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Abstract
Objectives The aim of this study is to investigate the effect of
soft tissue presence on the segmentation accuracy of the 3D
hard tissue models from cone-beam computed tomography
(CBCT).
Materials and methods Seven pairs of CBCTDigital Imaging
and Communication in Medicine (DICOM) datasets, contain-
ing data of human cadaver heads and their respective dry
skulls, were used. The effect of the soft tissue presence on
the accuracy of the segmented models was evaluated by
performing linear and angular measurements and by superim-
position and color mapping of the surface discrepancies after
splitting the mandible and maxillo-facial complex in the mid-
sagittal plane.
Results The linear and angular measurements showed signif-
icant differences for the more posterior transversal measure-
ments on the mandible (p < 0.01). By splitting and
superimposing the maxillo-facial complex, the mean root-
mean-square error (RMSE) as a measurement of inaccuracy
decreased insignificantly from 0.936 to 0.922 mm (p > 0.05).
The RMSE value for the mandible, however, significantly
decreased from 1.240 to 0.981 mm after splitting (p < 0.01).
Conclusions The soft tissue presence seems to affect the accu-
racy of the 3D hard tissue model obtained from a cone-beam
CT, below a generally accepted level of clinical significance of
1 mm. However, this level of accuracy may not meet the re-
quirement for applications where high precision is paramount.

Clinical relevance Accuracy of CBCT-based 3D surface-
rendered models, especially of the hard tissues, are crucial in
several dental and medical applications, such as implant plan-
ning and virtual surgical planning on patients undergoing
orthognathic and navigational surgeries. When used in appli-
cations where high precision is paramount, the effect of soft
tissue presence should be taken into consideration during the
segmentation process.

Keywords Cone-beam computed tomography .

Segmentation . Accuracy . Surface models . Soft tissues

Introduction

Low-dose cone-beam computed tomography (CBCT) for
three-dimensional (3D) imaging of the maxillo-facial struc-
tures is increasingly used in the latest years in the medical
and dental field, and it extends to a wide range of applica-
tions [1–3]. Accurate visualization of the face, jaws, and its
components are important for clinical diagnostics and
decision-making [4]. Nowadays, the application of 3D
cephalometric analysis plays an important role in cases of
complex maxillo-facial abnormalities [5, 6] and for the
evaluation of growth or treatment outcomes [7–9].
Accurate 3D surface-rendered models, especially of the
hard tissues, are crucial in applications such as virtual sur-
gical planning on patients undergoing orthognathic surgery,
during dental implant and prosthetic procedures, and when
simulating treatment outcomes [10–15].

Surface-rendered 3D models of the hard tissues derived
from the CBCT Digital Imaging and Communication in
Medicine (DICOM) data that are originally composed of
voxels, each with its own gray value based on the radiation
absorbed by the tissues during the scan. By means of specific
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software applications, reconstructions are possible in sagittal,
coronal, and axial planes, allowing the operator to scroll
through the tissue structures in any direction of interest.
Most applications also include reconstruction techniques
allowing image extraction out of the DICOM data similar to
those from conventional radiographic techniques, such as
orthopantomograms and lateral cephalometric radiographs
[16]. In order to construct a 3D digital model of specific tis-
sues out of the original voxel-based data, a specific process
called segmentation has to be followed. Briefly, the operator
provides the software an upper and a lower threshold
matching the gray-level range of the voxels which specifies
the tissues of interest. The software then discards all data
outside these limits and depicts only the voxels within the
set threshold values.

Factors influencing the quality and accuracy of the models
provided by the segmentation process can be divided in three
main categories [17]. The first comprises CBCT system fac-
tors, such as scanner type, field of view settings, and voxel
size settings [18–21]. The second category is patient-related
factors such as positioning of the patient in the scanner, metal
artifacts, and the soft tissue covering [22–25]. The third are
operator-related factors, such as the segmentation process it-
self, the employed software, and the operator performing the
segmentation [26–29]. Most studies published on this partic-
ular subject were based on research using dry skulls.

