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Abstract

Fish are able to sense water flow velocities relative to their body with their mechanoreceptive lateral line
organ. This organ consists of an array of flow detectors distributed along the fish body. Using the excitation of
these individual detectors, fish can determine the location of nearby moving objects. Inspired by this sensory
modality, it is shown here how neural networks can be used to extract an object’s location from simulated exci-
tation patterns, as can be measured along arrays of stationary artificial flow velocity sensors. The applicability,
performance and robustness with respect to input noise of different neural network architectures are compared.
When trained and tested under high signal to noise conditions (46 dB), the Extreme Learning Machine archi-
tecture performs best with a mean Euclidean error of 0.4% of the maximum depth of the field D, which is
taken half the length of the sensor array. Under lower signal to noise conditions Echo State Networks, having
recurrent connections, enhance the performance while the Multilayer Perceptron is shown to be the most noise
robust architecture. Neural network performance decreased when the source moves close to the sensor array or
to the sides of the array. For all considered architectures, increasing the number of detectors per array increased
localization performance and robustness.

1 Introduction

Along the sides of their body, fish have a mechanore-
ceptive lateral line organ that enables them to detect
nearby moving underwater objects producing local wa-
ter flow (Dijkgraaf, 1963; Coombs et al., 1988, pp. 554-
555).

This sensory lateral line organ consists of an array of
individual detectors, called neuromasts, that are sen-
sitive to water flow velocity. Each neuromast contains
hair cells that detect the movement of the water at the
location of that neuromast (Flock and Wersäll, 1962).
The lateral line organ is used for a variety of differ-
ent tasks. It allows fish, also when no light is avail-
able, to detect e.g. prey (Hoekstra and Janssen, 1985)
and predators and facilitates schooling (Partridge and
Pitcher, 1980). The related sensory modality is some-
times described as in between touch and hearing and is
sensitive to the near field component of pressure gra-

* This is the Accepted Manuscript version of an article ac-
cepted for publication in Bioinspiration & Biomimetics. IOP
Publishing Ltd is not responsible for any errors or omissions in
this version of the manuscript or any version derived from it.
The Version of Record is available online at: https://doi.org/
10.1088/1748-3190/aa7fcb

dients (Kalmijn, 1988; van Netten, 2006).

The present work is inspired by the lateral line organ
and is intended to be used in the signal processing and
interpretation of excitation profiles measured along ar-
tificial arrays of individual flow velocity sensors to ef-
ficiently localize moving objects.

In previous research, dipole fluid flow models are used
which predict excitation patterns along a stationary ar-
ray, given a source that is vibrating in a direction with
a specific angle with respect to the array (Abdulsadda
and Tan, 2013b; Ćurčić-Blake and van Netten, 2006;
Dagamseh et al., 2010; Goulet et al., 2008) or moving
in a specific direction (Franosch et al., 2005), all under
conditions of potential flow.

Using these models, excitation patterns for different
locations and directions of a moving spherical source
can be generated. Several neural network architectures
are considered in the present work for their ability to
accurately decode the location x, y of a moving object
from the excitation patterns along a stationary artifi-
cial sensor array.

For both simulated and physical artificial lateral line
arrays, several algorithms have been put forth to de-
code a dipole-like source location from excitation pat-
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terns. A data-matching approach where a measured
excitation pattern is compared to a large set of tem-
plates was used by Pandya et al. (2006). In later stud-
ies (Yang et al., 2006) these excitation patterns were
matched to a gaussian which is a crude approximation
of its wavelet nature (Ćurčić-Blake and van Netten,
2006). This matched (gaussian) filter approach was
later shown to be outperformed by Capon’s beamform-
ing algorthm (Yang et al., 2010).

In (Abdulsadda and Tan, 2012), a relatively small Mul-
tilayer Perceptron (MLP) neural network with maxi-
mally 24 hidden nodes and 6 input nodes was found
able to decode a dipole source location. With the
length of the array as BL (body length) and in a
2BL × BL area, their reconstructed location has an
average Euclidian error of 1.5% BL on a sparse (<100
samples) data set. From the supplied typical sensor sig-
nals (Abdulsadda and Tan, 2012, pp 234), we estimate
a signal to noise ratio of about 30dB. In later research,
the authors remark that “due to the black-box nature,
that approach requires a lot of training data unless the
dipole vibration amplitude and orientation are known”
(Abdulsadda and Tan, 2013a), but concerns a limited
parameter set and optimization scheme.

