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ABSTRACT: In the field of self-assembly, the quest for gaining control over the
supramolecular architecture without affecting the functionality of the individual molecular
building blocks is intrinsically challenging. By using a combination of synthetic chemistry,
cryogenic transmission electron microscopy, optical absorption measurements, and
exciton theory, we demonstrate that halogen exchange in carbocyanine dye molecules
allows for fine-tuning the diameter of the self-assembled nanotubes formed by these
molecules, while hardly affecting the molecular packing determined by hydrophobic/
hydrophilic interactions. Our findings open a unique way to study size effects on the
optical properties and exciton dynamics of self-assembled systems under well-controlled
conditions.

Molecular self-assembly has proven to be a versatile tool in
nanotechnology, as it allows for the autonomous and

reproducible assembly of a wide variety of low-dimensional
functional systems, extending in size from tens of nanometers
to microns.1 A key challenge in the field of self-assembly is to
control the shape and size of the final supramolecular structure
with minimal changes of the molecular entities that provide the
functionality essential for potential applications.2−4 As the
structure of the final assembly is encoded in each individual
building block, any modification becomes a highly nontrivial
task that requires fine-tuning at the molecular level. It has been
shown that tailoring noncovalent molecular interactions such as
π-stacking,5 hydrogen bonding,6 halogen bonding7,8 or hydro-
phobic/hydrophilic interactions9−11 provides powerful ap-
proaches in directing self-assembly. The coordinating nature
of hydrophobic/hydrophilic interactions is of special interest, as
it may be utilized to tune the supramolecular structure by solely
changing the hydrophilic or hydrophobic side groups of the
molecules without affecting their functional cores. Indeed,
variations of size and composition of the amphiphilic
substituents have been used to change between various
structures, such as micelles and bilayers, which is often
accompanied by changes in the molecular packing.12,13 In this
Letter, we show that even more subtle modifications, namely,
just replacing a few halogen atoms, may be used to complement
hydrophobic/hydrophilic interactions for fine control over the
characteristic size of a self-assembled structure, while preserving

the molecules’ functional properties and their supramolecular
packing.
We demonstrate this control of self-assembly for a class of

tubular molecular aggregates of amphiphilic carbocyanine
molecules that recently have attracted considerable interest
for their optical functionality.14−16 The close packing of the
optically active carbocyanine molecules within the aggregates
gives rise to efficient excitation energy transfer and collective
optical effects caused by exciton states shared by many
molecules.17 Changing the amphiphilic side groups results in
a wide variety of different supramolecular structures,18−22 of
which double-walled tubular structures with a diameter in the
order of 10 nm have attracted the most attention.23−29 The
strong interest in these tubular aggregates stems from their
structural resemblance to the light-harvesting antennae of
photosynthetic green sulfur bacteria,30−34 which are the most
efficient photosynthetic organisms known. Also, the potential of
the tubular aggregates as quasi-one-dimensional energy trans-
port wires is of great interest. Previous attempts to control the
diameter of tubular aggregates, including changing solvents or
adding surfactants yielded only limited variations of the
diameter and often completely changed the supramolecular
architecture,35−37 thereby impeding systematic studies of the
size effect on the optical functionality and energy transport.
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In this Letter we show how the diameter of the double-
walled tubular system may be increased in a well-defined
fashion (by 40% for the outer wall and 110% for the inner one)
by replacing the four chlorine atoms in the original
carbocyanine molecule by bromine atoms. By measurement
and simulation of the absorption spectrum, we show that radial
inflation of this tubular system is achieved without significantly
altering the molecular packing. Besides extending the toolbox of
controlling self-assembly, our results pave the road to greater
flexibility in controlling of the diameter of tubular aggregates
by, e.g., partial substitution of the halogen atoms. This would
provide a model system to elucidate the effects of the inherent
structural heterogeneity (namely, variation of the aggregate
radii) encountered in natural chlorosomes.34 Moreover, such
systematic control also opens up unprecedented opportunities
to study size effects on such important photonics properties as
exciton dynamicsa crucial aspect of efficient energy trans-
portand polarization properties, both equally intriguing from
theoretical and experimental points of view.29,38−40

