies 
found a relationship with photoperiodism, a study by Radua et al. (2010) 
supports a meteorological influence instead of the established seasonal 
influences in specific subtypes of depression. Bauer et al. (2014) found that a 
larger springtime increase in sunlight can have an influence on the onset of 
bipolar disorder in addition to influences of, for example, a family history of 
mood disorders.

Seasonal Affective Disorder (SAD) is a mood disorder characterized by 
recurrent episodes of major depression occurring with a seasonal pattern. 
(American Psychiatric Association, 1994). The symptoms occur in a nearly 
yearly pattern in autumn/winter and disappear completely in spring/summer 
(Rosenthal et al., 1984). Over recent decades, exposure to artificial bright light 
has become the first choice treatment for people with SAD (Meesters et al., 
1995; Terman and Terman, 2005; Westrin and Lam, 2007; Meesters and 



Gordijn, 2016). In addition, exposure to “natural” light was also found to be 
effective in the treatment of SAD (Wirz-Justice et al., 1996).

In a very small (n = 10) retrospective study it was found that the effect of the 
seasons on SAD is far more robust than the effects of the weather on energy 
and sleep patterns. The effects of the weather, if discernible, were most 
pronounced in the summer (Albert et al., 1991) or spring (Keller et al., 2005). 
In a larger study, no relationship between cloud cover, rainfall or atmospheric 
pressure and depression scores was found, but a significant relationship was 
found between depression scores of SAD patients and duration of sunshine, 
global radiation, temperature and length of daylight (Molin et al., 1996).

A further study suggests that weather variables may influence the mood of 
people with SAD more than people with non-seasonal depression (Sigmon et 
al., 2010).

As discussed above, photoperiodism and the amount of sunshine are related 
to the seasons. Exposure to light improves the mood and energy levels for 
people with SAD (Meesters and Gordijn, 2016). This applies not only from 
exposure to artificial light, but also from exposure to “natural” light. (Wirz-
Justice et al (1996). Spending time outside can be influenced by weather 
conditions, so other weather conditions might also influence the course of 
mood.

In this study we investigate the effects on depressed mood of weather 
variables in a sample of people with SAD who visited an SAD outpatient clinic 
and were followed during six winter seasons.

2. Methods

2.1. Clinical data

In the SAD outpatient clinic at the University Center of Psychiatry at the 
University Medical Center Groningen, Netherlands, patients have been 
followed through the scores on a weekly depression self-rating questionnaire, 
each year between mid September and mid April (from week 37 till week 17) 
(Meesters et al., 1993).

Patients with seasonal complaints are referred to this clinic. Only patients who 
are diagnosed with SAD (Major Depressive Disorder with a seasonal pattern, 
winter type) are asked to participate in the programme. Patients are 
diagnosed following a structured interview (MINI, Sheehan et al., 1998) by an 
experienced clinical psychologist and are assessed according to the criteria of 
the DSM-IV (American Psychiatric Association, 1994). No patient in the cohort 
uses anti-depressant medication, and all were diagnosed with a unipolar 
depression.

Data for participating patients have been collected in winter seasons between 
2003 and 2009. In the first seasons the Beck Depression Inventory II (BDI-II, 
Beck et al., 1996; 2002) was used. From the start of the winter season of 
2007 the Inventory of Depressive Symptomatology, Self Rating version (IDS-
SR, Rush et al., 1996) was adopted. The questionnaire provides a score 
measuring severity of symptoms, the greater the score the more severe the 
symptoms. Patients with scores of 15 or more on the BDI-II and 20 or more on 
the IDS-SR were invited for light treatment. Whilst the IDS-SR questionnaire 



is used more in the later years, BDI-II scores form most of the SAD 
symptomatic data. To retain data quality, the IDS-SR scores have been 
converted to BDI-II using the conversion tables provided by the University 
Center for Psychiatry, University Medical Center Groningen. This conversion 
table was based on calculations of scores gathered from both instruments. 
During a winter season the assessment of depression of 236 patients took 
place with the use of BDI-II and the IDS-SR at the same point every week 
during the whole winter season (Meininger, 2007).

