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Abstract 

Ageing can be defined as the gradual deterioration of physiological functions, increasing the 

incidence of age-related disorders and the probability of death. Therefore, the term of ageing 

does not only reflect the lifespan of an organism but also refers to progressive functional 

impairment and disease.  

The nutrient-sensing kinase mTOR (mammalian target of rapamycin) is a major determinant of 

ageing. mTOR promotes cell growth and controls central metabolic pathways including protein 

biosynthesis, autophagy, and glucose and lipid homeostasis. The concept that mTOR has a 

crucial role in ageing is supported by numerous reports on the lifespan prolonging effects of 

the mTOR inhibitor rapamycin in invertebrate and vertebrate model organisms. Interestingly, 

rapamycin not only increases lifespan but also delays the appearance of age-related metabolic 

phenotypes and diseases. Dietary restriction increases lifespan and delays ageing phenotypes 

as well, and mTOR has been assigned a major role in this process. This may suggest a causal 

relationship between the lifespan of an organism and its metabolic phenotype.  

More than 25 years after mTOR’s discovery, a wealth of metabolic and ageing-related effects 

have been reported. In this review we cover the current view on the contribution of the different 

elements of the mTOR pathway to lifespan and age-related metabolic impairment. We 

specifically focus on distinct roles of isoforms and splice variants across the mTOR network. 

The comprehensive analysis of mouse knockout studies targeting these variants does not 

support a tight correlation between lifespan prolongation and improved metabolic phenotypes 

and questions the strict causal relationship between them. 

  



  

2 
 

Summary  

 

 mTOR inhibition prolongs lifespan and delays the appearance of age-related metabolic 

diseases, suggesting that mTOR is a major determinant of ageing and metabolic 

balance. 

 The mTOR network in higher organisms harbours many different isoforms and splice 

variants, which exert complex effects on lifespan and metabolism. 

 A comprehensive analysis of mouse knockout studies targeting these variants does not 

support a tight causal relationship between an improved metabolic phenotype and 

lifespan prolongation. 

 

Abbreviation list  

 

4E-BP1   eukaryotic translation initiation factor 4E-binding protein 1 

4E-BP2  eukaryotic translation initiation factor 4E-binding protein 2 

4E-BP3  eukaryotic translation initiation factor 4E-binding protein 3 

aa   amino acids 

AGC   protein kinase A/ protein kinase G/ protein kinase C 

AMPK    AMP-activated protein kinase 

ApoE    apolipoprotein E 

Atg13    autophagy related 13 

BAD    BCL2 associated agonist of cell death  

BD    binding domain 

C. elegans   Caenorhabditis elegans 

CaMKKβ   Ca2+/calmodulin-dependent protein kinase kinase-beta 

Cdc42    cell division cycle 42 

CTD    C-terminal domain 

CREM   cAMP responsive element modulator 

D. melanogaster  Drosophila melanogaster 

d4E-BP eukaryotic translation initiation factor 4E-binding in Drosophila 

melanogaster 

DEPTOR  DEP domain containing mTOR-interacting protein 

dS6K   ribosomal S6 kinase in Drosophila melanogaster 

dTOR   TOR in Drosophila melanogaster 

eEF2K   eukaryotic elongation factor-2 kinase 

eIF4B    eukaryotic translation initiation factor 4B 

eIF4E    eukaryotic translation initiation factor 4E 

EMT    endothelial-mesenchymal transition 

Er    estrogen receptor alpha 

FAT    FRAP-ATM-TTRAP domain 

FATC    FAT-carboxy terminal domain 

FoxO    Forkhead box O 

GAP   GTPase-activating protein 
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GLUT4   glucose transporter type 4 

Grb2   growth factor receptor-bound protein 2 

Grb10   growth factor receptor-bound protein 10 

GSK-3   glycogen synthase kinase 3 

GWAS   genome-wide association studies 

HEAT  huntingtin-elongation factor 3-regulatory subunit A of PP2A-TOR1 

repeats 

HM    hydrophobic motif 

IGF-1    insulin like growth factor 1 

IGF1-R  insulin like growth factor 1 receptor 

InR   insulin receptor 

IRS1   insulin receptor substrate 1 

IRS2   insulin receptor substrate 2 

IRS3   insulin receptor substrate 3 

IRS4   insulin receptor substrate 4 

KD    kinase domain 

KRLB    kinase regulatory loop binding 

MAPK    mitogen-activated protein kinase 

Mdm2    Mdm2 proto-oncogene 

mLST8  mammalian lethal with SEC13 protein 8 

mSin1    mammalian stress-activated protein kinase interacting protein 1 

mTOR   mammalian target of rapamycin 

mTORC1   mTOR complex 1 

NLS    nuclear localization sequence 

NTD    N-terminal domain 

PDK1    3-phosphoinositide-dependent kinase-1 

PH    pleckstrin homology 

PHLPP1   PH domain and leucine-rich repeat protein phosphatase 1 

PI3K    phosphatidylinositol 3-kinase 

PIP2    phosphatidylinositol-3,4-biphosphate 

PIP3    phosphatidylinositol-3,4,5-triphosphate 

PKC   protein kinase C 

PRAS40   proline-rich Akt substrate of 40 kDa 

Protor-1   protein observed with rictor 1/ proline-rich protein 5 

Protor-2  protein observed with rictor 1/ proline-rich protein 5-like 

PTEN    phosphatase and tensin homolog 

Rac-1    ras-related C3 botulinum toxin substrate 1 

Rag    ras-related GTP-binding proteins 

Raptor   regulatory associated protein of mTORC1 

RBD    ras-binding domain 

Rheb   ras-homologue-enriched-in-brain 

Rictor   rapamycin-insensitive companion of mTOR 

RNC    raptor N-terminal conserved 

ROR   RAR-related orphan receptor gamma 

S6   ribosomal protein S6 

S6K1    ribosomal protein S6 kinase 1 

S6K2   ribosomal protein S6 kinase 2 

S. cerevisiae   Saccharomyces cerevisiae 
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SGK    serum and glucocorticoid-regulated kinase 

SHP2    src homology 2 domain-containing phosphatase 

SIRT    sirtuins 

TBC1D7   Tre2-Bub2-Cdc16 1 domain family member 7 

Tel2    telomere maintenance 2 

TFE3 transcription factor binding to immunoglobulin heavy constant mu 

enhancer 3 

Tti1 TELO2 interacting protein 1 

TOR    target of rapamycin 

TOS    TOR signalling sequence 

TSC   tuberous sclerosis complex 

TTP   tristetraprolin 

ULK1   unc-51 like autophagy activating kinase 1 

ULK2   unc-51 like autophagy activating kinase 2 

YY1    yin yang 1  
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1. The mTOR pathway in mammals 

 

Target of rapamycin (TOR) was discovered in 1991 in the budding yeast Saccharomyces 

cerevisiae (S. cerevisiae) (1) and is structurally and functionally conserved in all eukaryotes, 

including mammals where it is called mammalian TOR (mTOR). mTOR is a serine/threonine 

kinase that functions as a master regulator of cellular growth and metabolism. mTOR forms 

two structurally and functionally distinct complexes, mTOR complex 1 (mTORC1) and 

mTORC2 (2-4). mTORC1’s specific binding partners are the scaffold protein raptor (regulatory 

associated protein of mTORC1) (5, 6), and the inhibitory protein PRAS40 (proline-rich Akt 

substrate of 40 kDa) (7-11). mTORC2 is formed by rictor (rapamycin-insensitive companion of 

mTOR) (12, 13), mSin1 (mammalian stress-activated protein kinase interacting protein 1) (14, 

15) and Protor (protein observed with rictor) (7, 16). In addition, mTORC1 and mTORC2 share 

the binding partners mLST8 (mammalian lethal with SEC13 protein 8) (13, 17), DEPTOR 

(DEP domain containing mTOR-interacting protein) (18) and the Tti1 (TELO2 interacting 

protein 1)/ Tel2 (telomere maintenance 2) complex (19). Both mTORC1 and mTORC2 are 

activated by growth factors (e.g., insulin) and amino acids, and mTORC1 is positively 

regulated by energy (ATP/AMP ratio) (2) (Figure 1). 

