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The work in this thesis is motivated by high-dimensional applications
such as modelling phenotypes using gene expression data. Modeling
gene expression data imposes a few challenges onto the traditional sta-

tistical methods. The most prominent is that the number of covariates (pre-
dictors) is generally much larger than the sample size (observations). High-
dimensional gene expression data are increasingly used for modeling various
clinical outcomes to facilitate disease diagnosis, disease prognosis, and predic-
tion of treatment outcome.

Variable selection is an essential component of modern statistical data anal-
ysis. Starting with a large number of variables, possibly larger than the number
of observations, the aim is to determine a smaller subset that includes the most
important effects (Sparsity). Sparse inference in the past two decades has been
dominated by methods that typically penalize convex likelihoods by functions
of the parameters that happen to induce solutions with many zeros. The Least
Absolute Shrinkage and Selection Operator (LASSO) [94] and other penaliza-
tion approaches are all examples of methods that depending on some tuning
parameter conveniently shrink estimates to exact zeros. Although the LASSO
penalty induces sparsity, it is well known to suffer from possible inconsistent
selection of variables.

In this thesis, we will approach sparsity directly from a likelihood point of
view. The angle between the covariates and the tangent residual vector within
the likelihood manifold provides a direct and scale-invariant way to assess the
importance of the individual covariates. The idea is similar to the least angle
regression (LARS) approach proposed by [29]. In the LARS method a multi-
variate solution path is defined by using the geometrical theory of the linear
regression model. [13] proposed a method, called dgLARS, to introduce sparse
inference for a generalized linear model (GLM) [60] based on the exponential
families with canonical link. The basic idea underlying the dgLARS method is
to use the differential geometrical structure of a GLM to generalize the LARS
method.

In Chapter 2, we extend the dgLARS method to the high-dimensional GLMs
based on the exponential dispersion (ED) models with arbitrary link functions.
Moreover, we present an improved predictor-corrector (PC) algorithm to de-
crease the run times for computing the solution curve and implement it in R.
A classical estimation of the unknown dispersion parameter ϕ based on high-
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dimensional feature space is proposed to make us able to do model selection.
The AIC, BIC, and cross validation (CV) are adapted separately to select an
optimal model and its corresponding optimal tuning parameter γ. The imple-
mentation works not only in the traditional setting of p < n, but also in the
high-dimensional setting when p > n. The procedure proposed in this chapter
is applied to the low- and high-dimensional datasets to illustrate the capacity of
the extended dgLARS method.

It is known that in shrinkage situations the estimator of the dispersion pa-
rameter underestimates ϕ. For this, in Chapter 3, we focus on estimating the
dispersion parameter in high-dimensional exponential dispersion GLMs and
propose a new method which is more accurate than the classical estimator pro-
posed in the previous chapter, and then we present an algorithm to improve the
proposed estimator to obtain a more stable estimator. A numerical study is con-
ducted to compare the proposed estimator with the classical one. The extended
dgLARS method by means of the new dispersion estimate is applied to analyze
both low- and high-dimensional diabetes datasets. The results of Chapter 2 and
Chapter 3 can be found in [70].

Cancer survival is thought to be closely linked to the genomic constitution
of the tumour. Discovering such signatures will be useful in the diagnosis of the
patient and may be used for treatment decisions and perhaps even the devel-
opment of new treatments. These studies rely on survival modelling to detect
relevant factors that affect various event histories. However, genomic data are
typically noisy and high-dimensional, often outstripping the number of patients
included in the study. Regularized survival models have been proposed to deal
with such scenarios. In Chapter 4, we suggest an alternative to the penalized in-
ference methods, indeed we propose a principled method for sparse inference
in relative risk survival models, based on differential geometrical analyses of
the high-dimensional likelihood surface. The method is computationally fast
and is implemented in the R-package dglars. The results of Chapter 4 can be
found in [100].

Chapter 5 is devoted to introducing an implementation of the improved es-
timator of the dispersion parameter for high-dimensional generalized linear
models, called General Refitted Cross-Validation (GRCV) estimator, with an
implementation of the iterative algorithm for improving the proposed GRCV
estimator to obtain a more stable and accurate estimator. A numerical study
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is conducted to compare the proposed estimator with the deviance, maximum
likelihood and generalized Pearson estimators, proposed in [70]. The extended
dgLARS method by means of the new dispersion estimator is applied to analyze
both low- and high-dimensional diabetes datasets. Several dispersion param-
eter estimation methods and algorithms for computing the dgLARS solution
curve, proposed in [13] and [70], are implemented in the new version of the
R-package dglars [14]. The results of Chapter 5 can be found in [69].

We begin the thesis with some basic definitions and concepts. For this, the
rest of the chapter is organized as follows; Section 1.1 is devoted to LARS and
some other model selection methods. The basic concepts of differential Geom-
etry will be discussed in Section 1.2. In Section 1.3 we explain GLMs based on
the ED family and give a geometrical description of the GLMs. Section 1.4 is
devoted to the survival models, and in the last section, Section 1.5, the structure
of the thesis is presented.

1.1 Least Angle Regression and Previous Methods

In a variety of fields such as genomics, proteomics, drug discovery, fraud de-
tection, and so on, the number of predictors (e.g., genes or proteins) is very large
and may exceed the number of observations. Owing to the massive collection
of predictor variables available in these datasets, model and variable selection
have become important research topics in regression and classification. Model
selection can produce interpretable models (i.e., parsimonious models that in-
clude only a subset of predictors) and provide accurate predictions.

In the past few decades, several approaches have been proposed to perform
model and variable selection. Earlier developments include stepwise regression
and all-subset selection. More recently, other methods such as the Least Abso-
lute Shrinkage and Selection Operator (LASSO) [94] and stagewise regression
[44] have been proposed.

[29] show that there are strong connections between these modern meth-
ods and a method they call least angle regression, and develop an algorithmic
framework that includes all of these methods and provides a fast implemen-
tation, for which they use the term ‘LARS’. LARS provides accurate variable
selection and prediction. Moreover, it has also been shown that with some
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slight modifications, LARS can efficiently generate the solutions for stagewise
or LASSO problems, which further boosts LARS’s popularity.

In the following, we explain LARS in Section 1.1.1 and compare it to modern
procedures such as LASSO and forward stagewise regression methods in Sec-
tion 1.1.2, but we will first very briefly review some model selection methods
that are related to LARS:

Stepwise and All-Subsets Regression: These methods (which are pure variable
selection methods) focus on selecting variables for a model, rather than on
how coefficients are estimated once variables are selected. In other words,
they pick predictors and then estimate coefficients for those variables us-
ing standard criteria such as least-squares or maximum likelihood.

Ridge Regression: This method is not concerned with variable selection (it uses
all candidate predictors), and instead modifies how coefficients are esti-
mated [45].

LASSO: A variation of ridge regression that modifies coefficient estimation so
as to reduce some coefficients to zero, effectively performing variable se-
lection.

Forward Stagewise Regression: An incremental version of stepwise regression
that gives results very similar to LASSO.

LARS: A method that connects all the methods.

1.1.1 Least Angle Regression (LARS)

LARS can be viewed as a version of stagewise that uses mathematical for-
mulas to accelerate the computations. Rather than taking many tiny steps with
the first variable, the appropriate number of steps is determined algebraically,
until the second variable begins to enter the model. Then, rather than taking
alternating steps between those two variables until a third variable enters the
model, the method jumps right to the appropriate spot. Figure 1.1 shows this
process in the case of 2 predictor variables, for linear regression. In this figure,
O is the prediction based solely on an intercept. Ŷ = β̂1X1 + β̂2X2 is the ordi-
nary least-squares fit, the projection of the response vector Y onto the subspace
spanned by X1 and X2. A is the forward stepwise fit after one step; the second
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step proceeds to Ŷ . Stagewise takes a number of tiny steps from O to B, then
takes steps alternating between the X1 and X2 directions, eventually reaching
D; if allowed to continue it would reach Ŷ . LARS jumps from O to B in one
step, where B is the point such that BŶ bisects the angle ABC. At the second
step it jumps to Ŷ . LASSO follows a path from O to B, then from B to Ŷ . Here
LARS agrees with LASSO and stagewise (as the step size → 0 for stagewise).
In higher dimensions additional conditions are needed for exact agreement to
hold.

X1

X2

O B

C

A

Ŷ

D

Figure 1.1: The LARS algorithm in the case of 2 predictors.

The first variable chosen is the one that has the smallest angle between the
variable and the response variable; in Figure 1.1 the angle Ŷ OX1 is smaller than
Ŷ OX2. We proceed in that direction as long as the angle between that pre-
dictor and the vector of residuals Y − ξX1 is smaller than the angle between
other predictors and the residuals. Eventually the angle for another variable
will equal this angle (once we reach point B in Figure 1.1 ), at which point we
begin moving toward the direction of the least-squares fit based on both vari-
ables. In higher dimensions we will reach the point at which a third variable
has an equal angle and will join the model, etc.

It has been shown that there is a correspondence between the geometric con-
cept of angle and the statistical concept of correlation in a linear model. Ex-
pressed another way, the (absolute value of the) correlation between the resid-
uals and the first predictor is greater than the (absolute) correlation for other
predictors. As ξ increases, another variable will eventually have a correlation
with the residuals equaling that of the active variable, and join the model as a
second active variable. In higher dimensions additional variables will eventu-
ally join the model, when the correlation between all active variables and the
residuals gradually drops to the levels of the additional variables.

There are three remarkable things about LARS. First is the speed: [29] note
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that “The entire sequence of LARS steps with p < n variables requires O(p3 +
np2) computations - the cost of a least squares fit on p variables.” Second is
that the basic LARS algorithm, based on the geometry of angle bisection, can be
used to efficiently fit LASSO and stagewise models, with certain modifications
in higher dimensions [29]. This provides a fast and relatively simple way to fit
LASSO and stagewise models. Third is the availability of a simple Cp statistic
as a stopping criterion of the algorithm,

Cp = σ̂−2

n∑
i=1

(yi − ŷi)2 − n+ 2k

where k is the number of steps and σ2 is the estimated residual variance (es-
timated from the saturated model, assuming that n > p, or in some other
way if p ≥ n in order to deal with overfitting). This is based on Theorem
3 in [29], which indicates that after k steps of LARS the degrees of freedom∑n

i=1 cov(µ̂i, Yi)/σ
2 is approximately k. This provides a simple stopping rule, to

stop after the number of steps k that minimizes the Cp statistic. Note that there
are different definitions of degrees of freedom, and the one used here is appro-
priate for the Cp statistic, but this k does not measure other kinds of degrees of
freedom.

1.1.2 Comparing LARS, LASSO and Stagewise

In general in higher dimensions native LARS and the least angle implemen-
tation of LASSO and stagewise give results that are similar but not identical.
When they differ, LARS has a speed advantage, because LARS variables are
added to the model, never removed. Hence it will reach the full least-squares
solution, using all variables, in p steps. For LASSO, and to a greater extent for
stagewise, variables can leave the model, and possibly re-enter later, multiple
times. Hence they may take more than p steps to reach the full model (if n > p).
[29] test the three procedures for the diabetes data using a quadratic model, con-
sisting of the 10 main effects, 45 two-way interactions, and 9 squares (excluding
the binary variable "sex"). LARS takes 64 steps to reach the full model, LASSO
takes 103, and stagewise takes 255. Even in other situations, when stopping
short of the saturated model, LARS has a speed advantage.

The three methods have interesting derivations. LASSO is regression with



8 Chapter 1. Introduction
[a\

an l1 penalty, a relatively simple concept; this is also known as a form of reg-
ularization in the machine learning community. Stagewise is closely related to
boosting, or ‘slow learning’ in machine learning [29, 43]. LARS has a simpler
interpretation than the original derivation; it can be viewed as a variation of
Newton’s method, which makes it easier to extend to some nonlinear models
such as generalized linear models [82].

1.2 Elementary Differential Geometry
For information geometry the most important aspects of differential geome-

try are those which allow us to take problems from a variety of fields: statistics,
information theory, and control theory; visualize them geometrically; and from
this develop novel tools with which to extend and advance these fields. In this
section we present an introduction to differential geometry from this point of
view, and at the end of the section we present a geometric structure of statistical
models.

1.2.1 Differentiable Manifolds

A differentiable manifold is a mathematical concept denoting a generaliza-
tion/abstraction of geometric objects such as smooth curves and surfaces in an
n-dimensional space. Intuitively, a manifold S is a “set with a coordinate sys-
tem.” Since S is a set, it has elements. It does not matter what these elements
are (these elements are also called the points of S.) S must also have a coordi-
nate system. By this we mean a one-to-one mapping from S (or its subset) toRn,
which allows us to specify each point in S using a vector of n real numbers (this
vector is called the coordinates of the corresponding point). We call the natural
number n the dimension of S, and write n = dimS. We call a coordinate system
that has S as its domain a global coordinate system.

Let S be a manifold and φ : S → Rn be a coordinate system for S. Then φ

maps each point p in S to n real numbers: φ(p) = [ξ1(p), . . . , ξn(p)] = [ξ1, . . . , ξn].
These are the coordinates of the point p. Each ξi may be viewed as a function
p → ξi(p) which maps a point p to its ith coordinate; we call these n functions
ξi : S → R(i = 1, . . . , n) the coordinate functions. We shall write the coordinate
system φ in ways such as φ = [ξ1, . . . , ξn] = [ξi].
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Let ψ = [ρi] be another coordinate system for S. Then the same point p ∈ S
has both the coordinates [ξi(p)] = [ξi] ∈ Rn with respect to the coordinate sys-
tem φ, and the coordinates [ρi(p)] = [ρi] ∈ Rn with respect to the coordinate
system ψ. The coordinates [ρi] may be obtained from [ξi] in the following way.
First apply the inverse mapping φ−1 to [ξi]; this gives us a point p in S. Then
apply ψ to this point; this result is [ρi]. In other words, we apply the transfor-
mation onRn given by

ψ ◦ φ−1 : [ξ1, . . . , ξn] 7→ [ρ1, . . . , ρn] (1.1)

This is called the coordinate transformation from φ = [ξi] to ψ = [ρi].
Let S be a set. If there exists a set of coordinate systems A for S which

satisfies the conditions (i) and (ii) below, we call S (more properly, (S,A)) an
n-dimensional C∞ differentiable manifold, or more simply, a manifold.

(i) Each element φ ofA is a one-to-one mapping from S to some open subset of
Rn.

(ii) For all φ ∈ A, given any one-to-one mapping ψ from S toRn, the following
holds:

ψ ∈ A ⇐⇒ ψ ◦ φ−1 is a C∞diffeomorphism.

Here, by a C∞ diffeomorphism we mean that ψ ◦ φ−1 and its inverse φ ◦ ψ−1

are both C∞ (infinitely many times differentiable). From these conditions, and
given the coordinate transformation described in Equation (1.1), it follows that
we may take the partial derivative of the function ρi = ρi(ξ1, . . . , ξn) with respect
to its variable arguments as many times as needed, and that the same holds for
ξi = ξi(ρ1, . . . , ρn).

Let S be a manifold and φ be a coordinate system for S. Let U be a subset
of S. If the image φ(U) is an open subset of Rn, then we say that U is an open
subset of S. From condition (ii) above, we see that this property is invariant over
the choice of coordinate system φ. This allows us to consider S as a topological
space.

1.2.2 Tangent Vectors and Tangent Spaces

The tangent space Tp at a point p ∈ S of a manifold S is intuitively the vector
space obtained by locally linearizing S around p. Let [ξi] be some coordinate
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system for S, and let ei denote the tangent vector which goes through point p
and is parallel to the ith coordinate curve (coordinate axis). By the ith coordinate
curve we mean the curve which is obtained by fixing the values of all ξj for
j ̸= i and varying only the value of ξj . The n-dimensional space spanned by the
n tangent vectors e1, . . . , en is the tangent space Tp at point p. Let p′ be a point
"very close" to p, and let [ξi] and [ξi + dξi] (where dξi is an infinitesimal) be the
coordinates of p and p′, respectively. Then the segment joining these two points
may be described by

−→
p p′ = dξi ei, an infinitesimal vector in Tp.

1.2.3 Submanifolds and Riemannian Metrics

Let S andM be manifolds, whereM is a subset of S. Let [ξ1, . . . , ξn] = [ξi]

and [u1, . . . , um] = [ua] be coordinate systems for S andM, respectively, where
n = dimS and m = dimM. Below, we shall use the indices i, j, k, . . . over
{1, . . . , n} for S and a, b, c, . . . over {1, . . . ,m} forM.

We callM a submanifold of S if the following conditions (i), (ii), and (iii) hold.

(i) The restriction ξi|M of each ξi (: S → R) toM, is a C∞ function onM.

(ii) Let Bi
a

def
=
(

∂ξi

∂ua

)
p

(more precisely,
(

∂ξi|M
∂ua

)
p
) and Ba def

= [B1
a, . . . ,Bn

a ] ∈ Rn.

Then for each point p inM, {B1, . . . ,Bm} are linearly independent (hence
m ≤ n).

(iii) For any open subsetW ofM, there exists U , an open subset of S, such that
W =M∩U .

These conditions are independent of the choice of coordinate systems [ξi]

and [ua]. Indeed, conditions (i) and (ii) mean that the embedding ι : M → S
denned by ι(p) = p, ∀p ∈ M, is a C∞ mapping and that its differential (dι)p is
nondegenerate at each point p.

Let S be a manifold. For each point p in S, let us assume that an inner
product ⟨ , ⟩p has been denned on the tangent space TP (S). In other words,
for any tangent vectors D, D′ ∈ TP (S) we have ⟨D,D′⟩p ∈ R, and the following
hold.

• Linearity

⟨aD + bD′, D′′⟩p = a⟨D,D′′⟩p + b⟨D′, D′′⟩p , (∀a, b ∈ R) (1.2)
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• Symmetry

⟨D,D′⟩p = ⟨D′, D⟩p, (1.3)

• Positive-definiteness

If D ̸= 0 then ⟨D,D⟩p > 0 (1.4)

Note that ⟨ , ⟩p ∈ [Tp(S)]02 since from Equations (1.2) and (1.3) we see that ⟨ , ⟩p
is a bilinear form. Hence the mapping from points p in S to their inner product
on TP (S), say g : p 7→ ⟨ , ⟩p, is a tensor field of covariant degree 2. We call this
a (C∞) Riemannian metric on S. Such a metric, g, is not naturally determined by
the structure of S as a manifold; it is possible to consider an infinite number of
Riemannian metrics on S. Given a Riemannian metric g on S , we call S (more
precisely (S, g)) a Riemannian manifold.

Also, the length ∥D∥ of the tangent vector D is given by

∥D∥2 = ⟨D,D⟩p = gij(p)D
iDj.

Another important property that we will make use of, is the following: two
vectors are orthogonal if ⟨D,D′⟩ = 0. The Schwarz inequality

⟨D,D′⟩ ≤ ∥D∥∥D′∥

allows the angle 0 ≤ ϑ ≤ π between vectors to be defined by

cosϑ =
⟨D,D′⟩
∥D∥∥D′∥ .

1.2.4 The Geometric Structure of Statistical Models

Consider a family S of probability distributions onX . Suppose each element
of S, a probability distribution, may be parameterized using n real-valued vari-
ables [ξ1, . . . , ξn] so that

S =
{
pξ = p(x; ξ) | ξ = [ξ1, . . . , ξn] ∈ Ξ

}
, (1.5)
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where p is a probability density function on X , Ξ is a subset of Rn and the
mapping ξ 7→ pξ is injective. We call such S an n-dimensional statistical model, a
parametric model, or simply a model onX . We will often abbreviate Equation (1.5)
as S = {pξ}, and also use expression such as pξ(x) = p(x; ξ) and S = {p(x; ξ)}.
When we say "a statistical model S = {pξ}," there shall be cases in which we
refer simply to the set S, and other cases in which we refer in addition to the
parameterization ξ 7→ pξ.

Let S = {pξ | ξ ∈ Ξ} be an n-dimensional statistical model. Given a point
ξ (∈,Ξ), the Fisher information matrix of S at ξ is the n× n matrix G(ξ) = [gij(ξ)]

where the (i, j)th element gij(ξ) is defined by the equation below; in particular,
when n = 1, we call this the Fisher information.

gij(ξ)
def
= Eξ[∂iℓξ ∂jℓξ] =

∫
∂iℓ(x; ξ) ∂jℓ(x; ξ) p(x; ξ) dx, (1.6)

where ∂i
def
= ∂

∂ξi
,

ℓξ(x) = ℓ(x; ξ) = log p(x; ξ). (1.7)

We note that it is possible to write gij as

gij(ξ) = −Eξ[∂i∂jℓξ].

Let S = {pξ} be an n-dimensional model, and consider the function Γ
(α)
ij,k

which maps each point ξ to the following value:(
Γ
(α)
ij,k

)
ξ

def
= Eξ

[(
∂i∂jℓξ +

1− α
2

∂iℓξ ∂jℓξ

)
(∂kℓξ)

]
, (1.8)

where α is some arbitrary real number. We have an affine connection ∇(α) on S
defined by

⟨∇(α)
∂i
∂j, ∂k⟩ = Γ

(α)
ij,k , (1.9)

where g = ⟨ , ⟩ is the Fisher metric. We call this ∇(α) the α-connection. The
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α-connection is clearly a symmetric connection. We also have

∇(α) = (1− α)∇(0) + α ∇(1)

=
1 + α

2
∇(1) +

1− α
2
∇(−1). (1.10)

In addition, for a submanifold M of S, the α-connection on M is simply the
projection with respect to g of the α-connection on S .

Let us introduce now the notion of exponential family, which will be shown
to have close relation to∇(1). In general, if an n-dimensional model S = {pθ|θ ∈
Θ} can be expressed in terms of functions {C,F1, . . . , Fn} on X and a function
ψ on Θ as

p(x; θ) = exp

[
C(x) +

n∑
i=1

θiFi(x)− ψ(θ)
]
, (1.11)

then we say that S is an exponential family, and that the [θi] are its natural or
its canonical parameters. From the normalization condition

∫
p(x; θ)dx = 1 we

obtain

ψ(θ) = log

∫
exp

[
C(x) +

n∑
i=1

θiFi(x)

]
dx. (1.12)

It is easy to see that the parametrization θ 7→ pθ is one-to-one if and only if the
n + 1 functions {F1, . . . , Fn, 1} are linearly independent, where 1 denotes the
constant function which identically takes the value 1. For more details see [6].

1.3 Exponential Dispersion GLMs
This section is devoted to a brief review of the theory of dispersion models

(DM) based primarily on Jørgensen’s book [51], The theory of dispersion models.
The dispersion models provide a rich class of one-dimensional parametric dis-
tributions for various data types, including those commonly considered in the
GLM analysis. In effect, error distributions in the GLMs form a special subclass
of the dispersion models, which are the exponential dispersion (ED) models. This
means that the GLMs considered in [51] encompass a wider scope of GLMs than
those outlined in McCullagh and Nelder’s book [60], however, we will focus on
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only the ED models. Two special examples are the von Mises distribution for
directional (circular or angular) data and the simplex distribution for composi-
tional (or proportional) data, both of which are the dispersion models but not
the exponential dispersion models. First, let’s introduce the DM.

1.3.1 Dispersion Models

Mimicking the density of the normal distribution N(µ, σ2), [51] defines a
dispersion models by extending the Euclidean distance (y − µ)2, that measures
the discrepancy between the observed y and the expected µ, to a general dis-
crepancy function d(y;µ). It is found that many commonly used parametric
distributions, such as Binomial, Poisson and Gamma, are included as special
cases of this extension. Moreover, each of such distributions will be determined
uniquely by the discrepancy function d, and the resulting distribution is fully
parameterized by two parameters µ and σ2.

A (reproductive) dispersion model DM(µ, σ2) with location parameter µ and dis-
persion parameter σ2 is a family of distributions whose probability density func-
tions take the following form:

p(y;µ, σ2) = a(y;σ2) exp

{
− 1

2σ2
d(y;µ)

}
, y ∈ C, (1.13)

where µ ∈ Ω, σ2 > 0, and a ≥ 0 is a suitable normalizing term that is inde-
pendent of the µ. Usually, Ω ⊆ C ⊆ R. The fact that the normalizing term a

does not involve µ will allow to estimate µ (or β in the GLM setting) separately
from estimating σ2, which gives rise to great ease in the parameter estimation.
This a nice property, known as the likelihood orthogonality, holds in the normal
distribution, and is a feature in dispersion models.

A bivariate function d(·; ·) is called the unit deviance defined on (y, µ) ∈ C×Ω

if it satisfies the following two properties: i) It is zero when the observed y and
the expected µ are equal, namely d(y; y) = 0, ∀y ∈ Ω; ii) It is positive when the
observed y and the expected µ are different, namely d(y;µ) > 0, ∀y ̸= µ.

Furthermore, a unit deviance is called regular if function d(y;µ) is twice con-
tinuously differentiable with respect to (y, µ) on Ω× Ω and satisfies

∂2d

∂µ2
(y; y) =

∂2d

∂µ2
(y;µ)

∣∣∣∣
µ=y

> 0, ∀y ∈ Ω.
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Table 1.1: Unit deviance and variance functions of some dispersion models.

Distribution d(y;µ) C Ω V(µ)

Binomial 2
{
y log y

µ + (n− y) log n−y
n−µ

}
{0, 1, . . . , n} (0, 1) µ (1− µ)

Gamma 2
(

y
µ − log y

µ − 1
)

(0,∞) (0,∞) µ2

Inverse Gaussian (y−µ)2

y µ2 (0,∞) (0,∞) µ3

Normal (y − µ)2 (−∞,∞) (−∞,∞) 1

Poisson 2 (y log y
µ − y + µ) {0, 1, . . .} (0,∞) µ

Simplex (y−µ)2

y(1−y)µ2(1−µ)2
(0, 1) (0, 1) µ3(1− µ)3

von Misses 2 {1− cos(y − µ)} (0, 2π) (0, 2π) 1

For a regular unit deviance, the variance function is defined as follows. The
unit variance function V : Ω→ (0,∞) is

V (µ) =
2

∂2d
∂µ2 (y;µ)|y=µ

, µ ∈ Ω. (1.14)

Some popular dispersion models are given in Table 1.1.