The present work focuses on processing lateral line ex-
citation patterns using neural networks. By exploring
and optimizing several neural network architectures for
a generic stationary velocity sensor array, the results
may therefore be considered to be independent from
particular stationary sensor array characteristics.

An attractive property of neural networks when used in
combination with operational velocity sensing arrays,
is that the neural network also can take into account
and correct for variations in the individual physical
sensors characteristics and noise. Furthermore, these
biomimetic signal processing methods also allows for
rectified parallel processing as observed in fish (Chag-
naud and Coombs, 2013).

The network types used in this research are Multilayer
Perceptrons (MLP) trained with the back-propagation
algorithm (Rumelhart et al., 1985), Extreme Learning
Machines (ELM) (Huang et al., 2006) and Echo State
Networks (ESN) (Jaeger, 2002).

We have selected these three different neural network
methods, because they are well established and have
different advantages and disadvantages, which allows
for interesting comparisons. Multilayer Perceptrons
have the advantage that the features which the hidden
units extract from the inputs are learned by using the
back-propagation algorithm. This makes them slower
than Extreme Learning Machines, which initialize the
input to hidden unit weights to random values which
are then not trained further. The Echo State Network

was chosen, because it has the property that it can use
previous inputs from the time-series signals and there-
fore it can use more information. This is at the cost
of being governed by more complex dynamics than the
other models. With these choices, we will have the
opportunity to observe which method performs best
whether partial training or memory affects localization
performance.

2 Methods

2.1 Data generation

The MLPs, ELMs and ESNs are trained using a train-
ing set and their performance assessed by a test set.
With the MLPs, a third set of data (validation set) is
also used to avoid overfitting during training. For these
three sets, three different trajectories of source object
movement are used, see section 2.1.2.

2.1.1 Computing water velocities

The data sets used in this research resemble the in-
formation perceived by the artificial lateral line organ
and consist of simulated hydrodynamic data. For the
construction of the data sets the fluid velocities caused
by a source object (sphere) moving in a 2D plane in
a 3D volume through water are calculated. Figure 1
shows this scheme.

x
D-D

s

0

y

D
ϕ

Figure 1: Top view of geometry. The spherical source
moves with a fixed velocity in the x,y-plane in a direction
that has a variable angle φ with the direction of the sta-
tionary artificial lateral line array. The position of a sensor
on the simulated array is denoted by s.

The sensor array is located along the trajectory run-
ning from coordinate (−D,0) to (D,0). The sensors
are equally spaced along this line. The first sensor is
located at coordinate (−D,0) and the last sensor at
(D,0).
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An experimental justification for using potential flow
in a similar set up as assumed in the present study has
been obtained in studies on fish. Both the shape of
the wavelets and specifically the distance coding in its
spatial characteristics predicted by potential flow have
been observed in the biological lateral line responses
of fish Ćurčić-Blake and van Netten (2006). It was
shown that the boundary layer of the stationary fish
was not affecting the flow field to a high extent, which
can also be expected using artificial lateral line sensors.
This observation is supported by a theoretical study
by Goulet et al. (2008) and by a computational fluid
dynamics study (Rapo et al., 2009).

In Franosch et al. (2005) a similar method to find the
fluid velocity distribution for a moving source object
(sphere) with a constant speed is considered. This
method too was used for the case of inviscous poten-
tial flow. The velocity field distribution described in
that work can be shown to be equal with the distri-
bution in equation 2.1. This implies that the present
work can equally well be applied to a vibrating source
at different locations as well as moving sources.