The use of the dry skull without any soft tissue substitute
may present a drawback, as it does not simulate the human
anatomy in real life. The soft tissues are sources of scattering
radiation during a radiographic examination, resulting in de-
terioration of the signal-to-noise ratio and, subsequently, of
the gray-level value differentiation in voxels between different
density tissues, presumably resulting to lower bone image
quality [30]. As a result, measurements obtained from images
on a human dry skull may deviate from the “true” values if
they be obtained from the same subjects with soft tissue cov-
erage. Interpretation of these results may be misleading for
decision-making in clinical practice. To overcome this error,
some studies introduced latex balloons filled with water as a
soft tissue equivalent [31, 32]. One of the drawbacks of this
method is that it does not reflect the soft tissue properties or
distributions in real life. Alternatively, human cadavers may
represent better the human anatomy, which are, however, dif-
ficult to obtain. The effect of soft tissue presence on the seg-
mentation process and the resulting 3D surface-rendered vol-
umetric models is not yet well documented, specifically when
all the above-mentioned affecting side parameters are
standardized.

Therefore, the aim of this study is to investigate whether
the soft tissue presence affects the segmentation accuracy
of the 3D surface-rendered volumetric models from cone-
beam CT in a setting in which other affecting parameters
were controlled.

Materials and methods

CBCT Data acquisition

A sample of seven DICOM datasets was used for this study,
containing the scans of seven anonymous cadaver heads com-
prising both edentulous and partially edentulous jaws that
were initially scanned with the KaVo 3D exam scanner
(KaVo Dental GmbH, Bismarckring, Germany) using a stan-
dardized scanning protocol [28]. Subsequently, the cadavers
were meticulously macerated according to an established pro-
tocol by the Department of Anatomy, University Medical
Centre Groningen, Groningen, The Netherlands [33]. This
procedure resulted in the respective seven dry skulls that were
scanned with the same scanner and following the original
protocol as used during the cadaver scans. The dry skulls were
repositioned in the scanner using the laser reference lines of
the unit [34]. Yaw, pitch, roll, and height settings were obtain-
ed from the first series of cadaver scans by means of the
manufacturer’s software in order to achieve similar position-
ing. For both sets of scans, a 0.3-mm voxel size with a 17-cm
field of view was used. Therewith the complete sample used
in this study consists of DICOM datasets of two groups, scans
of the cadaver heads with soft tissue, and scans of the respec-
tive dry skulls without soft tissue.

The segmentation protocol

The DICOM datasets were exported from the unit’s dedi-
cated software and imported into ITK-SNAP, a specialized
segmentation software package for medical imaging [35].
The procedure starts with determining the region of interest
and threshold levels, followed by setting the seeding points
in the tissues of interest, which results in a very close ap-
proximation of the 3D structures with neighboring intensi-
ties. The final 3D surface-rendered model of the bone sur-
face is formed by segmenting using the level-set method to
drive the active contour evolution as coded in the ITK-
SNAP software [35]. It is based on region competition
causing the active contour to reach equilibrium at the
boundary of the regions, i.e., the borders of the hard tis-
sues, subsequently discarding pixels representing the sur-
rounding soft tissues. The segmentation procedure for the
DICOM datasets was performed in a random order follow-
ing a segmentation protocol fitting the software package.
This procedure is partly operator dependent, since each
cadaver and dry skull requires an individual set of
segmenting thresholds. All segmentations were performed
by one operator and repeatedly three times with a 1-week
interval to determine intraobserver reliability. This seg-
mentation procedure resulted in digital 3D surface-
rendered hard tissue models for both groups, with and
without the presence of soft tissues.
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Measuring procedure

The effect of soft tissue on the 3D surface-rendered hard tissue
models was analyzed by comparing the two groups of models.
The models representing the dry skulls were set as the reference
3D models, against which the models deriving from the ca-
davers with the soft tissues were tested. Two different methods
were employed for comparisons. The first methodwas based on
linear and angular measurements using the Simplant O&O soft-
ware (Materialise Dental, Leuven, Belgium). A series of land-
marks were selected and identified on the 3D digital models,
and subsequently, the defined linear and angular measurements
were performed by the software [32, 33, 36]. These measure-
ments are illustrated in Figs. 1 and 2 for the maxillo-facial
complex and the mandible, respectively, and were assessed
three-dimensionally on the surface-rendered models. The land-
mark identifications were performed blindly and in random
order by one operator, three times repeatedly with a 1-week
interval to test for intraobserver reliability. The second method
was based on volume superimposition and color mapping of
the surface differences, which are described in the following
session in detail [37, 38].