Insulin activates mTORC1 via a well-described signalling cascade that is initiated either by the 

InR (insulin receptor) or the IGF1-R (insulin like growth factor 1 receptor) (Figure 1). Upon 

insulin/ IGF-1 (insulin like growth factor 1) binding, the receptors dimerize and trans-

phosphorylate their cytoplasmic domain (20). This leads to the recruitment of IRS (insulin 

receptor substrate), which is phosphorylated at tyrosine residues by the InR and IGF-1R, and 

in response acts as a scaffold for many proteins (20). Class-I PI3Ks (phosphatidylinositol 3-

kinases) bind to IRS, where they are activated, and thus, phosphorylate PIP2 

(phosphatidylinositol-3,4-biphosphate) to form PIP3 (phosphatidylinositol-3,4,5-triphosphate). 

PIP3 is converted back to PIP2 by the phosphatase PTEN (phosphatase and tensin homolog) 

(21). Via binding to PIP3, proteins containing a PH (pleckstrin homology) domain are recruited 

to the membrane. The AGC (protein kinase A/protein kinase G/protein kinase C) kinases 

PDK1 (3-phosphoinositide-dependent kinase-1) and Akt both contain PH domains (21). Upon 

PIP3 formation they translocate to the plasma membrane, where PDK1 phosphorylates Akt 

within its kinase domain (22). Akt downstream of PDK1 activates mTORC1, by 

phosphorylating and inhibiting PRAS40 (23, 24), and the TSC (tuberous sclerosis complex) 

complex, formed by TSC1, TSC2 and TBC1D7 (Tre2-Bub2-Cdc16 (TBC) 1 domain family 

member 7) (25, 26). The TSC complex acts as a GAP (GTPase-activating protein) toward the 

small GTPase Rheb (ras-homologue-enriched-in-brain) (27). Therefore, TSC complex 

inhibition by Akt de-represses Rheb, which directly binds and activates mTORC1 (28). For 

Rheb to act on mTORC1, mTORC1 must be localized to lysosomes. Translocation of 

mTORC1 from the cytosol to the lysosomal surface occurs upon amino acid stimulation and is 

mediated by the Rag GTPases (Ras-related GTP-binding proteins) (29-32) (reviewed by (2, 

4)). In addition, amino acids suppress lysosomal localisation of the TSC complex, leading to 

de-repression of Rheb (33-35). Amino acids also activate PI3K via an unknown mechanism 

(36, 37), and AMPK (AMP-activated protein kinase) in a CaMKKβ (Ca2+/calmodulin-

dependent protein kinase kinase-beta) dependent manner (37) (Figure 1).  Next to growth 

factors and amino acids, also the cellular energy status modulates mTORC1 activity (2). When 

the ATP/AMP ratio is low, AMPK (AMP-activated protein kinase) is allosterically activated by 

AMP, and inhibits mTORC1 by activating the TSC complex (38), and by directly 
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phosphorylating raptor (39) (Figure 1). mTORC1 affects virtually all metabolic processes to 

ultimately regulate cellular growth and survival (reviewed by Saxton and Sabatini (4)). We 

focus here on protein homeostasis which mTORC1 controls by activating translation and by 

inhibiting autophagy (4). mTORC1 positively regulates translation by activation of S6K 

(ribosomal protein S6 kinase) (40) and inhibition of 4E-BP (eukaryotic translation initiation 

factor 4E-binding protein) (41), leading to increased translation capacity (42) and enhanced 

translation initiation (43), respectively (Figure 1). mTORC1 inhibits autophagy by 

phosphorylating and inhibiting ULK1/2 (unc-51 like autophagy activating kinase 1/2) (44) 

(Figure 1), which phosphorylates FIP200 and thereby enhances autophagosome formation 

(45-48). AMPK activates ULK1, acting as an mTORC1 antagonist in autophagy (44, 49). In 

addition, mTORC1 and its substrate S6K reduce insulin sensitivity via negative feedback 

mechanisms. S6K phosphorylates IRS, leading to IRS degradation (50, 51), and mTORC1 

phosphorylates and stabilizes Grb10 (growth factor receptor-bound protein 10), leading to InR 

inhibition (52, 53). Both events render cells refractory to insulin and consequently reduce PI3K 

and Akt activity. 

mTORC2 also controls central metabolic pathways, including glucose metabolism (54), cell 

survival (54) and cytoskeletal organization (12, 13). The mechanisms leading to mTORC2 

activation are relatively poorly explored. Previous research has established that insulin 

activates mTORC2 (13) in a PI3K dependent manner (55) at the ribosomes (56) (Figure 1). 

However, this PI3K differs from the PI3K upstream of mTORC1, in that mTORC2 is not 

regulated by mTORC1-driven negative feedback to PI3K or Akt (57). Different PI3K inputs to 

the two mTOR complexes could be mediated by distinct isoforms of the PI3K catalytic subunit 

p110, such as in hippocampal progenitor cells, where p110activates both mTOR complexes 

while p110 activates mTORC2 only (58). Amino acids activate mTORC2 as well, but the 

exact mechanism remains so far unknown (36). The best described downstream effector of 

mTORC2 is Akt, which is phosphorylated by mTORC2 within the so-called hydrophobic motif 

(HM) (59). Akt downstream of mTORC2 inhibits the transcription factors FoxO1/3A (forkhead 

box proteins O1 and O3A) (60, 61) (Figure 1) which enhance apoptosis (60, 62, 63) and 

mediate stress responses (64-67). Therefore, mTORC2 promotes cellular survival. mTORC2 

also activates the AGC kinase SGK (serum and glucocorticoid-regulated kinase) (55) that 

induces proliferation, migration and cell survival (68). 

 

Isoforms and splice variants across the mTOR network 

Next to the complex wiring of the mTOR network, most of its components occur as different 

variants, contributing to the network’s complexity and versatility. These variants comprise 

similar proteins originating from different genes, referred to as “isoforms” (Table 1), and “splice 

variants” originating from alternative splicing or alternative translation initiation of the same 

gene (Table 2). Isoforms and splice variants can have overlapping, yet also different biological 

functions. In the following we focus on the differences between these variants regarding their 

protein structure, tissue expression pattern, and regulation and function within the mTOR 

network. Isoforms and splice variants of PI3K and FoxO1/3A have been reviewed extensively 

earlier (69, 70) and are therefore not covered here. 

In mammals, the InR occurs in two different splice variants, named InR-A and InR-B (71) 

(Table 2). IR-A is expressed predominantly in the central nervous system and hematopoietic 

cells, while IR-B is found in adipose tissue, liver, and muscle (72). Both InR-A and InR-B have 
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alpha and beta domains, but only InR-B has an extra stretch of 12 amino acids in the alpha 

domain that changes its binding characteristics toward its ligands (72). IR-A and IR-B can form 

homo- or hetero-dimers and have similar affinities for insulin. However, InR-A binds IGF-I and 

IGF-II with higher affinity than InR-B (73, 74). This difference in affinity may allow them to 

activate the mTOR pathway differently in response to the same ligands. 