1.3.2 GLMs based on the Exponential Dispersion Models

The class of dispersion models contains two important subclasses, namely
the exponential dispersion (ED) models and the proper dispersion (PD) models. The
PD models are mostly of theoretical interest, so they are not discussed in this
thesis. Readers may refer to [51] for relevant details.

This section focuses on the ED models, which have already been introduced
at the beginning of Section 1.3 as a family of GLMs’ error distributions. The fam-
ily of ED models includes continuous distributions such as Normal, Gamma,
and Inverse Gaussian, and discrete distributions such as Poisson, Binomial,
Negative Binomial, among others.

According to [60], the random component of a GLM is specified by an expo-
nential dispersion family density of the following form:

p(y; θ, ϕ) = exp

{
yθ − b(θ)
a(ϕ)

+ c(y, ϕ)

}
, y ∈ C, (1.15)

with parameters θ ∈ Θ ⊆ R and ϕ ∈ Φ ⊆ R+, where b(·) is the cumulant gen-
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erating function and C is the support of the density. It is known that the first
derivative of the cumulant function b(·) gives the expectation of the distribu-
tion, namely µ = E(Y ) = b′(θ), where b′(θ) = ∂b(θ)

∂θ
, and the variance of the

distribution is Var(Y ) = a(ϕ)V (µ). This mean-variance relationship is one of
the key properties for the ED models, which will play an important role in the
development of quasi-likelihood inference.

The systematic component of a GLM is then assumed to take the form:

g(µ) = x⊤β = β0 + β1 x1 + . . .+ βp xp (1.16)

where g is the link function, x = (1, x1, . . . , xp)
⊤ is a (p+1)-dimensional vector of

covariates, and β = (β0, β1, . . . , βp)
⊤ is a (p+1)-dimensional vector of regression

coefficients. The canonical link function g(·) is such that g(µ) = θ, the canonical
parameter. The primary statistical tasks include estimation and inference for β.

To establish the connection of the ED model representation (1.15) to the
DM, it is sufficient to show that expression (1.15) is a special form of (1.13).
An advantage with the DM type of parametrization for the ED models is that
both mean µ and dispersion parameters σ2 are explicitly present in the density,
whereas expression (1.15) hides the mean µ in the first order derivative b′(θ).
In addition, having a density form similar to the normal enables us to easily
borrow the classical normal regression theory to the development of regression
analysis for non-normal data.

To reparametrize this density (1.15) by the mean µ and dispersion σ2, denote
a(ϕ) = σ2 and define the mean value mapping: τ : int(Θ)→ Ω,

τ(θ) = b′(θ) ≡ µ,

where int(Θ) is the interior of the parameter space Θ. The mean mapping func-
tion τ(θ) is strictly increasing and its inverse exists, denoted by θ = τ−1(µ),
µ ∈ Ω.

As a result, the density of an ED model in (1.15), denoted by ED(µ, σ2), can
be expressed as of the DM form in (1.13) with the unit deviance function d given
by

d(y;µ) = 2

[
sup
θ∈Θ
{θy − b(θ)} − y τ−1(µ) + b(τ−1(µ))

]
, (1.17)
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and the normalizing term given by

a(y;σ2) = c(y;σ−2) exp

[
σ−2 sup

θ∈Θ
{θy − b(θ)}

]
. (1.18)

Clearly, this d function (1.17) satisfies (i) d(y;µ) ≥ 0 for all y ∈ C and µ ∈ Ω,
and (ii) d(y;µ) attains the minimum at µ = y because the supremum term is
independent of µ. Thus, (1.17) gives a proper unit deviance function. Moreover,
since it is continuously twice differentiable, it is also regular.

An important variant of the reproductive ED model representation is the so-
called additive exponential dispersion model, denoted by ED∗

(θ, λ), whose density
takes the form

p∗(z; θ, λ) = c∗(z;λ) exp{θ z − λ b(θ)}, z ∈ C, (1.19)

The Gamma and Inverse Gaussian distributions are members of the ED∗

and ED families, respectively. Essentially the ED and ED∗ representations are
equivalent under the duality transformation that converts one form to the other.
Suppose Z ∼ ED

∗
(θ, λ) and Y ∼ ED(µ, σ2). Then, the duality transformation

performs

Z ∼ ED
∗
(θ, λ)⇒ Y = Z/λ ∼ ED(µ, σ2), with µ = τ(θ), and σ2 = 1/λ;

Y ∼ ED(µ, σ2)⇒ Z = Y/σ2 ∼ ED
∗
(θ, λ), with θ = τ−1(µ), and λ = 1/σ2.

Consequently, the mean and variance of ED∗
(θ, λ) are, respectively,

µ
∗
= E(Z) = λ τ(θ), and Var(Z) = λV (µ

∗
/λ).

An important property for these models is closure under the convolution
operation.

Convolution for the ED∗ models. Assume Z1, . . . , Zn are independent and
Zi ∼ ED

∗
(θ, λi), i = 1, . . . , n, then the sum follows still an ED∗ model:

Z+ =
n∑

i=1

Zi ∼ ED
∗
(θ,

n∑
i=1

λi).

Convolution for the ED models. Assume Y1, . . . , Yn are independent and
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Yi ∼ ED(µ, σ
2

wi
), where wis are certain positive weights. Let w+ = w1 + . . . + wn,

then
1

w+

n∑
i=1

wi Yi ∼ ED(µ,
σ2

w+

).

We note that although the class of the ED models is closed under the convo-
lution operation, it is in general not closed under scale transformation. That is,
cY may not follow an ED model even if Y ∼ ED(µ, σ2), for a constant c. How-
ever, a subclass of the ED models, termed as the Tweedie class, is closed under
this type of scale transformation. Tweedie class is an important subclass of the
ED models. Tweedie models are characterized by the unit variance functions in
the form of the power function:

Vp(µ) = µp, µ ∈ Ωp, (1.20)

where p ∈ R is a shape parameter. It is shown that the ED model with the power
unit variance function (1.20) always exists except 0 < p < 1. Special cases in-
clude the Normal (p = 0), Poisson (p = 1), Gamma (p = 2) and Inverse Gaussian
(p = 3). Another interesting class of Tweedie GLMs is for values of p between
1 and 2. In this interval, closed form distribution functions do not exist, but
Tweedies in this interval are compound Poisson distributions. (A compound
Poisson random variable Y is the sum of N independent Gamma random vari-
ables where N follows a Poisson distribution and N and the Gamma random
variates are independent.) A Tweedie model is denoted by Y ∼ Twp(µ, σ

2) with
mean µ and variance

Var(Y ) = σ2 µp.

1.3.3 MLE in the Exponential Dispersion GLMs

This section is devoted to maximum likelihood estimation in the GLMs based
on the ED models. Consider (yi, xi), i = 1, . . . n, as a dataset where the yis
are i.i.d. realizations of Yis according to ED(µi, σ

2) and g(µi) = x⊤
i β . Let

y = (y1, . . . , yn)
⊤ and µ = (µ1, . . . , µn)

⊤ . The likelihood for the parameter vector
θ = (β, σ2) is given by

L(θ;y) =
n∏

i=1

a(yi;σ
2) exp

{
− 1

2σ2
d(yi;µi)

}
, β ∈ Rp+1, σ2 > 0,
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and the log-likelihood is then

ℓ(θ;y) =
n∑

i=1

log a(yi;σ
2)− 1

2σ2
D(y;µ), (1.21)

where D(y;µ) =
∑n

i=1 d(yi;µi) is the sum of deviances depending on β only
and µi = µi(β) is a nonlinear function in β.

The score function for the regression coefficient β is

s(y;β) =
∂ℓ(θ)

∂β
= − 1

2σ2

n∑
i=1

∂d(yi;µi)

∂µi

∂µi

∂β

=
1

σ2

n∑
i=1

xi
(yi − µi)

g′(µi)V (µi)
(1.22)

because in this case

∂d(yi;µi)

∂µi

= −2 (yi − µi)

V (µi)
and

∂µi

∂β
=
∂µi

∂ηi

∂ηi
∂β

= {g′(µi)}−1 xi

where ηi = x⊤
i β is the ith linear predictor, and g′(µ) is the first order derivative

of the link function g w.r.t. µ.

Moreover, the score equation leading to the maximum likelihood estimate of
β is

n∑
i=1

xi
(yi − µi)

g′(µi)V (µi)
= 0, (1.23)

such that it can be re-expressed in matrix form as

X⊤ W−1 (y− µ) = 0,

where X is a n × (p + 1) matrix with the ith row being the x⊤
i , and W =

diag(w1, . . . , wn) with wi = g′(µi)V (µi).

Note that this equation does not involve the dispersion parameter σ2. Under
some mild regularity conditions, the resulting ML estimator β̂n, which is the
solution to the score equation (1.23), is consistent

β̂n
p→ β as n→∞,
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and asymptotically normal with mean 0 and covariance matrix I−1(θ). Here,
I(θ) is the Fisher information matrix, which is an (p + 1) × (p + 1) matrix, given
by

I(θ) = −E
{
∂s(y;β)
∂β

}
=

1

σ2

n∑
i=1

xi u
−1
i x⊤

i

= X⊤ U−1X/σ2, (1.24)

where U is a diagonal matrix with the ith diagonal element ui given by ui =

{g′(µi)}2 V (µi). It consists of the elements Iij(θ) = E[∂ℓ(θ;y)
∂βi

∂ℓ(θ;y)
∂βj

]. The Fisher
information, which is the expected value of the observed information, gives
information about the efficiency of the maximum likelihood. It determines the
conditional correlation between βi and βj and we say that two parameters βi
and βj are orthogonal if the element of the ith row and jth column of the Fisher
information matrix is zero.

It is interesting to note that the choice of the canonical link function g =

τ−1(·) simplifies both score function and Fisher information. Under the canoni-
cal link function, the score equation of an ED GLM is

n∑
i=1

xi (yi − µi) = 0, or X⊤ (y− µ) = 0,

and the Fisher information takes the form

I(θ) = X⊤ U−1X/σ2

where U is a diagonal matrix whose ith diagonal element given by ui = 1/V (µi).
Because, in this case, wi = 1 and g′(µi) = 1/V (µi), the matrix W becomes the
identity matrix and the matrix U is determined by the reciprocals of the variance
functions.

When the dispersion parameter σ2 is present in the model, the ML estima-
tion for the dispersion parameter σ2 can be derived similarly, if the normalizing
term a(y;σ2) is simple enough to allow such a derivation, such as the case of the
normal distribution. However, in many cases, the term a(·) has no closed form
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expression and its derivative w.r.t. σ2 may appear too complicated to be nu-
merically solvable. In this case, three methods have been suggested to acquire
the estimation for σ2. The first method, which is referred to as the Jørgensen
estimator of the dispersion parameter, is

σ̂2
d =

1

n
D(y; µ̂) = 1

n

n∑
i=1

d(yi; µ̂i), (1.25)

where the index d stands for deviance. This estimator, in fact, is an average of the
estimated unit deviances. However, this estimator is not, in general, unbiased
even if the adjustment on the degrees of freedom, n− (p+1), is made to replace
n. Moreover, this formula is recommended when the dispersion parameter σ2

is small, say less than 5. For more details about this estimator see [51] and [60].

Each ED model holds the so-called mean-variance relation, i.e., Var(Y ) =

σ2 V (µ), which may be used to obtain a consistent estimator of the dispersion
parameter σ2 given as follows:

σ̂2
P ∗ =

1

n− p− 1

n∑
i=1

(yi − µ̂i)
2

V (µ̂i)
. (1.26)

This second method, which utilizes a moment property, is referred to as the
Pearson estimator of the dispersion parameter σ2. The third method is the max-
imum likelihood (ML) method. The ML estimator of the dispersion parameter
σ2 is the solution of ∂ℓ(β̂, σ2;y)/∂σ2 = 0. More information about this estimator
σ̂2
mle can be found in [51] and [60].

1.3.4 A Differential Geometrical Description of the GLM

In this section we introduce the GLM from a differential geometric point of
view. In our treatment, we rely heavily on [5], [53] and [6]. A differential geo-
metric approach was also used in [98] to study non-linear models based on the
exponential family. Essential aspects of differential and information geometry
have been included in this section.

Under family (1.15), the joint probability density function of the random vec-
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tor Y can be written as

pY(y;θ, ϕ) =
n∏

i=1

pYi
(yi; θi, ϕ), (1.27)

where Y = (Y1, Y2, . . . , Yn)
⊤ is a random vector with independent components,

Yi is assumed to be a random variable with probability density function be-
longing to the family (1.15), and the canonical parameter θ varies in the subset
⊗n

i=1Θi = Θ ⊆ Rn. As mentioned in Section 1.3.2, E(Y) = µ = (τ(θ1), . . . , τ(θn))
⊤,

where τ(θi) = b′(θi) ≡ µi is called mean value mapping, and Var(Y) = a(ϕ)V(µ),
where V(µ) = diag(V (µ1), . . . , V (µn) is an n×n diagonal matrix where V (µi) =

b′′(θi) is called the variance function. From Section 1.3.2 we have τ : int(Θ)→ Ω

so that τ(·) is a one-to-one function, therefore pY(y;θ, ϕ) may be parameterized
by pY(y;µ, ϕ), as described in Section 1.3.1 and 1.3.2. To simplify our notation
we will assume that ϕ = 1 [53]. Assuming that Θ is open, the set

S = {pY(y;µ) : µ ∈ Ω} (1.28)

is a minimal and regular exponential family of order n and can be treated as
a differential manifold where the parameter vector µ plays the role of a co-
ordinate system [5]. The notion of differential manifold is necessary for extend-
ing the methods of differential calculus to a space that is more general thanRn.
For a rigorous definition of a differential manifold the reader is referred to [90]
and [21]. It is worth noting that the results coming from differential geometry
are not related to the chosen co-ordinate system, i.e., the parameterization that
is used to specify the probability density function (1.15). This means that we
could work with the differential manifold S using the parameter vector θ as
co-ordinate system. In this thesis we prefer to use definition (1.28) only because
we believe that this makes the generalization of the LARS algorithm clearer.

Following [60], a Generalized Linear Model (GLM) is defined by means of a
known function g(·), called link function, relating the expected value of each Yi
to the vector of covariates xi = (1, xi1, . . . , xip)

⊤ by the identity

g{E(Yi)} = ηi = x⊤
i β

where ηi is called the ith linear predictor and β = (β0, β1, . . . , βp)
⊤ is the vector
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of regression coefficients with the intercept and p parameters. In order to sim-
plify our notation we let µ(β) = {µ1(β), . . . , µn(β)}⊤ where µi(β) = g−1(x⊤

i β).
Therefore, the probability density function can be written as pY(y;µ(β), ϕ) =∏n

i=1 pYi
(yi;µi(β), ϕ).

In order to study the geometrical structure of a GLM, we shall assume that
β → {g−1(x⊤

1 β), . . . , g
−1(x⊤

nβ)}⊤ = µ(β) is an embedding, this means that the
set

M = {pY(y;µ(β)) ∈ S : β ∈ Rp+1}

is a p + 1-dimensional submanifold of S, which inherits the dualistic structure
from its ambient space, then, as a simple consequence of theorem 3.5 in [6],M
is a dually flat space only when we work with the canonical link function. To
obtain a natural generalization of the equiangularity condition that was pro-
posed by [29], it is necessary to introduce two fundamental notions on which
Riemannian geometry is based: the notions of a tangent space and a Rieman-
nian metric. To complete the differential geometric setting for the GLM, we
shall assume that the usual regularity conditions hold [5, page 16]. Throughout
this paper we use the convention that the indices i, j and k correspond to the
quantities that are related to µ ∈ Ω whereas the indices l, m and q correspond
to the quantities that are related to the coefficients β ∈ Rp+1 of our regression
model.

Consider a double-differentiable curve, say µ : Γ → Ω, where Γ is the real
interval (−δ, δ) with δ > 0. The tangent vector to the one-parametric family
pY(y;µ(γ)) at µ = µ(0) is defined as

v(Y) =
dℓ(µ(γ);Y)

dγ

∣∣∣∣
γ=0

=
n∑

i=1

dµi(0) ∂iℓ(µ;Y), (1.29)

where dµi(0) = dµi(γ)/dγ|γ=0 and ∂iℓ(µ;Y) = ∂ log{pY(Y;µ(γ))}/∂µi|γ=0.
Roughly speaking, the tangent space of S at the point pY(y;µ) denoted by
Tp(µ)S, is the set of all possible tangent vectors at µ = µ(0). Formally, Tp(µ)S
is the vector space that is spanned by the n score functions ∂iℓ(µ;Y):

Tp(µ)S = span{∂1ℓ(µ;Y), ∂2ℓ(µ;Y), . . . , ∂nℓ(µ;Y)}. (1.30)

Under the regularity conditions cited above, Tp(µ)S is a subspace of squared
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integrable random variables, in which elements v(Y) satisfy the property
Eµ{v(Y)} = 0, where the expected value is computed with respect to pY(y;µ).
As an application of the chain rule, it is easy to see that the definition of a tan-
gent space does not depend on the chosen parameterization; in other words the
tangent space can be defined as the vector space that is spanned by the n score
functions ∂∗i ℓ(θ;Y) = ∂ log{pY(Y;θ(γ))}/∂θi|γ=0 where θ(γ) = θ(µ(γ)). Using
the terminology that was introduced in [97], ∂iℓ(µ;Y) are the natural bases of
the tangent space when we choose µ as co-ordinate system, whereas ∂∗i ℓ(θ;Y)
are the natural bases when θ is used as the co-ordinate system.

Similarly, consider a double-differentiable curve β : Γ′ → Rp+1, with Γ′ =

(−δ′, δ′) and δ′ > 0. The tangent vector to the one-parametric family pY(y;µ(β(γ)))
at the point β = β(0) is defined as

w(Y) =
p∑

m=1

dβm(0) ∂mℓ(β;Y),

where dβm(0) = dβm(γ)/dγ|γ=0 and ∂mℓ(β;Y) = ∂ log{pY(Y;µ(β(γ)))}/∂βm|γ=0.
Then, the tangent space ofM at the point pY(y;µ(β)) is

Tp(µ(β))M = span{∂1ℓ(β;Y), ∂2ℓ(β;Y), . . . , ∂nℓ(β;Y)}. (1.31)

The definition of the inner product on each tangent space allows us to generalize
the notion of angle between two curves, say µ1(γ) and µ2(γ), intersecting at
µ1(0) = µ2(0) = µ, with tangent vectors belonging to Tp(µ)S, denoted by

v1(Y) =
n∑

i=1

dµ1,i(0) ∂iℓ(µ;Y)

and

v2(Y) =
n∑

i=1

dµ2,i(0) ∂iℓ(µ;Y)

respectively. When working with a parametric family of distributions, the inner
product can be defined in a natural way [78], i.e.

⟨v1(Y), v2(Y)⟩p(µ) = Eµ{v1(Y) v2(Y)} = dµ1(0)
⊤I(µ)dµ2(0),
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where I(µ) is the Fisher information matrix for the mean parameter at point µ.
In other words, the Fisher information defines a Riemannian metric by associ-
ating with each point of S an inner product on the tangent space. This Rieman-
nian metric is also called the information metric [17]. Since Tp{µ(β)}M is a linear
subspace of Tp{µ(β)}S, the Fisher information also defines an inner product on
Tp{µ(β)}M. Therefore, we can define the inner product between a tangent vector
w(Y) of Tp{µ(β)}M and a tangent vector v(Y) of Tp{µ(β)}S, namely

⟨w(Y), v(Y)⟩p{µ(β)} = Eµ(β){v1(Y) v2(Y)} = dβ(0)⊤
∂µ(β)

∂β

⊤

I{µ(β)}dµ(0),

where ∂µ(β)/∂β is the Jacobian matrix of the vector function µ(β).

Each Riemannian metric defines the notion of a geodesic, i.e. the generaliza-
tion of a straight line in a differential geometric framework. Roughly speaking,
a geodesic can be defined as the shortest path between two given points on
a differential manifold. A geodesic is defined as the solution of a system of
differential equations, the Euler–Lagrange equations, obtained from defining a
connection on a differentiable manifold. In statistical theory a one-parametric
family of connections plays a fundamental role, the so-called α-connections,
denoted by ∇α, that generalize the classical notion of a Levi–Civita connection,
which is the special case that α = 0. In the theory of information geometry,
∇0 is also called the information connection since it is derived from the Fisher
information. What is also important for what follows in this thesis is that S is
a dually flat space, namely, it is flat with respect to the 1- and −1-connection.
For more details of this dual geometry, the reader is referred to [6]. As shown
in [97], associated with the −1-connection and each point pY(y;µ) ∈ S there is a
diffeomorphism between a neighbourhood of the origin in Tp(µ)S and a neigh-
bourhood of pY(y;µ), called the −1-exponential map. The dual nature that exists
between∇−1 and∇1 defines the dual of the−1-exponential map, namely the so-
called 1-exponential map. Since S is a dually flat space, the inverses of the two
exponential maps are well defined on all S and for each pY(y;µ). To complete
the geometrical framework that is needed to generalize the LARS algorithm in
next chapter, we consider the inverse of the −1-exponential map, which relates
the observed response variable y to the tangent spaces. [97] defined what we
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call the tangent residual vector

r(µ(β),y;Y) =
n∑

i=1

{yi − µi(β)} ∂iℓ(µ(β);Y) (1.32)

where ∂iℓ(µ(β);Y) = ∂ℓ(µ;Y)/∂µi|µ=µ(β). It is important to note that we define
the tangent residual vector (1.32) with respect to both the fixed observations
y and the random variable Y, in such a way that it is a random variable with
zero expected value and finite variance, and therefore r(µ(β),y;Y) ∈ Tp{µ(β)}S.
[97] showed that it is possible to give a differential geometric interpretation of
the maximum likelihood estimator by using the tangent residual vector and the
tangent space Tp{µ(β̂)}M, namely β̂ is the maximum likelihood estimate of β

when the tangent residual vector is orthogonal to the tangent space Tp{µ(β̂)}M.
It is worth noting that this statement is well defined even if y is not an element
of the mean value parameter space Ω. In other words, the differential geomet-
ric description of the maximum likelihood estimator can be used even if the
Kullback–Leibler divergence is not defined [97].

1.4 Survival Models
Survival analysis is a commonly-used method for the analysis of failure

times such as death, mechanical failure, or credit default. Within this context,
a failure is also referred to as an ‘event’. Survival models can be used for the
analysis of data which have three main characteristics: (1) the dependent vari-
able or response is the waiting time until the occurrence of a well-defined event,
(2) observations may be censored, in the sense that for some units the event of
interest has not occurred at the time the data are analyzed, and (3) there are
predictors or explanatory variables whose effect on the waiting time we wish to
assess or control.

Let T be a non-negative random variable representing the waiting time until
the occurrence of an event. For simplicity we will adopt the terminology of sur-
vival analysis, referring to the event of interest as death and to the waiting time
as survival time, but the techniques to be studied have much wider applicabil-
ity. They can be used, for example, to study age at marriage, the duration of
marriage, the intervals between successive births, the duration of stay in a city
or in a job, besides the length of life.
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1.4.1 The Survival and Hazard Function

We will assume for now that T is a continuous random variable with proba-
bility density function (p.d.f.) f(t) and cumulative distribution function (c.d.f.)
F (t) = Pr{T < t}, giving the probability that the event has occurred by duration
t.

It will often be convenient to work with the complement of the c.d.f, the
survival function

S(t) = Pr{T ≥ t} = 1− F (t) =
∫ ∞

t

f(x)dx, (1.33)

which gives the probability of being alive just before duration t, or more gen-
erally, the probability that the event of interest has not occurred by duration
t.

An alternative characterization of the distribution of T is given by the hazard
function, or instantaneous rate of occurrence of the event, defined as

λ(t) = lim
dt→0

Pr{t ≤ T < t+ dt | T ≥ t}
dt

. (1.34)

The numerator of this expression is the conditional probability that the event
will occur in the interval [t, t+ dt) given that it has not occurred before, and the
denominator is the width of the interval. Dividing one by the other we obtain
a rate of event occurrence per unit of time. Taking the limit as the width of the
interval goes down to zero, we obtain an instantaneous rate of occurrence. The
conditional probability in the numerator may be written as the ratio of the joint
probability that T is in the interval [t, t + dt) and T ≥ t (which is, of course,
the same as the probability that t is in the interval), to the probability of the
condition T ≥ t. The former may be written as f(t)dt for small dt, while the
latter is S(t) by definition. Dividing by dt and passing to the limit gives the
useful result

λ(t) =
f(t)

S(t)
, (1.35)

which some authors give as a definition of the hazard function. In words, the
rate of occurrence of the event at t equals the density of events at t, divided by
the probability of surviving to that time without experiencing the event.
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Note from Equation (1.33) that −f(t) is the derivative of S(t). This suggests
rewriting Equation (1.35) as

λ(t) = − d

dt
logS(t).

If we now integrate from 0 to t and introduce the boundary condition S(0) = 1

(since the event is assumed not to have occurred at the beginning of the study),
we can solve the above expression to obtain a formula for the probability of
surviving to duration t as a function of the hazard at all durations up to t:

S(t) = exp{−
∫ t

0

λ(x)dx} = exp{−Λ(t)}, (1.36)

where Λ(t) is called the cumulative hazard (or cumulative risk).
These results show that the survival and hazard functions provide alterna-

tive but equivalent characterizations of the distribution of T . Given the survival
function, we can always differentiate to obtain the density and then calculate
the hazard using Equation (1.35). Given the hazard, we can always integrate
to obtain the cumulative hazard and then exponentiate to obtain the survival
function using Equation (1.36).