Superimposition and color mapping

This procedure was performed using Geomagic Studio soft-
ware package (Geomagic Solutions, USA). First, the two re-
gions of interest were defined, namely the maxillo-facial com-
plex and the mandible. In this study, the maxillo-facial com-
plex was defined as the area including all external facial

surfaces below a horizontal plane, passing through the highest
point of the orbital rims, parallel to the Frankfurt horizontal,
and ventral to a vertical coronal plane which crosses both
temporo-zygomatic sutures, excluding the mandible. The sec-
ond region of interest was the mandible which was compared
completely, including all external lingual and facial surfaces.

Before comparing, the models had to be superimposed
(Fig. 3). For both regions of interest, an automatic operator-
independent matching was followed; the software performs the
best-fit matching based on the least squared differences between
the models for optimal superimposition. The maxillo-facial
complexes were matched on their complete external facial sur-
faces. Themandibles, however, given the known potential trans-
versal dimensional deformation due to the maceration and dry-
ing techniques [39], were matched on their frontal area defined
as all external surfaces of the mandible ventral to a vertical
coronal plane passing through both mental foramina (Fig. 3c).
In addition, both the maxillo-facial complex and the mandible
models were split in their midsagittal planes in order to further
minimize any interfering effect of such dimensional deformation
and isolate the soft tissue effects. The resulting left and right
parts were matched and compared separately (Fig. 3e, f).

The differences between the models were displayed by
means of color mapping of surface deviations and by sam-
pling the models to approximately one million polygons each.
In addition, the software provides information for each com-
parison indicating the magnitude of deviation between the
surfaces of the two registered volumes. The signed average
of the surface differences presents the absolute mean of the
surface differences by simply adding up positive and/or

Fig. 1 Linear and angular measurements on the maxillo-facial complex.
1, 2 orbita width L (left) and R (right)—distance between points medio-
orbitale and zygomaticofrontal medial suture; 3 zygion width—distance
between points zygion R and L; 4 frontozygomatic width—distance
between points zygomaticofrontal medial suture R and L; 5 nasal canal
width—distance between points lateral piriform aperture R and L; 6 nasal
width—distance between points medio-orbitale R and L; 7, 8 orbita

height—distance between point orbitale and the line crossing both
supraorbital points; 9 nasion–anterior nasal spine height—distance
between points nasion and ANS; 10 facial divergence angle nasion—
angle from zygion R point to nasion point to zygion L point; 11 facial
divergence angle ANS—angle from zygion R point to ANS point to
zygion L point

Clin Oral Invest (2017) 21:921–930 923



negative distances for all surface polygons. By definition, dif-
ferences are marked positive when the tested surface lies out-
side the reference surface and vice versa. The root-mean-
square error (RMSE) was used as an absolute measure of
model surface deviations, in order to account for positive
and negative differences which otherwise could cancel out
each other [38, 40]. In addition, the mean values of the left
and right sides were calculated.

Statistical analysis

The reliability of all linear and angular measurements was
expressed by intraclass correlation coefficients (ICC) for abso-
lute agreement based on a two-way random effects analysis of
variance (ANOVA) between the three repeated measurements.
All variables were positively tested for normality using the
Shapiro-Wilk test with all p values being >0.05. The signifi-
cance of differences between the measurements performed on
both groups and the differences between RMSE values was
calculated using the paired sample T test. The level of clinical
significance was set at 0.05. The RMSEs and signed average of

differences were calculated for the selected surfaces on each
maxillo-facial complex and mandible model. Mean and stan-
dard deviations were calculated. All statistical analyses were
performed using Statistical Package of Social Sciences (SPSS).

Results

Measurement reliability

No differences between the repeated segmentations were
found exceeding the level of 0.3 mm, which was the voxel
size (Fig. 4). These values confirm the reliability of the used
segmentation protocol as being excellent. The ICCs of the
reliability tests on all measurements obtained from both refer-
ence and test groups varied within 0.94–1.00 and were accord-
ingly classified as being excellent.

Linear and angular measurements on the maxillo-facial
complex

The results from the linear measurements performed on the
mandible were shown in Table 1. The mean differences for all
linear measurements on the maxillo-facial complex ranged
between −0.41 and −0.78 mm (Table 1). The differences be-
tween the reference and test groups for the angular measure-
ments were between −0.41° and −0.12°. Both were found
statistically non-significant (p > 0.05).