Downstream of the InR, IRS has four different isoforms originating from different genes (IRS1-

4), with IRS3 exclusively present in rodents (75). Therefore, we focus here on the differences 

between IRS1, IRS2, and IRS4 (Table 1). IRS1 and IRS2 are ubiquitously expressed (76) and, 

thus, the most widely studied isoforms. They are highly similar in their domain structure, but 

IRS2 contains an extra KRLB (kinase regulatory loop binding) domain that binds to the InR 

and the IGFI-R (77, 78). The KRLB domain limits the tyrosine phosphorylation on IRS2 by the 

InR and IGF1-R, and thereby inhibits IRS2 function (79). An in vitro study in skeletal muscle 

cells has shown that IRS1 and IRS2 tyrosines are dephosphorylated at different rates by 

phosphatases upon insulin or IGF-1 stimulation (80). While IRS2 becomes rapidly 

dephosphorylated after 3-10 min, IRS1 remains phosphorylated for up to one hour (80). It is 

unknown if this difference is mediated by distinct phosphatases, or by different dynamic 

behaviour of the same phosphatase toward IRS1 versus IRS2. Such differences in dynamic 

regulation might contribute to the distinct functional outcomes of IRS1 and IRS2. IRS1 

enhances phosphorylation of both Akt1 and Akt2, whereas IRS2 signals mainly through Akt2 

(81). IRS1 but not IRS2 enhances actin remodelling and GLUT4 (glucose transporter type 4) 

translocation (81). IRS1 and IRS2 induce the MAPK pathway with IRS2 having a stronger 

effect than IRS1 (81, 82). IRS1 and IRS2 seem to have opposite effects on metastasis, as 

IRS2 promotes metastasis in breast cancer cells (83, 84), whereas IRS1 suppresses 

metastatic spread in mice. Only little is known about IRS4, whose protein expression is limited 

to brain, kidney, thymus and liver (85). Recent evidence suggests a function of IRS4 during 

adenoviral infection, where IRS4 upregulation leads to constitutive Akt activation even in the 

absence of insulin (86).  

The PI3K antagonist PTEN exists in three reported variants, termed PTEN, PTEN-Long (87) 

and PTEN(88)originating from alternative translation initiation (Table 2). PTEN-Long and 

PTEN both originate from the start codon CUG513 and have the same apparent molecular 

weight and predicted number of amino acids, suggesting that these two variants could be the 

same (87, 88). PTEN is ubiquitously expressed while PTENα is predominantly expressed in 

skeletal and cardiac muscle. All variants contain the functional PTEN domains, including the 

phosphatase domain, the C2 domain and the tail domain. PTENand PTEN-Long contain an 

extra N-terminal domain which may lead to different subcellular localizations (87, 88). While 

PTEN localizes mainly to the cytosol, PTEN resides at mitochondria (88), and PTEN-Long is 

secreted to the microenvironment (87). This difference in localization results in distinct 

functions, as PTEN is the counterpart and antagonist of PI3K at the plasma membrane, 

whereas PTEN targets the mitochondrial complex IV (cytochrome c oxidase) to regulate the 

cellular energy status (88). PTEN-Long also decreases PI3K signalling in a phosphatase-

dependent manner, however, as it is secreted to the microenvironment and able to enter 

neighbouring cells, it could have its main role in controlling signalling at the tissue level (87). 

There are three Akt isoforms in mammals, Akt1 (PKB), Akt2 (PKB) and Akt3 (PKB) (Table 

1) which are similar in structure, as they all contain a PH domain, a kinase domain and the 

HM. Akt3 is also present as a shorter splice variant Akt3-1 (Table 2), which lacks the 
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mTORC2 phosphorylation site within the HM, and is less responsive to growth factor 

stimulation (89, 90). The three Akt isoforms display unique tissue expression patterns. While 

Akt1 is ubiquitously present (76), Akt2 resides primarily in brown fat, skeletal muscle and liver 

(91, 92), and Akt3 is mainly expressed in brain and testis (93). Akt1 and Akt2 also differ in their 

sub-cellular localization: in rat adipocytes, Akt1 is mainly distributed in the cytosol, whereas 

Akt2 localizes to GLUT4 containing vesicles (94). The phosphatases PHLPP1 (PH domain 

and leucine-rich repeat protein phosphatase1) and PHLPP2 (95) differently act on the 

mTORC2-substrate site within the HM of the three Akt isoforms (95): PHLPP1 specifically 

dephosphorylates Akt2 and Akt3, while PHLPP2 dephosphorylates Akt1 and Akt3 (95). The 

three Akt isoforms also differ regarding their substrate specificity, as only Akt1 and Akt2 

phosphorylate TSC2 (95) to promote cell growth, whereas all three isoforms phosphorylate 

FoxO1/3A (95) to inhibit apoptosis. It is unknown if the substrate specificity of the different Akt 

isoforms also relates to PRAS40. It is likely as a number of further Akt-isoform specific 

substrates have been described: Akt1 phosphorylates palladin, an actin-binding protein, to 

inhibit cell migration (96) while Akt2 phosphorylates Ankrd2/ARPP, a muscle-specific protein 

that, when phosphorylated by Akt, prevents muscle differentiation (97). Their different 

substrate specificities grant the Akt isoforms distinct roles in tumour formation. Akt1 

specifically promotes cell survival (98, 99) and cell growth (100, 101), whereas Akt2 is more 

important for glucose metabolism (102, 103), cell migration (100), tumour metastasis (100), 

and EMT (endothelial-mesenchymal transition) (101). In contrast, Akt3 inhibits migration (104), 

and has been linked to neuronal growth and development (105, 106). Interestingly, Akt3 

overexpression confers resistance to the Akt inhibitor MK2206 (107) suggesting that Akt3 can 

be pro-tumourigenic in the context of targeted cancer therapies. 

Downstream of Akt, TSC2 is present in healthy individuals in several variants originating from 

alternative splicing of exons 25 and 31 (108-110) (Table 2). TSC2 transcripts lacking exons 25 

(Uniprot ID: P49815-2, P49815-3, P49815-5, P49815-6 and P49815-7) and/or 31 (Uniprot ID: 

P49815-4, P49815-5, P49815-6 and P49815-7) occur at higher levels as compared to the full 

length variant (Uniprot ID: P49815-1) (110). Exon 25 is detectable in lymph node, muscle and 

thyroid tissue whereas Exon 31 is found in adipose, adrenal, brain, breast, colon, kidney, lung, 

prostate, skeletal muscle, testes, and thyroid tissue (110).  Deletion of exons 25 and 31 does 

not affect the TSC complex-dependent inhibition of mTORC1 (110). However, it may affect 

TSC2’s properties as a substrate for Akt and AMPK. Akt phosphorylates TSC2 at residues 

S939, S981 and T1462 (26, 111, 112) and variants missing exon 25 do not contain the target 

site at S981.The TSC2 residues phosphorylated by Akt serve as a scaffold for 14-3-3 protein 

binding to and subsequent degradation of TSC2 (112). This suggests that TSC2 containing 

exon 25 has a higher 14-3-3 affinity and higher turnover than TSC2 variants without that exon 

(108). AMPK activates TSC2 by phosphorylation at S1387 and T1271 (38). The AMPK target 

site at T1271 is contained in exon 31 and, therefore, TSC2 variants that lack exon 31 may be 

less sensitive to AMPK activation. Further studies are required to delineate the biological 

consequences of the different structures of the TSC2 splice variants upon Akt and AMPK 

activation. TSC1 variants originating from alternative splicing have so far not been identified 

experimentally under healthy conditions. However, mutations in either TSC1 or TSC2 that lead 

to aberrant splicing and generation of multiple splice variants are commonly found in a wide 

range of pathologies such as cancer and tuberous sclerosis complex (TSC) (113). TSC is a 

rare genetic disorder caused by mutations in the TSC1 and TSC2 genes, leading to benign 

tumors in multiple organ systems (110). The TSC Leiden Open Variation Databases (TSC 

LOVD, www.lovd.nl) displays all variants reported for TSC1 and TSC2, being at the moment 
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(May 2017), 870 and 2473 respectively. For TBC1D7, the third member of the TSC protein 

complex, no isoforms or splice variants have been found experimentally. Also Rheb, the target 

of the TSC complex, does not present any isoform or splice variant. 