1.4.2 Censoring Mechanisms

The second distinguishing feature of survival analysis is censoring: the fact
that for some units the event of interest has occurred and therefore we know the
exact waiting time, whereas for others there is no precise knowledge about the
survival time except that it falls in some interval.

There are several mechanisms that can lead to censored data. Under cen-
soring of Type I, a sample of n units is followed for a fixed time t. The number
of units experiencing the event, or the number of ‘deaths’, is random, but the
total duration of the study is fixed. The fact that the duration is fixed may be an
important practical advantage in designing a follow-up study.

In a simple generalization of this scheme, called fixed censoring, each unit
has a potential maximum observation time ti for i = 1, . . . , n which may differ
from one case to the next but is nevertheless fixed in advance. The probability
that unit i will be alive at the end of her observation time is S(ti), and the total
number of deaths is again random.
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Under censoring of Type II, a sample of n units is followed as long as nec-
essary until d units have experienced the event. In this design the number of
deaths d, which determines the precision of the study, is fixed in advance and
can be used as a design parameter. Unfortunately, the total duration of the study
is then random and cannot be known with certainty in advance.

In a more general scheme called random censoring, each unit has associated
with it a potential censoring time Ci and a potential lifetime Zi , which are as-
sumed to the independent random variables. We observe Ti = min{Ci, Zi}, the
minimum of the censoring and life times, and an indicator variable δi = I(Zi ≤
Ci), often called status, that tells us whether observation terminated by death or
by censoring.

All these schemes have in common the fact that the censoring mechanism
is non-informative and they all lead to essentially the same likelihood function.
The weakest assumption required to obtain this common likelihood is that the
censoring of an observation should not provide any information regarding the
prospects of survival of that particular unit beyond the censoring time. In fact,
the basic assumption that we will make is simply this: all we know for an ob-
servation censored at duration t is that the lifetime exceeds t.

1.4.3 The Relative Risk Regression Models

The third distinguishing characteristic of survival models is the presence of
covariates or explanatory variables that may affect survival time.

Let Z, C, and X = (X1, X2, . . . , Xp)
⊤ denote the survival time, the censoring

time, and their associated covariates, respectively, where p denotes the dimen-
sionality of the covariate space. Correspondingly, denote by T = min{Z,C}
the observed time and δ = I(Z ≤ C) the censoring indicator, as described in
the previous section, Section 1.4.2. For simplicity we assume that Z and C are
conditionally independent given X and that the censoring mechanism is non-
informative. Our observed data set {(xi, ti, δi) : xi ∈ Rp, ti ∈ R+, δi ∈ {0, 1}, i =
1, 2, . . . , n} is an independently and identically distributed random sample from
a certain population (X, T, δ). Define C = {i : δi = 0} and D = {i : δi = 1} to be
the censored and uncensored index sets, respectively.

In the regression setting, the most mathematically tractable models are the
relative risk models. These are based on the multiplicative intensity model,
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whereby the hazard modelled as

λ(t; xi(t)) = λ0(t) ψ(xi(t);β), (1.37)

where λ0(t) is the baseline hazard function at time t, xi(t) = (xi1(t), . . . , xip(t))
⊤ is a

vector of time-varying covariates belonging to individual i, β is a p-dimensional
vector of unknown fixed parameters, and ψ is called the relative risk function,
i.e., ψ(x(t);β) > 0 for each β. Since this model has a nonparametric piece λ0(·)
and a parametric piece β, it is called semiparametric.

This model is called the relative risk or proportional hazards model because
there is an unchanging ratio of the hazard rate (or risk of the event) between
individuals with parameter values xi and xj .

Different choices for the relative risk function ψ are possible. We will focus
here on the most common choice

ψ(xi(t);β) = exp{β⊤xi(t)} = exp{
p∑

j=1

βjxij(t)}, (1.38)

which assigns a constant proportional change to the hazard rate to each unit
change in the covariate. This regression model is by far the most commonly
used survival model in medical applications and is called the Cox proportional
hazards regression model. A main reason why this model is so popular is that
it gives stable estimates of regression coefficients and adjusted survival curves
can be obtained for a wide variety of data situations. However, a disadvantage
of the Cox proportional hazards models is that it tends to overestimate treat-
ment effects on long survival. This has to do with the fact that its hazard is
proportional.

Other relative risk models might be appropriate in certain settings. In the
multidimensional-covariate setting we can define the excess relative risk model

ψ(xi(t);β) =

p∏
j=1

(1 + βjxij(t)). (1.39)

This allows each covariate to contribute its own excess relative risk, indepen-
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dent of the others. Alternatively, we can define the linear relative risk function

ψ(xi(t);β) = 1 + β⊤xi(t) = 1 +

p∑
j=1

βjxij(t). (1.40)

1.4.4 The Likelihood Function

Suppose unit i is observed for a time ti. If the unit died at ti, its contribution
to the likelihood function is the density at that duration, which can be written
as the product of the survivor and hazard functions

Li(β) = f(ti; xi) = S(ti; xi)λ(ti; xi).

If the unit is still alive at ti, all we know under non-informative censoring is that
the lifetime exceeds ti. The probability of this event is

Li(β) = S(ti; xi),

which becomes the contribution of a censored observation to the likelihood.
Note that both types of contribution share the survivor function S(ti; xi),

because in both cases the unit lived up to time ti. A death multiplies this con-
tribution by the hazard λ(ti; xi), but a censored observation does not. We can
write the two contributions in a single expression. To this end, let δi be a death
indicator, taking the value one if unit i died and the value zero otherwise, and
R(t) be the risk set right before the time t : R(t) = {j : tj ≥ t}. Then the full
likelihood function may be written as follows

L(β) =
n∏

i=1

Li(β) =
∏
i∈D

f(ti; xi)
∏
i∈C

S(ti; xi)

=
∏
i∈D

λ(ti; xi)
n∏

i=1

S(ti; xi) =
n∏

i=1

λ(ti; xi)
δi S(ti; xi)

=
n∏

i=1

{
λ(ti; xi)∑

j∈R(ti)
λ(ti; xj)

}δi
 ∑

j∈R(ti)

λ(ti; xj)


δi

S(ti; xi),

by using the censoring indicator δi.
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[29] argued that the first term in this product contained almost all of the
information about β, while the last two terms contained the information about
λ0(·), the baseline hazard.

We use the first term to estimate β, so that we have the partial likelihood

Lp(β) =
n∏

i=1

{
λ(ti; xi(ti))∑

j∈R(ti)
λ(ti; xj(ti))

}δi

=
∏
i∈D

λ0(ti)ψ(xi(ti);β)∑
j∈R(ti)

λ0(ti)ψ(xj(ti);β)

=
∏
i∈D

ψ(xi(ti);β)∑
j∈R(ti)

ψ(xj(ti);β)
. (1.41)

The partial likelihood is useful because it involves only the parameters β,
isolating them from the nonparametric (and often less interesting) λ0(·).

1.5 Structure of the Thesis
The structure of the thesis is as follows. In Chapter 2, we extend the dgLARS

method to exponential dispersion GLMs with arbitrary link functions. More-
over, this chapter improves the standard PC algorithm used to estimate the
dgLARS solution path.

Chapter 3 develops a new estimation method for the dispersion parameter
in the exponential dispersion GLMs and proposes an iterative algorithm to sta-
bilize the proposed estimator.

In Chapter 4, we introduce a principled sparse inference methodology for
general relative risk survival models, and in last chapter (Chapter 5) we present
an implementation of the improved estimator of the dispersion parameter for
high-dimensional GLMs, called GRCV estimator, and also an implementation
of the iterative algorithm to improve the proposed GRCV estimator to obtain
a more stable and accurate estimator. They are implemented in the R-package
dglars.
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Abstract

A large class of modelling and prediction problems involve outcomes that
belong to an exponential family distribution. Generalized linear mod-
els (GLMs) are a standard way of dealing with such situations. Even in

high-dimensional feature spaces GLMs can be extended to deal with such situa-
tions. Penalized inference approaches, such as the ℓ1 or SCAD, or extensions of
least angle regression, such as dgLARS, have been proposed to deal with GLMs
with high-dimensional feature spaces. Although the theory underlying these
methods is in principle generic, the implementation has remained restricted to
dispersion free models, such as the Poisson and logistic regression models. The
aim of this chapter is to extend the differential geometric least angle regres-
sion method for high-dimensional GLMs to arbitrary exponential dispersion
family distributions with arbitrary link functions. This entails, first, extending
the predictor-corrector (PC) algorithm to arbitrary distributions and link func-
tions, and second, proposing a classical estimator of the dispersion parameter.
Furthermore, improvements to the computational algorithm lead to an impor-
tant speed-up of the PC algorithm. Simulations provide supportive evidence
concerning the proposed efficient algorithm for estimating coefficients. The re-
sulting method has been implemented in the R-package dglars2 (which will
be merged with the original dglars package) and is shown to be an effective
method for inference for arbitrary classes of GLMs.

Keywords: High-dimensional inference; Generalized linear models; Least angle re-
gression; Predictor-corrector algorithm; Dispersion parameter.
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2.1 Introduction

Nowadays, high-dimensional data problems, where the number of predic-
tors is larger than the sample size, are becoming more common. In such scenar-
ios, it is often sensible to assume that only a small number of predictors con-
tributes to the response, i.e., that the underlying, generating model is sparse.
With a sparse model we mean many elements equal to zero. Modern statisti-
cal methods for sparse regression models are usually based on using a penalty
function to estimate a solution curve embedded in the parameter space and then
to find the point that represents the best compromise between sparsity and pre-
dictive behaviour of the model. Some important examples are the least absolute
shrinkage and selection operator (LASSO) estimator [94], the Smoothly Clipped
Absolute Deviation (SCAD) method [31], the Dantzig selector [20], which was
extended to generalized linear models (GLMs) in [48], and the MC+ penalty
function introduced in [102], among others.

Differently from the methods cited above, [29] introduced a new method to
select important variables in a linear regression model called least angle regres-
sion (LARS) which was extended to Generalized Linear Models (GLM) in [13]
by using the differential geometry. This method, which does not require an ex-
plicit penalty function, has been called differential geometric LARS (dgLARS)
because it is defined generalizing the geometrical ideas on which LARS is based.
As underlined in [13], LARS is a proper likelihood method in its own right: it
can be generalized to any model and its success does not depend on the arbi-
trary match of the constraint and the objective function, as is the case in penal-
ized inference methods. In particular, using the differential geometric character-
ization of the classical signed Rao score test statistic, dgLARS gains important
theoretical properties that are not shared by other methods. From a computa-
tional point of view, the dgLARS method essentially consists in the computation
of the implicitly defined solution curve. In [13], this problem is solved by using
a predictor-corrector (PC) algorithm.

Although the theory of the dgLARS method does not require restrictions on
the dispersion parameter, the dglars package [9] is restricted to logistic and
Poisson regression models, i.e., two specific GLMs with canonical link func-
tion and dispersion parameter is equal to one. Furthermore, the authors do not
consider the problem of how to estimate the dispersion parameter in a high-
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dimensional setting. The aim of this chapter is to overcome this restriction and
to define dgLARS for any generalized linear model with arbitrary link function.
First, we extend the PC algorithm to GLMs with generic link function and un-
known dispersion parameter; we also improve the algorithm by proposing a
new method to reduce the number of solution points needed to approximate
the dgLARS solution curve. As we shall show in the simulation study, the
proposed algorithm outperforms the original PC algorithm previously imple-
mented in dglars package. Second, we explicitly consider the problem of how
to do inference on the dispersion parameter and we propose a moment method
for estimating the dispersion parameter.

The chapter is organized as follows; In Section 2.2, we introduce the ex-
tended dgLARS method by giving some essential clues to the theory under-
lying a generalized linear model from a differential geometric point of view
and present the general case of equations based on the class of the exponen-
tial family. In Section 2.3, we propose our improved predictor-corrector algo-
rithm. In Section 2.4, firstly, we consider some model selection strategies that
are commonly used to select the tuning parameter; secondly, we propose an es-
timator for dispersion parameter which can be used during the solution path;
and thirdly, we present an estimator of the generalized degree of freedom for
a general GLM. In Section 2.5, the simulation study is divided into two parts;
first, we examine the performance of the extended dgLARS method, which uses
the improved PC algorithm, and two other popular path-estimation methods;
second, a comparison in terms of performance between the PC and improved
PC algorithms is done. The application and data analysis based on continuous
outcome with a canonical link function are described in Section 2.6.

2.2 Differential Geometric LARS for General GLM
The original LARS algorithm [29] defines a coefficient solution path for a lin-

ear regression model by sequentially adding variables to the solution curve. To
make this section self contained, we briefly review the LARS method. Starting
with only the intercept, the LARS algorithm finds the covariate that is most cor-
related with the response variable and proceeds in this direction by changing its
associated linear parameter. The algorithm takes the largest step possible in the
direction of this covariate until another covariate has as much correlation with
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the current residual as the current covariate. At that point the LARS algorithm
proceeds in an equiangular direction between the two covariates until a new
covariate earns its way into the equally most correlated set. Then it proceeds in
the direction in which the residual makes an equal angle with the three covari-
ates, and so on. [13] generalized these notions for GLMs by using differential
geometry. The resulting defines a continuous solution path for GLM, with on
the extreme of the path the maximum likelihood estimate of the coefficient vec-
tor and on the other side the intercept-only estimate. The aim of the method
is to define a continuous model path with highest likelihood with the fewest
number of variables. The reader interested in more of the differential geometric
details of this method and its extensions is referred to [13, 10]. In this section,
after a brief overview of GLMs, we derive the equations defining the dgLARS
solution curve for a GLM with an arbitrary link function. Furthermore, we ex-
plicitly consider the role of the dispersion parameter and we shall show that it
acts as a scale parameter of the tuning parameter γ.

2.2.1 An overview of GLMs: Terminology and Notation

Let Y = (Y1, Y2, · · · , Yn)⊤ be an n-dimensional random vector with indepen-
dent components. In what follows we shall assume that Yi is a random variable
with probability density function belonging to an exponential dispersion family
[50, 51], i.e.,

p
Yi
(yi; θi, ϕ) = exp

{
yiθi − b(θi)

a(ϕ)
+ c(yi, ϕ)

}
, yi ∈ Yi ⊆ R, (2.1)

where θi ∈ Θi ⊆ R is the canonical parameter, ϕ ∈ Φ ⊆ R+ is the dispersion
parameter, and a(.), b(.) and c(., .) are given functions. In the following, we
assume that each Θi is an open set and a(ϕ) = ϕ. We consider ϕ as an unknown
parameter. The expected value of Y is related to the canonical parameter by
µ = {µ(θ1), · · · , µ(θn)}⊤, where µ(θi) =

∂b(θi)
∂θi

is called mean value mapping, and
the variance of Y is related to its expected value by the identity Var(Y) = ϕV(µ),
where V(µ) = diag{V (µ1), . . . , V (µn)} is an n×n diagonal matrix with elements,
called the variance functions, V (µi) = ∂2b(θi)

∂θ2i
. Since µi is a reparameterization,

model (2.1) can be also denoted as p
Yi
(yi;µi, ϕ).

Following [60], a Generalized Linear Model (GLM) is defined by means of a
known function g(·), called link function, relating the expected value of each Yi
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to the vector of covariates xi = (1, xi1, . . . , xip)
⊤ by the identity

g{E(Yi)} = ηi = x⊤
i β

where ηi is called the ith linear predictor and β = (β0, β1, . . . , βp)
⊤ is the vec-

tor of regression coefficients. In order to simplify our notation we let µ(β) =

{µ1(β), . . . , µn(β)}⊤ where µi(β) = g−1(x⊤
i β). Therefore, the joint probability

density function can be written as pY(y;µ(β), ϕ) =
∏n

i=1 pYi
(yi;µi(β), ϕ). For the

remainder of this chapter we shall use ℓ(β, ϕ;y) = log pY(y;µ(β), ϕ) as notation
for the log-likelihood function. From (2.1), the mth score function is given as

∂mℓ(β, ϕ;y) =
∂ℓ(β, ϕ;y)

∂βm

= ϕ−1

n∑
i=1

(yi − µi)

V (µi)
xim

(
∂µi

∂ηi

)
= ϕ−1 ∂mℓ(β;y), (2.2)

where µi = g−1(x⊤
i β), and the Fisher Information matrix has terms

Imn(β, ϕ) = E[∂mℓ(β, ϕ;y) · ∂nℓ(β, ϕ;y)]

= ϕ−1

n∑
i=1

xim xin
V (µi)

(
∂µi

∂ηi

)2

= ϕ−1 Imn(β), (2.3)

Using (2.2) and (2.3), we obtain expressions rm(β, ϕ) and ∂mnℓ(β, ϕ;y) to be
used in Sections 2.2.2 and even 3.3.1 (in Chapter 3), respectively, as follows:

∂mnℓ(β, ϕ;y) =
∂2ℓ(β, ϕ;y)
∂βm∂βn

= ϕ−1

n∑
i=1

{
xim xin (yi − µi)

[
∂2θi
∂µ2

i

·
(
∂µi

∂ηi

)2

+
∂θi
∂µi

· ∂
2µi

∂η2i

]

− ∂θi
∂µi

·
(
∂µi

∂ηi

)2
}

= ϕ−1

n∑
i=1

{
xim xin (yi − µi)

(
∂2θi
∂µ2

i

·
(
∂µi

∂ηi

)2

+
∂θi
∂µi

· ∂
2µi

∂η2i

)}
− Imn(β, ϕ) (2.4)
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where ∂θi
∂µi

= 1
V (µi)

and ∂2θi
∂µ2

i
= −∂V (µi)/∂µi

V (µi)2
. The Rao’s score test statistic is given as

rm(β, ϕ) =
∂mℓ(β, ϕ;y)√
Im(β, ϕ)

= ϕ−1/2

∑n
i=1

{
(yi−µi) xim

V (µi)
· ∂µi

∂ηi

}
(∑n

i=1

{
x2
im

V (µi)
·
(

∂µi

∂ηi

)2})1/2

= ϕ−1/2 rm(β) (2.5)

where Im(β, ϕ) = Imm(β, ϕ). The Rao’s score test statistic helps to define ρm(β, ϕ),
the angle between the mth basis function ∂mℓ(β, ϕ;Y) and the tangent residual
vector r(β, ϕ,y;Y) =

∑n
i=1(yi − µi)

∂ℓ(β,ϕ;y)
∂µi

, defined as follows

ρm(β, ϕ) = arccos

[
rm(β, ϕ)

∥r(β, ϕ,y;Y)∥p{µ(β)}

]
, (2.6)

where ∥·∥p{µ(β)} is the norm defined on the tangent space Tp(µ(β))M, where the
set M is a p-dimensional submanifold of the differential manifold S (for de-
tails about theM and S sets, see [13]). The angle will be used in Section 2.2.2
to define an extension of the least angle regression [29]. From (2.6), the Rao’s
score test statistic contains the same information as the angle ρm(β, ϕ). Thereby
we can define the dgLARS method with respect to the Rao’s score test statistic
rather than the angle as respects the smallest angle is equivalent to the largest
Rao’s score test statistic.

Gamma and Inverse Gaussian GLMs

The binomial, Poisson and Gaussian GLMs are by far the most commonly used,
but there are a number of lesser known GLMs which are useful for particular
types of data. The Gamma and Inverse Gaussian GLMs are intended for con-
tinuous and right-skewed responses. They are double-parameter GLMs and
belong to the exponential dispersion (ED) family. The Gamma distribution is
a member of the additive ED and the Inverse Gaussian distribution is a mem-
ber of the reproductive ED [66]. We consider these two dispersion parameter
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models as follows; For Gamma family, we assume that Yi ∼ G(ν, µi

ν
) so that:

fYi
(yi;µi, ν) = exp

{
−yi 1

µi
− log(µi)
1
ν

+ ν log(yiν)− log(yiΓ(ν))

}
, yi > 0,

then E(Yi) = − 1
θi
= µi and Var(Yi) = ϕ V (µi) =

µ2
i

ν
, where ϕ−1 = ν. We consider

three of the most commonly used link functions: (i) the canonical link function,
"inverse", ηi = −µ−1

i , (ii) "log", exp(ηi) = µi, and (iii) "identity", ηi = µi. For
Inverse Gaussian family, we assume that Yi ∼ IG(µi, λ) so that:

fYi
(yi;µi, λ) = exp

{
yi(− 1

2µ2
i
) + 1/µi

1/λ
− λ

2yi
− 1

2
log(

2πy3i
λ

)

}
, yi > 0,

then E(Yi) = 1√
−2θi

= µi and Var(Yi) = ϕ V (µi) =
µ3
i

λ
, where ϕ−1 = λ. We

consider four of the most commonly used link functions: (i) the canonical link
function, "inverse-square", ηi = −0.5µ−2

i , (ii) "inverse", ηi = −µ−1
i , (iii) "log", and

(iv) "identity".
Table 2.1 shows all required equations for obtaining the dgLARS estimator

based on the Gamma and Inverse Gaussian models with the most commonly
used link functions.

2.2.2 The extended dgLARS Method

[13] showed that the dgLARS estimator follows naturally from a differential
geometric interpretation of a GLM, generalizing the LARS method [29] using
the angle between scores and tangent residual vector, as defined in (2.6). LARS
and dgLARS algorithms define a coefficient solution curve by identifying the
most important variables step by step and including them into the model at
specific points of the path. The original algorithms took as starting point of the
path the model with the intercept only. This is a sensible choice as it makes the
model invariant under affine transformations of the response or the covariates.
However, the choice of the starting point of the least angle approach can be
used to incorporate prior information about which variables are expected to be
part of the final model and which ones one does not want to make subject to
selection. The extended dgLARS method allows for a set of covariates, possibly
including the intercept, that are always part of the model. We define the set of
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the protected variables P = {a01, . . . , a0b}, where b = |P| ≤ min(n, p + 1) and a0j is
the index of the jth protected variable. The idea is that variable a0j is supposed
to be of interest and should always be contained in the model during the path
estimation procedure. The best example of a commonly protected variable is
the intercept.

In the path estimation of the coefficients, we treat the protected variables
in the set P differently from the other variables which are not protected, in
the sense that the tangent residual vector is always orthogonal to the basis
vector ∂jℓ(β̂(γ), ϕ;Y) for j ∈ P at any stage (γ 1) of the path algorithm β̂(γ),
and thereby by using (2.6) we have rj∈P(β̂(γ), ϕ) = ∂j∈Pℓ(β̂(γ), ϕ;Y) = 0. This
means that at any stage of the path algorithm, the tangent residual vector con-
tains only information on the non-protected variables denoted by Pc = A(γ) ∪
N (γ), where A(γ) = {a1, . . . , ak(γ)} is the active set and N (γ) = (P ∪ A(γ))c =

{ac1, . . . , ach(γ)} is the non-active set. The numbers k(γ) = |A(γ)| and h(γ) = |N (γ)|
are the number of included and non-included variables, respectively, in the
model at location γ. Thus, we have p+ 1 = b+ k(γ) + h(γ).

Let β̂0 = (β̂P , 0, . . . , 0)
⊤ be the starting point, where β̂P = (β̂a01 , . . . , β̂a0b ) is

the MLE of the protected variables and a zero for each p + 1 − b non-protected
variables {a1, . . . , ak(γ)} ∪ {ac1, . . . , ach(γ)}. Since at the beginning (γ = γmax) the
active set A(γmax) is empty (k(γmax) = 0), we have Pc = N (γ) and h(γmax) =

p + 1 − b. For a specified model (the model with the protected variables) with
the starting point β̂0, we define γmax to be the largest absolute value of the Rao’s
score statistic at β̂0, i.e.,

γmax = max
m∈Pc
{|rm(β̂0)|}.

Since the dispersion parameter in (2.2)-(2.6) is equal for any m, we can max-
imize |rm∈Pc(·)| (or minimize ρm∈Pc(·)) instead of |rm∈Pc(·, ϕ)| (or ρm∈Pc(·, ϕ)) in
terms of m. The mth variable which has the largest absolute value of rm∈Pc(β̂0)

would make an excellent candidate for being included in the model. If we do
not have any protected variables, β̂0 = (0, . . . , 0)⊤ can be used as the starting
point, and in this case, r(µ(0),y;Y) is used to rank the covariates locally.

Before we define the dgLARS method, it can be described using Figure 2.1

1γ ≥ 0 is a tuning parameter that controls the size of the coefficients. The increase of γ will shrink the
coefficients closer to each other and to zero. In practice, it is usually determined by cross-validation.
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∂a1ℓ(β̂P(γmax);Y)

∂a2ℓ(β̂P(γmax);Y)

M M

Tp{µ(β̂P(γmax))}M
Tp{µ(β̂(γ(2)))}M

∂a2ℓ(β̂ (γ(2));Y)

∂a1ℓ(β̂(γ
(2));Y)

r(β̂P (γmax),y;Y)

r(β̂(γ(2)),y;Y)

(a) (b)

Figure 2.1: Differential geometrical description of the LARS algorithm with two co-
variates: (a) the first covariate Xa1 is found and included in the active set, where
β̂P = (β̂a01 , . . . , β̂a0b

); (b) the generalized equiangularity condition (2.7) is satisfied for
variables Xa1 and Xa2 .

in the following way. First the method selects the predictor, say Xa1 , whose
basis vector ∂a1ℓ(β̂(γmax);Y) has the smallest angle with the tangent residual
vector, and includes it in the active set A(γ(1)) = {a1}, where γ(1) = γmax. The
solution curve, at this point γ = γ(1), β̂(γ) = (β̂P(γ), β̂a1(γ), 0, . . . , 0)

⊤, where
β̂P(γ) = (β̂a01(γ), . . . , β̂a0b (γ)), is chosen in such a way that the tangent residual
vector is always orthogonal to the basis vectors ∂j∈Pℓ(β̂(γ);Y) of the tangent
space Tp(µ(β̂P (γ)))M, while the direction of the curve β̂(γ) is defined by the pro-
jection of the tangent residual vector onto the basis vector ∂a1ℓ(β̂(γ);Y). The
curve β̂(γ) continues as defined above until γ = γ(2), for which there exists a
new predictor, say Xa2 , that satisfies the equiangularity condition, namely

ρa1(β̂(γ
(2))) = ρa2(β̂(γ

(2))). (2.7)

At this point, Xa2 is included in the active set A(γ(2)) = {a1, a2} and the curve
β̂(γ) = (β̂a01(γ), . . . , β̂a0b (γ), β̂a1(γ), β̂a2(γ), 0, . . . , 0)

⊤ continues, such that the tan-
gent residual vector is always orthogonal to the basis vectors ∂j∈Pℓ(β̂(γ);Y) and
with direction defined by the tangent residual vector that bisects the angle be-
tween ∂a1ℓ(β̂(γ);Y) and ∂a2ℓ(β̂(γ);Y), as shown on the right side of Figure 2.1.