Fig. 2 Linear and angular measurements on the mandible. 1, 2 ramus
length (Co–Go); 3, 4 mandibular body length (Me–Go); 5, 6 total
mandibular length (Co–Me); 7, 8 condyle width (CoLat–CoMed); 9, 10
gonial angle (Co–Go–Me); 11 mandibular width at condylion (Co R–Co
L); 12 mandibular width at condylion laterale (CoLat R–CoLat L); 13
mandibular width at condylion mediale (CoMed R–CoMed L); 14
mandibular width at coronoid process (CP R–CP L); 15 mandibular
width at gonion (Go R–Go L); 16 mandibular width at antegonion (AG
R–AG L); 17mandibular width at mentale foramina (Men.for R–Menfor
L); 18 condylion divergence angle (Co R–Me–Co L); 19 condylion
laterale divergence angle (CoLat R–Me–CoLat L); 20 condyle mediale
divergence angle (CoMed R–Me–CoMed L); 21 coronoid divergence
angle (CP R–Me–CP L); 22 gonion divergence angle (Go R–Me–Go
L); 23 antegonion divergence angle (AG R–Me–AG L)

Fig. 3 Registration and volume comparisons of the maxillo-facial
complex and the mandible. aSelection of the defined maxillo-facial
complex and automatic registration by the best-match fitting method. b
Volume comparison of the maxillo-facial complex. c Selection of the
defined frontal area of the mandible and automatic registration by the
best-match fitting method. d Volume comparison of the complete
mandible. e Selection of the left mandibular side and automatic
registration by the best-match fitting method. f Volume comparison of
the left mandibular side
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Linear and angular measurements on the mandible

The results from the linear measurements performed on
the mandible were shown in Table 2. Significant differ-
ences were found for the mandibular width at the coronoid
process (1.95 mm, p < 0.01), at condylion laterale
(1.42 mm, p < 0.01) and at condylion medial (3.60 mm,
p < 0.001). The angular measurements showed significant
differences for the coronoid divergence angle (1.67°,
p < 0.001), the condyle lateral divergence angle (1.22°,
p < 0.01), and the condyle medial divergence angle
(1.85°, p < 0.001).

Volume comparisons of the maxillo-facial complex

The results of the volume superimposition and surface compar-
isons of the maxillo-facial complex between the reference and
test models were shown in Table 3. The mean RMSE was
0.936 mm with a standard deviation of 0.188 mm comparing
the complete maxillo-facial complexes. The mean signed aver-
age of difference between surfaces was −0.092 mm with all
values being negative. Dividing the maxillo-facial complex to
a left and right side for separate registration and comparing pro-
cedures decreased the mean RMSE to 0.922mmwith a standard
deviation of 0.195 mm which was not significant (p > 0.05).

Table 1 Results of the linear and angular measurements on the maxillo-facial complex

# Measurement Unit Group with soft tissue Group without soft tissue Comparison

Mean SD Mean SD Δ 95 % CI

Linear

1 Orbita width L mm 44.76 2.84 44.87 2.82 −0.25 −1.83–1.31
2 Orbita width R mm 45.72 2.54 45.59 2.87 0.08 −0.76–0.91
3 Zygion width mm 131.38 6.95 131.28 6.93 0.10 −0.59–0.78
4 Frontozygomatic width mm 98.01 5.65 97.58 5.67 0.11 −0.08–0.32
5 Nasal canal width mm 25.19 2.77 24.44 2.40 0.74 −0.34–1.82
6 Nasal width mm 12.18 2.69 11.80 2.43 0.38 −0.99–1.75
7 Orbita height R mm 38.83 1.62 38.66 1.54 0.17 −1.25–1.58
8 Orbita height L mm 38.79 1.91 38.00 2.16 0.78 −0.48–2.04
9 Nasion–anterior nasal spine height mm 53.95 2.93 54.32 3.12 −0.36 −0.77–0.04

Angular

10 Facial divergence angle nasion ° 88.49 3.65 88.61 3.27 −0.12 −1.99–1.76
11 Facial divergence angle ANS ° 86.72 2.57 87.13 2.13 −0.41 −2.18–1.35