Components of the mTOR complexes occur in different variants (Table 2). mTOR itself exists 

in two splice variants, mTORand mTOR, of which mTOR is the shorter version (114). 

mTOR contains the protein-protein interaction domains HEAT (huntingtin-elongation factor 3-

regulatory subunit A of PP2A-TOR1 repeats), FAT (FRAP–ATM–TTRAP) and FATC (FAT-

carboxy terminal domain) and a kinase domain, while mTOR lacks the HEAT and FAT 

domains (114). Studies in rats suggest that mTOR is ubiquitously expressed whereas 

mTOR is mainly expressed in lung, heart, stomach, intestine and liver (114). mTORcan still 

form the two mTORC1 and mTORC2 complexes, and phosphorylates the mTORC1 substrates 

S6K1 and 4E-BP1 as well as the mTORC2 substrate Akt. Cells overexpressing mTOR have 

a shorter G1 phase, suggesting a role in cell cycle progression (114). This may be due to a 

stronger association of c-Myc, a transcription factor that controls cell cycle progression, with 

mTOR than with mTOR. Also raptor exists in two splice variants, termed raptor and raptor-

v2. Raptor-v2 (Table 2) is the shorter variant lacking the HEAT repeats, which are needed for 

binding to mTORC1 substrates (115). Raptor is ubiquitously expressed but levels are higher in 

brain, immune cells, the gastrointestinal tract and kidney (76). Raptor-V2 mainly localizes to 

the pituitary, nasal mucosa and muscle (115). Raptor-v2 binds mTORC1 but cannot bind 

S6K1, as it lacks the HEAT repeats (116). This suggests that raptor-v2 inhibits mTORC1 by 

sequestering mTOR away from the functional complex. However, further studies are required 

to characterize the biological function of raptor-v2.  

Regarding the members of mTORC2, no isoform or splice variant for rictor has been so far 

described. However, five mSin1 splice variants have been experimentally identified, mSin1.1 - 

mSin1.5 (14) (Table 2). No information is available on their expression pattern. Only mSin1.1, 

mSin1.2 and mSin1.5 (also termed mSin1, mSin1 and mSin1(117)) are found in mTORC2 

and mediate Akt phosphorylation. mSin1.1 is the full-length protein, and contains a ras-binding 

domain (RBD) and a PH domain. mSin1.2 and mSin1.5 lack part of the RBD, and mSin1.5 

also lacks the PH domain (14). mSin1.1 and mSin1.2 overexpression increases Akt 

phosphorylation in response to insulin, whereas mSin1.5 overexpression enhances Akt 

phosphorylation independently of insulin (14). This suggests that mTORC2 containing mSin1.1 

or mSin1.2 is activated by insulin, whereas mTORC2 with mSin1.5 is constitutively active or 

responds to signals other than insulin. Protor has two isoforms, Protor-1 and Protor-2 (Table 

1) (7, 16), that are ubiquitously expressed (16). They do not contain any known functional 

domain, but their amino-terminal sequence is highly conserved and they both bind mTORC2 

via rictor (7, 16). Protor-1 also exists in 3 splice variants, Protor-1, Protor-1 and Protor-1, of 

which only Protor-1 and Protor-1 can form part of mTORC2 (16). In kidney, Protor-1 in 

mTORC2 is required for the phosphorylation of SGK and activation of sodium transport (118). 

Protor-2 interacts with and activates the RNA binding protein TTP (tristetraprolin) to ensure 

mRNA turnover under stress conditions (119). Further research is required to better 

understand the differences in expression, function and regulation between these variants. 

Protein variants downstream of mTORC1 have been extensively characterized, and we 

discuss them here in the context of cell growth, translation and autophagy. Firstly, S6K has 

two isoforms encoded by different genes, S6K1 and S6K2 (120-122) (Table 1). They both 

have an N-terminal domain (NTD), a C-terminal domain (CTD) and a kinase domain. In 
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addition, S6K2 has a nuclear localization sequence (NLS) next to its CTD (123). Both S6K1 

and S6K2 are ubiquitously expressed (76) and, although they are both activated via 

phosphorylation by PDK1 (122, 124) and mTORC1 (40, 122), different isoform-specific 

signalling inputs contribute to their activation (123). S6K1 is inhibited by leucine starvation 

(125) and activated by the actin-binding protein neurabin (126), phospholipase D1 (127), the 

Rho family G proteins Rac1 and Cdc42 (cell division cycle 42) (128), and the deacetylases 

sirtuin 1 (SIRT1) and SIRT2 (129). S6K2 is activated in response to the cytokine IL-3 

(interleukin 3) (130), by the MAPK pathway (131), and PKC (protein kinase C) (132). Both 

S6K1 and S6K2 phosphorylate S6 (ribosomal protein S6), a protein that forms part of the 

ribosomal 40S subunit (133) and, thus, the distinct activators of S6K1 and S6K2 may be a 

means to specifically control translation upon different cellular conditions, such as growth 

factor stimulation, different cell cycle phases or during the immune response. In addition to 

acting on S6, S6K1 also activates translation by phosphorylating eIF4B (eukaryotic translation 

initiation factor 4B) (134) and eEF2K (eukaryotic elongation factor-2 kinase) (135). 

Furthermore, S6K1 promotes cell survival by inhibiting BAD (BCL2 associated agonist of cell 

death) (136), Mdm2 (Mdm2 proto-oncogene) (137) and GSK-3 (glycogen synthase kinase 3) 

(138), and induces transcription by activating Er(estrogen receptor alpha) (139) and CREM 

(cAMP responsive element modulator) (140). S6K2 activates transcription by binding to the 

transcription factors YY1 (yin yang 1) (141) and ROR(RAR-related orphan receptor 

gamma)(142). Both S6K isoforms exist as several variants (Table 2). The S6K1 mRNA yields 

two differently translated variants originating from different translational start sites, p70-S6K1 

and p85-S6K1 (143), the latter containing an N-terminal NLS. There is also a shorter S6K1 

with a truncated kinase domain originating from alternative splicing, and termed p31-S6K1 in 

mice and hS6K1-h6A and hS6K1-h6C in humans (144). The tissue expression of  the S6K1 

variants is unknown but within the cell p70-S6K1 localizes  to the cytoplasm (145), p85-S6K1 

to both cytoplasm and nucleus (145, 146) and p31-S6K1 locates to the nucleus (147). Both 

p70-S6K1 and p85-S6K1 have been shown to be targeted by mTORC1, as rapamycin 

treatment decreases both phosphorylation of p70-S6K1 at pT389 and of p85-S6K1 at pT412 

(147). However, in cells arrested in prometaphase, p85-S6K1 is phosphorylated at pT412 in 

an mTORC1 independent manner (148) and hence p85-S6K1 might not be regulated by 

mTORC1 under all circumstances. There is no conclusive data confirming if p31-S6K1 is 

targeted by mTORC1 (147). Further studies are needed to discriminate the biological functions 

of each of these variants. Alternative translation also occurs for S6K2, giving rise to two 

variants, p56-S6K2 and p54-S6K2, that differ by the presence of an NLS in p56-S6K2 in the 

NTD, but not in p54-S6K2 (122). Hence, they reside in different compartments, p56-S6K2 in 

the membranous fraction and p54-S6K2 in the soluble fraction (122). Further work is required 

to establish the exact sub-cellular localization and distinct functions of the S6K2 variants. 