The extended dgLARS solution curve, which is denoted by β̂A(γ) ⊂ Rb+k(γ)

where γ ∈ [0, γ(1)] and 0 ⩽ γ(p−b+1) ⩽ · · · ⩽ γ(2) ⩽ γ(1), is defined in the follow-
ing way: for any γ ∈ (γ(k+1), γ(k)], the extended dgLARS estimator satisfies the
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following conditions:

A(γ) = {a1, a2, · · · , ak(γ)},
N (γ) = {ac1, ac2, · · · , ach(γ)},

|rai(β̂(γ))| = |raj(β̂(γ))| = γ , ∀ai, aj ∈ A(γ) , (2.8)

rai(β̂(γ)) = υai · γ, ∀ai ∈ A(γ) ,
|racl (β̂(γ))| < |rai(β̂(γ))| = γ, ∀acl ∈ N (γ) and ∀ai ∈ A(γ),

where υai = sign{rai(β̂(γ))}, k(γ) = |A(γ)| = #{m : β̂m(γ) ̸= 0} and h(γ) =

|N (γ)| = #{m : β̂m(γ) = 0} are the number of covariates in the active and
non-active sets, respectively, at location γ. The new covariate is included in the
active set at γ = γ(k+1) when the following condition is satisfied:

∃acl ∈ N (γ(k+1)) : |racl (β̂(γ
(k+1)))| = |rai(β̂(γ(k+1)))| , ∀ai ∈ A(γ(k+1)). (2.9)

It shows that the generalized equiangularity condition (2.8) does not depend
on the value of the dispersion parameter. As noted before, the original dglars
package [9] is developed only for Poisson and logistic regression models with
canonical link function and ϕ = 1. Although, the value of the dispersion param-
eter ϕ does not change the order of the variables included in the active set and
also the solution path β̂A(γ), it is important to take it into consideration that it
causes the achieved Rao’s score statistic to be shrunk or expanded, since it af-
fects the value of the log-likelihood function ℓ(β, ϕ;y). Therefore, the important
point to note here is that the value of the dispersion parameter affects the value
of various information criteria such as AIC or BIC, and that is why the estima-
tion of the dispersion parameter is critically important, and will be dealt with
in Section 2.4.

It is worth noting that in a high-dimensional setting, n ≤ p, it is often as-
sumed that the true model, A0 = {m : βm ̸= 0}, is sparse, i.e., the number of
non-zero coefficients |A0| is small (any number less than min(n− 1, p)). In fact,
the maximum number of variables that the dgLARS method can include in the
active set is min(n − 1, p), namely |A| ≤ min(n − 1, p). Hence, when n ≤ p,
the maximum number of non-zero coefficients selected by dgLARS method is
min(n − 1, p) = n − 1, namely |A| ≤ n − 1. It means that, when n ≤ p, the
dgLARS method does not consider the cases in which n ≤ |A0|, thus, we as-
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sume that |A0| < n.

2.3 Improved Predictor-Corrector Algorithm
To compute the solution curve we can use the Predictor-Corrector (PC) algo-

rithm [4], which explicitly finds a series of solutions by using the initial condi-
tions (solutions at one extreme value of the parameter) and continuing to find
the adjacent solutions on the basis of the current solutions. From a computa-
tional point of view, using the standard PC algorithm leads to an increase in
the run times needed for computing the solution curve. In this section we pro-
pose an improved version of the PC algorithm to decrease the effects stemming
from this problem for computing the solution curve. Using the improved PC
algorithm leads to potential computational saving.

The PC method computes the exact coefficients at the values of γ at which
the set of non-zero coefficients changes. This strategy yields a more accurate
path in an efficient way than alternative methods and provides the exact order
of the active set changes. Let us suppose that k(γ) predictors are included in
the active set A(γ) = {a1, · · · , ak(γ)} at location γ, such that γ ∈ (γ(k+1), γ(k)] is
a fixed value of the tuning parameter. The corresponding point of the solution
curve will be denoted by β̂A(γ) = (β̂P(γ), β̂a1(γ), . . . , β̂ak(γ)(γ))

⊤ where β̂P(γ) =

(β̂a01(γ), . . . , β̂a0b (γ)) where b is the number of protected variables. Using (2.8),
the extended dgLARS solution curve β̂A(γ) satisfies the relationship

|ra1(β̂A(γ))| = |ra2(β̂A(γ))| = · · · = |rak(γ)(β̂A(γ))|, (2.10)

and is implicitly defined by the following system of k(γ) + b non-linear equa-
tions: 

∂a01ℓ(β̂A(γ);y) = 0 ,
...

...
∂a0bℓ(β̂A(γ);y) = 0 ,

ra1(β̂A(γ)) = υa1γ ,
...

...
rak(γ)(β̂A(γ)) = υak(γ)γ .

(2.11)

where υai = sign{rai(β̂A(γ))}.
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When γ = 0, we obtain the maximum likelihood estimates of the
subset of the parameter vector β, denoted by β̂A, of the covariates in
the active set. The point β̂A(γ

(k+1)) lies on the solution curve joining
β̂A(γ

(k)) with β̂A. We define φ̃A(γ) = φA(γ) − vAγ, where φA(γ) =

(∂a01ℓ(β̂A(γ);y), . . . , ∂a0bℓ(β̂A(γ);y), ra1(β̂A(γ)), · · · , rak(γ)(β̂A(γ)))
⊤ and vA =

(0, . . . , 0, υa1 , . . . , υak(γ))
⊤ starting with b zeros. By differentiating φ̃A(γ) with

respect to γ, we can locally approximate the solution curve at γ − ∆γ by the
following expression

β̂A(γ −∆γ) ≈ β̃A(γ −∆γ) = β̂A(γ)−∆γ ·
(
∂φA(γ)

∂β̂A(γ)

)−1

vA , (2.12)

where ∆γ ∈ [0; γ−γ(k+1)] and ∂φA(γ)

∂β̂A(γ)
is the Jacobian matrix of the vector function

φA(γ) evaluated at the point β̂A(γ). Equation (2.12) with the step size given in
(2.15) are used for the predictor step of the PC algorithm. In the corrector step,
β̃A(γ −∆γ) is used as starting point for the Newton-Raphson algorithm that is
used to solve (2.11). For obtaining the Jacobian matrix we need ∂mrn(β̂A(γ), ϕ),
which is as follows:

∂mrn(β, ϕ) =
∂ rn(β, ϕ)

∂βm

=
∂mnℓ(β, ϕ;y)√
In(β, ϕ)

− 1

2

rn(β, ϕ) ∂mIn(β, ϕ)
In(β, ϕ)

= ϕ−1 ∂mrn(β),

where m,n ∈ A and

∂mIn(β, ϕ) =
∂ In(β, ϕ)
∂βm

= ϕ−1

n∑
i=1

{
xim x2in
V (µi)

(
2
∂µi

∂ηi
· ∂

2µi

∂η2i
− ∂V (µi)/∂µi

V (µi)

(
∂µi

∂ηi

)3
)}

= ϕ−1 ∂mIn(β). (2.13)

An efficient implementation of the PC method requires a suitable method to
compute the smallest step size ∆γ that changes the active set of the non-zero
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coefficients. Using (2.9), we have a change in the active set when

∃acj ∈ N (γ) : |racj(β̂A(γ −∆γ))| = |rai(β̂A(γ −∆γ))|, ∀ai ∈ A(γ). (2.14)

By expanding racj(β̂A(γ)) in a Taylor series around γ, and observing that the
solution curve satisfies (2.11), expression (2.14) can be rewritten in the following
way:

∃acj ∈ N (γ) :

∣∣∣∣∣racj(β̂A(γ))−
dracj(β̂A(γ))

dγ
∆γ

∣∣∣∣∣ ≈ γ −∆γ, ∀ai ∈ A(γ)

where ∆γ ∈ [0; γ], then

racj(β̂A(γ)) ≈
dracj(β̂A(γ))

dγ
∆γ + (γ −∆γ) = −∆γ

(
1−

dracj(β̂A(γ))

dγ

)
+ γ,

or

racj(β̂A(γ)) ≈
dracj(β̂A(γ))

dγ
∆γ − (γ −∆γ) = ∆γ

(
1 +

dracj(β̂A(γ))

dγ

)
− γ,

so that, they give two values for ∆γ, namely

∆γ1 =
γ − racj(β̂A(γ))

1−
dracj(β̂A(γ))

dγ

or ∆γ2 =
γ + racj(β̂A(γ))

1 +
dracj(β̂A(γ))

dγ

,

where

dracj(β̂A(γ))

dγ
=

d

dγ

∂acjℓ(β̂A(γ);y)√
Iacj(β̂A(γ))



=

d ∂ac
j
ℓ(β̂A(γ);y)

dγ
· I1/2acj

(β̂A(γ))− ∂acjℓ(β̂A(γ);y) ·
d I1/2

ac
j

(β̂A(γ))

dγ

Iacj(β̂A(γ))

= I−1/2
acj

(β̂A(γ)) · ⟨∂aiacjℓ(β̂A(γ);y),
dβ̂ai(γ)

dγ
⟩
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− 1

2
racj(β̂A(γ)) · I−1

acj
(β̂A(γ)) · ⟨∂aiIacj(β̂A(γ)),

dβ̂ai(γ)

dγ
⟩

=

∑
ai∈A(γ)

{
∂aiacjℓ(β̂A(γ);y) · dβ̂ai (γ)

dγ

}
I1/2acj

(β̂A(γ))

− 1

2

racj(β̂A(γ)) ·
∑

ai∈A

{
∂aiIacj(β̂A(γ)) · dβ̂ai (γ)

dγ

}
Iacj(β̂A(γ))

=
∑

ai∈A(γ)

dβ̂ai(γ)dγ

∂aiacjℓ(β̂A(γ);y)

I1/2acj
(β̂A(γ))

− 1

2

racj(β̂A(γ)) · ∂aiIacj(β̂A(γ))

Iacj(β̂A(γ))

 ,

where ⟨·, ·⟩ is an inner product, ∂aiIacj(β) is given by (2.13), and dβ̂ai (γ)

dγ
is an

element of the matrix of dβ̂A(γ)
dγ

=
(

∂φA(γ)

∂β̂A(γ)

)−1

vA. For each acj ∈ N (γ) we have a

value for ∆γa
c
j as follows

∆γa
c
j =

{
∆γ1 if 0 ≤ ∆γ1 ≤ γ;

∆γ2 if o.w.

and from the set of ∆γa
c
js, {∆γacj , acj ∈ N (γ)}, we consider the smallest value

of this set as a optimal value for the step size. It can be shown by the following
expression

∆γopt = min
{
∆γa

c
j | acj ∈ N (γ)

}
. (2.15)

The main problem of the original PC algorithm is related to the number of
arithmetic operations needed to compute the Euler predictor, which requires the
inversion of an adequate Jacobian matrix. From a computational point of view,
using the PC algorithm leads to an increase in the run times needed to compute
the solution curve. To improve the PC algorithm we propose a method to re-
duce the number of steps, thereby greatly reducing the computational burden
because of reducing the number of points of the solution curve.

Since the optimal step size is based on a local approximation, we also include
an exclusion step for removing incorrectly included variables in the model.
When an incorrect variable is included in the model after the corrector step, we
have that there is a non-active variable such that the absolute value of the corre-
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sponding Rao score test statistic is greater than γ. To adjust the step size in the
case of incorrectly including certain variables in the active set, [13] reduced the
optimal step size from the previous step, △γopt, by using a small positive con-
stant ε and then the inclusion step is redone until the correct variable is joined
to the model. They proposed a half of ∆γopt for ε as a possible choice. [13, 11]
and [9] used a contractor factor cf , which is a fixed value, (i.e., γcf = γold −∆γ,
where γold = γnew + △γopt and ∆γ = ∆γopt · cf ), where cf = 0.5 as a default.
In this case, this method acts like a Bisection method. However, the predicted
root, γcf , may be closer to γnew, or γold, than the mid-point between them. The
poor convergence of the Bisection method as well as its poor adaptability to
higher dimensions (i.e., systems of two or more non-linear equations) motivate
the use of better techniques. In this case, we apply the method of Regula-Falsi
(or False-Position), which always converges, for more details see [76] and [99].
The Regula-Falsi method uses the information about the function, h(.), to arrive
at γrf , while in the case of the Bisection method finding γ is a static procedure
since for a given γnew and γold, it gives identical γcf , no matter what the function
we wish to solve.

The Regula-Falsi method draws a secant from h(γnew) to h(γold), and esti-
mates the root as where it crosses the γ-axis, so that in our case h(γ) = racj(β̂A(γ))−
υacj · γ where υacj = sign{racj(β̂A(γnew))} and acj ∈ N (γ). From (2.8), we have that
h(γ) = rai(β̂A(γ)) − υaiγ = 0 for all ai ∈ A(γ). Indeed, after the corrector
step, when there is a non-active variable such that the absolute value of the cor-
responding Rao score test statistic is greater than γ, we want to find an exact
point, γrf , which is very close or even equal to the true point, called the transi-
tion point, that changes the active set, so that at the end, it reduces the number
of the points of the solution curve.

For applying the Regula-Falsi method to find the root of the equation h(γrf ) =
0, let us suppose that k predictors are included in the active set, such that γnew <
γ(k). After the corrector step, when ∃acj ∈ N (γnew) such that |racj(β̂A(γnew))| >
γnew , we find an γrf in the interval [γnew, γold], where γold = γnew +△γopt, which
is given by the intersection of the γ-axis and the straight line passing through
(γnew, racj(β̂A(γnew)) − υacj · γnew) and (γold, racj(β̂A(γold)) − υacj · γold). It is easy to
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Table 2.2: Pseudo-code of the improved PC algorithm to compute the solution curve
defined by the extended dgLARS method for a model with the protected variables.

Step Algorithm

1 First compute β̂P = (β̂a01 , . . . , β̂a0b
)

2 A ← argmaxacj∈N (γ){|racj (β̂P)|} and γ ← |ra1(β̂P)|
3 Repeat

4 Use (2.15) to compute△γopt and set△γ ←△γopt and γ ← γ −△γopt

5 Use (2.12) to compute β̃A(γ) (predictor step)

6 Use β̃A(γ) as starting point to solve system (2.11) (corrector step)

7 For all acj ∈ N (γ) compute racj (β̂A(γ))

8 If ∃N ⊂ N (γ) such that
∣∣∣rac∗l (β̂A(γ))

∣∣∣ > γ for all ac∗l ∈ N , then

9 use (2.16) to compute γ
(l)
rf and set γrf ← max

l
{γ(l)rf }

10 first set△γ ←△γopt − (γrf − γ) and then γ ← γrf , and go to step 5

11 If ∃acj ∈ N (γ) such that
∣∣∣racj (β̂A(γ))

∣∣∣ = ∣∣∣rai(β̂A(γ))
∣∣∣ for all ai ∈ A(γ), then

12 update A(γ) and N (γ)

13 Until convergence criterion rule is met

verify that the root γrf is given by

γrf =
γnew racj(β̂A(γold))− γold racj(β̂A(γnew))

racj(β̂A(γold))− racj(β̂A(γnew)) + υacj · (γnew − γold)
, ∀acj ∈ N (γnew).

(2.16)

Then, we first set △γ = △γopt − (γrf − γnew) and then γ = γrf , to be able to go
to the predictor step.

If at γnew there exists a set N(γnew) ⊂ N (γnew) such that |rac∗l (β̂A(γnew))| >
γnew for all ac∗l ∈ N(γnew), the equation (2.16) gives a vector with an element of
γ
(l)
rf , so that we consider γrf = max

l
{γ(l)rf }, and if max

l
{γ(l)rf } is greater than γold,

then we consider γrf = γold. When the Newton-Raphson algorithm does not
converge, the step size is reduced by the contractor factor cf , and then the pre-
dictor and corrector steps are repeated. In Table 2.2 we report the pseudo-code
of the improved PC algorithm that was proposed in this section for a model
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with the protected variables {a01, . . . a0b}.
In Section 2.5, we examine the performance of the proposed PC algorithm

and compare it with the original PC algorithm. In the next section, we con-
sider some model selection strategies to select the tuning parameter, and also
we propose an estimator for the dispersion parameter.

2.4 Model Selection
Model selection is a process of seeking the model in a set of candidate mod-

els that gives the best balance between model fit and complexity [18]. In the
literature, selection criteria are usually classified into two categories: consistent
(e.g., the Bayesian information criterion (BIC) [84]) and efficient (e.g., the Akaike
information criterion (AIC) [3], and the k-fold cross-validation (CV) [42]). A
consistent criterion identifies the true model with a probability that approaches
1 in large samples when a set of candidate models contains the true model. An
efficient criterion selects the model so that its average squared error is asymp-
totically equivalent to the minimum offered by the candidate models when the
true model is approximated by a family of candidate models. Detailed discus-
sions on efficiency and consistency can be found in [86, 87], [57], [85], [61], and
[8].

[91] shows that the AIC is asymptotically equivalent to Leave-One-Out CV.
Both of these criteria are based on the Kullback–Leibler information criteria [56].
While the BIC, which is based on the Bayesian posterior probability, is asymp-
totically equivalent to v-fold CV, where v = n[1− 1/(log(n)− 1)]. Actually, it is
well-known that CV on the original models behaves somewhere between AIC
and BIC, depending on the data splitting ratio [85]. In Section 2.6, we will com-
pare the performance of these three criteria when the extended dgLARS method
is involved as a variable selection method. The dgLARS approach involves the
choice of a tuning parameter for variable selection. The selection of the tun-
ing parameter γ is critically important because it determines the dimension of
the selected model. A proper tuning parameter can improve the efficiency and
accuracy for variable selection [22]. As an all-round option, the k-fold CV has al-
ways been a popular choice, especially in the early years. In the present chapter,
we use the k-fold CV deviance for the extended dgLARS, so that, data are ran-
domly split into k arbitrary equal-sized subsets L1, L2, . . . , Lk and each subset
Lv, v = 1, . . . , k, is used as an validation data set Lv = (y(v)

nv
,X(v)

nv×p) consisting of
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nv sample points (and its complement Lc
v is the vth training data set consisting of

the remaining nt observations, where nv + nt = n) to evaluate the performance
of each of the models fitted to the remaining (k − 1)/k of the data, Lc

v. The un-
scaled residual deviance D(., .) of the predictions on the validation data set Lv

is computed and averaged for the k validation subsets;

CV (γ) =
1

k

k∑
v=1

D(y(v), µ̂(v)), (2.17)

where µ̂(v) = g−1(X(v)β̂Av(γ)) and β̂Av(γ) is selected by Lv. The idea will be to
select the model with the lowest average CV deviance.

Classical information criteria such as the AIC and BIC can also be used. We
use the AIC(γ) and BIC(γ) for the extended dgLARS written as

AIC(γ) = −2ℓ(βA(γ), ϕ;y) + 2 (k(γ) + 1) , (2.18)

and

BIC(γ) = −2ℓ(βA(γ), ϕ;y) + log(n)(k(γ) + 1) , (2.19)

where k(γ) = |A(γ)| is an appropriate degree of freedom that measures com-
plexity of the model with the tuning parameter γ. As it can be seen, the selec-
tion criteria (2.18) and (2.19) rely heavily on the dispersion parameter which has
an important impact on them. Since the log-likelihood function ℓ(β(γ), ϕ;y) de-
pends on the dispersion parameter, an estimator is needed in order to evaluate
these criteria, and as a result k(γ) becomes k(γ) + 1 in the penalty term [101]. In
the next section, Section 2.4.1, an moment estimator of the dispersion parameter
is presented.

In what follows we will use the selected tuning parameters γ̂
AIC

, γ̂
BIC

and
γ̂

CV
, where

γ̂
AIC

= argmin
γ∈R+

AIC(γ),

γ̂
BIC

= argmin
γ∈R+

BIC(γ),

γ̂
CV

= argmin
γ∈R+

CV (γ).
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2.4.1 Path Estimation of Dispersion Parameter

Since in practice the dispersion parameter ϕ is often unknown, in this chap-
ter we consider ϕ as an unknown parameter which is the same for all Yi. As
we mentioned above, by estimating the dispersion parameter, the solution path
β̂A(γ) is not changed, although the value of the log-likelihood function ℓ(β, ϕ;y)
is changed and so considerations about the selection of the optimal model are
going to be importantly affected.

There are three classical methods to estimate ϕ: Deviance, Pearson and Max-
imum Likelihood (ML) estimators. The Deviance estimator is ϕ̂d = D(y, µ̂)/(n−
p− 1), where D(y, µ̂) = ϕD(y, µ̂, ϕ) = −2ϕ(ℓ(µ̂, ϕ;y)− ℓ(y, ϕ;y)) is the unscaled
residual deviance. The ML estimator of ϕ, ϕ̂mle, is the solution of ∂ℓ(µ̂, ϕ;y)/∂ϕ =

0; For instance, the ML estimators for the Gamma and Inverse Gaussian distri-
butions are ϕ̂mle,G ≈ 2D

G
/{n +

√
(n2 + 2nD

G
/3)} and ϕ̂mle,IG = D

IG
/n, where

D
G

= 2
∑n

i=1{log(µ̂i/yi) + (yi − µ̂i)/µ̂i} and D
IG

=
∑n

i=1(yi − µ̂i)
2/(yi µ̂

2
i ) are

the unscaled residual deviance D(y, µ̂) for the Gamma and Inverse Gaussian
distributions, respectively [23]. [60] note for the Gamma case that both the De-
viance (ϕ̂d,G) and MLE (ϕ̂mle,G) are sensitive to rounding errors (the difference
between the calculated approximation of a number and its exact mathematical
value) and model error (deviance from the chosen model) in very small obser-
vations and in fact deviance is infinite if any component of y is zero. Commonly
used estimates of the unknown dispersion parameter are the Pearson statistic
or the modification of [34], who proposed a first order linear correction term
to Pearson’s statistic. [60] recommend the use of an approximately unbiased
estimate, Pearson method, ϕ̂

P∗ =
X 2

P

n−p−1
= 1

n−p−1

∑n
i=1

(yi−µ̂i)
2

V (µ̂i)
, where X 2

P is the

Pearson’s statistic, V (.) is the variance function, and µ̂i = g−1(x⊤
i β̂). [62] shows

numerically that the choice of estimator can give quite different results in the
Gamma case and that ϕ̂

P∗ is more robust against model error. Since we can use
ϕ̂

P∗ only for n > p, in the high-dimensional setting (p ≥ n) we define the disper-
sion estimator ϕ̂

P
(γ) at γ ∈ [0, γmax] by the Pearson-like dispersion estimator, as

proposed by [101] and [96];

ϕ̂
P
(γ) =

1

n− k(γ)
n∑

i=1

(yi − g−1(x⊤
i β̂A(γ)))

2

V (g−1(x⊤
i β̂A(γ)))

, (2.20)

where k(γ) = |A(γ)| = #{j : β̂j(γ) ̸= 0} such that β̂j(γ) is the element of the ex-
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tended dgLARS estimator β̂A(γ). Note that, since the estimator ϕ̂
P
(γ) depends

on γ, we can apply it into the improved PC algorithm in order to calculate the
value of the information criteria such as AIC and BIC at each point of the solu-
tion path (γ), so that AIC(γ) and BIC(γ) can be found in (2.18) and (2.19).

2.4.2 Generalized Degree of freedom

The concept of degrees of freedom, which is often used for measurement
of model complexity, plays an important role in the theory of linear regression
models. This concept is involved in various model selection criteria such as
the AIC and BIC. Within the classical theory of linear regression models, it is
well known that the degrees of freedom are equal to the number of covariates
but for non-linear modelling procedures this equivalence is not satisfied. Gen-
eralized degrees of freedom (GDF) is a generic measure of model complexity
for any modeling procedure. It accounts for the cost due to both model selec-
tion and parameter estimation. For the dgLARS estimator, [13] proposed the
notion of generalized degrees of freedom (GDF) to define an adaptive model
selection criterion. The authors showed that the cardinality of the active set,
k(γ) = |A(γ)|, is a biased estimator of the generalized degrees of freedom when
the model is a logistic regression model, and also proposed a possible estimator
of the GDF when it is possible to compute the MLE of the considered GLM. In
general, gdf(γ) is a function of the tuning parameter γ, so that gdf(0) ≈ p. This
estimator for a general GLM is given by

ĝdf(γ) = tr{J−1
A (β̂A(γ)) IA(β̂A(γ), β̂A(0))}, (2.21)

where JA(β̂A(γ)) is the unscaled observed Fisher Information matrix evaluated
at the point β̂A(γ) which has elements

Jajak(β̂A(γ)) =
n∑

i=1

xiaj xiak
V (µi)

{(
∂µi

∂ηi

)2

+ (yi − µi)

(
∂V (µi)/∂µi

V (µi)

(
∂µi

∂ηi

)2

− ∂2µi

∂η2i

)}
,

and IA(β̂A(γ), β̂A(0)) is an unscaled matrix with elements

Iajak(β̂A(γ), β̂A(0)) =
n∑

i=1

xiaj xiak
V (µi(β̂A(0)))

V (µi(β̂A(γ)))2

(
∂µi(β̂A(γ))

∂ηi

)2

,
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where µi(β̂A(0)) is the maximum likelihood estimate of µi(β), and ηi =

g(µi(β̂A(γ))). Note that, the proposed estimator (2.21) does not depend on
ϕ. In general, ĝdf(γ) is different from k(γ). It can be used, instead of k(γ),
in the penalty term of (2.18) and (2.19) to have alternative criteria, namely,
AIC∗(γ) = −2ℓ(βA(γ), ϕ;y) + 2 (ĝdf(γ) + 1) and BIC∗(γ) = −2ℓ(βA(γ), ϕ;y) +
log(n)(ĝdf(γ) + 1).