Mean values. Standard deviations (SD). Average differences (Δ) with confidence intervals (CI) at 95 % and level of significance of the differences (P)

Fig. 4 An illustration of the
segmentation reliability based on
color mapping. The segmentation
reliability was assessed by
superimposing and color mapping
two surface models of the same
maxillo-facial complex
segmented at two different
sessions. Green color represents
differences within 0.3 mm which
equals the voxel size
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Volume comparisons of the mandible

The results of the mandible comparisons were shown in
Table 4. Analyzing the complete mandibles registered on the

frontal area resulted in a mean RMSE of 1.240 mm with a
standard deviation of 0.375 mm. The mean signed average of
difference between surfaces was −0.189 mm with all values
being negative. Dividing the mandible in a left and right side,

Table 2 Results of the linear and angular measurements on the mandible

# Measurement Unit Group with soft tissue Group without soft tissue Comparison

Mean SD Mean SD Δ 95 % CI

Unilateral
Linear

1 Ramus length L mm 58.50 4.79 59.95 4.28 −1.45 −3.27–0.37
2 Ramus length R mm 59.43 5.44 59.69 4.01 −0.26 −2.19–1.68
3 Mandibular body length L mm 86.80 6.35 86.62 5.54 0.18 −1.23–1.58
4 Mandibular body length R mm 87.50 4.89 87.50 5.24 −0.00 −1.22–1.22
5 Total mandibular length L mm 124.01 7.03 125.49 7.35 −1.48 −2.80–−0.15
6 Total mandibular length R mm 124.47 6.88 124.62 6.96 −0.15 −2.68–2.38
7 Condyle width L mm 20.05 2.38 20.68 2.93 −0.63 −1.70–0.43
8 Condyle width R mm 20.88 2.50 21.88 2.59 −1.00 −2.31–0.31

Angular
9 Gonial angle L ° 115.83 3.65 116.63 4.02 −0.80 −1.88–0.29
10 Gonial angle R ° 114.40 4.30 114.38 3.50 0.02 −2.10–2.14

Bilateral
Linear

11 Mandibular width at condylion mm 103.73 9.10 103.32 6.42 0.41 −3.58–4.41
12 Mandibular width at condylion laterale mm 123.36 6.18 121.95 5.63 1.42** 0.60–2.23
13 Mandibular width at condylion mediale mm 85.87 3.44 82.28 2.60 3.60*** 2.70–4.50
14 Mandibular width at coronoid process mm 98.20 7.64 96.24 7.00 1.95** 1.16–2.74
15 Mandibular width at gonion mm 97.41 5.99 96.29 5.64 1.12 −0.29–2.54
16 Mandibular width at antegonion mm 84.75 5.38 83.90 4.57 0.86 −1.28–2.99
17 Mandibular width at mentale foramina mm 47.14 4.91 46.06 3.04 1.08 −1.72–3.89

Angular
18 Condylion divergence angle ° 49.44 4.53 48.85 2.68 0.59 −1.55–2.73
19 Condyle laterale divergence angle ° 60.80 2.07 59.58 1.66 1.22** 0.64–1.79
20 Condyle mediale divergence angle ° 41.95 1.70 40.10 1.82 1.85*** 1.32–2.38
21 Coronoid divergence angle ° 55.59 2.44 53.92 2.11 1.67*** 1.15–2.19
22 Gonion divergence angle ° 68.10 4.02 67.29 4.32 0.80 −0.55–2.15
23 Antegonion divergence angle ° 78.90 3.69 78.32 3.79 0.58 −0.21–1.36

Mean values. Standard deviations (SD). Average differences (Δ) with confidence intervals (CI) at 95 % and level of significance of the differences (P)

*p < 0.05, **p < 0.01, ***p < 0.001

Table 3 Results of the volume
comparisons of the maxillo-facial
complex

Registration: best fit on the complete external
facial surfaces of the maxillo-facial complexes

Registration: best fit on the concerning
left or right side

Signed average of
difference between
surfaces (mm)

RMSE of difference
between surfaces (mm)

Signed average of
differences between
surfaces (mm)

Mean RMSE values of
differences between
surfaces (mm)

1 −0.058 0.582 −0.045 0.539
2 −0.078 1.084 −0.077 1.071
3 −0.021 1.064 −0.020 1.043
4 −0.197 1.089 −0.197 1.075
5 −0.027 0.886 −0.018 0.872
6 −0.103 0.817 −0.119 0.828
7 −0.162 1.030 −0.167 1.026
Mean −0.092 0.936 −0.092 0.922
SD 0.066 0.188 0.071 0.195

Surface differences indicating inaccuracy of 3D digital segmented models, derived from CBCT, caused by the
presence of soft tissue
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for separate registration and comparing procedures, signifi-
cantly decreased the mean RMSE to 0.981 mm with a stan-
dard deviation of 0.411 mm (p < 0.01).