4E-BP, another direct mTORC1 substrate, exists in three isoforms (4E-BP1-3) (Table 1). All 

4E-BP isoforms share an eIF4E (eukaryotic translation initiation factor 4E) binding domain and 

a TOS (TOR signalling sequence) motif. In addition, 4E-BP1 and 2 contain a RAIP motif, 

named after its amino acid sequence. Whereas 4EB-P2 is ubiquitously expressed (149), 4E-

BP1 and 4E-BP3 are primarily found in the pancreas and skeletal muscle (149, 150). In 

addition, 4E-BP1 is expressed in adipose tissue (149), and 4E-BP3 in the kidney (150). 

mTORC1 inhibits 4E-BP1 and 2 by phosphorylation at their RAIP motifs. Phosphorylated 4E-

BP1 and 2 are released from eIF4E, and consequently eIF4E can bind the 5’ cap of mRNAs to 

initiate translation (43, 151). 4E-BP3 does not contain a RAIP motif and therefore is not 

inhibited by mTORC1, although mTORC1 phosphorylates 4E-BP3 at other sites (151). 
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Interestingly, prolonged mTORC1 inhibition enhances 4E-BP3 expression at the transcriptional 

level, and this is mediated by the transcription factor TFE3 (transcription factor binding to 

immunoglobulin heavy constant mu enhancer 3) (152). In addition to inhibiting eIF4E binding 

to the cap, 4E-BP3 regulates eIF4E at the nucleus to regulate nuclear mRNA export (153).  

mTORC1 regulates autophagy by phosphorylating ULK. ULK has 4 isoforms, ULK1-4, but only 

ULK1 and ULK2 are inhibited by mTORC1 (47) (Table 1). ULK1 and ULK2 are ubiquitously 

expressed (76) and both induce autophagy (154, 155). ULK1 has a stronger affinity than ULK2 

towards the other members of the autophagy-inducing complex, Atg13 (autophagy related 13) 

and FIP200 (48). This suggests different functions of the ULK1/Atg13/FIP200 and 

ULK2/Atg13/FIP200 complexes during autophagy, but further studies are needed to test this 

hypothesis. 

2. mTOR and ageing 

Ageing can be defined as the gradual deterioration of the physiological functions necessary for 

survival (156). This concept relates both to the lifespan of an individual and to the 

manifestation of age-related disorders, such as obesity, diabetes and myopathy. In other 

words, increased longevity can reflect either an increase in lifespan or a reduction of age-

related diseases. The role of mTOR in the ageing process has been a topic of research over 

the last decades, and we give here an overview of the key findings in invertebrate and 

vertebrate model organisms and humans. 

TOR and lifespan in invertebrates 

The process of ageing has been widely studied in model organisms such as the budding yeast 

Saccharomyces cerevisiae (S. cerevisiae), the nematode Caenorhabditis elegans 

(C. elegans), and the fruit fly Drosophila melanogaster (D. melanogaster). Much research on 

ageing has been performed in these organisms due to their short lifespan, their easy 

manipulation and the availability of powerful genetic tools. Studies in S. cerevisiae have shown 

that inhibition of TORC1 with rapamycin increases the chronological life span (duration of time 

that cells in stationary phase remain viable) (157). In addition, the longevity phenotype induced 

by dietary restriction was found to be TOR dependent (157). By generating yeast deletion 

collections, several long-lived mutants were identified. Among them were strains with 

mutations in genes of the TOR signalling axis (157) and the TOR substrate Sch9/S6K (158), 

as well as transcription factors that upregulate genes encoding amino acid biosynthetic 

enzymes and amino acid permeases (157). 

Studies in C. elegans provide evidence that rapamycin (159) and dietary restriction (160) 

increase the lifespan of multicellular organisms as well. CeTORC1, TORC1 in C. elegans, 

inhibition by mutation or inhibition of let-363/CeTOR (161), DAF-15/raptor (162), raga-1/Rag 

GTPases (159, 163), or RHEB-1/Rheb (164) causes longevity phenotypes. Also mutations in 

CeTOR’s upstream regulators DAF-2/InR (165) and AGE-1/PI3K (166) dramatically extend the 

lifespan of C. elegans. In contrast to the increased longevity of worms in which let-363/CeTOR 

or daf-15/raptor are targeted by RNAi or mutation, RICT-1/rictor deficiency causes short-lived 

worms (167), suggesting that the two complexes have opposite roles in the lifespan regulation 

of C. elegans. 

Further evidence on the evolutionary conservation of TOR’s role in lifespan and ageing arose 

from the confirmation of these phenotypes in D. melanogaster. Rapamycin (168) or dietary 
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restriction (169) increase lifespan also in flies. Inhibition of the insulin pathway by mutations in 

the InR gene (170) or in the InR substrate CHICO (171) results in increased longevity. 

Additionally, overexpression of Tsc1/TSC1 or Tsc2/TSC2, or dominant-negative forms of 

dTOR (D. melanogaster TOR) and its substrate dS6K/S6K, cause lifespan extension (172). 

Furthermore, the TORC1 substrate d4E-BP/4E-BP has a pivotal role delaying fly ageing (173). 

Hence, inhibition of the signalling axis converging on TOR and its substrates prolongs lifespan 

in non-vertebrate model organisms. 

mTOR and ageing in mice 

The before mentioned studies provide strong evidence that signalling through insulin and TOR 

restricts the lifespan of invertebrates. Evidence that this mechanism is also conserved in 

mammals came from mouse studies in which rapamycin or dietary restriction increased 

lifespan (174, 175). However, dissecting the mechanisms underlying mTOR’s role in 

mammalian ageing proved to be even more challenging than in invertebrates. One reason is 

the higher complexity of the mammalian insulin-mTOR axis with several isoforms and often 

various splice variants at almost all levels of the pathway. As detailed earlier, tissue and 

subcellular distribution varies greatly for the different variants, leading to tissue-specific 

biological outcomes of mTOR. It is therefore not surprising that knockout of the same protein 

in different tissues leads to divergent phenotypes (176).  

Several knockout studies in mice suggest functions of components of the insulin-mTOR 

pathway in ageing (Table 3). Lifespan extension has been observed in a female mouse model 

with heterozygous whole body double knockout of the mTOR and mLST8 genes, Mtor and 

Mlst8 (177), or with a homozygous whole body knockout of Irs1 (178). Also a homozygous 

whole body knockout of Rps6kb1, the S6K1 gene, extends lifespan in mice (179). Lifespan 

extension has been also reported for heterozygous knockouts of Irs2 in the whole body, or in 

brain only (180), but the reproducibility of this phenotype has been questioned (181). In 

agreement with the studies in C. elegans (167), mTORC2 specific knockouts enhance ageing 

also in mice, as a whole body knockout of rictor decreases lifespan (182).  

Lifespan studies in mice are relatively rare due to their comparatively long lifespan. In contrast, 

studies that focus on the role of the mTOR pathway in age-related, metabolic phenotypes and 

diseases are much more common (Table 3). Adipose tissue-specific knockouts of the InR 

gene Insr (183) or the raptor gene Rptr (184) result in mice with substantially less fat that are 

protected against obesity and hypercholesterolemia. In addition, knockout of either Tsc1 or 

Tsc2 enhances tumour formation (185, 186). This suggests that inhibition of the insulin-

mTORC1 axis protects higher organisms against age-related metabolic and tumour disorders. 

However, this concept is challenged by the fact that most other knockout models of the insulin-

mTOR pathway in mice develop phenotypes that positively link with age-related disease and 

could hence be considered as phenotypes of accelerated ageing (Table 3). Such phenotypes 

encompass for example impaired glucose tolerance, insulin resistance, obesity and myopathy, 

which correlate with increased age in mice and men (187-189). Impaired glucose tolerance 

has been observed in whole body knockouts of Irs4 (190), and Akt2 (102), in tissue specific 

knockouts of the Insr in muscle (191), beta cells (192) and brain (193), or of the PDK1 gene, 

Pdpk1, in the liver (194). Insulin resistance occurs in mice lacking Irs2 (195) or Akt2 (102), and 

in tissue specific knockouts of the Insr in liver (196) or brain (193). Obesity is also observed for 

whole body Irs2 knockout mice (195), as well as for specific knockouts of the Insr in muscle 

(191) or brain (193). Myopathy is a characteristic phenotype of mice with muscle specific 
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knockouts of Pdpk1 (197), Mtor (198), Rptr (199) and in a double knockout model of Rps6kb1 

and Rps6kb2 (200).  