2.2. Meteorological data

Groningen is situated in northern Netherlands, about 25 km from the coast on 
the southern side of the North Sea. Groningen has an oceanic climate 
(Köppen classification Cfb) with mean temperatures ranging from 5 °C in 
winter to 22 °C in summer.

Meteorological data were provided by the Koninklijk Nederlands 
Meteorologisch Instituut (KNMI). These consisted of hourly data for 36 
weather observation stations throughout the Netherlands, from 1st January 
2003 to 30th April 2009. The weather measurements used were sunshine 
duration, global radiation, horizontal visibility, cloud cover and mist. The hourly 
data was first converted to weekly arithmetic means such that sunshine 
duration can be expressed as the number of hours of sunshine each week 
and mist is a probability of an hour within the week when mist will occur. 
Additional weather measurements of air temperature, humidity (measured by 
the dewpoint temperature) and surface atmospheric pressure were provided 
by the Met Office via the MEDMI service (www.data-mashup.org.uk). The 
estimates of the weekly exposure at the location of residence of each patient 
were calculated by Inverse-Distance Weighted (IDW) interpolation of the 
weekly means of measurements taken at the 36 sites. The IDW method 
ensures that the measurements taken at the sites closest to the patients have 
the most weight and hence the interpolation provides a good estimate of 
exposure (Perry and Hollis, 2005). The weather stations close to Groningen 
have little difference in elevation therefore no adjustments were made for 
altitude.

2.3. Analysis

There are three components in the data that disqualify the use of standard 
regression models for analysing the relation between the weather variables 
and the depression score: (1) the non-normal distribution of the scores; (2) the 
hierarchical structure of the data; (3) time series data is used which 
invalidates the standard assumption that subsequent error-terms are 
uncorrelated.

We overcome these problems by employing a zero-adjusted, auto-correlated 
multilevel Poisson model for the depression scores. In subsections 2.3.1-
2.3.3, we outline the problems of the three issues raised and how we deal 
with them. In subsection 2.3.4, we present the final model.

2.3.1 Non-normality

The distribution of BDI-scores has a very large peak at 0. Therefore, it was 
decided to model the data using a zero-adjusted Poisson distribution. A 
regular Poisson distribution is suitable for modelling integer-scores, such as 



count data. The zero-adjusted distribution accounts for the fact that there are 
more zero-values than one normally expects in Poisson data. More 
background on this type of modelling can be found in Long (1997) and 
Hadfield (2010).

2.3.2 Hierarchical data

The data are hierarchical: there are multiple measurements per individual. 
Individual depression base rates will differ and this hierarchical structure is 
incorporated by using the so-called multilevel model (c.f. Snijders and Bosker, 
1999; Goldstein, 2011).

2.3.3 Time series data

In a standard regression model, the error terms are expected to be mutually 
independent. A feature of time series data is that this is generally not the 
case: when a certain value is very high (low), then it is expected that the value 
at the next time point still is above (below) average. This is called inertia, and 
it is well known from psychiatric literature (c.f. Chen et al., 2012) that for 
depression data inertia is quite high. To overcome this, we include an auto-
regressive term in the model (c.f. Diggle et al., 2002; Liang and Zeger, 1986). 
That is, the BDIi,t score of week t is not only regressed on meteorological 
values, but also on the BDIi,t-1 score of the previous week.

2.3.4 The Bayesian zero-adjusted auto-correlated multilevel Poisson 
regression model

Combining the elements of 2.3.1-2.3.3, we arrive at the final model. This is a 
generalised mixed model using the link-function for the zero-adjusted binomial 
distribution. Conceptually, the model reads:

BDIi,t ~ i + BDIi,t-1 + WEATHERi,t + WEATHERi,t-1

where t denotes the week-number, i the participant, and WEATHERi,t is a (set 
of) weather variable(s).