2.5 Simulation Studies
The simulation studies focus on two subjects: The first one is to examine the

performance of the extended dgLARS method (which uses the IPC algorithm)
and two other popular path-estimation methods (which use the original PC al-
gorithm); The second one is to investigate the performance between the original
PC and improved PC algorithms.

In this section, we compare the behavior of the extended dgLARS method
obtained by using the improved PC algorithm (by a new package 2) with two
of the most popular sparse GLM packages; dglars: the dgLARS method ob-
tained by using the PC algorithm [9], and glmpath: the L1 Regularization Path
method obtained by using the PC algorithm developed by [67]. The dglars

package is available for the binomial and Poisson families with the canonical
link function, and the glmpath package is available for the Gaussian, bino-
mial and Poisson families with the canonical link function. To make the results
comparable, the simulation study is based on a Logistic regression model (bi-
nomial family with logit link), with sample size n = (50, 200) and three differ-
ent values of p, namely p = (10, 100, 500). The large values of p are useful to
study the behavior of the methods in a high dimensional setting. The study
is based on three different configurations of the covariance structure of the p
predictors, such that X1,X2, . . . ,Xn∗ are sampled from an N(0,Σ) distribution,
where the diagonal elements of Σ are 1 and the off-diagonal elements follow
corr(Xi;Xj) = ρ|i−j|, where Xi and Xj are the ith and jth covariates respectively,
i ̸= j and ρ = (0, 0.5, 0.75). Only the first five predictors are used to simulate
the binary response variable. The intercept term is equal to one and the non-
zero coefficients are equal to two. We simulate n∗ = 100 data sets and let the
algorithms compute the entire path of the coefficient estimates.

2This package is being merged with the original package dglars.
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Table 2.3: Results of the simulation study based on the Logistic regression model; For
each p, n and ρ we report the mean number of the points of the entire solution curve (q)
and the area under the ROC curve (AUC). Bold values identify the lowest q for each
scenario.

dgLARS (IPC)∗ dgLARS (PC)∗ glmpath

p n ρ q AUC q AUC q AUC

0 21.06 0.969 49.04 0.969 22.95 0.968

10

50 0.5 21.96 0.970 44.59 0.970 27.78 0.968
0.75 22.39 0.927 41.05 0.927 30.53 0.935

0 17.99 1.000 46.65 1.000 18.53 1.000
200 0.5 18.61 1.000 47.13 1.000 19.48 1.000

0.75 19.68 0.999 45.67 0.999 19.68 0.999

0 59.66 0.955 84.87 0.955 106.3 0.944

100

50 0.5 51.00 0.969 69.12 0.969 93.42 0.964
0.75 42.15 0.930 56.24 0.930 83.32 0.930

0 125.5 1.000 187.2 1.000 392.0 1.000
200 0.5 107.1 1.000 155.9 1.000 527.1 1.000

0.75 96.33 1.000 143.1 1.000 846.2 1.000

0 70.23 0.912 93.16 0.912 128.7 0.883

500

50 0.5 62.78 0.952 77.78 0.952 119.0 0.941
0.75 53.12 0.916 63.91 0.916 111.5 0.905

0 171.2 1.000 212.1 1.000 322.7 1.000
200 0.5 139.7 1.000 174.2 1.000 273.3 1.000

0.75 116.9 1.000 145.9 1.000 248.7 1.000
* The dgLARS (PC) refers to the predictor-corrector implementation of [13], whereas dgLARS (IPC) refers
to the improved predictor-corrector algorithm proposed in the present chapter.

In Table 2.3 we report the mean number of the points of the whole solu-
tion curve (q) and the area under the receiver operating characteristic (ROC)
curve (AUC, average AUC over 100 simulations), as the performance measure.
A higher AUC indicates a better performance. The results show that, in the
dgLARS method with both the original PC (PC) and improved PC (IPC) algo-
rithms, when the number of predictors is sufficiently large, the mean number
of the points of the solution curve (q) decreases as the correlation (ρ) increases.
However, for the L1 Regularization Path method, when n < p, q decreases as ρ
increases, and when n > p then q increases as ρ decreases. The dgLARS method
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Figure 2.2: (a) ROC curve, (b) the mean number of the points of the solution curve q
computed by the dgLARS method with the PC and IPC algorithms, and the L1 Regular-
ization Path method from the simulation study based on the Logistic regression model
with n = 50 and ρ = 0.

obtained by using the IPC algorithm, in all scenarios, has the lowest q identified
by the bold values, which leads to potential computational saving.

Note that since the dgLARS method obtained by using the improved PC and
original PC algorithms compute the same solution curve, their ROC curves and
then the values of their AUC are equal, as it can be seen in the corresponding
AUC columns of the dgLARS (IPC) and dgLARS (PC). The AUC value of the
dgLARS (PC or IPC) method is always greater or equal than the L1 Regulariza-
tion Path method. In fact, without depending on p, when the sample size n is
small, the dgLARS method has a greater AUC value, and when the sample size
is large the AUC value of all methods are equal to one. In other words, when
n is sufficiently large without considering the number of predictors (p > n or
p < n) the value of AUC for the methods is 1.

In Figure 2.2(a) we show the ROC curves (1 − specificity versus sensitivity,
computed by averaging over the 100 simulations) corresponding to the dgLARS
(by using any of the PC or IPC algorithms) and L1 Regularization Path methods
with p = 500, n = 50 and ρ = 0 based on the Logistic regression model. Also, in
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Figure 2.2(b), the mean number of the points of the solution curve (q), computed
for these three algorithms, are showed as a function of p = (10, 100, 500) with
n = 50 and ρ = 0. What we mentioned above about q can be clearly seen in this
figure.

However, the results related to the number of the covariates included in the
final model is not reported for the sake of brevity, we point out that the dgLARS
method selects sparser models than the L1 Regularization Path method. At the
end of this section, it should be mentioned that the dgLARS method does not
use explicitly a penalized function, so that this method is based on a theory com-
pletely different from the L1 Regularization Path method (L1-penalized MLE)
implemented in the glmpath package.

2.6 Application to a Diabetes Dataset
In this section we consider the benchmark diabetes data used in [29] and [46],

among others. The response y is a quantitative measure of disease progression
for patients with diabetes one year later. The data includes 10 baseline measure-
ments for each patient, such as age, sex (gender, which is binary), bmi (body mass
index), map (mean arterial blood pressure), and six blood serum measurements:
ldl (high-density lipoprotein), hdl (low-density lipoprotein), ltg (lamotrigine),
glu (glucose), tc (triglyceride) and tch (total cholesterol), in addition to 45 inter-
actions and 9 quadratic terms, for a total of 64 variables for each patient, so that
this data has n = 442 observations on p = 64 variables. The aim of the study is
to identify which of the covariates are important factors in disease progression.
Since the original diabetes data is a low-dimensional data (p = 64), we add a
thousand noise variables to the original data to also have a high-dimensional
dataset with p = 1064. These low- and high-dimensional diabetes data can be
found in our package.

In the recent literature, variable selection techniques, such as LARS and
Spike and Slab, were used in a linear regression model applied to this dia-
betes data. While we spot from Figure 2.3(a) that, surprisingly, the response
y is markedly right-skewed which can arise from a non-normal distribution,
for example, a Gamma (or Inverse Gaussian) distribution. Therefore, we fit a
Gamma regression model with the inverse canonical link function (ηi = − 1

µi
) for

the (low- and high-dimensional) diabetes data and use the extended dgLARS
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Figure 2.3: (a) Histogram of the response y for the diabetes data. (b) Plot of the 10-fold
cross-validation deviance computed for the low-dimensional diabetes data with p = 64.

method by means of the proposed algorithm (IPC). Moreover, we let the algo-
rithm to estimate the dispersion parameter in each step by the Pearson moment
estimator (2.20).

The results based on the low- and high-dimensional diabetes data is reported
in the next two subsections.

2.6.1 Low-dimensional Diabetes Data

For the low-dimensional scenario, when p < n, as mentioned above, we
consider the benchmark diabetes data (n = 442, p = 64) used in [29], which is
a dataset included in the lars package. At the beginning, we apply several
methods such as LARS [29], LASSO [94], Elastic Net [104], L1 Regularization
Path [68], and Spike and Slab [46] by using the lars [41], elasticnet [103],
glmpath [67] and spikeslab [47] packages for analyzing the low-dimensional
diabetes data and then compare them to the results of our method. The top
15 selected predictors for the LARS, LASSO, Elastic Net and L1 Regularization
Path models are exactly the same and are in the order 3, 9, 4, 7, 37, 20, 19, 12, 22,
28, 2, 10, 27, 11 and 30. Moreover, the sequence of the top 15 selected variables
for the Spike and Slab algorithm is 3, 9, 4, 7, 2, 20, 37, 19, 27, 12, 22, 11, 30, 10
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and 28. We can see that, in all models the top 4 variables (3, 9, 4, and 7) are the
same and importantly, all models have the same selected variables just in the
different order.

To identify and rank the most important variables, by the dgLARS Gamma
regression model, we use three variable selection methods; cross-validation de-
viance (CV), AIC and BIC. First, we use a tenfold cross-validation to obtain the
tuning parameter (γ) of the dgLARS Gamma regression model. Figure 2.3(b)
shows the 10-fold cross-validation deviance curve as a function of the tuning
parameter (γ), where the vertical red dashed line shows the optimal value of
γ, which is γ̂

CV
= 0.72, with the number of non-zero estimated coefficients,

which is |A
CV
| = 20, where A

CV
= P ∪ A(γ̂

CV
) = {m : β̂m(γ̂CV

) ̸= 0 ,m =

0, 1, . . . , p}. Since we consider the protected variables set P contains only the
intercept, |P| = b = 1. Second, by means of the BIC criterion the dgLARS
method estimates a Gamma regression model with a high level of sparsity, so
that γ

BIC
= 1.60 and only with |A

BIC
| = |P ∪ A(γ̂

BIC
)| = 10 covariates (i.e.,the

intercept plus a subset of 9 parameters) are found to influence disease progres-
sion. While by using the AIC criterion, γ

AIC
= 0.47 and the number of non-zero

estimated coefficients is |A
AIC
| = |P ∪ A(γ̂

AIC
)| = 24.

In Table 2.4, we report the sequence of the top 24 variables and their param-
eter estimates obtained using the dgLARS Gamma method with the inverse
canonical link function, based on all three variable selection methods. In inter-
preting the table, we note that the selected variables are those having non-zero
coefficient estimates. When we compare the results of the dgLARS Gamma
method to the previous results obtained using other algorithms, we find out the
remarkable results. From Table 2.4 we can see that, the top 4 variables (3, 9, 4,
and 7) are the top 4 from the previous results obtained using other algorithms.
While all previous algorithms select the covariates 37, 12, 22, and 27 in the top
15 variables, our proposed method does not select them even among the top
20 variables. Instead, the dgLARS Gamma method select four other variables
60, 46, 18, and 42, identified by the bold values, in the top 15 variables, namely 3,
9, 4, 7, 20, 60, 2, 46, 18, 10, 42, 28, 11, 19, and 30. As a result, the dgLARS method
based on a Gamma model, with the canonical link function, finds out that the
variables "hdl : ltg", "map : hdl", "ltgˆ2" and "bmi : ltg" (60, 46, 18, and 42) are
more important factor in disease progression than the variables "bmi : map",
"bmiˆ2", "age : map" and "age : ltg" (37, 12, 22, and 27).
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Table 2.4: A list of the top 24 selected variables and their parameter estimates ob-
tained using dgLARS Gamma method (with inverse canonical link, ηi = − 1

µi
) for

low-dimensional diabetes data. In each criterion, variables selected are those having
non-zero coefficient estimates; |ACV | = 20, |AAIC | = 24 and |ABIC | = 10.

Variable Coefficient Estimate
Step Name Number CV AIC BIC

1 bmi 3 0.0182 0.0187 0.0171
2 ltg 9 0.0262 0.0278 0.0205
3 map 4 0.0129 0.0136 0.0101
4 hdl 7 -0.0145 -0.0159 -0.0105
5 age : sex 20 0.0067 0.0069 0.0042
6 hdl : ltg 60 0.0046 0.0053 0.0032
7 sex 2 -0.0090 -0.0113 -0.0035
8 map : hdl 46 0.0040 0.0052 0.0011
9 ltgˆ2 18 -0.0053 -0.0067 -0.0015

10 glu 10 0.0001 -0.0001 0
11 bmi : ltg 42 -0.0026 -0.0032 0
12 age : glu 28 0.0008 0.0010 0
13 ageˆ2 11 0.0021 0.0027 0
14 gluˆ2 19 0.0016 0.0012 0
15 sex : map 30 0.0012 0.0020 0
16 sex : ltg 35 0.0007 0.0015 0
17 sex : bmi 29 0.0006 0.0015 0
18 bmi : hdl 40 0.0004 0.0015 0
19 age : ldl 24 -0.0002 -0.0014 0
20 tch : glu 63 0 0.0013 0
21 age : ltg 27 0 0.0009 0
22 tc : tch 52 0 -0.0005 0
23 sex : glu 36 0 0.0001 0
24 map : ltg 25 0 0 0

One point should be mentioned here is that the number of the points of the
solution curve (q) for this data set by using the original PC and improved PC
algorithms are 302 and 111, respectively.

2.6.2 High-dimensional Diabetes Data

For a p larger than n setup, we expanded the original diabetes data to be-
come n = 442 and p = 1064, so that the 1000 additional variables are in reality
just noise. We fit a Gamma regression model with the inverse canonical link
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function for this high-dimensional data and use the extended dgLARS method
by means of the improved PC algorithm. The algorithm, in each step, uses the
moment estimator of the dispersion parameter given in (2.20).

Like Section 2.6.1, we consider three criteria; Firstly, Figure 2.4(a) shows the
10-fold cross-validation deviance curve in which the optimal value of the tuning
parameter is γ̂

CV
= 1.69, with the number of non-zero estimated coefficients,

which is |A
CV
| = 59 (with the intercept). Secondly, by the BIC model selection

criterion the dgLARS method estimates a Gamma regression model with a high
level of sparsity, so that γ̂

BIC
= 2.99 and |A

BIC
| = 6 covariates (i.e.,the intercept

plus a subset of 5 parameters) are found to influence disease progression. While
by the AIC model selection criterion, γ̂

AIC
= 1.13 and the number of non-zero

estimated coefficients is |A
AIC
| = 129.

Figure 2.4 displays the dgLARS Gamma solution path, the Rao score path
and the CV, AIC and BIC criteria obtained using the improved PC algorithm
and the full data. In addition, we report the sequence of the 25 selected vari-
ables and their parameter estimates based on all three criteria in Table 2.5. In
interpreting the table, we note that variables starting with "n." are noise vari-
ables and the rest are the original variables.

Using Figure 2.4 and Table 2.5 we can see that, while only 4 variables (3, 9, 4
and 7) have path-profiles that clearly stand out in all three criteria, significantly
these variables are the top 4 from our previous analysis obtained using the low-
dimensional data (Section 2.6.1). It is interesting that 3 other non-noise vari-
ables, “age : sex”, “hdl : ltg” and “sex” (with variable numbers: 20, 60 and 2)
are in the top 25 variables. Regardless of the criteria used, when we inspected
the first 100 variables selected by the improved PC algorithm, we found that 12
were from the original 64 variables, and 7 were from the top 25 variable from
Table 2.5. This demonstrates stability of the improved PC algorithm even in
ultra-high dimensional problems.

In the meantime, for this data set the number of the points of the solution
curve by using the original PC and improved PC algorithms are 1358 and 570,
respectively.
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Table 2.5: The top 25 variables and their parameter estimates obtained using the
dgLARS Gamma method (with inverse canonical link, ηi = − 1

µi
) for high-dimensional

diabetes data. In each criterion, variables selected are those having non-zero coefficient
estimates; |ACV | = 59, |AAIC | = 129 and |ABIC | = 6.

Variable Coefficient Estimate
Step Name Number CV AIC BIC

1 bmi 3 0.0174 0.0183 0.0165
2 ltg 9 0.0200 0.0229 0.0160
3 map 4 0.0095 0.0113 0.0069
4 hdl 7 -0.0093 -0.0111 -0.0064
5 n.312 376 0.0003 0.0004 0.0002
6 n.545 609 0.0002 0.0002 0
7 n.423 487 0.0001 0.0001 0
8 n.543 607 -0.0001 -0.0002 0

90 age : sex 20 0.0037 0.0051 0
10 n.969 1033 -0.0001 -0.0001 0
11 n.62 126 -0.0001 -0.0002 0
12 n.347 411 0.0001 0.0001 0
13 n.636 700 -0.0001 -0.0002 0
14 n.54 118 0.0001 0.0001 0
15 n.71 135 -0.0001 -0.0001 0
16 n.954 1018 0.0001 0.0001 0
17 n.160 224 0.0001 0.0001 0
18 hdl : ltg 60 0.0024 0.0019 0
19 n.689 753 -0.0001 -0.0001 0
20 n.988 1052 0.0001 0.0001 0
21 n.337 401 -0.0001 -0.0002 0
22 n.612 676 -0.0001 -0.0001 0
23 n.404 468 0.0001 0.0001 0
24 sex 2 -0.0026 -0.0047 0
25 n.635 699 0.0160 -0.0001 0

2.7 Conclusions
In this chapter we extended the dgLARS method for a GLM to a larger class

of the exponential family, namely the exponential dispersion family (when the
dispersion parameter, ϕ, is unknown), and obtained the general framework of
the dgLARS estimator for general GLM with general link function. We imple-
mented explicitly the method for Gamma with the canonical and non-canonical
link functions. To estimate the dispersion parameter in high-dimensional fea-



2.7. Conclusions 65
[a\

2 4 6 8 10 12

1
0
4
0

1
0
5
0

1
0
6
0

1
0
7
0

Cross−Validation Deviance

γ

D
e
v
ia

n
c
e

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−

−
−

df = 59

(a)

2 4 6 8 10 12
4
8
0
0

5
2
0
0

5
6
0
0

6
0
0
0

Model Selection Criteria

γ

A
IC

 &
 B

IC

AIC BIC

(b)

2 4 6 8 10 12

0
2

4
6

8
1
0

1
2

Rao Score Path

γ

| 
R

a
o
 S

c
o
re

 S
ta

ti
s
ti
c
s
 |

AIC BIC

(c)

2 4 6 8 10 12

−
0
.0

1
0
.0

0
0
.0

1
0
.0

2

Coefficients Path

γ

R
e
g
re

s
s
io

n
 C

o
e
ff
ic

ie
n
ts

AIC BIC

(d)

Figure 2.4: (a) Plot of the 10-fold cross-validation deviance, (b) Model selection criteria,
(c) Rao score statistics path, (d) Regression coefficients path for the dgLARS Gamma
regression model for the high-dimensional diabetes data with p = 1000 noise variables.

ture space, we presented a moment estimator which can be used during the
solution path. Moreover, we proposed an improved version of the predictor-
corrector algorithm to compute the solution curve. The improved PC algorithm
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allows the dgLARS method to be implemented using less steps, greatly reduc-
ing the computational burden because of reducing the number of points of the
solution curve. The method was compared well with two well-known meth-
ods. The results show that the improved PC algorithm is better and quicker
than the original PC algorithm, and now the dgLARS method can be used for a
variety of distributions with different types of the canonical and non-canonical
link functions. A more stable and accurate estimate of the dispersion parameter
for high-dimensional GLMs will be addressed in future work.
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Abstract

In recent years, several methods have been developed to model non-normal
outcomes for high-dimensional feature space; for regression models based
on the exponential models, important examples are the ℓ1-penalized es-

timator for Generalize Linear Models [36] and the dgLARS method [13]. Al-
though the theory underlying these methods is generic, the application is re-
stricted to some specific models such as the Poisson regression model or the
logistic regression model in which the dispersion parameter is equal to one
(ϕ = 1). In previous chapter, we extended the least angle regression method
for high-dimensional GLMs to arbitrary exponential dispersion family distribu-
tions using the IPC algorithm to compute the dgLARS solution curve and pre-
sented a classical moment estimator of dispersion parameter. In this chapter, we
develop a new method to make high-dimensional inference on the dispersion
parameter of the exponential family. Moreover, we propose an iterative algo-
rithm to improve the accuracy of the new proposed method. Simulation stud-
ies provide supportive evidence concerning the proposed efficient algorithm for
estimating dispersion parameter. The resulting method has been implemented
in the R-package dglars2 (which will be merged with the original dglars
package).

Keywords: High-dimensional Generalized linear models; Differential geometry;
Least angle regression; Improved predictor-corrector algorithm; Dispersion Parameter.
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3.1 Introduction

In recent statistical literature, many variable selection techniques for high-
dimensional statistical models are based on the penalized likelihood approach.
Some important examples are the least absolute shrinkage and selection opera-
tor (LASSO) estimator [94], the Smoothly Clipped Absolute Deviation (SCAD)
method [31], the Dantzig selector [20], which was extended to generalized lin-
ear models (GLMs) in [48], and the MC+ penalty function introduced in [102],
among others. Also, the R package penalized (Goeman 2010a,b) is a pack-
age for fitting possibly high dimensional penalized regression models. In this
package, the algorithm uses gradient ascent, and the available models are: Pois-
son, logistic, linear and cox. Friedman et al. (2010a,b), in the glmnet pack-
age, developed fast algorithms for estimation of generalized linear models with
convex penalties. The models include linear regression, two-class logistic re-
gression, and multinomial regression problems while the penalties include ℓ1
(the LASSO), ℓ2 (ridge regression) and mixtures of the two (the elastic net). The
algorithms use cyclical coordinate descent (CCD) method, computed along a
regularization path. In the glmpath package, Park and Hastie (2007b), pro-
vided a path-following algorithm for ℓ1 regularized generalized linear models
and Cox proportional hazards model. The algorithm uses predictor-corrector
(PC) method to compute the entire regularization path for generalized linear
models with ℓ1 penalty. The distribution of y to be used in the model, in this
package, must be binomial, Gaussian, or Poisson. For each one, the canonical
link function is used; logit for binomial, identity for Gaussian, and log for Pois-
son distribution.

[29] introduced a new method to select important variables in a linear regres-
sion model called least angle regression (LARS). [13] proposed a new approach
based on the differential geometrical representation of a GLM. The method,
which does not require an explicit penalty function, has been called differential
geometric LARS (dgLARS) because it is defined generalizing the geometrical
ideas on which LARS is based. Although the theory of the dgLARS method
does not require restrictions on the dispersion parameter, the dglars package
[9] restricted to logistic and Poisson regression models, i.e., two specific GLMs
with canonical link function and dispersion parameter is equal to one. Further-
more, the authors do not consider the problem of how to estimate the dispersion
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parameter in a high-dimensional setting.
As mentioned above, most high-dimensional inferences are limited to bino-

mial, Poisson or Gaussian inference with canonical link function. Therefore, in
previous chapter, we considered high-dimensional inference for general GLM
with general link function. For this reason, we extended the dgLARS method
for a GLM to a larger class of the exponential family, namely the exponential
dispersion family (EDF), when the dispersion parameter ϕ is unknown, and ob-
tain the general framework of the dgLARS estimator for arbitrary GLM with
arbitrary link function. We implemented explicitly the method for Gamma and
Inverse Gaussian with a variety of link functions. Moreover, we proposed an
improved version of the Predictor-Corrector (PC) algorithm , called Improved
Predictor-Corrector (IPC), to compute the solution curve.

In previous chapter it was shown that, although the value of the dispersion
parameter ϕ does not change the order of the variables included in the active
set and also the solution path β̂A(γ), it is important to take it into consideration
that it causes the achieved Rao’s score statistic to be shrunk or expanded, be-
cause it affects the value of the log-likelihood function ℓ(β, ϕ;y). Therefore, the
value of the dispersion parameter can affect the value of various information
criteria such as AIC or BIC, and that is why the estimation of the dispersion pa-
rameter is critically important. In previous chapter, we explicitly considered the
problem of how to do inference on the dispersion parameter and we proposed
a moment estimator for high-dimensional generalized linear model to estimate
the dispersion parameter. In this chapter, we deal with the dgLARS method for
a high-dimensional exponential dispersion GLMs by using the IPC algorithm
and develop a new method to make high-dimensional inference on the disper-
sion parameter of the exponential family. Moreover, we propose an iterative
algorithm to improve the accuracy of the new proposed method.

The chapter is organized as follows; In Section 3.2, we briefly introduce the
extended dgLARS method for high-dimensional exponential dispersion GLMs,
the IPC algorithm and the moment estimator of dispersion parameter explained
in the previous chapter. In Section 3.3, we focus on the estimation of the disper-
sion parameter and propose a new method to do high-dimensional inference on
it, and then we propose an iterative algorithm to achieve a more stable and ac-
curate estimation. In Section 3.4, we investigate how well the new estimator of
the dispersion parameter based on the proposed iterative algorithm behaves by
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using the simulation studies. The application and data analysis based on con-
tinuous outcome with a non-canonical link function are described in Section
3.5.