The fluid velocity component parallel to the array at
position s on the sensor array, v(s), is given by

v(s) = C(ψo sinφ− ψe cosφ), (2.1)

with

C =
Wa3

2y3
, (2.2)

where W is the velocity of the source object and a is
the radius of the sphere. The angle of the source with
respect to the sensor array in radians (see figure 1) is
φ, and the even wavelet ψe and the odd wavelet ψo are
described respectively by

ψe(s, x, y) =

1− 2

(
s− x
y

)2

[
1 +

(
s− x
y

)2
] 5

2

, (2.3)

ψo(s, x, y) =

−3

(
s− x
y

)
[

1 +

(
s− x
y

)2
] 5

2

. (2.4)

Here (x,y) denotes the instantaneous coordinate of the
moving object. The equations 2.3 and 2.4 show that
the shape of the even and odd wavelets solely depends
on the location of the source object with respect to the
sensor location. The shape of these wavelets is shown
in figure 2.

In Ćurčić-Blake and van Netten (2006, pp. 1551) it was
noted that the spatial variations along the x direction,

as described by the even and odd wavelet functions,
scale linearly with the distance of the source y. It was
also shown that the maximum amplitude of the even
wavelet is reached at the point of the lateral line that
is closest to the source and that the odd wavelet is zero
at this position. This is the location on the lateral line
that is equal to the x coordinate of the source object.

-D -0.5D 0 0.5D 1D
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Figure 2: The even and odd wavelets ψe and ψo for a mov-
ing source located at coordinate (0, 0.2D). The wavelets
are defined in equations 2.3 and 2.4 respectively and scale
spatially with the distance to the array y.

2.1.2 Paths of sphere movement in the data
set

Given the implicit memory present in the ESN archi-
tecture, the hydrodynamic data for all architectures is
presented in trajectories rather than discrete locations
so that for predicting the current location, the internal
representation of past detections can be used.

The source object starts at time t = 0 at a random loca-
tion (x0,y0) in the Cartesian system where x0 is taken
from a uniform distribution with range [−D,D] and
y0 is taken from the uniform distribution with range
[0, D]. The object remains located in a 2D×D area to
one side of the lateral line (see figure 1).

For the data sets it is assumed that the source object
moves with a constant velocity of 0.1D per time step.
The direction φt in radians in which the object moves
at time step t is

φt+1 = φt +A. (2.5)

Here, A, in radians, is taken from the uniform distribu-
tion with range [−1, 1]. The change in angle per time
step is therefore limited to about 60 degrees.

The next location at time t + 1 is selected by moving
the sphere in the direction denoted by angle φt over a
distance 0.1D .
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When the source object would move outside of the area
boundaries, the next movement direction is altered as
shown in figure 3. If the object would still cross a
boundary when it is moved in the resulting direction,
the movement direction is similarly changed again.

y

x
(-D,D)

Figure 3: The source object at time t (gray sphere) would
cross the field boundaries if it would be moved in the orig-
inal movement direction along the dashed movement vec-
tor. Therefore, instead it is moved in a different direc-
tion along the different solid movement vector. This new
(solid) movement vector is obtained by mirroring the origi-
nal (dashed) movement vector, where the mirror (grey ver-
tical) line is centered on the source object and parallel to
the field boundary that is about to be crossed. The solid
white sphere shows the location of the sphere at time t+ 1.

2.1.3 Splitting water velocities into rectified
inputs

Each data point in the data sets represents the fluid
velocities detected by sensors that are equally spaced
along a one-dimensional sensor array. This concatena-
tion of fluid velocities is used as input for the neural
networks.

In fish neuromasts, two types of velocity detecting hair
cells are present. The first type only detects water flow
in one direction, while the second type only detects flow
in the opposite direction (Flock and Wersäll, 1962).
The two sorts of information perceived by the two types
might be transmitted separately to the central nervous
system (Münz, 1989, pp. 290). If this is so, the fish
is able to discern between positive and negative fluid
velocities.

As a preprocessing step, this biological parallellariza-
tion of information is imitated; each sensor reading is
represented using two values. The first value only rep-
resents positive velocities. It is zero for negative veloc-
ities. For the second value, the same applies, but vice
versa. Since lateral lines with 16 and 32 neuromasts
are simulated, this results in using 32 and 64 inputs.
We used this input doubling because of the observed

enhanced performance in source localization.