The weather variables have been centred and scaled. Principally, this has no 
influence on the resulting p-values but does improve the convergence and 
accuracy of the Markov Chains. The weather variables include: Si,t, sunshine, 
GRi,t, global radiation, HVi,t, horizontal visibility, CCi,t, cloud cover, Mi,t, 
probability of mist, ATi,t, air temperature, Hi,t, humidity (measured as dewpoint 
temperature) and APi,t, atmospheric pressure. Both the weather variables of 
the current as of the previous week could be included, yielding 2 × 8 = 16 
variables.

A large amount of overlap between these sixteen weather variables is 
expected, so including all sixteen would be over-fitting. To decide upon the 
final model, we employed a backward elimination procedure (c.f. Cohen et al., 
2003). Starting from the full model, with all sixteen weather variables and 
previous week’s BDI-score, the least significant weather variable was 
excluded in each step of the procedure (always keeping the previous week’s 
BDI-score), until none of the predictors was non-significant (at the  = .01 
level).



3. Results

Data for 291 patients have been collected in winter seasons between 2003 
and 2009. It can be seen from the distribution of variables experienced each 
week by each patient (illustrated in appendix 1) that most patients experience 
similar conditions while some patients experience quite different weather. This 
is due to the fact that most patients reside in or very near Groningen while 
some reside as far as Drachten or Hoogeveen (~50 km away).

It is clear from these data that sunshine duration, global radiation, air 
temperature and dewpoint temperature are low in winter. Horizontal visibility is 
also somewhat lower in winter and cloud cover somewhat higher. Mist tends 
to occur in winter. The high correlation between weather variables is 
confirmed by the correlation coefficients listed in Table 1. As expected 
sunshine and radiation are well correlated (correlation coefficient 0.91).

As illustrated in Figure 1, there is, as expected, a large peak (46.5% of all 
measurements) at 0 for the BDI-scores. The hierarchical structure is as 
follows: the 23,197 measurements were collected by 291 individuals, with the 
number of measurements per individual ranging from 33 to 198.

Computations have been performed through Bayesian Markov Chain Monte 
Carlo simulations using R (R Core Team, 2015) with the package 
MCMCglmm (Hadfield, 2010). The R-code, the settings of the MCMC-
algorithm and the explanation behind various technical choices in the 
estimation procedure are provided in appendix 2. As this package cannot deal 
with missing values in the predictor variables, 845 measurements with 
missing data were deleted list wise.

Table 2 lists the order in which the backward elimination procedure discarded 
the variables. In the end, seven out of sixteen weather variables were 
discarded due to non-significance: for horizontal visibility, neither the score on 
the previous week nor the score on the current week had a significant 
contribution in predicting BDI-II scores. For the other variables, at least one of 
the two weeks was significant. (See Table 2 for details.)

The final model resulting from the backward elimination procedure is detailed 
in Table 3. Due to the complicated nature of the non-linear statistical model 
employed, it is difficult to directly interpret the numerical values of the 
estimators (and their credible intervals); although the relative magnitude of the 
coefficients is informative. Furthermore, the sign of the values – informing 
about the direction of the location – and the p-value – informing about the 
significance of the relation – can be interpreted directly.

From Table 3 it can be seen that weather has a contemporaneous and a 
lagged effect on depression symptoms, as four remaining weather variables 
are included in a contemporaneous way, and five variables are included as 
lagged effects. Apart from air temperature, global radiation and atmospheric 
pressure, the relations are positive: higher scores on the weather variables 
are related to higher depression symptoms. The largest effect on depression 
symptoms, in magnitude, is the lagged effect of global radiation (-.961). This 
is followed by the lagged effect of sunshine (.469), the contemporaneous 
effect of humidity (.322) and the contemporaneous effect of air temperature 
(-.246). All other weather variables have small magnitudes, below .20.



4. Discussion

In this paper, we studied eight weather variables and their influence – both 
contemporaneous and lagged – on SAD symptoms. Our analyses show that 
depression symptoms are not influenced by only one or a limited set of 
weather variables, but by a complicated mix of meteorological ingredients. We 
did not collect SAD symptom scores in summer months (weeks 18 to 26) so 
cannot assess how depressive symptoms evolved in other seasons outside 
winter. Symptom scores were collected weekly and were analysed against 
weekly measures of the weather. The weekly nature of the data means that it 
was not possible to assess within week (e.g. daily) variations of symptoms or 
how these are affected by within week variations in weather.