3.2 An overview of the Extended dgLARS

To make this paper self-contained, after an overview of Generalized Lin-
ear Models (GLMs), we briefly introduce, firstly, the dgLARS method for high-
dimensional exponential dispersion GLMs, secondly, the IPC algorithm, and
thirdly the moment estimator of dispersion parameter explained in the previ-
ous chapter.

Let Y = (Y1, Y2, · · · , Yn)T be a n-dimensional random vector with indepen-
dent components. In what follows we shall assume that Yi is a random variable
with probability density function belonging to an exponential dispersion family
[50, 51], i.e.,

p
Yi
(yi; θi, ϕ) = exp {(yiθi − b(θi))/a(ϕ) + c(yi, ϕ)} , yi ∈ Yi ⊆ R, (3.1)

where θi ∈ Θi ⊆ R is the canonical parameter, ϕ ∈ Φ ⊆ R+ is the dispersion
parameter, and a(.), b(.) and c(., .) are given functions. In the following, we as-
sume that each Θi is an open set and a(ϕ) = ϕ. We consider ϕ as an unknown
parameter. The expected value of Y is related to the canonical parameter by
µ = (µ(θ1), · · · , µ(θn))T , where µ(θi) =

∂b(θi)
∂θi

is called mean value mapping, and
the variance of Y is related to its expected value by the identity Var(Y) = ϕV(µ),
where V(µ) is an n × n diagonal matrix with elements V(µi) = ∂2b(θi)

∂θ2i
, and is

called the variance function. Since µi is a reparameterization, the model (3.1)
can be also denoted as p

Yi
(yi;µi, ϕ). A GLM is defined by means of a known

function g(·), called link function, relating the expected value of each Yi to the
vector of covariates xi = (1, xi1, . . . , xip)

⊤ by the identity g{E(Yi)} = ηi = x⊤
i β

where ηi is called the ith linear predictor and β = (β0, β1, . . . , βp)
⊤ is the vector of

regression coefficients with the intercept and p parameters. In order to simplify
our notation we let µ(β) = {µ1(β), . . . , µn(β)}⊤ where µi(β) = g−1(x⊤

i β). For
the remainder of this chapter we shall use ℓ(β, ϕ;y) = log pY(y;µ(β), ϕ) as nota-
tion for the log-likelihood function, where pY(y;µ(β), ϕ) =

∏n
i=1 pYi

(yi;µi(β), ϕ).
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The Rao’s score test statistic is given as

rm(β, ϕ) =
∂mℓ(β, ϕ;y)√
Im(β, ϕ)

, (3.2)

where Im(β, ϕ) and ∂mℓ(β, ϕ;y) can be found in Chapter 2 (in Section 2.2.1).
The Rao’s score test statistic helps to define ρm(β, ϕ), the angle between the
mth basis function ∂mℓ(β, ϕ;Y) and the tangent residual vector r(β, ϕ,y;Y) =∑n

i=1(yi − µi)
∂ℓ(β,ϕ;y)

∂µi
, given by

ρm(β, ϕ) = arccos

[
rm(β, ϕ)

∥r(β, ϕ,y;Y)∥p(µ(β))

]
, (3.3)

where ∥·∥p(µ(β)) is the norm defined on the tangent space Tp(µ(β))M, with the
setM is a p-dimensional submanifold of the differential manifold S. For more
details the reader is referred to Chapters 1 and 2.

From (3.3), the Rao’s score test statistic contains the same information as the
angle ρm(β, ϕ). Thereby we can define the dgLARS method with respect to the
Rao’s score test statistic rather than the angle as respects the smallest angle is
equivalent to the largest Rao’s score test statistic.

3.2.1 The Extended dgLARS Method

[13] showed that the dgLARS estimator follows naturally from a differential
geometric interpretation of a GLM, generalizing the LARS method introduced
in [29] using the angle between scores and tangent residual vector as defined
in (3.3). The LARS and dgLARS algorithms define a coefficient solution curve
by identifying the most important variables step by step and including them
into the model at specific points of the path. The original algorithms took as
starting point of the path algorithm the model with the intercept only. This is a
sensible choice as it makes the model invariant under affine transformations of
the response or the covariates. However, the choice of the starting point of the
least angle approach can be used to incorporate prior information about which
variables are expected to be part of the final model and which ones one does
not want to make subject to selection. The extended dgLARS method allows
for a set of covariates, possibly including the intercept, that are always part of
the model. We define the set of the protected variables P = {a01, . . . , a0b}, where
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b = |P| ≤ p+ 1 and a0j is the index of the jth protected variable. The idea is that
variable a0j is supposed to be of interest and should always be contained in the
model during the path estimation procedure. The best example of a commonly
protected variable is the intercept.

The extended dgLARS solution curve, which is denoted by β̂A(γ) ⊂ Rb+k(γ)

where γ ∈ [0, γ(1)] and 0 ⩽ γ(p−b+1) ⩽ · · · ⩽ γ(2) ⩽ γ(1), is defined in the follow-
ing way: For any γ ∈ (γ(k+1), γ(k)], the extended dgLARS estimator satisfies the
following conditions:

A(γ) = {a1, a2, · · · , ak(γ)},
N (γ) = (P ∪ A(γ))c = {ac1, ac2, · · · , ach(γ)},

|rai(β̂(γ))| = |raj(β̂(γ))| = γ, ∀ai, aj ∈ A(γ), (3.4)

|racl (β̂(γ))| < |rai(β̂(γ))| = γ, ∀acl ∈ N (γ) and ∀ai ∈ A(γ),

where k(γ) = |A(γ)| = #{m : β̂m(γ) ̸= 0} and h(γ) = |N (γ)| = #{m : β̂m(γ) =

0} are the number of covariates in the active and non-active sets, respectively,
at location γ. The new covariate is included in the active set at γ = γ(k+1) when
the following condition is satisfied:

∃acl ∈ N (γ(k+1)) : |racl (β̂(γ
(k+1)))| = |rai(β̂(γ(k+1)))| , ∀ai ∈ A(γ(k+1)).

(3.5)
It shows that the generalized equiangularity condition (3.4) does not depend on
the value of the dispersion parameter.

3.2.2 Improved Predictor-Corrector Algorithm

From a computational point of view, using the PC algorithm leads to an
increase in the run times needed for computing the solution curve. In previ-
ous chapter, we proposed an improved version of the PC algorithm to decrease
the effects stemming from this problem for computing the solution curve. To
make this chapter self-contained, we briefly review the IPC algorithm, for more
details see Section 2.3 in Chapter 2. Let us suppose that k(γ) predictors are
included in the active set A(γ) = {a1, · · · , ak(γ)} at location γ, such that γ ∈
(γ(k+1), γ(k)] is a fixed value of the tuning parameter. The corresponding point
of the solution curve will be denoted by β̂A(γ) = (β̂P(γ), β̂a1(γ), . . . , β̂ak(γ)(γ))

T

where β̂P(γ) = (β̂a01(γ), . . . , β̂a0b (γ)) where b is the number of protected variables.
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Using (3.4), the extended dgLARS solution curve β̂A(γ) satisfies the relationship

|ra1(β̂A(γ))| = |ra2(β̂A(γ))| = · · · = |rak(γ)(β̂A(γ))|, (3.6)

and is implicitly defined by the following system of k(γ) + b non-linear equa-
tions: 

ra01(β̂A(γ)) = 0 ,
...

...
ra0b (β̂A(γ)) = 0 ,

ra1(β̂A(γ)) = υa1γ ,
...

...
rak(γ)(β̂A(γ)) = υak(γ)γ .

(3.7)

where υai = sign{rai(β̂A(γ
(k)))}. We define φ̃A(γ) = φA(γ) − vAγ, where

φA(γ) = (∂a01ℓ(β̂A(γ);y), . . . , ∂a0bℓ(β̂A(γ);y), ra1(β̂A(γ)), · · · , rak(γ)(β̂A(γ)))
T and

vA = (0, . . . , 0, υa1 , . . . , υak(γ))
T starting with b zeros. We can locally approximate

the solution curve at γ −∆γ by

β̂A(γ −∆γ) ≈ β̃A(γ −∆γ) = β̂A(γ)−∆γ ·
(
∂φA(γ)

∂β̂A(γ)

)−1

vA , (3.8)

where ∆γ ∈ [0; γ−γ(k+1)] and ∂φA(γ)

∂β̂A(γ)
is the Jacobian matrix of the vector function

φA(γ) evaluated at the point β̂A(γ). In the corrector step, β̃A(γ − ∆γ) is used
as starting point for the Newton-Raphson algorithm that is used to solve (3.7).
The smallest step size that changes the active set of the non-zero coefficients is

∆γopt = min
{
∆γa

c
j | acj ∈ N (γ)

}
. (3.9)

where ∆γa
c
j = ∆γ1 if 0 ≤ ∆γ1 ≤ γ and ∆γa

c
j = ∆γ2 otherwise, where ∆γ1 and

∆γ2 are given in Section 2.3 in the previous chapter. Equation (3.8) with the step
size given in (3.9) is used for the predictor step of the IPC algorithm.

Since the optimal step size is based on a local approximation, we also include
an exclusion step for removing incorrectly included variables in the model.
When an incorrect variable is included in the model after the corrector step,
we have that there is a non-active variable such that the absolute value of the



76 Chapter 3. Estimate of Dispersion Parameter
[a\

corresponding Rao score test statistic is greater than γ. To adjust the step size
in the case of incorrectly including certain variables in the active set, we apply
the method of Regula-Falsi which uses the information about the function, say
h(.), to arrive at γrf . In our case, the function can be h(γ) = racj(β̂A(γ)) − υacj · γ
where υacj = sign{racj(β̂A(γnew))} and acj ∈ N (γ). While in the case of the Bi-
section method finding γ is a static procedure because for a given γnew and
γold, it gives identical γcf , no matter what the function we wish to solve. The
Regula-Falsi method draws a secant from h(γnew) to h(γold), and estimates the
root as where it crosses the γ-axis. Let us obtain a closed form expression
for the transition point γrf . For applying the Regula-Falsi method to find
the root of the equation h(γrf ) = 0, let us suppose that k predictors are in-
cluded in the active set, such that γnew < γ(k). After the corrector step, when
∃acj ∈ N (γnew) such that |racj(β̂A(γnew))| > γnew, we find an γrf in the interval
[γnew, γold], where γold = γnew +△γopt, which is given by the intersection of the
γ-axis and the straight line passing through (γnew, racj(β̂A(γnew))−υacj ·γnew) and
(γold, racj(β̂A(γold)− υacj · γold). It is easy to verify that the root γrf is given by

γrf =
γnew racj(β̂(γold))− γold racj(β̂(γnew))

racj(β̂(γold))− racj(β̂(γnew)) + υacj · (γnew − γold)
, ∀acj ∈ N (γnew).

(3.10)

Then, we first set △γ = △γopt − (γrf − γnew) and then γ = γrf , to be able to go
to the predictor step.

3.2.3 Selection of the Tuning Parameter

The dgLARS approach involves the choice of a tuning parameter for variable
selection. The selection of the tuning parameter γ is critically important because
it determines the dimension of the selected model. A proper tuning parameter
can improve the efficiency and accuracy for variable selection. Henceforth, we
will use the selected tuning parameters

γ̂
AIC

= argmin
γ∈R+

AIC(γ),

γ̂
BIC

= argmin
γ∈R+

BIC(γ),
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γ̂
CV

= argmin
γ∈R+

CV (γ),

where AIC(γ), BIC(γ) and the k-fold CV deviance for the extended dgLARS
can be found in Equations (2.18), (2.19) and (2.17) in Chapter 2. In the next
section, a moment estimator of the dispersion parameter is presented.

3.2.4 Moment Estimation of Dispersion

Although, the value of the dispersion parameter ϕ does not change the or-
der of the variables included in the active set and also the solution path β̂A(γ),
it is important to take it into consideration that it causes the achieved Rao’s
score statistic to be shrunk or expanded, since it affects the value of the log-
likelihood function ℓ(β, ϕ;y). Therefore, the important point to note here is that
the value of the dispersion parameter affects the value of various information
criteria such as AIC or BIC, and so considerations about the selection of the
optimal model are going to be importantly affected.

Commonly used estimates of the dispersion parameter are the Pearson
statistic. Since we can not use the Pearson method in the high-dimensional
setting (p ≥ n), we define the generalized Pearson dispersion estimator ϕ̂

P
(γ) at

γ ∈ [0, γmax] by

ϕ̂
P
(γ) =

1

n− k(γ)
n∑

i=1

(yi − g−1(x⊤
i β̂A(γ)))

2

V (g−1(x⊤
i β̂A(γ)))

, (3.11)

where k(γ) = |A(γ)| = #{j : β̂j(γ) ̸= 0} such that β̂j(γ) is the element of the ex-
tended dgLARS estimator β̂A(γ). Note that, since the estimator ϕ̂

P
(γ) depends

on γ, we can apply it into the improved PC algorithm in order to calculate the
value of the information criteria such as AIC and BIC at each point of the solu-
tion path (γ).

3.3 A Stable Estimation of the Dispersion Parameter
In Section 3.2.4, we defined a Pearson-type path estimator of the dispersion

parameter ϕ. Combined with model selection in Section 3.2.3 this could be used
to estimate ϕ overall, but it is known that in shrinkage situations this underes-
timates ϕ. In this section, we first propose an improved estimator of the disper-
sion parameter for high-dimensional generalized linear models, called General
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Refitted Cross-Validation (GRCV) estimator. Then, we present an algorithm to
improve the proposed GRCV estimator to obtain a more stable and accurate
estimator based on the GRCV estimator.

3.3.1 General Refitted Cross-Validation Estimator

[30] introduced a two-stage refitted procedure for estimating the dispersion
parameter in a linear regression model (variance in linear model) via a data
splitting technique called refitted cross-validation (RCV), to attenuate the influ-
ence of irrelevant variables with high spurious correlations in the linear models.
The RCV estimator is accurate and stable, and insensitive to model selection
considerations and the size of the model selected.

For generalized linear models, we propose a general refitted procedure
called general refitted cross-validation (GRCV) which is based on four stages.
The idea of the GRCV method is as follows; We split the data (yn,Xn×p) ran-
domly into two halves (y(1)

n1
,X(1)

n1×p) and (y(2)
n2
,X(2)

n2×p), where n1+n2 = n. Without
loss of generality, for notational simplicity, we assume that the sample size n
is even 1, and n1 = n2 = n/2. In the first stage, our high dimensional vari-
able selection method, extended dgLARS, is applied to these two data sets
separately, to estimate whole solution path, which yields β̂Ai

(γ) selected by
(y(i),X(i)) where |Ai| ≤ min(n

2
− 1, p), γ ∈ [0, γmax], and i = 1, 2. In the sec-

ond stage, by using the Pearson-like dispersion estimate (3.11) on the two data
sets separately, ϕ̂(i)

P
(γ) where i = 1, 2, we determine two small subsets of se-

lected variables Âi where Âi ⊆ Ai and i = 1, 2, by model selection tools such as
the AIC, on each data set. Although all three criteria mentioned in the present
chapter are available in our package, we recommend using the AIC criterion
because the goal is to have a accurate prediction in the third stage [2]. In the
third stage, the MLE method is applied to each subset of the data with the vari-
ables selected by another subset of the data, namely (y(2),X(2)

Â1
) and (y(1),X(1)

Â2
),

to re-estimate the coefficient β. Since the MLE may not always exist in GLMs,
in this stage we propose to use the dgLARS method to estimate the coefficients
based on the selected variables, β̂Â1

(γ0) and β̂Â2
(γ0), where γ0 is close to zero,

because the dgLARS estimate β̂A(0) is equal to the MLE of βA. Therefore, we
apply MLE to the first subset of the data with the variables selected by the sec-

1If n is odd, we can consider |n1 − n2| = 1, and then we randomly apply one of the member of the
larger data set to the smaller data set to both have the same dimension, n1 = n2 = n/2.
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ond subset of the data (y(1),X(1)

Â2
) to obtain β̂Â2

(0), and similarly, we use MLE
again for the second data set with the set of important variables selected by the
first data set (y(2),X(2)

Â1
) to obtain β̂Â1

(0). The refitting in the third stage is funda-
mental to reduce the influence of the spurious variables in the second stage of
variable selection. Finally, in the fourth stage, we estimate ϕ by averaging the
two following estimators on the two data sets (y(2),X(2)

Â1
) and (y(1),X(1)

Â2
);

ϕ̂1(Â2) =
1

n
2
− |Â2|

n
2∑

i=1

(
y
(1)
i − g−1

(
(x(1)⊤

i,Â2
β̂Â2

(0)
))2

V
(
g−1

(
x(1)⊤
i,Â2

β̂Â2
(0)
)) ,

and

ϕ̂2(Â1) =
1

n
2
− |Â1|

n
2∑

i=1

(
y
(2)
i − g−1

(
x(2)⊤
i,Â1

β̂Â1
(0)
))2

V
(
g−1

(
x(2)⊤
i,Â1

β̂Â1
(0)
)) ,

where x(l)

i,Âj
is the ith row of the lth subset of the data X(l)

Âj
, |Âj| = #{k :

(β̂Âj
(γ))k ̸= 0}, β̂Âj

(γ) is the extended dgLARS estimator at γ, so that γ ∈
[0, γmax], and β̂Âj

(0) is the MLE estimator. The GRCV estimator is just the aver-
age of these two estimators:

ϕ̂
GRCV

(Â1, Â2) =
ϕ̂1(Â2) + ϕ̂2(Â1)

2
. (3.12)

In this procedure, although Â1 includes some extra unimportant variables
besides the important variables, these extra variables will play minor roles
when we estimate ϕ by using the second data set along with refitting since
they are just some random unrelated variables over the second data set. Fur-
thermore, even when some important variables are missed in the second stage
of model selection, they have a good chance of being well approximated by the
other variables selected in the second stage to reduce modeling biases. It should
be mentioned that, by applying a variable selection tool, the GRCV estimator is
sensitive to the model selection tool and the size of the model selected.

In the meantime, we can extend the GRCV technique to get a more accurate
estimator. The first extension is to use a k-fold data splitting technique rather
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than twofold splitting. We can divide the data into k groups and select the
model with all groups except one, which is used to estimate the dispersion with
refitting. Although there are now more data in the second stage, there are only
n = k data points in the third stage for refitting. This means that the number
of variables that are selected in the second stage should be much less than n =

k. That is why we use k = 2. The second extension is using a repeated data
splitting procedure; since there are many ways to split the data randomly, many
GRCV estimators can be obtained. To reduce the influence of the randomness
in the data splitting we may take the average of the resulting estimators. For
an extensive review of the RCV method, for the linear models, the reader is
referred to [32] and [30].

3.3.2 An Iterative GRCV Algorithm

In Section 3.3.1, we proposed the GRCV estimator ϕ̂
GRCV

to estimate ϕ. In
this section, we show how the GRCV estimator can be improved to have nu-
merically more stable and accurate behavior. We propose an iterative algorithm
which at convergence will also result in more stable and accurate model selec-
tion behavior. This algorithm yields a new estimate for ϕ which we call it the
MGRCV estimate.

As mentioned in Section 3.3.1 to obtain the GRCV estimate, in the second
stage we need to calculate the value of the AIC, BIC or some k-fold CV cri-
teria which depend on the unknown dispersion parameter itself. Hence, the
dispersion parameter has to be estimated and for this we used the Pearson-type
estimator ϕ̂

P
(γ) given in (3.11) inside the extended dgLARS method during the

calculation of the solution path. To improve the accuracy of the estimator ϕ̂
GRCV

,
we propose an algorithm which repeats the process of finding the GRCV es-
timate iteratively, such that for the (k + 1)th iteration the kth GRCV estimate
(ϕ̂(k)

GRCV
) is used to compute the new (k+1)th GRCV estimate (ϕ̂(k+1)

GRCV
), and so on.

Therefore, by using this algorithm, the GRCV estimator uses the Pearson-type
estimate inside its process only for the first time, and after that the algorithm
applies the obtained GRCV estimates instead of the Pearson-type estimate in-
side the extended dgLARS algorithm. Since the estimate contains some random
variation due to the random CV splits, D1 and D2, the algorithm will not nu-
merically converge, one in practice simply needs to define a maximal number
of iterations T (which should not be too large). Therefore we propose as fi-
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Table 3.1: Pseudo code for the iterative algorithm to stabilize the GRCV estimator with
T iterations.

Step Algorithm
1 pearson← 1
2 grcv.vec← 0

3 i← 1

4 while i ≤ T

5 split the data into two random groups: D1 and D2

6 apply the extended dgLARS to D1 and D2 separately to obtain whole
solution paths β̂A1(γ) and β̂A2(γ) (first stage)

7 if pearson = 1 then

8 use (3.11) to compute ϕ̂(1)
P

(γ) and ϕ̂(2)
P

(γ) for D1 and D2

9 use ϕ̂(1)
P

(γ) and ϕ̂(2)
P

(γ) to do model selection
∗

on D1 and D2, respectiv-
ely, to obtain Â1 and Â2 (second stage)

10 pearson← 0
11 else

12 use ϕ̂GRCV (Â1, Â2) for model selection
∗

on each D1 and D2 to obtain
Â1 and Â2 (second stage)

13 end if

14 apply again extended dgLARS to D1 and D2 separately to obtain β̂Â1
(0)

and β̂Â2
(0) (third stage)

15 use (5.13) to compute ϕ̂GRCV (Â1, Â2) (fourth stage)
16 grcv.vec[ i ]← ϕ̂GRCV (Â1, Â2)

17 i← i+ 1

18 end while

19 ϕ̂MGRCV ←median( grcv.vec )
20 use ϕ̂MGRCV to do model selection

* The AIC or BIC criteria.

nal GRCV estimate the median of the T GRCV estimates, for which we call it
MGRCV estimate, ϕ̂

MGRCV
= median{ϕ̂(1)

GRCV
, . . . , ϕ̂

(T )

GRCV
}. The MGRCV estimate

ϕ̂
MGRCV

is more stable and accurate than the first estimate ϕ̂(1)

GRCV
. Finally, the

overall model selection is performed using ϕ̂
MGRCV

.

Table 3.1 shows how this algorithm works. It should be mentioned that,
ϕ̂(1)

P
(γ) and ϕ̂(2)

P
(γ) are vectors of the estimates calculated during the solution
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path, while ϕ̂
GRCV

(Â1, Â2) is a fixed number. In order to investigate the perfor-
mance of the algorithm we test it on simulated data in Section 3.4.1.

3.4 Simulation Studies
The simulation studies are divided into two parts: the studies on the ex-

tended dgLARS method and the GRCV estimator. The first part is devoted to
examining the performance of the extended dgLARS method, which uses the
improved PC algorithm, and two other popular path-estimation methods. The
second part is devoted to investigating the performance of the GRCV estimator
based on the iterative GRCV algorithm.

3.4.1 Comparing Dispersion Estimators

This section is divided into two parts; First, in order to show how the GRCV
estimator of ϕ and its proposed algorithm work, one simple, but illustrative,
example which is a part of a simulation study is presented. Second, we compare
the performance of the three dispersion estimators; Pearson (ϕ̂

P
), GRCV (ϕ̂

GRCV
)

and MGRCV (ϕ̂
MGRCV

, the median of the estimators obtained from the iterative
GRCV algorithm).

In this simulation study, high-dimensional data are generated according to a
Gamma regression model with a non-canonical log link, with the shape param-
eter equal to ν = ϕ−1 = 103 and the scale parameter µi

ν
, where µi = exp (x⊤

i β)

and x⊤
i = (1, xi1, . . . , xip) is as ith row of the design matrix Xn×(p+1) in which the

first column is a column of all ones and the sample size n is 40 and p = 100

(p > n). We simulate 50 data sets (y1,X1), . . . , (y50,X50), such that Xi is sampled
from an N(0,Σ) distribution, where the diagonal elements of Σ are 1 and the
off-diagonal elements are 0, and only the first two predictors (d = 2) are used to
simulate the response variable yi,

β = ( 0︸︷︷︸
Intercept

, 1 , 2︸ ︷︷ ︸
2

, 0 , . . . , 0︸ ︷︷ ︸
98

).

We show the result of the simulation study in two pictures (a) and (b) in
Figure 3.1. Figure 3.1(a) displays the procedure of obtaining the GRCV esti-
mates ϕ̂(k)

GRCV
, where k = (1, 2, . . . , 30), by using the iterative GRCV algorithm,

described in Table 3.1, with only the first data set (y1,X1). The values of the
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GRCV Estimates by Iterative Algorithm
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Figure 3.1: (a) GRCV estimates, ϕ̂
(k)

GRCV
, produced by the iterative GRCV algorithm

based on a simulated data set from Gamma model. (b) ROC curve of the extended
dgLARS method computed by averaging over the 50 simulations along with some se-
lected tuning parameters.

30 GRCV estimates, {ϕ̂(1)

GRCV
, . . . , ϕ̂

(30)

GRCV
}, computed by the iterative GRCV algo-

rithm, are showed as a function of the number of iterations k. What we men-
tioned in Section 3.3.2 can be clearly seen in this figure. It can be seen that, after
two iterations, the estimate appears to have improved significantly and con-
verges to the true value of the dispersion parameter ϕ

True
= 0.001, so that the

median of the GRCV estimates, ϕ̂
MGRCV

, is 0.0012. It shows that the proposed
iterative algorithm can improve the accuracy of the GRCV estimator.

In Figure 3.1(b), we plot the ROC curve ( computed by averaging over the 50
simulations) corresponding to the extended dgLARS method and present the
area under the ROC curve (average AUC over 50 simulations). As seen in the
figure, the average AUC is 0.999 which means that the accuracy of the model
selected by the extended dgLARS method is quite high. We have reported this
result for low- and high-dimensional datasets in the previous section (in Table
2.3).