2.1.4 Adding noise

To test the noise robustness of the networks, different
levels of noise are added to the fluid velocities com-
puted for test sets.

The noise is taken from a normal distribution with a
mean of zero. Different noise levels are applied via
variation of the standard deviation of the noise. The
noise level is defined in this paper in terms of the Signal
Noise Ratio (SNR), which is given as:

SNR = 10 log10

A2

σ2
dB (2.6)

In this equation, A is the maximal magnitude of de-
viation from zero of an input excitation pattern after
scaling (section 2.1.5) has been applied. σ2 is the vari-
ance of the normal distribution out of which the noise
values are taken.

The distance from the source to the artificial lateral line
y affects the amplitude of the signal in the excitation
pattern (see equation 2.2). To investigate the effects
of noise independent of y, noise is added to all sensor
signal inputs to obtain the required signal to noise ratio
and then scaled, according to equation 2.7.

Adding noise affects the range of the values in an input
excitation pattern. In real-life applications in which
noise quantities are unknown, all excitation patterns
would be scaled to the same value ranges, regardless
of the quantity of noise that is present. As a conse-
quence, the contribution and level of the original sig-
nal to the normalized excitation pattern differs for each
noise level.

2.1.5 Scaling the input

In order to make the localization process robust to am-
plitude variance and to let it focus on the spatial char-
acteristics of the excitation pattern, it is first scaled
before the input is presented so that the largest mag-
nitude in the excitation pattern becomes 1. For this,
all excitation pattern values are changed according to
equation 2.7.

new q[n] =
q[n]

max|q|
(2.7)

The discrete signal q is the excitation pattern at each
individual sensor calculated with equation 2.1 and in-
dex n is the sensor number. This scaling causes the
values of q to always be within the range [−1,1].
This causes information about the y coordinate to be
present only in the spatial scaling of the normalized
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excitation pattern, while information about the x co-
ordinate is present in the location of the pattern along
the sensor array.

2.2 Neural network algorithms

2.2.1 Multilayer Perceptron

The MLP used in this paper is a fully connected net-
work (see figure 4). The input layer has a variable size
(32 or 64 nodes) and the output layer has two nodes
to represent the location x, y of the source. Equation
2.8 shows the way in which the node activation values
are computed.

xm+1
i = f

Nm∑
j=1

(
wm

ij x
m
j

)
+ bm+1

i

 (2.8)

Here, xmi denotes the activation of the ith node of the
mth layer, where counting starts at the input layer.
wm

ij denotes the weight connecting the jth node in the
mth layer to the ith node in layer m + 1. bmi denotes
the bias of the ith node in the mth layer. Nm is the
number of nodes in the mth layer. The activation func-
tion f(x) = tanh(x) is used to calculate the activation
of the hidden nodes. For the output nodes, the iden-
tity function is used as activation function (see figure
4). During training, when computing the activation
value of a node in the hidden layer, some noise sampled
from a uniform distrubution with range [−10−3, 10−3]
is added, which amounts to 46 dB.

The network was trained with the incremental learn-
ing version of the backpropagation algorithm (Rumel-
hart et al., 1985). The weights are initialized according
to the normalized initialization procedure described in
Glorot and Bengio (2010). The bias weights are ini-
tialized to zero.

When overfitting occurs, a network is trained to
specifics of a training set instead of general features.
This causes the network to perform better on the spe-
cific training set, but worse in general cases.

To determine whether overfitting occurs, during train-
ing, the Mean Squared Error (MSE) on the training
and a validation set was monitored. This is the usual
error that is minimized during training neural net-
works. The MSE for a network on a specific data set
is

MSE =
1

D2M

M∑
n=1

1

N

N∑
i=1

(ti(n)− oi(n))2. (2.9)

In this equation D is half the length of the array, M
is the number of samples in the data set, N = 2 is

the dimensionality of an output sample, t is the target
output and o is the network output.

An additional measure for reporting is the Mean Eu-
clidian Distance (MED):

MED =
1

DM

M∑
n=1

√√√√ N∑
i=1

(ti(n)− oi(n))2. (2.10)

The MED provides a more intuitive relative distance
measure of error as it is defined as a fraction of the
depth of field D.