Discussion

The aim of this study was to investigate whether the soft
tissue covering affects the segmentation accuracy of the 3D
surface-rendered volumetric models derived from cone-
beam CT, which to our knowledge has not been studied
previously. Well-defined linear and angular measurements
combined with volume comparisons demonstrated as an
accurate tool to measure differences between 3D digital
models were used as a method to illustrate the soft tissue
effect [41–43]. Our results indicate that the soft tissue pres-
ence seems to affect the accuracy of the 3D hard tissue
model of both the maxillo-facial complex and the mandible
obtained from a cone-beam CT, however, below a general-
ly accepted level of clinical significance of 1 mm [44]. It
must nevertheless be noted that this level of accuracy may
not meet the requirements of all applications, especially
where higher precision is paramount [45, 46].

All segmentations, linear and angular measurements,
and volume comparison procedures were performed re-
peatedly by one single operator. The repeatability of the
segmentation process was found excellent with the differ-
ences between repeated segmentations below the set voxel
size of 0.3 mm. The ICCs of the linear and angular mea-
surements were classified as “excellent” which is in
agreement with previous studies reporting excellent reli-
ability of this method within and among different ob-
servers [43, 47]. The differences of the linear and angular
measurements for the maxillo-facial complex were below

1 mm. In the mandible, larger differences were observed
which could have possibly demonstrated a considerable
effect of soft tissue on the inaccuracy of the models.
However, carefully analyzing these results and taking into
consideration the maceration and drying process involved
in this study, such a conclusion might be found mislead-
ing. Previous studies showed an effect of drying on bone
morphology particularly concerning a mandible. The pos-
terior transversal dimension of the pig mandibles were
affected up to an extent of 2.7 % [48]. This is in agree-
ment with the present study, in which both the linear and
angular measurements and the superimpositions showed
differences for the mandibular transversal measurements.
Although comparing the maxillo-facial complexes did not
reveal such dimensional distortion as seen in the mandi-
ble, we could not presume that this region was not affect-
ed. In order to minimize any effect of the possible trans-
versal deformation due to the maceration and drying pro-
cess involved, the mandible and the maxillo-facial com-
plex models were split in their midsagittal planes and the
left and right parts were registered and compared sepa-
rately. The characteristic measure of the inaccuracy of a
tested model compared to the reference is the root-mean-
square error or RMSE that serves as a measure of how far
is the average error from 0, i.e., the distance difference,
between the surfaces of the two models. Whereas the
mean RMSE values of the maxillo-facial complex barely
differ before and after the splitting, that of the mandible
significantly decreased to less than 1 mm, which is gen-
erally considered as a clinical acceptable threshold [44].
Further, all mean differences between the surfaces were
negative values. This shows a trend in which the dry skull
models lie slightly within the cadaver models when the
two models were optimally superimposed, indicating the

Table 4 Results of the volume
comparisons of the mandible Registration: best fit on symphysis surfaces Registration: best fit on the concerning left or right side

Signed average of
difference between
surfaces (mm)

RMSE of
difference between
surfaces (mm)

Signed average of
differences between
surfaces (mm)

Mean RMSE values
of differences between
surfaces (mm)

1 −0.077 0.879 −0.052 0.503

2 −0.221 1.422 −0.214 1.073

3 −0.290 1.886 −0.273 1.640

4 −0.164 0.956 −0.123 0.798

5 −0.181 1.118 −0.121 0.694

6 −0.056 0.921 −0.032 0.758

7 −0.333 1.496 −0.271 1.401

Mean −0.189 1.240 −0.155 0.981

SD 0.102 0.375 0.099 0.411

Surface differences indicating inaccuracy of 3D digital segmented models, derived from CBCT, caused by the
presence of soft tissue
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dry skull models being smaller in general which could be
caused by a change in humidity [39]. Although this is a
consistent finding, the differences never exceeded the
limits of the voxel size of 0.3 mm used in this study.
These findings confirm the results from previous studies
demonstrating that interpretation of research data, in
which dry skulls were used, especially concerning the
mandible, should be analyzed with the knowledge that
significant changes may have taken place in the cranio-
facial dimensions [48].