There are significant links between SAD symptoms and luminance-related 
weather variables. The relationships between weekly variations of symptoms 
and of weather variables show that short term fluctuations in weather 
variables influence SAD symptoms in addition to seasonal changes. 

There is a strong suggestion that the serotonin levels play a role in the 
existence of especially seasonal depression. Sunlight has a direct influence 
on serotonin levels (Lambers et al., 2002), and a seasonal variation of the 
serotonin transporter binding is described (Prashak-Rieder et al., 2008). 
Seasonal factors as for example daily sunshine and global radiation influence 
the serotonin 1A receptor binding in the limbic brain regions (Spindelegger et 
al., 2012). The hyperactive serotonin transporter (5-HTT) in SAD sufferers 
could be normalized after 4 weeks of light treatment and was comparable to 
summer levels (Willeit et al., 2008). In our studies, the mood of most SAD 
sufferers improved after 5-10 days of light treatment (Meesters and Gordijn, 
2016).

The results of the final multivariate model (Table 2) suggest that more 
sunshine leads to higher depression scores. However, it is clear that on its 
own, the more sunshine the lower the depression scores as is measured by 
the Spearman correlation coefficient of -0.22 (Table 1). The multivariate 
model includes other variables and, as such, quantifies semi-partial 
correlation, rather than bivariate correlations. With strong bivariate correlation 
between predictor variables, these semi-partial correlations can be 
distinctively different from the corresponding bivariate correlations. In this 
case, these results can be explained by the high correlation between 
sunshine and global radiation. A hypothesis may be that it is better to have 
strong sunlight over longer periods (same global radiation but longer sunshine 
duration). This could indicate that it is the strength of the sunlight that is linked 
to depressive symptom rather than its duration. It also indicates that there 
may be an interaction effect between sunshine and global radiation but adding 
the interaction variables to the model would add to its complexity.

Contrary to the study of Huibers et al. (2010) who found no influences of the 
effects of weather variables on mood in the general population, we found 
influence of some weather variables on mood in people diagnosed with SAD, 
a group of patients who are normally, by definition, sensitive to the effects of 
the seasons. Our results are in line with those of Molin et al. (1996).  
However, in our study we have demonstrated that there is also a relationship 
between cloud cover and mood in a population of people with SAD.  



McWilliams et al. (2014) describe that daily meteorological patterns do not 
affect overall hospital admissions for mania and depression (only a weak 
trend for barometric pressure in relation to mania admission was found). Our 
study shows the opposite for SAD, which suggests that people with SAD may 
be more vulnerable to these changes than people with other mood disorders. 
Our study offers new insight over and above that offered from cross-sectional 
studies of the assessment of hospital admissions, as we have assessed the 
longitudinal development of the course of mood in the same patients, related 
to weather conditions. This provides new understanding of the relationships 
between weather and the symptoms of people with SAD. The results in this 
study are in line with those described by O’Hare et al. (2016) who described 
that areas of Ireland with higher levels of rainfall in the preceding or current 
calendar month have greater incidence of depressive symptoms compared to 
areas with sunnier climates.

These findings demonstrate that the health of people with SAD in Groningen 
may be impacted by weekly changes in weather in addition to seasonal 
changes. Further studies will be necessary to check if these still hold true for 
sufferers in other climates. It has previously been demonstrated that 
administration of light treatment at the development of the first signs of SAD 
appears to prevent it from developing into a full-blown depression (Meesters 
et al., 1993). The findings in this study suggest that forecasting sunshine 
duration or cloud cover might improve the possibilities of early treatment (Met 
Office, 2010) which should be investigated by future research.
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Table 1.

Spearman correlation coefficients between BDI-scores and observations of 
weather variables sunshine duration (S), global radiation (GR), horizontal 
visibility (HV), cloud cover (CC), the probability of mist (M), temperature (AT), 
humidity (H) and atmospheric pressure (AP), from the 36 KNMI weather 
observation stations in the Netherlands.