Input layer

Hidden layer

Output layer

Figure 4: Visual representation of the feed forward net-
works used in this research (MLP and ELM). Weights are
represented by arrows. The activation functions are indi-
cated in the nodes. The grey nodes represent bias nodes
with a fixed value of 1.

2.2.2 Extreme Learning Machine

Like an MLP, an ELM is a feedforward neural network
(see figure 4). It differs from the MLP in that only the
weights from the hidden to output layer are trained.
Weights from the input to the hidden layer are initial-
ized randomly and not altered during training (Huang
et al., 2006).

An ELM with a perfect performance on the training
set would have a weight matrix W , that describes the
weights from the hidden layer towards the output layer,
that satisfies:

WH = T. (2.11)

Here, the teacher output T is the matrix that is built up
from a consecutive series of columns, in which each col-
umn consists of the correct output for all output nodes
to the training pattern. Hidden layer output matrix H
is built up from the activation values of the units in
the hidden layer at all the time instances during the
training that are the result of presenting the training
data to the ELM.
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Training of the ELM consists of finding a least squares
solution for W from this linear system, given H and T .
This is computed using:

W = TH†, (2.12)

where H† is the MoorePenrose generalized inverse of
matrix H.

Because determining the matrix W is very fast, ELMs
can be efficiently trained in little time compared to
MLPs (Huang et al., 2006).

2.2.3 Echo State Networks

While experimentally determining parameter settings,
ELMs with internal recurrent connections were also
tested. The resulting ESN (Jaeger, 2002) architecture
effectively introduces memory into the neural network,
which could help in predicting the current position of
a source based on past detections.

Input layer

Dynamic
Resevoir

Output layer

Figure 5: Schematic representation of a basic ESN.
Weights are represented by arrows, grey nodes represent
bias nodes. Only the (grey) weights from the dynamic re-
sevoir to the output layer are trained, black weights are
selected from a uniform distribution. After (Jaeger, 2002,
pp. 7). Without recurrent connections the Dynamic Re-
sevoir collapses into a single hidden layer (like an ELM).

Figure 5 shows the schematic representation of an ESN

Table 1: Computation times for network architectures on
a 2.5 GHz Intel i5 core processor. The train and test sets
both contain 15000 samples (excitation profiles). The av-
erage computation time per sample for a trained network
is listed as tupdate.

network ttrain ttest tupdate
MLP16 9 hr 4.6 s 0.3 ms
MLP32 9 hr 4.7 s 0.3 ms
ELM16 100 s 2 s 0.1 ms
ELM32 240 s 3 s 0.1 ms
ESN16 160 s 48 s 3.2 ms
ESN32 382 s 100 s 6.6 ms

that consists of an input layer, a dynamic resevoir (DR)
and an output layer. Each input node connects to each
node in the DR and each node in the DR connects to
the output layer through weights. The hidden nodes
in the DR are sparsely connected with each other and
themselves. This causes the DR to contain a high di-
mensional representation of the input.

The weight matrix representing the internal weights of
the DR must be constructed so that the spectral radius,
which is the largest absolute eigenvalue of the weight
matrix, is smaller than 1. As a result input is echoed
and dies out over time, which is called the Echo State
Property. This gives the ESN short term memory.

Due to the short term memory, the output of the first
few steps is often inaccurate. To wash out the effects of
the initial network state, the network output of the first
50 samples is discarded during training and testing.

3 Results

To optimize the meta-parameters of the neural network
models, we performed many trials with different values
and selected the best parameters for the final experi-
ments. After determining the optimal meta-parameter
settings of the networks, new data sets from new tra-
jectories were generated to train and test the networks
that produced the results in section 3. The training
and test sets used each contain 15000 samples. A
large number of samples was chosen to make sure that
enough source locations were well represented. The
validation set contains 10000 samples.

Table 1 indicates the time required for training the
neural network; the time it takes for the test set to
be parsed and finally the calculation time for a single
excitation pattern on a 2.5 GHz Intel i5 core processor.
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3.1 Parameter settings

Below, we first show the performance of networks with
the best parameter settings found in the parameter
study for high signal to noise data (46dB).