The observation that so many mouse knockout models of the insulin-mTOR pathway develop 

metabolic phenotypes which can be linked with age-related metabolic impairment may seem 

at odds with the studies in invertebrates where a large majority of insulin-TOR pathway 

mutants display a prolonged lifespan. However, metabolic phenotypes in mouse studies must 

be interpreted with caution regarding their relationship with lifespan and ageing. The reason is 

that it is not possible to discriminate whether a detrimental metabolic phenotype in a mouse 

knockout model is due to an age-inhibitory role of the targeted gene, or due to a potentially 

essential role of this gene in metabolic processes. A well-known example of such a seemingly-

contradictory phenotype has been observed for rapamycin in mice. Rapamycin does increase 

lifespan via mTORC1 inhibition but, when chronically administered, rapamycin causes 

secondary effects leading to mTORC2 inhibition and substantial impairment of glucose 

tolerance and insulin action (177). Hence, rapamycin extends lifespan and severely impairs 

metabolism at the same time, via distinct mechanisms. The fact that lifespan extension can be 

observed concomitantly with metabolic impairment suggests that metabolic alterations and 

lifespan are not always strictly causally linked. 

The notion that lifespan and metabolic outcomes of genes can be separated is further 

strengthened when taking a closer look at isoform specific effects of genes in the insulin-

mTOR axis on ageing and metabolic phenotypes in mice (Table 3). For example, different IRS 

isoforms govern metabolism and ageing in distinct, often opposite ways. A homozygous whole 

body knockout of Irs1 prolongs lifespan of female mice (178), although they develop insulin 

resistance (201). In contrast a whole body knockout of Irs2 shortens the lifespan of both male 

and female mice (178), and leads to a diabetic phenotype (195, 202). Irs4 knock out mice 

have a milder phenotype than Irs1 or Irs2 knockouts, with regard to insulin sensitivity defects 

(190), and no effects on lifespan have been reported. Distinct phenotypes are also observed 

for knockouts of the different Akt isoforms. Mice with heterozygous Akt1 knockout display a 

prolonged lifespan (203). In contrast, Akt2 deficient mice are insulin resistant with elevated 

plasma triglycerides and diabetes in males (102). An Akt3 knockout does not seem to have an 

ageing-related metabolic phenotype (106). Downstream of mTORC1, a whole body knockout 

of Rps6kb1 prolongs lifespan (179), whereas a Rps6kb2 knockout shows no obvious 

phenotypic abnormalities (133). More extensive characterization of the Rps6kb2 knockout 

model would allow for better understanding of S6K2’s potential role in aging. Mice with a 

knockout of Eif4ebp1, 4E-BP1’s gene, exhibit no difference in lifespan, although they present 

an increased metabolic rate and a reduction of adipose tissue (204), again questioning the 

strict causal relationship between beneficial metabolic features and lifespan extension. The 

role of 4E-BP2 has only been studied by double knockout of Eif4ebp1 and Eif4ebp2, and these 

mice are obese and insulin resistant (205). However, no information about the lifespan of this 

model is available and no 4E-BP3 knockout has been so far reported. 

mTOR and ageing in humans 

Most research on mTOR in humans focuses on age-related diseases such as cancer and 

diabetes. Regarding ageing itself, studies in long-lived primates, specifically in Rhesus 

monkeys, have shown that calorie restriction delays disease onset and possibly mortality 

(206).The effect of rapamycin on primate lifespan has not yet been reported, but rapamycin 

improves immune function in elderly humans (207). Given that intervention studies on 

longevity and ageing in higher primates and humans are scarce, candidate gene and genome-
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wide association studies (GWAS) are the main tools to understand the relationship between 

genetic makeup and human lifespan and disease susceptibility. Such studies use cohorts of 

advanced age and focus on genetic factors that correlate with exceptional longevity and 

healthy ageing.  

GWAS studies in long-lived humans have so far yielded only very few gene associations that 

correlate with ageing. Indeed, only associations of ApoE (apolipoprotein E) and FoxO3a genes 

have been replicated in several studies (208). It is surprising that components of the insulin-

mTOR pathway have not been identified in these studies. Possibly the GWAS study does not 

have enough power to detect such correlations, as this approach only allows the detection of 

common genetic variations. Development of new techniques such as whole-genome 

sequencing permit the detection of rare potentially functional genetic variants and raise much 

hope for the detection of further genetic correlations with lifespan and age-related processes. 

In a recent study, whole-genome sequencing was used to analyse human healthy ageing, 

defined as disease-free ageing without medical intervention (209). However, in this study no 

major genetic contributors to healthy ageing could be identified.  

In contrast to these unbiased approaches, analyses of specific sets of candidates in the 

insulin-mTOR signalling pathway to unravel their potential role in ageing has yielded more 

success. A study that included 122 Japanese “semisupercentenarians” (older than 105 years) 

found polymorphic variations of the InR and IRS1 genes that are more frequent than in the 

control group (210). In addition, a polymorphism in Akt1 that significantly associates with 

lifespan has been found in three independent Caucasian cohorts (211). In the Leiden 

Longevity Study, gene expression analysis of nonagenarians shows that expression of 4E-

BP1 and PRAS40, two negative effectors of the mTORC1 pathway, is higher in the aged 

group compared to the middle-aged control group (212). Moreover, raptor is expressed to a 

lower level in middle-aged members of the longevity families as compared to similarly aged 

controls (212). Finally, low insulin signalling has been associated with improved old-age 

survival in women (213). Of note, these targeted studies do not include isoforms or splice 

variants of the different members of the mTOR signalling pathway and, therefore, some 

relevant candidates may have been overlooked. 

3. Discussion 

 

mTOR signalling is widely recognized as a key element in ageing and age-related metabolic 

conditions in a wide range of organisms from yeast to rodents (157, 159, 168, 174). In 

invertebrates, inhibition of the insulin- TOR pathway by mutations or RNA interference extends 

lifespan, suggesting a positive link between TOR activity and ageing progression. When 

studying the same genes in higher organisms such as mammals, the relationship between 

mTOR and ageing becomes more complex. Although there are some clear examples of 

inhibition of the mTOR pathway that lead to lifespan extension, most knockouts result in the 

development of metabolic conditions that could be rather be considered as a sign of 

accelerated ageing. A limitation is that most of these mouse studies only analyse metabolic 

parameters and not lifespan, and conclusions cannot be drawn from metabolic phenotypes on 

shortened or prolonged lifespan. The concomitant occurrence of prolonged lifespan and 

detrimental metabolic phenotypes, or beneficial metabolic features with no lifespan effect in 
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some of these models challenge the idea of a strict and direct relationship between metabolic 

alterations in knockout models of genes of the insulin-mTOR axis and lifespan. 

This review emphasizes the need to identify and characterize the isoforms and splice variants 

within the mTOR pathway to achieve a better understanding of the contribution of these 

different elements to metabolism and ageing, and the interrelationship of both. Although many 

of these isoforms have been identified long ago, they have been considered as proteins with 

overlapping function for a long period. This is reflected by the fact that isoforms with the 

number 1 in their name are often much better studied than their counterparts with higher 

numbers. Hence, the extent of knowledge on these variants often relates to their arbitrary 

numbering in databases.  

For splice variants we lack even more knowledge as they are ignored by most experimental 

studies even though the majority of the genes that code for mTOR pathway components have 

been predicted to produce several splice variants. Furthermore, RNA splicing is required for 

longevity downstream of dietary restriction and the CeTORC1 pathway in C. elegans (214). 