BDI BDI-1

Depression score Contemporaneous (BDI)

Lagged (BDI-1) 0.60

p < 0.001

Duration of sunshine Contemporaneous (S) -0.22

p < 0.001

-0.23 

p < 0.001

Lagged (S-1) -0.17 

p < 0.001

-0.20 

p < 0.001

Global radiation Contemporaneous (GR) -0.26 

p < 0.001

-0.27 

p < 0.001

Lagged (GR-1) -0.21 

p < 0.001

-0.24 

p < 0.001

Horizontal visibility Contemporaneous (HV) -0.14 

p < 0.001

-0.14 

p < 0.001

Lagged (HV-1) -0.10 

p < 0.001

-0.13 

p < 0.001

Cloud cover Contemporaneous (CC) 0.13 

p < 0.001

0.13 

p < 0.001

Lagged (CC-1) 0.10 

p < 0.001

0.12 

p < 0.001

Probability of mist Contemporaneous (M) 0.04 

p < 0.001

0.04 

p < 0.001

Lagged (M-1) 0.03 

p < 0.001

0.04 

p < 0.001

Temperature Contemporaneous (AT) -0.05 

p < 0.001

-0.10 

p < 0.001



Lagged (AT-1) 0.01 

p = 0.23

-0.04 

p < 0.001

Humidity Contemporaneous (H) 0.03 

p < 0.001

-0.02 

p < 0.001

Lagged (H-1) 0.08 

p < 0.001

0.04 

p < 0.001

Atmospheric pressure Contemporaneous (AP) 0.00 

p = 0.88

-0.02 

p = 0.026

Lagged (AP-1) 0.03 

p < 0.001

0.00 

p = 0.66

Table 2.

Posterior means and 95% credible intervals (ci) for the final model. All 
variables have a p-value < .001

Variable Mean 95% ci

Lagged: BDI-II score .197 (.116, .274)

Contemporaneous: Sunshine .116 (.059, .170)

Contemporaneous: Cloud cover .091 (.049, .128)

Contemporaneous: Air temperature -.246 (-.393, -.106)

Contemporaneous: Humidity .322 (.193, .462)

Lagged: Sunshine .469 (.410, .532)

Lagged: Global radiation -.961 (-1.03, -.876)

Lagged: Mist probability .054 (.035, .074)

Lagged: Humidity .094 (.060, .123)

Lagged: Atmospheric pressure -.041 (-.060, -.022)





Fig. 1. Histogram of the scores on the BDI-II scale. The 216 scores (0.93%) 
above 30 are omitted for visualisation purposes.



Appendix 1: Distributions of weather variables and depression scores

Fig. A1. Weekly exposure to sunshine, global radiation, horizontal visibility, 
cloud cover, mist, air temperature, humidity (dewpoint temperature) and 
pressure that the 291 SAD patients experienced at their place of residence; 
each point represents one patient.

Fig. A2. Weekly evolution of mean BDI scores with 95% Confidence Interval 
(CI) starting at week 37 of the year.

Appendix 2: Cross-correlation of weather variables

Table A1.

Spearman correlation coefficients between weather variables sunshine 
duration (S), global radiation (GR), horizontal visibility (HV), cloud cover (CC), 
the probability of mist (M), temperature (AT), humidity (H) and atmospheric 
pressure (AP), from the 36 KNMI weather observation stations in the 
Netherlands, (a) contemporaneous and (b) lagged.