Special consideration was taken to control the possible af-
fecting parameters, in order to focus on the effect of soft tissue
presence in the accuracy of the 3D model, although this would
partly limit the external validity of this study. All dry skulls
were scanned using the same cone-beamCTunit, with identical
scan settings and similar positioning of the skull in the field of
view. Given the fact that the voxel size is another affecting
parameter, adjusting the setting to a higher scan resolution
could compensate the effect of soft tissue presence.
Concerning this parameter, it has been indicated that the accu-
racy of the models appears to be connected to the voxel size
[49], although the differences were small. However, others did
not find increased accuracy of linear measurements on seg-
mented surface models decreasing the voxel size from 0.4 to
0.25 mm [34]. In our study, the voxel size was fixed to 0.3 mm.

Head positioning is also considered as a possible affecting
parameter. The accuracy of linear measurements using wires
glued on the skull reported no clinically relevant effect [50].
Head positioning has been shown to be an affecting variable in
the accuracy of the 3D cephalometric measurements based on
3DCBCTsurface images and the reliability of linear measure-
ments in some studies [50–52] and to be an insignificant factor
for measurement accuracy in others [19]. Since the range of
positioning deviations for error-free measurements are not yet
known, we specifically aimed at achieving similar positioning
using the laser reference lines of the unit to control the posi-
tioning as a parameter affecting the accuracy.

Two other parameters assumed to have a possible effect
on the segmentation accuracy are the operator performing
the segmentation process and the software utilized. The
software package employed requires the operator to define
individual hard tissue threshold values for each skull and
cadaver. A previous study showed that a commercial soft-
ware company produced more accurate surface models
compared to an experienced 3D clinician [33]. This higher
accuracy could be the result of a more experienced oper-
ator performing the segmentation or ascribed to the use of
different tools and methods provided by different software
packages. Both these affecting factors were well con-
trolled in this study by utilizing one operator with a high
intraobserver reliability performing segmentations on both
the cadaver and dry skull and the use of one professional
software package.

This study used a limited but unique sample of paired CBCT
DICOM datasets from seven human cadaver heads and their
respective dry skulls, contributing to a method in which the
surface models with and without a natural soft tissue coverage
could be compared. The effect of the scattering radiation due to
the presence of soft tissues, resulting in deterioration of the
signal-to-noise ratio and subsequently of the gray-level value
differentiation in voxels, was well simulated. The method has a
clear advantage over the use of artificial media, such as water
balloons, to mimic the coverage of soft tissues [32, 53].
However, it has to be acknowledged that this method still con-
tains a number of limitations. The preservation and storage of
the cadavers was done in formaldehyde embalming fluid which
could have increased the soft tissue thickness, altered the bone
properties of the cadaver heads, and subsequently influenced
the scattering radiation during the radiographic examination
[54]. Therefore, in this study, the cadaver heads were not meant
for representing the exact human anatomy of a living being. For
the purpose of the present study, they were merely used as
ex vivo equivalent of human heads to investigate the effect of
soft tissue coverage.

Further research should focus on other affecting parameters
resulting in a 3D surface-rendered model including the hard-
ware, software, and operator-dependent parameters. By
adjusting and improving these parameters, the effect of soft
tissue presence should be minimized resulting in more accu-
rate 3D surface-rendered models suitable for high-accuracy
demanding applications.

Conclusion

Considering the inherent limitations of any method involving
preparation of dry skulls, it seems that the soft tissue presence
does affect the segmentation accuracy of the 3D hard tissue
model of both the maxillo-facial complex and the mandible
obtained from a cone-beam CT, however, below a generally
accepted level of clinical significance of 1 mm. As this level of
accuracymay not meet the requirements of applications where
high precision is paramount, further studies should investigate
how to optimize the setting parameters to overcome the po-
tential inaccuracy of CBCT-derived surface models related to
the presence of soft tissue.
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