Moreover, on the ROC curve in Figure 3.1(b), we also show the average val-
ues of the tuning parameter selected by the BIC criterion ¯̂γ

BIC
(computed by
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averaging γ̂
BIC

over 50 simulations) by means of the dispersion estimators ϕ̂
P

,
ϕ̂

GRCV
and ϕ̂

MGRCV
, and also the true dispersion parameter ϕ

True
. As [2] noted,

when d ≪ n, where d (is 2 here) is the number of parameters in the true mode,
then the BIC criterion is appropriate. That is why we prefer γ̂

BIC
to γ̂

AIC
and

γ̂
CV

. We use (2.19) in which the number of non-zero estimated coefficients k(γ)
is used as the degree of freedom to calculate the values of the BIC criterion. The
same results are obtained if we use the BIC based on the ĝdf(γ), because the
same final model is identified in both cases (this result is not reported for the
sake of brevity).

The point on the ROC curve in the most upper left corner has the highest
sensitivity and specificity. A higher sensitivity and specificity indicates supe-
rior performance among the tuning parameters obtained by different disper-
sion estimators. Our results demonstrate that all three final models selected by
the chosen tuning parameter ¯̂γ

BIC
, obtained by the three dispersion estimators

ϕ̂
P

, ϕ̂
GRCV

and ϕ̂
MGRCV

, have the highest sensitivity (100%), while the specifici-
ties of them are 83%, 93% and 97%, respectively. Although these final models
selected by means of the three dispersion estimators have a high sensitivity and
specificity, the model selected by means of the MGRCV estimator ϕ̂

MGRCV
has

the best performance. That means, the dispersion estimator ϕ̂
MGRCV

is a good
compromise between specificity and sensitivity. The results also show that our
proposed GRCV estimator has a better performance than the Pearson estimator.
In addition, since the MGRCV estimate ϕ̂

MGRCV
has a better performance than

the GRCV estimate ϕ̂
GRCV

, the iterative GRCV algorithm can improve the GRCV
estimate to have a more stable and accurate estimate, which proves our claim
in Section 3.3.2.

As a result, the results indicate that the extended dgLARS method with
ϕ̂

MGRCV
provides a highly specific and sensitive model for high-dimensional

GLMs.

3.5 Application to Real Data
In this section we consider the benchmark diabetes data used in [29] and [46],

among others. The response y is a quantitative measure of disease progression
for patients with diabetes one year later. The data includes 10 baseline measure-
ments for each patient, such as age, sex (gender, which is binary), bmi (body mass
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index), map (mean arterial blood pressure), and six blood serum measurements:
ldl (high-density lipoprotein), hdl (low-density lipoprotein), ltg (lamotrigine),
glu (glucose), tc (triglyceride) and tch (total cholesterol), in addition to 45 inter-
actions and 9 quadratic terms, for a total of 64 variables for each patient, so that
this data has n = 442 observations on p = 64 variables. The aim of the study is
to identify which of the covariates are important factors in disease progression.
Since the original diabetes data is a low-dimensional data (p = 64), we add a
thousand noise variables to the original data to also have a high-dimensional
dataset with p = 1064. These low- and high-dimensional diabetes data can be
found in our package.

In the recent literature, variable selection techniques, such as LARS and
Spike and Slab, were used in a linear regression model applied to this dia-
betes data. While we spot from Figure 3.2(a) that, surprisingly, the response y is
markedly right-skewed which can arise from a non-normal distribution, for ex-
ample, a Gamma (or Inverse Gaussian) distribution. Therefore, we fit a Gamma
regression model for the (low- and high-dimensional) diabetes data and use the
extended dgLARS method by means of the proposed algorithm (IPC). Accord-
ing to the results of the previous section (Section 3.4.1), the MGRCV estimate
ϕ̂

MGRCV
is applied as the dispersion estimator to the data.

Since we do not have prior information on the link function, before analyz-
ing we have to choose between three of the most commonly used link functions
inverse, log and identity. Therefore, for each of the low- and high-dimensional
diabetes data, we fit the Gamma model with these three link functions and then
choose the most suitable link function in two ways. First, we plot the adjusted
dependent variable z = η̂+(y− µ̂)(∂η/∂µ) against the estimated linear predic-
tor η̂ = Xβ̂A(γ), suggested by [60], where µ̂ = g−1(Xβ̂A(γ)) is the fitted value,
β̂A(γ) is the extended dgLARS estimator at γ, and ∂η/∂µ can be found in Table
2.1 in Chapter 2. The plot should be linear, departure from linear suggests a
poor choice of link function [58]. Second, after fitting these three models (the
Gamma model with the three link functions), we choose the best model by com-
paring the BIC values to see which link function would be more suitable for the
data.

The results based on the low- and high-dimensional diabetes data are re-
ported in Sections 3.5.1 and 3.5.2, respectively.
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Figure 3.2: (a) Histogram of the response y for the diabetes data. (b) Plot of z versus η̂
with the log link function, computed for the low-dimensional diabetes data, p = 64.

3.5.1 Low-dimensional Real Data

For the low-dimensional scenario, when p < n, we consider the diabetes
data with n = 442 and p = 64 used in [29]. For this dataset, we plotted the
adjusted dependent variable z versus the estimated linear predictor η̂ for the
Gamma model with the inverse, log and identity link functions, but for the sake
of brevity we only show the plot related to the log link (Figure 3.2(b)). The
plots illustrate that while there are scatter in all three plots, there are no overt
departure from linearity and hence no obvious evidence of the poor choice of
these link functions. In addition, the results (not reported) show that, the model
with the log link performs the best among these models with BIC of 4806, and
the model with the identity link (with BIC 4814) fits better than the model with
the inverse canonical link (with BIC 4829). Finally, we find out that the log link
function is the most suitable link for the low-dimensional diabetes data and we
choose it, in the following, as the selected link function.

We first apply a number of variable selection methods such as LARS [29],
LASSO [94], Ridge [45], Elastic Net [104], and Spike and Slab [46] by using the
lars [41], glmnet [35] and spikeslab [47] packages, and then compare the
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results to the results obtained from the proposed dgLARS method implemented
by our package. Note that, for the dgLARS method we use the Gamma family
in our package, while this family is not available in other packages, so that we
fit the Gaussian family to the data to be able to use these packages.

The top 20 selected variables obtained by these algorithms (without consid-
ering any model selection criterion) are reported on Table 3.2, where we used
type =‘lar’ and type =‘lasso’ in the lars package for the LARS and LASSO
methods, respectively, and for the Ridge and Elastic Net methods we used
α = 0.001 and α = 0.5 in the glmnet package, respectively. For the Spike and
Slab method we considered set.seed(112358) in the spikeslab package, and
for the dgLARS method we fitted the Gamma model with the log link and also
the canonical inverse link, so that for this dataset we calculated the dispersion
estimates based on each link function as ϕ̂ log

MGRCV
= 0.140 and ϕ̂

inverse

MGRCV
= 0.145.

When we compare the results of the dgLARS Gamma method to the results
obtained from other algorithms, we find out the remarkable results. From Table
3.2 we can see that, the variables selected by the LARS, LASSO and Elastic Net
methods are the same, and almost in all models the first 4 variables (3, 9, 4 and 7)
are the same. Moreover, importantly, all models (except the dgLARS) have the
same selected variables just in the different order. While all algorithms (except
the dgLARS) select the covariates 12, 27, 33 and 52 in the first 20 variables, our
proposed algorithm does not select them among the top 20 variables. Instead,
the dgLARS algorithm by the Gamma model selects several new other vari-
ables (indicated in bold in Table 3.2) which none of the other algorithms do. For
instance, the variables 60, 18 and 25 are selected into the first 20 selected vari-
ables by the dgLARS Gamma model with the log link function, and the variables
60, 18, 42, 35 and 40 are selected when the link function is the inverse. As a result,
the extended dgLARS method based on a Gamma model, with the log link func-
tion, finds out that the variables "hdl : ltg", "ltgˆ2" and "map : ltg" (60, 18, and
25) are more important factor in disease progression than the variables "bmiˆ2",
"age : ltg", "sex : hdl" and "tc : tch" (12, 27, 33 and 52).

To identify and rank the most important variables, by the dgLARS Gamma
regression model with the log link function, we use three model selection cri-
teria; cross-validation deviance (CV), AIC and BIC, so that in Table 3.3, we
report the sequence of the top 20 variables and their parameter estimates ob-
tained based on all three model selection criteria. In interpreting the table,
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Table 3.2: The sequences of the top 20 predictors selected by the LARS, LASSO, Ridge,
Elastic Net, Spike and Slab and dgLARS algorithms obtained for low-dimensional dia-
betes data.

Algorithm Selected Variables
LARS 3 9 4 7 37 20 19 12 22 28 2 10 27 11 30 46 33 52 24 29
LASSO 3 9 4 7 37 20 19 12 22 28 2 10 27 11 30 46 33 52 24 29
Ridge 3 9 4 8 7 10 12 5 1 6 13 43 24 37 19 63 64 16 39 17
Elastic Net 3 9 4 7 37 12 20 19 10 22 28 2 27 30 11 52 46 33 24 29
Spike and Slab 3 9 4 7 2 20 37 19 12 27 52 11 10 22 63 30 24 58 43 5
dgLARS (log) 3 9 4 7 20 2 28 60 11 46 19 29 18 30 22 10 37 24 58 25
dgLARS (inverse) 3 9 4 7 20 60 2 46 18 10 42 28 11 19 30 35 29 40 24 63

we note that the selected variables are those having non-zero coefficient esti-
mates. First, we use a tenfold cross-validation to obtain the tuning parame-
ter (γ) of the dgLARS Gamma model. Figure 3.3(a) shows the 10-fold cross-
validation deviance curve as a function of the tuning parameter (γ), where the
vertical red dashed line shows the optimal value of γ, which is γ̂

CV
= 1.011,

with the number of non-zero estimated coefficients, which is |A
CV
| = 16, where

A
CV

= P ∪A(γ̂
CV

) = {m : β̂m(γ̂CV
) ̸= 0 ,m = 0, 1, . . . , p}. Since we consider the

protected variables set P contains only the intercept, |P| = b = 1. Second, by
means of the BIC criterion the dgLARS method estimates a Gamma regression
model with a high level of sparsity, so that only |A

BIC
| = |P ∪ A(γ̂

BIC
)| = 9 co-

variates (i.e.,the intercept plus a subset of 8 parameters) are found to influence
disease progression, where γ̂

BIC
= 1.87. While by using the AIC criterion the

number of non-zero estimated coefficients is |A
AIC
| = |P ∪A(γ̂

AIC
)| = 16, where

γ̂
AIC

= 0.98 with AIC 4000.
One point should be mentioned here is that, the number of the points of the

solution curve (q) for this low-dimensional data set by using the original PC
and improved PC algorithms are 121 and 82, respectively, which shows that the
improved algorithm works faster than the original one.

3.5.2 High-dimensional Real Data

For a p larger than n setup, we expanded the original diabetes data to be-
come n = 442 and p = 1064, so that the 1000 additional variables are in reality
just noise. We fit a Gamma regression model for this high-dimensional data and
use the extended dgLARS method by means of the proposed algorithm (IPC).
For the high-dimensional diabetes data, based on the plots of the adjusted de-
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Table 3.3: A list of the top 20 selected variables and their parameter estimates obtained
using the dgLARS Gamma method (with log link, ηi = logµi) for low-dimensional
diabetes data. In each criterion, variables selected are those having non-zero coefficient
estimates; |ACV | = 16, |AAIC | = 16 and |ABIC | = 9.

Variable Coefficient Estimate
Step Name Number CV AIC BIC

1 bmi 3 3.0757 3.0783 2.9998
2 ltg 9 3.4997 3.5071 3.2909
3 map 4 1.9033 1.9181 1.5009
4 hdl 7 -1.7297 -1.7416 -1.3879
5 age : sex 20 0.9493 0.9551 0.6846
6 sex 2 -1.2282 -1.2489 -0.6400
7 age : glu 28 0.2091 0.2109 0.1542
8 hdl : ltg 60 0.4284 0.4355 0.1377
9 ageˆ2 11 0.2715 0.2815 0

10 map : hdl 46 0.2929 0.3077 0
11 gluˆ2 19 0.2497 0.2599 0
12 sex : bmi 29 0.1282 0.1380 0
13 ltgˆ2 18 0.0021 -0.1202 0
14 sex : map 30 0.1087 0.1206 0
15 age : map 22 0.0091 0.0116 0
16 glu 10 0 0 0
17 bmi : map 37 0 0 0
18 age : ldl 24 0 0 0
19 ldl : glu 58 0 0 0
20 map : ltg 25 0 0 0

pendent variable z versus the estimated linear predictor η̂ (not shown here ex-
cept for the log link, Figure 3.3(b)), we obtained the same results for all three
considered link functions, but based on the BIC values (not reported here) we
chose the Gamma model with the log link function as the best model. More-
over, for this dataset we calculated the dispersion estimate based on this model
by using the MGRCV estimator ϕ̂

MGRCV
= 0.147.

Figure 3.4 consists of four images which are outputs of our package. The
figure displays the dgLARS Gamma solution path, the Rao score path and the
CV, AIC and BIC criteria obtained using the improved PC algorithm and the
full data. Like Section 3.5.1, we consider three criteria; Firstly, Figure 3.4(a)
shows the 10-fold cross-validation deviance curve in which the optimal value
of the tuning parameter is γ̂

CV
= 1.77, with the number of non-zero estimated
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Figure 3.3: (a) Plot of the 10-fold cross-validation deviance computed for the low-
dimensional diabetes data with p = 64. (b) Plot of z against η̂ computed with the
high-dimensional diabetes data, p = 1064, when the link functions is log.

coefficients, which is |A
CV
| = |P ∪ A(γ̂

CV
)| = 57, where P contains only the

intercept. Secondly, by the BIC model selection criterion the dgLARS method
estimates a Gamma regression model with a high level of sparsity, so that γ̂

BIC
=

2.76 with BIC of 4817 and |A
BIC
| = 11 covariates (i.e., the intercept plus a subset

(A(γ̂
BIC

)) of 10 parameters) are found to influence disease progression. While
by the AIC model selection criterion, γ̂

AIC
= 1.79 (with AIC of 4760) and the

number of non-zero estimated coefficients is |A
AIC
| = 53 (i.e., the subsetA(γ̂

AIC
)

has 52 covariates).
In addition, we report the sequence of the 25 selected variables and their

parameter estimates based on all three criteria in Table 3.4. In interpreting the
table, we note that variables starting with “n.” are noise variables and the rest
are the original variables.

Using Figure 3.4 and Table 3.4 we can see that, while only 4 variables (3, 9, 4
and 7) have path-profiles that clearly stand out in all three criteria, significantly
these variables are the top 4 from our previous analysis obtained using the low-
dimensional data (Section 3.5.1). It is interesting that 3 other non-noise vari-
ables, “age : sex”, “sex” and “age : glu” (with variable numbers: 20, 2 and 28)
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Table 3.4: The top 25 variables and their parameter estimates obtained using the
dgLARS Gamma method (with log link) for high-dimensional diabetes data. In each
criterion, variables selected are those having non-zero coefficient estimates; |ACV | = 57,
|AAIC | = 53 and |ABIC | = 11.

Variable Coefficient Estimate
Step Name Number CV AIC BIC

1 bmi 3 3.0794 3.0762 2.9489
2 ltg 9 3.3787 3.3746 3.0971
3 map 4 1.4391 1.4337 1.0788
4 hdl 7 -1.2253 -1.2228 -0.9491
5 n.312 376 0.0551 0.0548 0.0387
6 n.545 609 0.0320 0.0318 0.0155
7 n.543 607 -0.0341 -0.0338 -0.0142
8 age : sex 20 0.6080 0.6033 0.2545
9 n.423 487 0.0113 0.0112 0.0034
10 n.770 834 0.0177 0.0175 0.0036
11 n.657 721 0.0115 0.0113 0
12 sex 2 -0.4608 -0.4550 0
13 n.636 700 -0.0170 -0.0167 0
14 n.283 347 0.0124 0.0123 0
15 n.337 401 -0.0162 -0.0160 0
16 n.404 468 0.0090 0.0088 0
17 n.62 126 -0.0121 -0.0118 0
18 n.988 1052 0.0089 0.0086 0
19 age : glu 28 0.1465 0.1440 0
20 n.71 135 -0.0090 -0.0088 0
21 n.160 224 -0.0083 0.0083 0
22 n.635 699 -0.0080 -0.0087 0
23 n.466 530 -0.0085 -0.0083 0
24 n.612 676 -0.0084 -0.0082 0
25 n.969 1033 -0.0045 -0.0045 0

are in the top 25 variables, so that in Table 3.3, they have the variable number:
5, 6 and 7, respectively, and along with “bmi”,“ltg”,“map” and “hdl” are the first
7 variables in Table 3.3. Regardless of the criteria used, when we inspected the
first 100 variables selected by the improved PC algorithm, we found that 8 were
from the original 64 variables, and 7 were from the top 25 variable from Table
3.4. This demonstrates stability of the improved PC algorithm even in ultra-
high dimensional problems.
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Figure 3.4: (a) Plot of the 10-fold cross-validation deviance, (b) Model selection criteria,
(c) Rao score statistics path, (d) Regression coefficients path for the dgLARS Gamma
regression model for the high-dimensional diabetes data with p = 1000 noise variables.

At the end, the number of the points of the solution curve for this data set by
using the original PC and improved PC algorithms are 482 and 465, respectively.
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3.6 Conclusions
In this chapter we extended the dgLARS method for a GLM to a larger class

of the exponential family, namely the exponential dispersion family (when the
dispersion parameter, ϕ, is unknown), and obtained the general framework of
the dgLARS estimator for general GLM with general link function. We imple-
mented explicitly the method for Gamma and Inverse Gaussian with a variety
of link functions. To estimate the dispersion parameter we first presented a
classical estimator which can be used during the solution path, and then pro-
posed a new method to do high-dimensional inference on the dispersion pa-
rameter. We also proposed an iterative algorithm that produces a more sta-
ble and accurate estimation. Moreover, we proposed an improved version of
the predictor-corrector (PC) algorithm to compute the solution curve. The im-
proved PC algorithm allows the dgLARS method to be implemented using less
steps, greatly reducing the computational burden because of reducing the num-
ber of points of the solution curve. The method was compared well with some
well-known methods where can be used. The results show that the improved
PC algorithm is better and quicker than the original PC algorithm, and now the
dgLARS method can be used for a variety of distributions with different types
of the canonical and non-canonical link functions.
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Abstract

Clinical studies where patients are routinely screened for many genomic fea-
tures are becoming more routine. In principle, this holds the promise of being
able to find genomic signatures for a particular disease. In particular, cancer sur-
vival is thought to be closely linked to the genomic constitution of the tumour.
Discovering such signatures will be useful in the diagnosis of the patient, may
be used for treatment decisions and, perhaps, even the development of new
treatments. However, genomic data are typically noisy and high-dimensional,
not rarely outstripping the number of patients included in the study. Regular-
ized survival models have been proposed to deal with such scenarios. These
methods typically induce sparsity by means of a coincidental match of the ge-
ometry of the convex likelihood and (near) non-convex regularizer. The dis-
advantages of such methods are that they are typically non-invariant to scale
changes of the covariates, they struggle with highly correlated covariates and
they have a practical problem of determining the amount of regularization. In
this chapter we propose a method for sparse inference in relative risk regres-
sion models based only on the likelihood, closely related to least angle regres-
sion. The method is computationally fast and is implemented in the R-package
dglars.

Keywords: Relative risk regression models; Survival analysis; Gene expression
data; High-dimensional data; Sparsity; dgLARS.
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4.1 Introduction

Advances in genomic technologies have meant that many new clinical stud-
ies in cancer survival include a variety of genomic measurements, ranging from
gene expression to SNP data. Studying the relationship between survival and
genomic markers can be useful for a variety of reasons. If a genomic signature
can be found, then patients can be given more accurate survival information.
Furthermore, treatment and care may be adjusted to the prospects of an indi-
vidual patient. Eventually, the genomic signature combined with information
from other studies may be used to identify drug targets. We will focus on four
recent studies of cancer survival for four different tumours. Our aim is to find
a reproducible sparse predictor for cancer survival.

Sparse inference in the past two decades has been dominated by methods
that penalize typically convex likelihoods by functions of the parameters that
happen to induce solutions with many zeros. The lasso [94], elastic net [105], l0
[80] and the SCAD [31] penalties are examples of such penalties that, depend-
ing on some tuning parameter, conveniently shrink estimates to exact zeros.
Also in survival analysis these methods have been introduced. [95] applied the
lasso penalty to the Cox proportional hazards model. [40], [89] and [39] sug-
gested important computational improvements to make the calculation of the
lasso path in the Cox proportional hazards model more efficient. Although the
lasso penalty induces sparsity, it is well known to suffer from possible incon-
sistent selection of variables. [19] implemented the SCAD penalty for the Cox
model. This method enjoys the property of sparsistency, i.e., in an appropriate
asymptotic sense it selects first the true variables before selecting the incorrect
ones.

Whereas penalized inference is convenient, justification of the penalty is
somewhat problematic. Interpreting the solution as a Bayesian MAP estima-
tor with a particular prior on the parameters seems to merely reformulate the
problem, rather than solving it. Furthermore, the methods suffer from being not
invariant under scale transformations of the explanatory variables. This means
that measuring, e.g., height in centimeters or inches can and probably will re-
sult in dramatically different answers. Therefore, most penalized regression
methods start their exposition by assuming that the variables are appropriately
renormalized. This is clearly a merely algorithmic device and simply begs the
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question of invariance. Clearly the strongest argument in favour of some of
these methods are their asymptotic properties. Nevertheless, what this means
in the small sample settings encountered in practice is also problematic.

In this chapter, we will approach sparsity directly from a likelihood point of
view. The angle between the covariates and the tangent residual vector within
the likelihood manifold provides a direct and scale-invariant way to assess the
importance of the individual covariates. The idea is similar to the least angle
regression approach proposed by [29]. However, rather than using it as a com-
putational device for obtaining lasso solutions, we view the method in its own
right as in [13]. Moreover, the method extends directly beyond the Cox pro-
portional hazard model. In fact, we will focus on general relative risk survival
models.

In section 4.2, we introduce the relative risk regression model together with
its underlying likelihood geometry. In section 4.3 the sparse solution path of
a relatively risk survival model is defined. By appealing to the theory of M-
estimation, we derive a robust way of selecting a unique solution of the sparse
survival regression model. Simulation studies compare the performance of the
method to other sparse survival regression approaches, especially in the pres-
ence of correlated predictors. In section 4.5 we return to the motivating cancer
survival studies and employ differential geometric Cox proportional hazards
modelling to find a genetic signature for cancer survival in skin, colon, prostate
and ovarian cancer.

4.2 Relative Risk Regression Models
In analyzing survival data, one of the most important tool is the hazard func-

tion, which is used to express the risk or hazard of failure at some time t. For-
mally, let T be the (absolutely) continuous random variable associated with the
survival time and let f(t) be the corresponding probability density function, the
hazard function is defined as

λ(t) =
f(t)

1−
∫ t

0
f(s)ds

, (4.1)

and specifies the instantaneous rate at which failures occur for subjects that
are surviving at time t. Suppose that the hazard function (4.1) can depend
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on a p-dimensional, possibly time-dependent, vector of covariates, denoted by
x(t) = (x1(t), . . . , xp(t))

⊤. Relative risk regression models are based on the as-
sumption that the vector x(t) influences the hazard function through the fol-
lowing relation

λ(t;x) = λ0(t)ψ(x(t);β), (4.2)

where β ∈ B ⊆ Rp is a p-dimensional vector of unknown fixed parameters and
λ0(t) is the baseline hazard function at time t, which is left unspecified. Finally,
ψ : Rp×Rp → R is a fixed twice continuously differentiable function, called the
relative risk function, and the parameter space B is such that ψ(x(t);β) > 0 for
each β ∈ B. We also assume that the relative risk function is normalized, i.e.
ψ(0;β) = 1. Model (4.2), originally proposed in [93], clearly extends the usual
Cox regression model [26] which is obtained when ψ(x(t);β) = exp(β⊤x(t)),
but also allow us to work with applications in which the exponential form of
the relative risk function is not the best choice. This issue was observed in
[65] and further underlined in [24]. As a motiving example for the general-
ization (4.2), several authors have noted that the linear relative risk function
ψ(x(t);β) = 1 + β⊤x(t) provides a natural framework within which to assess
departures from an additive relative risk model when two or more risk factors
are studied in relation to the incidence of a disease (see for example [93], [75]
and [73], among the other). Other possible choices for the relative risk functions
are the logit relative risk function ψ(x(t);β) = log(1 + exp(β⊤x(t))), proposed
by [28], or the the excess relative risk model ψ(x(t);β) =

∏p
m=1(1 + xm(t)βm).

For detailed theoretical treatments based on the counting process theory, the
interested reader is referred to [1] or [52].

Suppose that n observations are available and let with ti the ith observed
failure time. Assume that we have k uncensored failure times and let by D
the set of indices for which the corresponding failure time is observed. The
remaining failure times are right censored. As explained in [27], if we denote
by R(t) the risk set, i.e., the set of indices corresponding to the subjects who
have not failed and are still under observation just prior to time t, under the
assumption of independent censoring, inference about the β can be carried out
by the following partial likelihood function

Lp(β) =
∏
i∈D

ψ(xi(ti);β)∑
j∈R(ti)

ψ(xj(ti);β)
. (4.3)
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When the exponential relative risk function is used in model (4.2) and we work
with fixed covariates, (4.3) is clearly equal to the original partial likelihood in-
troduced in [26] and discussed in great detail in [25]. The inferential aspects of
the relative risk regression models (4.2) are studied in [74] where are extended
the results given in [7] for the Cox regression model.