The dye molecule of interest in this study is the new cyanine
dye derivative 3,3′-bis(2-sulfopropyl)-5,5′,6,6′-tetrabromo-1,1′-
dioctylbenzimidacarbocyanine, or C8S3-Br, as opposed to its
commercially available and much studied counterpart C8S3-Cl
(Figure 1). The new molecules were produced in a four-step
synthesis described in detail in the experimental section and the
SI.
Exchanging chlorine with bromine slightly shifts the

absorption peak of diluted molecules toward longer wave-
lengths, but introduces no other new features (Figure 2), which
is in line with our electronic structure calculations (see
Supporting Information (SI)). Addition of Milli-Q water to
the methanolic C8S3-Br/Cl stock solutions induces a spectral
red-shift of about 75 nm (∼2400 cm−1) and narrowing of
absorption and fluorescence bands, both features that are
typical for J-type aggregation (Figure 2).
The two sharp low-energy bands that both aggregate spectra

have in common are broader for C8S3-Br than for C8S3-Cl. In
addition, the high-energy flank of the C8S3-Br aggregate
spectrum misses the peaks at ∼560 nm and ∼570 nm
characteristic for the C8S3-Cl aggregate spectrum. Because
the optical properties of molecular aggregates are governed by

the interplay of all individual building blocks, the question
arises what changes in the aggregate morphology induced by
the halogen substitution are responsible for the observed
spectral changes.
Experimental evidence for the aggregation of molecules into

nanotubes, as schematically depicted in Figure 1, was found by
cryo-TEM. Although thicker bundles of C8S3-Br were
occasionally observed (see SI), there was no apparent
morphological relation with the isolated tubes. Therefore, the
more abundant nanotubes will be the focus of this study.
The cryo-TEM micrograph in Figure 3a clearly reveals a

double-walled structure of C8S3-Br aggregates, similar to the
structure of the C8S3-Cl aggregates (Figure 3b). The profile
scans of the aggregates are shown in Figure 3c from which the
outer- and inner-wall diameters of C8S3-Br aggregates are

Figure 1. Chemical structure of C8S3. The halogen substituents are abbreviated as X = Br (C8S3-Br) and X = Cl (C8S3-Cl). The right panels
illustrate differences in aggregate architectures formed by changing the halogen substituent from chlorine to bromine, as revealed by this work.

Figure 2. Absorption (solid lines) and fluorescence (solid gray)
spectra of molecular aggregates of C8S3-Br (top panel) and C8S3-Cl
(bottom panel). Absorption spectra of both molecules diluted in
methanol are shown for comparison (dashed lines). For collecting the
fluorescence spectra, the excitation wavelength was set to 560 nm.
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obtained as 18.1 ± 0.2 nm and 11.2 ± 0.3 nm, respectively.
This is in striking difference with C8S3-Cl aggregates, where
these quantities are 13.1 ± 0.2 nm and 5.4 ± 0.1 nm,
respectively. Accordingly, the wall-to-wall thickness of C8S3-Br
aggregates amounts to 3.4 ± 0.3 nm, which is thinner than for
C8S3-Cl aggregates (3.9 ± 0.1 nm). All error margins refer to
the standard error upon averaging.
It is important to understand whether the changes in the

absorption spectra (Figure 2) are due mainly to the changes in
diameter, or whether they result from different molecular
packing in both types of aggregates, which results in differences
in excitonic interactions. Since the cryo-TEM micrographs lack
sufficient signal and 3D analysis to enhance the signal-to-noise
ratio requires prior information on the symmetry, we retrieve

the molecular packing by simulating the absorption spectrum
for model structures and determining the structural parameters
by fitting the experimental spectrum.
As the basic framework, we use the Extended Herringbone

(EHB) model, which successfully describes the optical
transitions of the double-walled tubular aggregates of C8S3-
Cl.24 Briefly (see SI for more detail), within the EHB model,
the molecular positions and orientations are obtained by
starting from a rectangular planar lattice of molecules
(transition dipoles parallel and in-plane). The molecules are
rotated over an angle ±δ along their axis (coincident with the
transition dipole orientation) and alternately titled out-of-plane
over an angle ±β. The lattice is then rolled onto a cylindrical
surface over a chiral vector with length equal to the cylinder
circumference and direction determined by its angle θ relative
to the axis x of the plane (Figure 4). This results in a cylindrical
aggregate structure with each unit cell containing two
molecules, which in turn leads to four (two Davydov-split)
optically dominant exciton transitions per cylinder.41 The inner
and outer cylinders were modeled as spectroscopically
independent entities (see sections 4.5 and 6 in the SI for
justification), keeping the structural parameters similar for both
cylinders, but varying the radii in accordance with the
experimental values obtained from cryo-TEM measurements.
The lattice constants of the EHB model were taken to be