The gap in our knowledge becomes even more apparent when considering that additional, 

abnormal splice variants occur in many genetic diseases and cancers (215). A recent global 

study on the interactomes of splice variants have shown that splice variants share only half of 

their interaction partners and have distinct tissue expression and, therefore, should be 

considered as distinct proteins (216). Thus, further work is required to experimentally identify 

and functionally characterize both natural-occurring and disease-causing variants in the mTOR 

pathway, and to better understand the relationship of these genes and their splice products 

with metabolic regulation, ageing and lifespan, and age-related diseases.  
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Figure/Table legends 

 

Figure 1. The mTOR pathway. Insulin binds and activates the insulin receptor (InR) which 

recruits phosphatidylinositol 3-kinase (PI3K) via the insulin receptor substrate (IRS). Once 

recruited to the membrane, PI3K phosphorylates phospholipid phosphatidylinositol-3,4-

biphosphate (PIP2) to form phosphatidylinositol,3,4,5-triphosphate (PIP3). PIP3 is converted 

back to PIP2 by PTEN (phosphatase and tensin homolog). PIP3 serves as a membrane 

anchor for the 3-phosphatidylinositol-dependent kinase 1 (PDK1) and Akt. PDK1 activates Akt, 

which in turn phosphorylates and inhibits the tuberous sclerosis (TSC) complex and the 

proline-rich Akt substrate of 40 kDa (PRAS40). Once the TSC complex is inhibited, ras-

homologue enriched in brain (Rheb) can exert its activating action on the mammalian target of 

rapamycin (mTOR) complex 1 (mTORC1). mTORC1 negatively regulates the eukaryotic 

translation initiation factor 4E-binding protein (4E-BP) and unc-51 like autophagy activating 

kinase 1/2 (ULK1/2) and positively regulates the ribosomal protein S6 kinase (S6K). Both 

mTORC1 and S6K contribute to negative feedback mechanisms at the level of the InR and 

IRS. Insulin also activates mTORC2 in a PI3K dependent manner. mTORC2 activates Akt, 

which inhibits the forkhead box O transcription factors FoxO1/3A. Amino acids have several 

activating inputs on the network, at the level of mTORC1 via the Rag GTPases (Ras-related 

GTP-binding proteins) and at the level of PI3K. A high AMP/ATP ratio leads to allosteric AMP-

activated protein kinase (AMPK) activation that inhibits mTORC1 by activating the TSC 

complex and by directly inhibiting mTORC1. AMPK also phosphorylates and activates ULK1/2. 

Only the functional mTORC1 and mTORC2 outputs discussed in this review are shown. More 

extensive overviews of the processes downstream of the mTOR complexes are provided for 

example by Saxton and Sabatini (4) and Ben-Sahra and Manning (3). 

Table 1. Isoforms across the mTOR network. This table highlights the differences among 

the various isoforms of proteins in the insulin-mTOR axis. Differences are categorized 

according to different structure, regulation, expression pattern and biological function. 

References are indicated in brackets. The colour code refers to the different signalling 

modules of the mTOR network as indicated in Figure 1. Abbreviations: autophagy related 13 

(ATG13), BCL2 associated agonist of cell death (BAD), cell division cycle 42 (Cdc42), 

epithelial to mesenchymal transition (EMT), estrogen receptor alpha (Er), eukaryotic 

elongation factor-2 kinase (eEF2K), eukaryotic translation initiation factor 4B (eIF4B), 

eukaryotic translation initiation factor 4E-binding protein (4E-BP), forkhead box O (FoxO), 

glucose transporter type 4 (GLUT4), glycogen synthase kinase 3 (GSK-3), growth factor 

receptor-bound protein 2 (Grb2), interleukin 3 (IL-3), insulin receptor substrate (IRS), Mdm2 

proto-oncogene (Mdm2), mitogen activated protein kinase (MAPK), PH domain and leucine-

rich repeat protein phosphatase (PHLPP),  protein kinase 3 (PKC), protein observed with rictor 

(Protor), RAR-related orphan receptor gamma (ROR), ras-related C3 botulinum toxin 

substrate 1 (Rac1), ribosomal S6 kinase (S6K), serum and glucocorticoid-regulated kinase 

(SGK), sirtuins (SIRT), tuberous sclerosis complex 1 (TSC1), tuberous sclerosis complex 2 

(TSC2), unc-51 like autophagy activating kinase (ULK), yin yang 2 (YY2).  

Table 2. Splice variants across the mTOR network This table indicates the predicted splice 

variants in human and mouse (source: uniprot.org) and the experimentally validated splice 

variants including functional differences. References are indicated in brackets. The colour 

code refers to the different signalling modules of the mTOR network as indicated in Figure 1. 
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Abbreviations: 3-phosphoinositide-dependent kinase-1 (PDK1), amino acids (aa), DEP domain 

containing mTOR-interacting protein (DEPTOR) , insulin-like growth factor 1 (IGF-1), insulin 

receptor (InR), mammalian stress-activated protein kinase interacting protein 1 (mSin1), 

mammalian target of rapamycin (mTOR), mTOR complex 2 (mTORC2), phosphatase and 

tensin homolog (PTEN), phosphatidylinositol 3-kinase (PI3K), phosphatidylinositol-3,4-

biphosphate (PIP2), phosphatidylinositol-3,4,5-triphosphate (PIP3), proline-rich Akt substrate 

of 40 kDa (PRAS40), protein observed with rictor (Protor), rapamycin-insensitive companion of 

mTOR (rictor), regulatory associated protein of mTOR (raptor), ribosomal S6 kinase 1 (S6K1), 

ribosomal S6 kinase 2 (S6K2), TBC1 domain family member 7 (TBC1D7), tuberous sclerosis 

complex 1 (TSC1), tuberous sclerosis complex 2 (TSC2). 

Table 3. Knockout phenotypes for the insulin-mTOR pathway in mice. This table 

highlights the phenotypes of knockout mouse models that display delayed or accelerated 

ageing phenotypes. Each group is subdivided depending on whether the phenotype relates to 

the lifespan of the mice or to their metabolic profile. For each mouse model, the target gene is 

indicated. Whole body knockout was performed if not indicated otherwise. Reference are 

indicated in brackets. The colour code refers to the different signalling modules of the mTOR 

network as indicated in Figure 1. As Mlst8 and Mtor are part of both mTOR complexes, the 

knockout models are indicated for mTORC1 and mTORC2. A more detailed comparison of the 

phenotypes with knockouts of the complex-specific components Rptor and Rictor is provided 

in the text.  Abbreviations: 3-phosphoinositide-dependent kinase-1 (Ppdk1), eukaryotic 

translation initiation factor 4E-binding protein 1 (Eif4ebp1), insulin receptor (Insr), insulin 

receptor substrate 1 (Irs1), insulin receptor substrate 2 (Irs2), insulin receptor substrate 3 

(Irs3), mammalian lethal SEC13 protein 8 (Mlst8), mammalian target of rapamycin (Mtor), 

rapamycin-insensitive companion of mTOR (rictor), regulatory associated protein of mTORC1 

(Rptr), ribosomal S6 kinase 1 (Rps6kb1), tuberous sclerosis complex protein 1 (Tsc1), 

tuberous sclerosis complex protein 1 (Tsc2).   
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Isoforms across the mTOR network 
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Signals to Akt1, Akt2 and MAPK 
pathway (81, 82) 
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PH, PTB, 
KRLB, PI3K-
BD, Grb2-BD, 
SHP2-BD 

Dephosphorylated 10 min 
after insulin stimulation (80) 
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Signals to Akt2 and  
MAPK pathway (81) 
Metastasis (83, 84) 
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IRS4 
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Localizes at the cytosol (94) 
Dephosphorylated by 
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Cell survival (98, 99) 
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Redundant function with 4E-BP2 
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(43) 