(a)

GR HV CC M AT H AP

Duration of sunshine

Contemporaneous (S) 0.92

p < 0.001

0.48 

p < 0.001

-0.69 

p < 0.001

-0.03 

p < 0.001

0.44 

p < 0.001

0.24 

p < 0.001

0.17 

p < 0.001

Lagged (S-1) 0.75 

p < 0.001

0.37 

p < 0.001

-0.38 

p < 0.001

-0.06 

p < 0.001

0.52 

p < 0.001

0.38 

p < 0.001

0.03 

p < 0.001

Global radiation

Contemporaneous (GR) 0.49 

p < 0.001

-0.53 

p < 0.001

-0.08 

p < 0.001

0.52 

p < 0.001

0.33 

p < 0.001

0.07 

p < 0.001



Lagged (GR-1) 0.91 

p < 0.001

0.45 

p < 0.001

-0.38 

p < 0.001

-0.12 

p < 0.001

0.62 

p < 0.001

0.46 

p < 0.001

0.00 

p = 0.89

Horizontal visibility

Contemporaneous (HV) -0.15 

p < 0.001

-0.53 

p < 0.001

0.35 

p < 0.001

0.20 

p < 0.001

-0.18 

p < 0.001

Lagged (HV-1) 0.44 

p < 0.001

0.34 

p < 0.001

-0.13 

p < 0.001

-0.08 

p < 0.001

0.36 

p < 0.001

0.29 

p < 0.001

0.01 

p = 0.074

Cloud cover

Contemporaneous (CC) 0.01 

p = 0.095

-0.29 

p < 0.001

-0.15 

p < 0.001

-0.24 

p < 0.001

Lagged (CC-1) -0.35 

p < 0.001

-0.09 

p < 0.001

0.59 

p < 0.001

0.08 

p < 0.001

-0.31 

p < 0.001

-0.24 

p < 0.001

-0.05 

p < 0.001

Probability of mist

Contemporaneous (M) -0.23 

p < 0.001

-0.17 

p < 0.001

0.27 

p < 0.001

Lagged (M-1) -0.13 

p < 0.001

-0.14 

p < 0.001

0.16 

p < 0.001

0.20 

p < 0.001

-0.13 

p < 0.001

-0.09 

p < 0.001

0.04 

p < 0.001

Temperature

Contemporaneous (AT) 0.96 

p < 0.001

-0.02 

p < 0.001

Lagged (AT-1) 0.45 

p < 0.001

0.42 

p < 0.001

-0.31 

p < 0.001

-0.21 

p < 0.001

0.78 

p < 0.001

0.74 

p < 0.001

0.01 

p = 0.44

Humidity

Contemporaneous (H) -0.03 

p < 0.001

Lagged (H-1) 0.27 

p < 0.001

0.31 

p < 0.001

-0.22 

p < 0.001

-0.16 

p < 0.001

0.70 

p < 0.001

0.71 

p < 0.001

0.01 

p = 0.33

Atmospheric pressure

Contemporaneous (AP)

Lagged (AP-1) -0.02 

p = 0.006

-0.09 

p < 0.001

-0.05 

p < 0.001

0.13 

p < 0.001

-0.04 

p < 0.001

-0.04 

p < 0.001

0.15 

p < 0.001



(b)