identical to those for the C8S3-Cl case (see SI), while the free
parameters β, δ, and θ that provide the best fit to the measured
absorption spectrum for the C8S3-Br aggregate are given in
Table 1, along with the original parameters of C8S3-Cl24 for
comparison. Simulation of the absorption spectrum with these
structural model parameters indeed gives a good reproduction
of the experimental spectrum (Figure 5). In our modeling the
lowest-energy peak near 600 nm is associated with the inner
wall absorption (in close analogy to C8S3-Cl), while the higher-
energy band has contributions from both walls. This spectral
assignment of the inner and outer cylinder was verified in
oxidation experiments,24 in which the absorption of the outer
cylinder was impaired by silver nanoclusters (see SI). From
Table 1, it appears that the molecular packing is essentially
preserved upon the Cl → Br exchange, leaving the increase in
the radii as the most important factor that changes the

Figure 3. Representative cryo-TEM micrographs for (a) C8S3-Br and
(b) C8S3-Cl aggregates illustrate the double-walled structure. (c)
Profile scans for C8S3-Br (brown) and C8S3-Cl (green) aggregates,
obtained by integrating the signal along the tube axis. The
characteristic sizes of the aggregates are indicated by black and gray
arrows for the outer and inner cylinder, respectively. The error bars
represent the standard error upon averaging individual profile scans.
For both C8S3-Cl and C8S3-Br, five straight aggregate segments were
used for averaging. The total length over which the profile was
integrated amounts to approximately 200 and 400 nm for C8S3-Cl and
C8S3-Br, respectively.

Figure 4. Schematic representation of the tubular aggregate structure. The molecular pair (a) in each unit cell is shown above the two-dimensional
molecular lattice (b). Two lattices are rolled along the chiral vectors (red arrow) to obtain the structure of the double-walled C8S3-Br aggregates
shown in panel c, where transition dipole vectors are partially overlapped with the dye molecules.
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absorption spectrum, specifically the loss of the high-energy
structure. In other words, the observed optical changes arise
from an enhanced overlap of the excitonic transitions caused
solely by the increase of the tube radius and not by changing
the optical properties of the individual dyes or the packing of
molecules within the supramolecular assembly.
The modeling of the absorption spectra was performed in the

homogeneous limit, i.e., all the molecular transition energies
were assumed to be the same. As shown, this suffices to
describe the absorption spectra and also explains the polar-
ization properties of the spectral peaks (see SI for linear
dichroism), even though in reality some amount of disorder will
occur in the transition energies and intermolecular resonance
interactions. As has been shown by Bloemsma et al.,42 in
tubular aggregates, such disorder leads to rather weak
localization of the excitonic states, which explains the
effectiveness of homogeneous models. Allowing for static
Gaussian disorder in the transition energies17,43 and assuming
that this disorder solely determines the lowest energy aggregate
bandwidth, we find the maximum value (standard deviation) of
the disorder to amount to 180 cm−1. More details on the effect
of disorder in these aggregates will be published elsewhere.
Above, the large spectral difference between C8S3-Cl and

C8S3-Br (Figure 2) was attributed to the change in radii of the
inner and outer walls. This interpretation is further
substantiated by phenomenologically examining the influence
of the cylinder radii on the optical spectra. We modeled 12
cylinders based on the EHB lattice of the inner wall of C8S3-Cl
(parameters in Table 1) by only varying the length of the
rolling vector resulting in radii from 2.4 to 8.9 nm. For

convenience of comparison (and in contrast to the fit in Figure
5), all spectral transitions were broadened by identical
Lorentzian lineshapes of 120 cm−1 fwhm. The obtained spectra
(Figure 6) reveal congestion of the peaks when going from the

smallest cylinder with four well separated peaks to the largest
cylinder with three peaks with little separation. Two peaks, the
large one at 600 nm and the small one at 570 nm, correspond
to the doublet of transitions polarized parallel to the tube axis
with their positions essentially independent of the radii. With
increasing radius, the doublet of peaks with perpendicular
polarization moves down in energy toward the parallel peaks,
reflecting the fact that upon decreasing the cylinder curvature,
the energy separation between corresponding parallel and
perpendicular transitions decreases.15 Consequently, with
increasing cylinder radius, high-energy peaks vanish and
spectral structure gets lost. In experiment, this effect is further
enhanced by a stronger broadening of the higher-energy
exciton peaks due to intraband relaxation, an effect not
accounted for in Figure 6.
In conclusion, we have shown that a very moderate chemical