4E-BP2 
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RAIP, eIF4E-
BD, TOS motif 
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Inhibits cap-dependent translation 
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4E-BP3 
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eIF4E-BD, TOS 
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Not inhibited by mTORC1 
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Transcription regulated by 
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Induces autophagosome formation 
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KD, Pro/Ser 
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Inhibited by mTOR (48) 
Weak affinity to Atg13 and 
FIP200 (48) 

Ubiquitous (76) 
Induces autophagosome formation 
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Protor-1 
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No functional 
domain known 

Binds mTORC2 via rictor (16) Ubiquitous (76) 
Promotes SGK phosphorylation 
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No functional 
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Binds mTORC2 via rictor (16) 
Spleen and 
intestine (76) 

Regulates mRNA stability during 
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Protein domains: pleckstrin homologue (PH), phosphotyrosine-binding (PTB), phosphatidylinositol 3-kinase binding domain (PI3K-BD), 
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Variants across the mTOR network arising from alternative splicing or alternative translation initiation 
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P06213-2 
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(+12 aa) 
High affinity for insulin, low for IGF-1 (73, 74) 
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Mouse: 1 
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Phosphatase domain, 

C2 domain, tail 
Counterpart of PI3K. Converts PIP3 into PIP2 (21) 
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NTD, phosphatase 
domain, C2 domain, tail 

Induction of cytochrome c oxidase activity (88) 
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NTD, phosphatase 
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Akt2 
Mouse: 1 
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Akt3 
Mouse: 2 
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Akt3 
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PH, KD, HM Activated by mTORC2 and PDK1 (90) 

Akt3-1 

Q9Y243-2 
Lacks mTORC2 target 

site 
Activated by PDK1. Less responsive to growth 

factors (90) 

TSC1 
Mouse: 4 
Human: 2 * * * 

TSC2 
Mouse: 7 
Human: 8 

TSC2 

P49815-1 
Full protein 

Akt target sites pS939, pS981 and T1462 (108) 
AMPK target sites pS1387 and pT1271 (38) 

P49815-2, 
P49815-3, 
P49815-5, 
P49815-6 
P49815-7 

Lacks exon 25 Akt target sites pS939 and pT1462 (108) 

P49815-4, 
P49815-5, 
P49815-6 
P49815-7 

Lacks exon 31 AMPK target site pS1387 (38) 

TBC1D7 
Mouse: 2 
Human: 4 * * * 

m
T

O
R

C
1

 

mTOR 
Mouse: 2 
Human: 1 

mTOR

P42345-1 
HEAT, FAT, KD, FATC Fully active mTOR. Weak binding to c-Myc (114) 

mTOR
L
 KD, FATC 

Strong binding to c-Myc that allows control of cell 
cycle (114) 

DEPTOR 
Mouse: 3 
Human: 2 * * * 

raptor 
Mouse: 5 
Human: 3 

raptor 

Q8N122-1 
RNC, HEAT, WD40 

repeats 
Forms part of mTORC1. Mediates binding with 

mTORC1 substrates 

raptor-v2 

Q8N122-3 
RNC, WD40 repeats 

Forms part of mTORC1. Cannot bind substrates 
(115) 

PRAS40 
Mouse: 1 
Human: 3 * * * 

S6K1 
Mouse: 2 
Human: 5 

p70-S6K1
T
 

P23443-2 
NTD, KD, CTD Targeted by mTORC1 (147) 

p85-S6K1
T
 

P23443-1 
1xNLS, NTD, KD, CTD Contradiction if targeted by mTORC1 (147, 148) 

p35-S6K1
L
 1xNLS, NTD, partial KD Not known if targeted by mTORC1 (147) 

S6K2 
Mouse: 1 
Human: 2 

p54-S6K2
T
 

Q9UBS0-1 
1xNLS, NTD, KD, CTD Resides in soluble fraction of cells (122) 

p56-S6K2
T,L

 2xNLS, NTD, KD, CTD Resides in particulate fraction of cells (122) 

m
T

O
R

C
2

 

rictor 
Mouse: 2 
Human: 3 * * * 

mSin1 
Mouse: 3 
Human: 6 

mSin1.1 

Q9BPZ7-1 
RBD, PH Forms part of mTORC2 (14) 

mSin1.2 

Q9BPZ7-2 
Partial RBD, PH Forms part of mTORC2 (14) 

mSin1.3 

Q9BPZ7-3 
Partial RBD, PH Does not form part of mTORC2 (14) 

mSin1.4 Partial RBD, PH Does not form part of mTORC2 (14) 
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Q9BPZ7-4 

mSin1.5
L
 Partial RBD Forms part of mTORC2 (14) 

Protor-1 
Mouse: 2 
Human: 5 

Protor-1

P85299-1 
Full protein. Forms part of mTORC2 (16) 

Protor-1

P85299-3 
Shorter variant Forms part of mTORC2 (16) 

Protor-1

P85299-4 
Shorter variant Does not form part of mTORC2 (16) 

Protor-2 
Mouse: 1 
Human: 4 * * * 

Protein domains: N-terminal domain (NTD), pleckstrin homologue (PH), kinase domain (KD), hydrophobic motif (HM), 
huntingtin-elongation factor 3-regulatory subunit A of PP2A-TOR1 repeats (HEAT repeats), FRAP-ATF-TTRAP (FAT), 
FRAP-ATM-TTRAP domain (FATC), raptor N-terminal conserved (RNC), C-terminal domain (CTD), nuclear localization 
signal (NLS), ras-binding domain (RBD). The variants arise from alternative splicing unless marked otherwise. Variants 
marked 

T
 originate from alternative translation initiation. *Asterisks designate splice variants that have been predicted, but 

have not yet been experimentally confirmed. 
L
 Refer to primary literature as this variant is not listed in UniProt.  
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Phenotypes of knockout mouse models 
 

 
Delayed ageing phenotype Accelerated ageing phenotype 

  Lifespan Metabolic profile Lifespan Metabolic profile 

Insulin 

Irs1
(-/-) 

(178) 

adipose Insr
(flox/flox) L 

(183) 
Insr

(-/-) I 
(222) 

muscle Insr
(flox/flox)G,O

 (191) 
 

pancreas Insr
(flox/flox)G

 (192) 

Irs2
(+/-)? 

(180, 181) 

brain Insr
(flox/flox)G,I

 (193) 

liver
 
Insr

(flox/flox)I
 (196) 

brain Irs2
(+/-)?

 

(180, 181) 

Irs2
(-/-) I,O

 (202)  

Irs4
(-/-) G

 (190) 

Akt  Akt1
(+/-) 

(203)     

liver Pdpk1
(-/-) G 

(194)  

muscle Pdpk1
(-/-) M 

(197) 

Akt2
(-/-) G

 (102) 

Tsc1
(+/-) T

 (185) 

Tsc2
(+/-) T 

(186) 

mTORC1 
Mtor

(+/-)
 Mlst8

(+/-) 
(177) adipose Rptor

(-/-) L 
(184) 

 

muscle Mtor
(flox/flox) M 

(198) 

Rps6kb1
(-/-) 

(179) Eif4ebp1
(-/-) L 

(204) muscle Rptor
(flox/flox) M 

(199) 

mTORC2 Mtor
(+/-)

 Mlst8
(+/-)

 (177) 
 

Rictor
(+/-)

 (182) 
Rictor

(-/-) 
(182) 

muscle Mtor
(flox/flox) M 

(198) 

liver Rictor
(flox/flox) G,I

 (223) 

L 
Less adipose tissue, 

G
 Impaired glucose tolerance, 

I
 Insulin resistance, 

O
 Obesity, 

M
 Myopathy, 

T
 Appearance of 

tumours, 
?
Phenotype not reproduced 

Table 3. 