3.1.1 MLPs

For optimizing the MLPs, the varied parameters were
the learning rate, number of hidden layers and layer
sizes. All MLPs in the initial parameter study were
trained for 300 epochs. The best performing networks
for both 16 and 32 sensors were then trained with a
learning rate of 0.01. They had two hidden layers of 80
and 40 nodes respectively. For these optimal parameter
settings, new networks were trained for 3000 epochs.

3.1.2 ELMs and ESNs

The best performing and thus chosen hidden layer sizes
were 5000 and 7000 nodes for ELMs with 16 and 32
sensors respectively. The performance of the ESN
architecture increased when the recurrent connection
weights were chosen smaller. Since the performance
was best in a neural network architectures without re-
current connections, the best performing ESNs are ef-
fectively ELMs, and only ELMs are discussed for high
signal to noise input.

In order to ascertain and compare the noise robustness
of the ESN architecture, ESNs with DR sizes of 5000
for 16 inputs and 7000 nodes for 32 inputs were also
tested with a spectral radius of 0.1.

3.2 Overall performance on high signal
to noise input

To investigate the differences in performance between
the different network architectures and different array
sizes, 5 ELMs and 5 MLPs for both 16 and 32 input
sizes, indicated with a subscript, with the best perform-
ing parameter settings were trained and tested with
new data sets.

The random initialization of the weights of the net-
works resulted in different networks per combination
of network type and input size. Using multiple net-
works per combination of input size and network type,
maps this variety to the output error per individually
generated and tested network.

The boxplots in figure 6 show the MSE distribution per
network type on respectively the x and y coordinates
as well as the average MSE. The network instances
with the lowest average error are listed in table 2. For

Table 2: Best performing localization results for the MLP
and ELM and their respective MEDs.

network MSE MED
MLP32 5.23 ∗ 10−5 0.68%D
ELM32 3.66 ∗ 10−5 0.41%D

MLP 16 MLP 32 ELM 16 ELM 32
0

0.5

1

1.5

2

2.5

M
SE

×10-4

x
y
avg

Figure 6: Boxplots of the MSE and specified for the x and
y coordinate per network type.

comparison, when forcing a spectral radius of 0.1 on
an ESN, the MED localization error compared to the
ELM approximately doubled to 0.71%D.

Figure 7 gives an indication of source localization per-
formance of the best performing ELM and MLP under
high signal to noise conditions.

In figure 8, the effect of the source location on the MED
performance is separately shown for both the x and y
coordinate.

3.3 MLP overfitting

For all MLP16 and MLP32 networks, the MSEs on the
training set were compared with the MSEs on the vali-
dation set for every epoch during training. An example
of such a comparison can be seen in figure 9. For no
MLP trained and tested with the new data set, the
MSE of the validation set increased continuously, or
to a stable value at any point in training. Therefore,
we conclude that overfitting does not occur in these
networks.

3.4 Noise robustness

The MSE of all three network architectures was found
for different SNRs. The SNRs were chosen to lie in
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Figure 7: Actual source location and absolute Euclidian
error (as a fraction of D) on a part of the test set of individ-
ual networks of the ELM32 and MLP32 sets for x and y co-
ordinate. To enable a clear visual comparison of the neural
network errors, the absolute errors of the MLP and ELM
are shown in mirrored y-axes. The peak in error around
sample 1700 coincides with the source being located in a
corner. The MLP is less affected by this corner effect than
its ELM counterpart. The ELM error is however generally
lower.

the interval [−6dB, 46dB]. The results are plotted in
figure 10.

Figures 11 and 12 show the noise robustness separately
for respectively the x and y coordinates of the source
object.

For comparison, figure 13 shows the noise robustness of
ELMs and ESNs with a smaller hidden layer size than
optimal (see section 4.2).

4 Discussion

4.1 Practical implementation neural
networks

From the results shown in figure 7 it can be concluded
that neural networks are able to reliably extract infor-
mation about the location of a moving source in a field
with a depth D equal to half the sensor array length
with an accuracy of the order of percents of D, given
the simulated dipole fields.