modification through the exchange of four halogen atoms in the
chromophore of an amphiphilic carbocyanine dye leads to well-
defined changes in the final supramolecular assembly without
altering the underlying molecular architecture. This allowed us
to study the effect of purely radial growth on the collective
optical properties of the supramolecular structure. In a broader
perspective, our results demonstrate that a combination of
halogen exchange and amphiphilically driven self-assembly
opens up unprecedented opportunities in controlling the
supramolecular structure to a fine degree for systems, where
modifications of other molecular moieties and/or changes of
the immediate environment (solvent, pH, external fields) are
not feasible as is the case in, e.g., many biological systems or for
medical applications. In addition, we believe that the presented
design principle can be transferred to structurally related
molecules that are known to form other supramolecular
architectures, such as single-walled tubes,44 twisted bundles19

or vesicles.19,35 Nonetheless, the exact underlying mechanism
of how halogen exchange affects the aggregation behavior is yet

Table 1. Summary of Structural Model Parameters for the
Inner and Outer Walls of C8S3-Br Used in the Calculation
of Spectra (Figure 5) Compared to the Model of C8S3-Cl
from Ref 24a

C8S3-Br C8S3-Cl

parameter inner cylinder outer cylinder inner cylinder outer cylinder

R/nm 6.50 8.61 3.55 6.47
β/° 23.1 22.3 23.6 23.1
δ/° 25.5 26.0 25.6 28.0
θ/° 55.5 49.4 53.7 53.4

aThe parameters β and δ define the lattice structure, while the
parameter θ defines the aggregate lattice rolling.

Figure 5. Comparison of the calculated absorption spectrum (black
line) and the experimental one (brown line) for the double-walled
tubular aggregate of C8S3-Br. The spectra are normalized to their
respective peak values.

Figure 6. Influence of the tube radius on the absorption spectrum for a
single tube with the EHB structure appropriate for the inner wall of
C8S3-Cl aggregates. Red and black lines correspond to the spectral
components polarized parallel and perpendicular to the tube’s axis,
respectively. The spectral differences between R = 3.5 nm and R = 6.5
nm reflect the essential differences between the spectra for the inner
walls of C8S3-Cl and C8S3-Br.
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to be understood. Our results suggest that the size of the
halogen substituents and/or the ability to form halogen bonds
play an important role. For instance, fluorine, unlike bromine or
chlorine, is known to hardly form halogen bonds and may even
lead to intermolecular repulsion,8 which would impede the
formation of molecular aggregates. We tested this concept
experimentally by synthesizing the C8S3-F molecule and
indeed found a poor degree of aggregation under normal
conditions (see SI). Based on our results, it is envisioned that
further studies of partial replacement of only a few halogen
atoms will shed light on the effect of different halogen
substituents on the aggregation behavior. This would open
great prospects for fine-tuning size effects for optical
functionality and for optimization of tubular aggregates for
specific applications such as, for instance, artificial light-
harvesting systems.

■ MATERIALS AND SAMPLE PREPARATION

The dye 3,3′-bis(2-sulfopropyl)-5,5′,6,6′-tetrachloro-1,1′-dio-
ctylbenzimidacarbocyanine (C8S3-Cl, M = 903 g mol−1) was
purchased from FEW Chemicals GmbH (Wolfen, Germany)
and used as received without further purification. The synthesis
and purification of amphiphilic cyanine dye derivative 3,3′-
bis(2-sulfopropyl)-5,5′ ,6 ,6 ′- tetrabromo-1,1′ -dioctyl-
benzimidacarbocyanine (C8S3-Br, M = 1081 g mol−1) involves
four steps and is outlined in Scheme 1.
2-Methylbenzimidazole (1) was converted into 5,6-dibromo-

2-methylbenzimidazole (2), by bromination with NBS
according to the modified literature procedure.45 Selective
bromination was achieved at the 5 and 6 positions, and pure
compound was obtained in 55% yield after crystallization in
toluene. The corresponding benzimidazole was then treated
with 1-bromooctane in the presence of KOH to obtain 5,6-
dibromo-2-methyl-1-octyl-benzimidazole (3), in almost quanti-
tative yield after work up.46,47 The quaternization of 3 with 1,3-
propane sultone (step 3, Scheme 1) was carried out according
to a reported procedure.21,22,48 The reaction conditions
involved reflux in chlorobenzene at 120−130 °C to obtain
the sulfoalkyl substituted dye precursor 4. The last step consists

of condensation of two equivalents of 4 with iodoform in
alkaline medium affording dye 5.22 To obtain pure dye, the
crude was recrystallized in a DMF water mixture. Additional
information including NMR spectra and quantum yield
measurements are provided in the SI.
Molecular aggregates of the dyes were prepared via the