S-1 GR-1 HV-1 CC-1 M-1 AT-1 H-1 AP-1

Duration of sunshine

Contemporaneous (S) 0.68

p < 0.001

0.77 

p < 0.001

0.39 

p < 0.001

-0.36 

p < 0.001

-0.12 

p < 0.001

0.42 

p < 0.001

0.26 

p < 0.001

-0.01 

p = 0.17

Lagged (S-1) 0.92 

p < 0.001

0.47 

p < 0.001

-0.69 

p < 0.001

-0.03 

p < 0.001

0.42 

p < 0.001

0.23 

p < 0.001

0.16 

p < 0.001

Global radiation

Contemporaneous (GR) 0.75 

p < 0.001

0.91 

p < 0.001

0.44 

p < 0.001

-0.35 

p < 0.001

-0.13 

p < 0.001

0.45 

p < 0.001

0.27 

p < 0.001

-0.02 

p = 0.006

Lagged (GR-1) 0.48 

p < 0.001

-0.52 

p < 0.001

-0.08 

p < 0.001

0.51 

p < 0.001

0.32 

p < 0.001

0.06 

p < 0.001

Horizontal visibility

Contemporaneous (HV) 0.37 

p < 0.001

0.45 

p < 0.001

0.34 

p < 0.001

-0.09 

p < 0.001

-0.14 

p < 0.001

0.42 

p < 0.001

0.31 

p < 0.001

-0.09 

p < 0.001

Lagged (HV-1) -0.13 

p < 0.001

-0.54 

p < 0.001

0.35 

p < 0.001

0.20 

p < 0.001

-0.18 

p < 0.001

Cloud cover

Contemporaneous (CC) -0.38 

p < 0.001

-0.38 

p < 0.001

-0.13 

p < 0.001

0.59 

p < 0.001

0.16 

p < 0.001

-0.31 

p < 0.001

-0.22 

p < 0.001

-0.05 

p < 0.001

Lagged (CC-1) 0.02 

p = 0.022

-0.27 

p < 0.001

-0.14 

p < 0.001

-0.23 

p < 0.001

Probability of mist

Contemporaneous (M) -0.06 

p < 0.001

-0.12 

p < 0.001

-0.08 

p < 0.001

0.08 

p < 0.001

0.20 

p < 0.001

-0.21 

p < 0.001

-0.16 

p < 0.001

0.13 

p < 0.001

Lagged (M-1) -0.23 

p < 0.001

-0.17 

p < 0.001

0.27 

p < 0.001

Temperature

Contemporaneous (AT) 0.52 

p < 0.001

0.62 

p < 0.001

0.36 

p < 0.001

-0.31 

p < 0.001

-0.13 

p < 0.001

0.78 

p < 0.001

0.70 

p < 0.001

-0.04 

p < 0.001

Lagged (AT-1) 0.96 

p < 0.001

-0.03 

p < 0.001

Humidity

Contemporaneous (H) 0.38 0.46 0.29 -0.24 -0.09 0.74 0.71 -0.04 



p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

Lagged (H-1) -0.04 

p < 0.001

Atmospheric pressure

Contemporaneous (AP) 0.03 

p < 0.001

0.00 

p = 0.89

0.01 

p = 0.074

-0.05 

p < 0.001

0.04 

p < 0.001

0.01 

p = 0.44

0.01 

p = 0.33

0.15 

p < 0.001

Lagged (AP-1)



Appendix 3: Algorithm and estimation technicalities

The general call to the model is 

MCMCglmm(Y ~ PREVY + X1 + X2 + … + PREVX1 + PREVX2 + …, 
random =~ idh(1):NUMBER, rcov =~ trait:units) 

data = dataset, family = "zipoisson")

where Y is the dependent variable (in this case the BDI-score), PREVY is the 
same for a time point earlier (thus, PREVYt  Yt-1), Xi are the predictors (in 
this case the weather variables), PREVXit = Xit-1, the predictors for a week 
earlier, and NUMBER is indicator of the participants in the study.

Through the random-call, we enabled a random intercept multilevel model. 
We decided not to include random slopes in our final model, because (i) this 
would increase model complexity and (ii) it did not yield to improved model-fit 
(measured through the DIC score; results not shown). 

The current uses the previous BDI-score as a linear term in the model (note 
that the model does still use a convolution of a logistic and exponential 
transformation as non-linear link function). It can be reasoned that a non-
linear term would be preferable. We implemented various non-linear 
transformations (BDI2, log(BDI + 1), etc.) but as these did not lead to 
improved DIC-scores (results not shown), we decided to refrain from including 
them.

Regarding the computational estimation: we used 3000 iterations for a burn-in 
period, followed by 10,000 iterations for the model fitting and a thinning factor 
of 10. For all variables, the default prior as provided by MCMCglmm has been 
used, as a study of the trace plots and other MCMC-diagnostics with these 
priors yielded confidence in our approach.

Table A2.

Overview of the steps in the backward elimination procedure.

Step Discarded variable

1 Atmospheric pressure current week (p =.968)

2 Horizontal visibility, previous week (p =.644)

3 Global radiation, current week (p =.206)

4 Air temperature, previous week (p =.112)

5 Cloud cover, previous week (p =.088)

6 Horizontal visibility, current week (p =.040)

7 Mist probability, current week (p =.056)

8 Stop: all p <.001