On average, network architectures with 32 sensors out-
performed those with 16 sensors, as seen in figure 6.
The limited variance of performance within the net-
work types suggests that the networks don’t suffer from
local minima.

Depending on the computing power and response re-
quirements, trained networks may be used under real
time conditions. On our system, in combination with
either an ELM, MLP, or ESN we have typical response
times of 0.2, 0.3, or 6 ms respectively for updating a
source location.

The consequence of having a finite update time is that
estimates on source location can only be generated
with a delay tupdate, which results in the source having
moved a distance ∆d, equal to ∆d = V ∗ tupdate, with
respect to the position it was during the array veloc-
ity measurement. It is useful to compare this distance
∆d, with the spatial accuracy of the sources location.
If we accept a similar inaccuracy of distance ∆d, as the
inaccuracy produced by the neural network, given by
the MED (i.e. ∆d = MED ∗D) we arrive at an up-
per bound of velocities (Vmax) which may reliably be
detected:

Vmax =
MED ∗D
tupdate

. (4.1)

Clearly this velocity is proportional to array length
(2D) and inversely proportional to the update time.

For instance, with a MED of 0.05 (at least feasible with
an ELM and a SNR velocity input of 22 dB and con-
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(a) (b)

(c) (d)

Figure 8: Interpolated performance (MED) for the considered networks based on the source position x, y. The same
test set is used for each network type. The estimation error increases around the edge of the detection field and shows
an increased error close to the array, i.e. when y is close to zero. This may result from an effective undersampling of the
excitation pattern, where the spatial characteristics such as extrema and zero-crossings (see figure 2) cannot be readily
inferred since the pattern is spatially narrowed beyond the inter-sensor distance.
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Figure 9: An example of the MSE on the validation set
and on the training set for the best performing MLP32.
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Figure 10: The noise robustness of the performance in
MSE of the different kinds of networks.

sidering tupdate = 0.2 ms with our computer platform)
we arrive at an upper bound for the velocity equal to
Vmax = 250D/s. This example indicates that a neu-
ral network under realistic conditions will allow the
processing of source velocities two orders of magnitude
higher than the array length per second, which entails
that most likely other factors than the update speed
will be limiting in the detection of a source’s position.

4.2 Overall performance on x and y co-
ordinates

Given that x and y information of a source is encoded
differently in the excitation pattern (Ćurčić-Blake and
van Netten, 2006), performance differences in the de-
tection of the x and y coordinate can be expected. In
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Figure 11: The noise robustness on determining the x
coordinate of the source.
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Figure 12: The noise robustness on determining the y
coordinate of the source.
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Figure 13: Noise robustness of ELMs and ESNs with a
limited number (100) of hidden nodes.
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all cases, in noiseless and noisy conditions (see figure
6), detection of the source distance y is more reliably
determined than its lateral position x.

The MED error is dependent on the x and y coordinate
of the sphere, as can be seen in figures 8a to 8d. The
error is larger at the left and right edges of the 2D×D
field and relatively high when the source is close to
the array. These two effects can be explained by the
following observations.

The shape of the wavelets as shown in figure 2, and thus
wavelet ψ, is only partially detected when the source
moves close to either side of the field, because the cen-
ter of ψ is equal to the x coordinate of the sphere. The
partially observed wavelets lead to less input informa-
tion and thus leads to a decrease in performance. Addi-
tionally, given the way of sampling training data using
trajectories through the sampling space, locations at
the borders are slightly underrepresented in train, test
and validation data sets.

As can be seen in figures 8a to 8d, the MED increases
significantly when the sphere moves close to the sensor
array. This result might be partially explained by the
distance between the sensors. In Ćurčić-Blake and van
Netten (2006, pp. 11) it is shown that a source should
not be closer than approximately twice the inter-sensor
distance to be detected, since the sampling of spatial
details in the excitation profile becomes inadequate.
For a lateral line with length 2D, this minimum dis-
tance is 2D

16 ∗ 2 = 0.25D for an array of 16 sensors and
2D
32 ∗ 2 = 0.125D for an array of 32 sensors. Figures 8a
to 8d do indeed show decreased accuracy when the y
coordinate becomes smaller than these values.