alcoholic route.15 The molecules were first dissolved in pure
methanol (Biosolve) to form 1.75 mM stock solutions. In the
next step, the stock solution was added to Milli-Q water to
induce aggregation and render a methanol content of 14 wt %
in the final sample solution. An immediate color change from
orange to pink was detected by the naked eye, indicating the
fast formation of J-aggregates due to hydrophobic solvent
interactions. The resulting solution was gently shaken and
stored in the dark at room temperature for days up to weeks for
aggregation. The final dye concentration in the aggregate
solution was 0.236 mM.
Steady State Absorption and Fluorescence Emission. Steady-state

UV−vis absorption spectra were measured using a PerkinElmer
Lambda 900 UV/vis/NIR spectrometer. For the pristine dyes,
diluted versions of the stock solutions were prepared with final
dye concentrations in the range of 10−4 mol L−1. Prior to
measurements, aggregate sample solutions were diluted with
Milli-Q water by factor 2. Steady-state fluorescence emission
spectra were recorded using a PerkinElmer LS50B Lumines-
cence Spectrometer and 10 mm quartz cuvette (Starna GmbH,
Germany). In order to avoid fluorescence reabsorption,
aggregate sample solutions were diluted with Milli-Q water
by approximately a factor of 100.
Cryogenic Transmission Electron Microscopy. To prepare the

samples for cryogenic transmission electron microscopy (cryo-
TEM), a 3 μL droplet of the sample solution was placed on a
copper grid with holey carbon film (quantifoil 3.5/1), which
was first hydrophilized by glow discharging. In order to obtain a
thin layer of the solution in the range of 100 nm, the excess
fluid was blotted off for 5 s. Immediately afterward, the grid was
vitrified in liquid ethane at its freezing point (−184 °C) with a
Vitrobot (FEI, Eindhoven, The Netherlands). The grids were
placed in a cryotransfer holder (Gatan model 626) and
transferred into a Philips CM120 transmission electron

Scheme 1. Four-Step Synthesis of Compound 5 (C8S3-Br)
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microscope with an LaB6 cathode or a tungsten hairpin
cathode operated at 120 kV. Micrographs were recorded with
an UltraScan 4000 UHS CCD camera (Gatan, Pleasanton, CA,
USA) using low-dose mode.
Theoretical Calculations and Modeling. The geometry of each

cylindrical tube of the double-walled tubular aggregate of C8S3-
Br was obtained by rolling an EHB lattice with two molecules
per unit cell.24 The construction of the lattice and rolling
procedure is briefly described in the main text and in detail in
the SI. All the input structural and energetic parameters were
obtained either from previous studies15,49,50 or obtained from
the present cryo-TEM and optical experiments.
Optical electronic transitions were obtained by numerical

diagonalization of the Frenkel exciton Hamiltonian17 that
accounts for molecular transition energies and Coulomb
transfer interactions between the molecules with an extended
dipole coupling model.15,49 Coupling between the walls was
neglected, allowing separate calculations for both walls. This
approximation24 is acceptable, as the largest interwall couplings
are significantly smaller than the intrawall couplings and smaller
than the homogeneous line width (see section 4.5 in the SI).
The fitted spectrum was obtained in the homogeneous limit
where there is no disorder in the molecular transition energies.
The obtained stick spectrum was broadened with Lorentzians
of different widths for optimal agreement with the experiment.
Details are given in the SI.
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(15) Didraga, C.; Pugzľys, A.; Hania, P. R.; von Berlepsch, H.;
Duppen, K.; Knoester, J. Structure, spectroscopy, and microscopic
model of tubular carbocyanine dye aggregates. J. Phys. Chem. B 2004,
108, 14976−14985.
(16) Würthner, F.; Kaiser, T. E.; Saha-Möller, C. R. J-Aggregates:
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(19) Kirstein, S.; Daḧne, S. J-aggregates of amphiphilic cyanine dyes:
Self-organization of artificial light harvesting complexes. Int. J.
Photoenergy 2006, 2006, 20363.
(20) von Berlepsch, H.; Ludwig, K.; Kirstein, S.; Böttcher, C.
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Light-Harvesting Aggregates in Individual Chlorosomes. J. Phys. Chem.
B 2016, 120, 5367−5376.
(35) von Berlepsch, H.; Kirstein, S.; Hania, R.; Pugzlys, A.; Böttcher,
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