4.3 Noise robustness

The MLPs show better noise robustness than the ELMs
and ESNs. This is at least partially due to the fact
that there are less weights present in MLPs. Figure 13
shows that a smaller hidden layer size results in better
noise robustness for ELMs and ESNs comparable to
MLPs, at the cost of lost precision for high signal to
noise data. Furthermore, networks with 32 sensors are
slightly more robust to noise than networks with 16
sensors.

5 Conclusion

The current work is one of the very first attempts to
investigate the optimal parameter settings for multiple
neural network architectures for hydrodynamic imag-
ing using a stationary artificial lateral line. A smaller

version of an MLP was previously tested for a sen-
sor array consisting of 6 sensors (Abdulsadda and Tan,
2012). Under similar noise levels, but a smaller area,
our networks yields a comparable result with an aver-
age MED of 2% of D.

5.1 Practical implementation neural
networks

The practical implementation of the neural networks
investigated here, when processing flow data measured
with an array of velocity sensitive flow detectors, may
follow various scenarios. Depending on the particular
choice of flow detection of the individual sensors and
specifically their signal-to-noise performance using the
present results, the optimally performing network may
be selected.

To utilize the predictive nature of previously perceived
excitation patterns, we explored the use of ESNs con-
taining recurrent connections which outperformed oth-
erwise identical ELMs in noisy conditions. This indi-
cates that memory might help in predicting source lo-
cations in simple architectures. Nevertheless, the ESN
is outperformed by the MLP, which has no form of
(short term) memory. Other types of neural network
architectures with recurrent connections may also be
helpful in this respect. The network input could for
example be extended with excitation patterns of pre-
vious time steps or the optional recurrent connections
from the output layer to the input layer could be added.

All considered neural network architectures, once
trained on simulated data, may respond very fast to
velocity input signals of the array and perform local-
ization in real time on standard hardware. In case of
the feed forward architectures this is at a rate of several
thousand Hz and in case of the ESN several hundred
Hz.

5.2 Further research on single source
localization

A specific task that was not trained in the networks
investigated so far, is to also estimate the angle φ at
each time step. The information on φ is present in the
excitation pattern and provides instantaneous input for
estimating the next position.

Extending the input layer with nodes of which the ac-
tivation is determined by something else than the mea-
sured water velocities might also improve the network
performance. These indicator nodes can hold informa-
tion about e.g. the width of the wavelet or the location
of minima and maxima in the excitation pattern.
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Therefore, other neural networks than considered here
also may be considered as alternatives for source local-
ization.

In this research, the network output only gives the 2D
location of a source, because it only uses water veloc-
ities in the direction parallel to the simulated lateral
line. If the excitation pattern along an additional or-
thogonal lateral line is added to the input, the output
can be extended to the location of a moving source in
a 3D volume. This orthogonality of neuromast arrays
can also be found on the heads and sometimes along
the sides of fish (Coombs et al., 1988, pp. 568-576). On
the heads, canals with neuromasts and arrays of super-
ficial neuromasts with different angles to each other are
present. Also, fish approach behaviour (Coombs and
Conley, 1997) suggests that fish tend to zig-zag towards
a source to sense orthogonal projections of flow.

This work cannot readily be used for detecting multi-
ple sources, although it can be altered in at least two
ways that might make multiple source localization pos-
sible. Firstly, a network for every plausible amount of
moving sources could be trained. A problem of this ap-
proach is that an accurate criterion for which network
output should be used is needed. Secondly, instead of
producing the coordinates of the source, the networks
could be trained to output a 2D grid in which only
nodes that represent locations where a moving source
is present have large activation values.

A common additional limitation for source localization
algorithms, inluding these neural networks, is that they
assume a stationary artificial lateral line for monitoring
sources, rather than a lateral line mounted on a moving
body. This latter case requires a different approach
since the viscous boundary layer plays an important
role (Windsor and McHenry, 2009) and may affect the
locally perceived fluid flow (DeVries et al., 2015).

We expect that the use of neural networks will be
greatly extended, especially in parallel with the devel-
opment of alternative and more extended biomimetic
velocity sensitive arrays than those reported so far.
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