4.3 Sparse Relative Risk Regression
Aim of this section is to extend the dgLARS method [13] to the relative

risk regression models described in section 4.2. The basic idea underlying the
dgLARS method is to use the differential geometrical structure of a generalized
linear model (GLM) [60] to generalize the LARS method originally proposed in
[29]. This means that, our first step is relate the partial likelihood with the like-
lihood function of a specific GLM. As originally observed in [92] and studied
in greater detail in [72], to solve this problem, in this chapter we shall use the
identity that exists between the partial likelihood (4.3) and the likelihood func-
tion of a logistic regression model for matched case-control studies. The idea
to use this identity to study the differential geometrical structure of a relative
risk regression model is not new and was originally used in [63] to construct ap-
proximated confidence regions for the proportional hazards model. For a more
complete description of the relationship between differential geometry and sta-
tistical models, the interested reader is refereed to [6] and [53].

4.3.1 Differential Geometrical Structure of the Relative Risk Regression
Model

In order to define the generalized equiangularity condition for the relative
risk regression model, it is useful to see the partial likelihood (4.3) as arising
from a multinomial sample scheme. Consider an index i ∈ tuning and let
Yi = (Yih)h∈R(ti) be a multinomial random variable with sample size equal to 1
and cell probabilities πi = (πih)h∈R(ti) ∈ Πi, i.e. p(y;πi) =

∏
h∈R(ti)

πyih
ih . Assum-

ing that the random vectors Yi are independent, the joint probability density
function is an element of the model space

S =

∏
i∈D

∏
h∈R(ti)

πyih
ih : (πi)i∈D ∈

⊗
i∈D

Πi

 . (4.4)
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The set (4.4) will play the role of ambient space. We would like to underline
that our differential geometric constructions are invariant to the chosen param-
eterization which means that the ambient space S can be equivalently defined
by the canonical parameter vector and this will not change the results. In this
chapter we prefer to use the mean value parameter vector to specify our differ-
ential geometrical description because this will make the relationship with the
partial likelihood (4.3).

Consider the following model definition for the conditional expected value
of the random variable Yih, i.e.

Eβ(Yih) = πih(β) :=
ψ(xh(ti);β)∑

j∈R(ti)
ψ(xj(ti);β)

, (4.5)

then our model space is the set

M =

∏
i∈D

∏
h∈R(ti)

(
ψ(xh(ti);β)∑

j∈R(ti)
ψ(xj(ti);β)

)yih

: β ∈ B

 . (4.6)

The partial likelihood (4.3) is formally equivalent to the likelihood function as-
sociated with the model spaceM if we assume that for each i ∈ D, the observed
yih is equal to one if h is equal to i and zero otherwise.

Let ℓ(β) =
∑

i∈D
∑

h∈R(ti)
Yih log πih(β) be the log-likelihood function asso-

ciated to the model space M and let ∂mℓ(β) = ∂ℓ(β)/∂βm. The tangent space
TβM of M at the model point

∏
i∈D
∏

h∈R(ti)
πih(β)

yih is defined as that linear
vector space spanned by the p elements of the score vector, formally

TβM = span{∂1ℓ(β), . . . , ∂pℓ(β)}.

Under the standard regularity conditions, it is easy to see that TβM is the linear
vector space of the random variables vβ =

∑p
m=1 vm∂mℓ(β) ∈ TβM with zero

expected value and finite variance, i.e.,

Eβ(vβ) = 0 and Eβ(v
2
β) <∞.

As a simple consequence of the chain rule we have that for any tangent vector
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belonging to the tangent space TβM

vβ =

p∑
m=1

vm∂mℓ(β) =
∑
i∈D

∑
h∈R(ti)

(
p∑

m=1

vm
∂πih(β)

∂βm

)
∂ℓ(β)

∂πih
=
∑
i∈D

∑
h∈R(ti)

wih
∂ℓ(β)

∂πih
,

which shows that TβM is a linear sub vector space of the tangent space TβS
spanned by the random variables ∂ihℓ(β) = ∂ℓ(β)/∂πih. To define the no-
tion of angle between two given tangent vectors belonging to TβM, say vβ =∑p

m=1 vm∂mℓ(β) and wβ =
∑p

n=1wn∂nℓ(β), we shall use the information metric
[79, 17], i.e,

⟨vβ;wβ⟩β = Eβ(vβ · wβ) =

p∑
m,n=1

Eβ (∂mℓ(β) · ∂nℓ(β)) vmwn = v⊤I(β)w, (4.7)

where v = (v1, . . . , vp), w = (w1, . . . , wp) and I(β) is the Fisher information
matrix evaluated at β. As observed in [63], the matrix I(β) used in (4.7) is
not exactly equal to the Fisher information matrix of the relative risk regression
model, however it has the appropriate asymptotic properties for the inference.

The tangent residual vector

rβ =
∑
i∈D

∑
h∈R(ti)

rih(β)∂ihℓ(β), (4.8)

where rih(β) = yih − πih(β), is an element of TβS and displays the difference
between a model element in S and the data.

4.3.2 dgLARS Method for the Relative Risk Regression Model

The dgLARS method is a sequential method developed to estimate a sparse
solution curve embedded in the parameter space B. To explore the sparse struc-
ture of a relative risk regression model, we can use the following differential
geometric characterization of the mth element of the score vector, i.e.

∂mℓ(β) = ⟨∂mℓ(β); rβ⟩β = cos(ρm(β)) · I1/2mm(β) · ∥rβ∥β, (4.9)
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where Imm(β) is the Fisher information for βm and ∥rβ∥2β is equal to

Eβ r
2(β) =

∑
i,j∈D

∑
h∈R(ti)

∑
k∈R(tj)

Eβ(∂ihℓ (β) · ∂jkℓ(β)) rih(β) rjk(β)

=
∑
i∈D

∑
h,k∈R(ti)

Eβ(∂ihℓ (β) · ∂ikℓ(β)) rih(β) rik(β)

=
∑
i∈D

∑
h,k∈R(ti)

rih(β) rik(β)

πih(β) 1{h=k} − πih(β) πik(β)
.

The quantity ρm(β) is a generalization of the Euclidean notion of angle be-
tween the mth column of the design matrix and the residual vector r(β) =

(rih(β))i∈D,h∈R(ti). Using (4.9) one can see that the signed Rao score test statistic
is geometrically characterized as follows:

rum(β) = I−1/2
mm (β)∂mℓ(β) = cos(ρm(β)) · ∥rβ∥β.

We shall say that two given predictors, say m and n, satisfy the generalized
equiangularity condition at the point β when |rum(β)| = |run(β)|. Inside the
dgLARS theory, the generalized equiangularity condition is used to identify the
predictors that are included in the active set. Formally, for a given value of the
tuning parameter γ ∈ R+ the corresponding active set is denoted by Â(γ) and
the dgLARS estimator, denoted by β̂(γ), is such that the following conditions
are satisfied:

∀m ∈ Â(γ) ⇒
{ ∣∣∣rum(β̂(γ))∣∣∣ = γ, (4.10)

rum(β̂(γ)) = smγ, (4.11)

∀m /∈ Â(γ) ⇒ |rum(β̂(γ))| < γ, (4.12)

where sm = sign(β̂m(γ)).

Using the differential geometrical structure of a relative risk regression model
explained in Section 4.3.1 and the previous conditions, the dgLARS method ex-
plores the sparse structure of a relative risk regression model. Formally, dgLARS
computes a finite sequence of transition points, say 0 ≤ γ(K) ≤ . . . ≤ γ(2) ≤ γ(1),
such that for each γ(k) one of the following two conditions can occur:
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(i) either ∣∣∣rum(β̂(γ(k)))∣∣∣ = γ(k), (4.13)

and therefore m ∈ Â(γ(k));

(ii) or

sign(rum(β̂(γ
(k)))) ̸= sign(β̂m(γ(k))), (4.14)

and therefore m /∈ Â(γ(k)).

This means that a new predictor is included in the active set when the gener-
alized equiangularity condition (4.13) is satisfied, or an active predictor is re-
moved from the active set if the sign of the corresponding signed Rao score test
statistic is not in agreement with the sign of the estimated coefficient, i.e., con-
dition (4.14). In order to simplify our notation, we shall assume that Â(γ(k)) =
{1, 2, . . . , k}. As for each γ ∈ (γ(k+1); γ(k)] the signs of the estimated coefficients
do not change, condition (4.11) tells us that, for a fixed value of the tuning pa-
rameter γ, the dgLARS estimator can be defined as the Z-estimator implicitly
defined by the following system of estimating equations:

ru1 (β̂(γ))− s1γ = 0

ru2 (β̂(γ))− s2γ = 0
...

...
ruk(β̂(γ))− skγ = 0.

(4.15)

To gain more insight about the differences between the dgLARS and the ℓ1-
penalized estimators as variable selection methods, it is essential to compare
conditions (4.10) and (4.12) with the corresponding conditions that characterize
the behaviour of the Lasso estimator as a variable selection method. These con-
ditions are studied in [83] for a general convex loss function. The behaviour of
the Lasso estimator is explained by three conditions involving the gradient vec-
tor as a direct consequence of the Karush-Kuhn-Tucker (KKT) conditions. The
Proof of Theorem 2 in [83] shows that for a given value of the tuning parameter
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γ, the Lasso estimator is defined by:

∀m ∈ Â(γ) ⇒
{
|∂mℓ(β̂(γ))| = γ, (4.16)

∂mℓ(β̂(γ)) = sm γ, (4.17)

∀m /∈ Â(γ) ⇒ |∂mℓ(β̂(γ))| < γ. (4.18)

Conditions (4.16) and (4.18) tell us that the behaviour of the Lasso estimator, as a
variable selection method, depends on the behaviour of the elements of the gra-
dient vector. Characterization (4.9) tell us that the Lasso estimator is an efficient
variable selection method only when the Fisher information is constant with
respect to the parameter vector β. The dgLARS method overcomes this theo-
retical limitation taking into account the Fisher information. For more details,
the reader is referred to [13] and [70]. The latter extend the dgLARS method
to GLMs based on the exponential dispersion family by means of an improved
predictor-corrector algorithm.

4.3.3 Example: Sparse Cox’s Proportional Hazards Model

Let Z, C and x(t) respectively denote the survival time, the censoring time
and their associated p-dimension vector of covariates which can depend on time
t, respectively. Further denote by T = min{Z,C} the observed time and Y =

I{Z ≤ C} the censoring indicator. For simplicity, we assume that Z and C are
conditionally independent and the censoring mechanism is non-informative.
The observed dataset of size n is denoted by {(x(ti), ti, yi) , i = 1, . . . , n}.

The proportional hazards model is very popular in survival analysis par-
tially due to its simplicity and its convenience in dealing with censoring. The
proportional hazards model assumes that the hazard function is

λ(t;x) = λ0(t) exp(β
⊤x(t)), (4.19)

where λ0(t) is the baseline hazard function is unspecified and needs to be es-
timated nonparametrically and β is a p-dimensional vector of unknown fixed
parameters of interest.

In next section, Section 4.3.4, first and second derivatives of the log-likelihood,
Fisher information and its derivative, and Rao score statistic obtained from the
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Cox’s partial likelihood are derived.

4.3.4 Derivation of GIC

In this section we develop the main equations needed to compute the Gen-
eralized Information Criterion (GIC) proposed in Konishi and Kitagawa [54].
In other to simplify our notation, we shall drop the dependence of the dgLARS
estimator from the tuning parameter γ, so that we shall write β̂ instead of β̂(γ).

Given the partial log-likelihood function

ℓp(β) =
∑
i∈D

β⊤xi(ti)− log

 ∑
j∈R(ti)

exp(β⊤xj(ti))

 , (4.20)

its first and second derivatives with respect to β are given by

∂mℓp(β) =
∂ℓp(β)

∂βm
=
∑
i∈D

Xmi(ti)−
∑

j∈R(ti)

πij(β)Xmj(ti)

 , (4.21)

where

πij =
exp(β⊤xj(ti))∑

k∈R(ti)
exp(β⊤xk(ti))

and

∂m,nℓp(β) =
∂2ℓp(β)

∂βm∂βn

= −
∑
i∈D

 ∑
j∈R(ti)

πij(β)Xmj(ti)Xnj(ti)

−

 ∑
j∈R(ti)

πij(β)Xmj(ti)

 ∑
j∈R(ti)

πij(β)Xnj(ti)

 . (4.22)
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Further, the (m,n)th entry of the Fisher information matrix for β is given by

Imn(β) =
1

|D|
∑
i∈D

 ∑
j∈R(ti)

πij(β)Xmj(ti)Xnj(ti)

−

 ∑
j∈R(ti)

πij(β)Xmj(ti)

 ∑
j∈R(ti)

πij(β)Xnj(ti)

 , (4.23)

such that the Fisher information for βm is

Imm(β) =
1

|D|
∑
i∈D

 ∑
j∈R(ti)

πij(β)X
2
mj(ti)−

 ∑
j∈R(ti)

πij(β)Xmj(ti)

2 , (4.24)

with its derivative:

∂nImm(β) =
∂Imm(β)

∂βn

=
1

|D|
∑
i∈D

 ∑
j∈R(ti)

πij(β)X
2
mj(ti)

Xnj(ti)−
∑

j∈R(ti)

πij(β)Xnj(ti)


− 2

|D|
∑
i∈D

 ∑
j∈R(ti)

πij(β)Xmj(ti)


×

 ∑
j∈R(ti)

πij(β)Xmj(ti)

Xnj(ti)−
∑

j∈R(ti)

πij(β)Xnj(ti)

 .
(4.25)

We now give the details of the GIC derivation. As we have seen in Section
4.3.2, the dgLARS estimator can be defined as theZ-estimator implicitly defined
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by the following equations

0 = ϕm(β̂, γ)

= ∂mℓp(β̂)− γsmI1/2mm(β̂)

=
∑
i∈D

(
∂mℓp,i(β̂)− γ

smI1/2mm(β̂)

|D|

)
=
∑
i∈D

ϕm,i(β̂, γ),

for any m ∈ Â(γ). Under this setting, the generalized information criterion [54]
is defined as

GIC(β̂, γ) = −2 ℓp(β̂(γ)) + 2 tr(R−1(β̂, γ)Q(β̂, γ)), (4.26)

where β̂ is the final estimate of β for a given γ and

Rm,n(β̂, γ) = −
1

|D|∂nϕm(β, γ)
∣∣
β=β̂

= − 1

|D|
∑
i∈D

(
∂m,nℓp,i(β̂)− γ

sm

2|D|I1/2mm(β̂)
∂nImm(β̂)

)

=
1

|D|

(
Imn(β̂) + γ

sm

2 I1/2mm(β̂)
∂nImm(β̂)

)
,

and

Qm,n(β̂, γ) =
1

|D|
∑
i∈D

ϕm,i(β̂, γ) · ∂nℓp,i(β̂)

=
1

|D|
∑
i∈D

(
∂mℓp,i(β̂)− γ

smI1/2mm(β̂)

|D|

)
· ∂nℓp,i(β̂)

=
1

|D|

(∑
i∈D

∂mℓp,i(β̂) · ∂nℓp,i(β̂)− γ
smI1/2mm(β̂)

|D| ∂nℓp(β̂)

)
,

where the partial log-partial likelihood ℓp(β̂) and other components inRm,n(β̂, γ)

and Qm,n(β̂, γ) are given in (4.20)-(4.25).
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4.4 Simulation Study
In this section we want to demonstrate the performance of the differential

geometric relative risk model. Given the fact that other methods have only
been implemented for the cox proportional hazards model, our comparison will
focus on this model although it is clear that it is easy to extend the method to
other relative risk settings.

4.4.1 Comparison with Other Methods.

In this section we compare the dgCox model with three popular algorithms
for sparse Cox regression: the coordinate descent method (glmnet) developed
by [88], the predictor-corrector (glmpath) introduced by [68] and the gradient
ascent algorithm (penalized) proposed by [38].

In our simulation study we generate survival times ti, i = 1, 2, . . . , n, follow-
ing exponential distributions with subject-specific parameters λi = exp(β⊤Xi).
The explanatory variables X1, . . . , Xp are sampled from a multivariate normal
density N(0,Σ) where the entries of Σ are fixed to corr(Xj, Xk) = ρ|j−k| for
ρ ∈ (0.5, 0.7, 0.9). The censorship is randomly assigned to the survival times
with probability π ∈ (0.2, 0.4). We fix the sample size n to 50 and the number of
predictors p to 100 to emulate a scenario in which p > n. From the 100 predictors
used, we fix first 30 to 2 and the remaining 70 are set to zero.

For each one of the previous scenarios we generate 100 datasets and we cal-
culate the receiver operating characteristic (ROC) curves for the four methods.
In Figure 4.1 we show the averaged ROC curves, which are calculated using the
100 data sets. In scenarios (a) and (b), where ρ = 0.5, the four method meth-
ods exhibit a similar performance, having overlapping curves for both levels of
censorship. A similar performance of the methods has been also observed for
combinations of smaller values of ρ and π. In scenarios (c) and (d), where the
value of ρ increases to 0.7, the glmnet, glmpath and penalized approaches still
overlap, whereas the dgCox model appears to be consistently the best method.
In scenarios (e) and (f) where the correlation among neighbouring predictors is
high, say ρ = 0.9, the dgCox model is clearly the superior approach for both
levels of censorship. For the same false positive rate, the true positive rate of
the dgCox method is around 10% higher than the rate obtained by the glmnet,
glmpath and penalized approaches.
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Figure 4.1: Results from the simulation study; for each scenario we show the averaged
ROC curve (using 100 datasets) for the dgCox, the coordinate descent method (CoxNet,
by glmnet), the predictor-corrector (CoxPath, by glmpath) and the gradient ascent al-
gorithm (CoxPath, by penalized). The 45-degree diagonal is also included in the plots.
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In summary, the performance of the four methods is similarly affected by
the inclusion of different proportions of censored data. However, the dgCox
models is much more efficient in cases in which the predictor variables show
significant correlation levels.

4.4.2 Model Selection Comparisons

Under the proposed dgCox model the sparsity of the estimated regression
coefficients is controlled by the tuning parameter γ. The simulation study in
this section is intended to examine the finite sample performance of a num-
ber of model selection criteria. Though these methods take into account both
goodness-of-fit and model complexity measures in selecting the tuning param-
eter, their performance differ in identifying the true model [33]. Hence, in order
to effectively identify the true model it is crucial to choose among the model
selection criteria. In general, information-based model selection criteria are de-
fined by

IC(γ) = −2ℓ(β̂(γ)) + C × comp

where comp is a measure of model complexity and the factor C is determined
by the type of model selection criteria in use. The minus 2 log-likelihood is com-
monly used as a measure of model goodness-of-fit. We consider the following
model selection criteria:

AIC : Classical AIC with C = 2 and comp = df .

BIC : Classical BIC with C = log(n) and comp = df .

FAN13 : Another generalized information criterion proposed in Fan and Tang
[33] with C = log(log(n))× log(p) and comp = df .

GICAIC : Generalized information criterion proposed in Konishi and Kitagawa
[54] with C = 2 and comp = edf .

GICBIC : Generalized information criterion proposed in Konishi and Kitagawa
[54] with C = log(n) and comp = edf .

GICFAN : A mixture of both with C = log(log(n))× log(p) and comp = edf .
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As the criteria are based on the partial likelihood (rather than the full like-
lihood) which is a product across the non-censored observations, the effective
number of observations in this model is the size of the set of non-censored ob-
servations, n = |D|.

The simulation study in this section follows similar data generation mech-
anism as discussed in Section 4.4.1. We fix a censoring probability π = 0.2.
The sample sizes are {50, 200} and the number of predictors p are taken to be
{50, 100, 1000}. This scenario covers p ≥ n. The level of sparsity in the true
model varies: these predictors we fix the coefficients of the first d = {2, 8, 32}
predictors to 2 and the remaining coefficients are set to zero. The same correla-
tion structure Σ as in Section 4.4.1 is considered with ρ = 0.9. For each scenario
we simulate 500 data sets and let the dgCox algorithm computes the entire path
of the coefficient estimates.Then we use the AIC, BIC, GICAIC , GICBIC , FAN13
and GICFAN criteria to select the tuning parameter.

We present the simulation results for all the scenarios in Tables 4.1 (n =

50) and 4.2 (n = 200). We report the median number of variables included in
the final model (Size), the average false positive rate (FPR), the false discovery
rate (FDR), the false negative rate (FNR) and F1-score (F1) to investigate the
performance of the model selection criteria in identifying the true model. The
results for p = 100 are not reported in Tables 4.1 and 4.2 for sake of brevity, and
can be found in the supplementary materials.

The results, in Table 4.1, show that when p ≫ n all these model selection
methods perform almost equally in terms of FPRs, and when n and p are equal
FAN13 performs slightly better than others. However these methods differ in
terms of FDRs especially when the true model is very sparse (d = 2), in all level
of sparsity FAN13 outperforms others. These methods perform almost equally
in terms of FNRs, though their performance decrease as the level of sparsity
decreases from d = 2 predictors having non-zero coefficients to 32. In terms of
FNRs, when the true model is very sparse AIC, GICAIC and GICBIC perform
better than others, and for less sparse models GICAIC and GICBIC select the
best model. As there is a clear trade-off between FNR and FPR. Therefore, it
can be more informative to compare a summary measure, such as the F1-score.
When the true model is very sparse FAN13 has the best performance in terms
of F1-scores, and for less sparse models GICAIC and GICBIC have the better
performance than others.
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Table 4.1: Results from the simulation studies when n = 50; for each scenario we report
the median number of variables included in the final model (Size), the mean of the false
positive rate (FPR), the false discovery rate (FDR), the false negative rate (FNR) and F1-
score (F1). Standard errors are in parentheses. Bold values identify the best models for
each scenario.

p d Criterion Size FPR FDR FNR F1

50 2 AIC 5.000(0.163) 0.072(0.003) 0.475(0.013) 0.001(0.001) 0.642(0.011)
BIC 2.000(0.052) 0.017(0.001) 0.198(0.010) 0.002(0.001) 0.868(0.007)
FAN13 2.000(0.032) 0.008(0.001) 0.118(0.008) 0.003(0.002) 0.924(0.005)
GICAIC 4.000(0.160) 0.072(0.003) 0.479(0.013) 0.001(0.001) 0.639(0.011)
GICBIC 2.000(0.052) 0.072(0.003) 0.479(0.013) 0.001(0.001) 0.639(0.011)
GICFAN 2.000(0.035) 0.010(0.001) 0.129(0.009) 0.002(0.001) 0.917(0.006)

8 AIC 7.000(0.044) 0.002(0.000) 0.010(0.002) 0.157(0.005) 0.906(0.003)
BIC 7.000(0.043) 0.001(0.000) 0.006(0.001) 0.172(0.005) 0.899(0.003)
FAN13 7.000(0.043) 0.001(0.000) 0.004(0.001) 0.188(0.005) 0.890(0.003)
GICAIC 7.000(0.045) 0.002(0.000) 0.010(0.002) 0.155(0.005) 0.907(0.003)
GICBIC 7.000(0.044) 0.002(0.000) 0.010(0.002) 0.155(0.005) 0.907(0.003)
GICFAN 7.000(0.043) 0.001(0.000) 0.006(0.001) 0.176(0.005) 0.896(0.003)

32 AIC 16.00(0.103) 0.010(0.001) 0.010(0.001) 0.497(0.003) 0.664(0.003)
BIC 15.00(0.111) 0.005(0.001) 0.005(0.001) 0.542(0.003) 0.624(0.003)
FAN13 14.00(0.167) 0.004(0.001) 0.004(0.001) 0.628(0.005) 0.531(0.006)
GICAIC 16.00(0.105) 0.011(0.001) 0.011(0.001) 0.493(0.003) 0.667(0.003)
GICBIC 16.00(0.109) 0.011(0.001) 0.011(0.001) 0.493(0.003) 0.667(0.003)
GICFAN 15.00(0.133) 0.005(0.001) 0.006(0.001) 0.552(0.004) 0.612(0.004)

1000 2 AIC 7.000(0.280) 0.007(0.000) 0.622(0.013) 0.001(0.001) 0.495(0.012)
BIC 2.000(0.058) 0.001(0.000) 0.214(0.011) 0.002(0.001) 0.856(0.008)
FAN13 2.000(0.020) 0.000(0.000) 0.054(0.006) 0.005(0.002) 0.964(0.004)
GICAIC 8.000(0.325) 0.009(0.000) 0.671(0.012) 0.001(0.001) 0.445(0.012)
GICBIC 2.000(0.088) 0.009(0.000) 0.671(0.012) 0.001(0.001) 0.445(0.012)
GICFAN 2.000(0.022) 0.000(0.000) 0.062(0.006) 0.005(0.002) 0.959(0.004)

8 AIC 6.000(0.060) 0.000(0.000) 0.057(0.004) 0.242(0.006) 0.833(0.004)
BIC 6.000(0.056) 0.000(0.000) 0.046(0.003) 0.263(0.006) 0.823(0.004)
FAN13 6.000(0.052) 0.000(0.000) 0.028(0.003) 0.330(0.006) 0.785(0.004)
GICAIC 6.000(0.061) 0.000(0.000) 0.058(0.004) 0.238(0.006) 0.834(0.004)
GICBIC 6.000(0.058) 0.000(0.000) 0.058(0.004) 0.238(0.006) 0.834(0.004)
GICFAN 6.000(0.055) 0.000(0.000) 0.033(0.003) 0.313(0.006) 0.795(0.004)

32 AIC 17.00(0.106) 0.000(0.000) 0.026(0.002) 0.493(0.003) 0.664(0.003)
BIC 15.00(0.115) 0.000(0.000) 0.013(0.002) 0.529(0.003) 0.634(0.003)
FAN13 4.000(0.127) 0.000(0.000) 0.003(0.000) 0.965(0.003) 0.062(0.005)
GICAIC 17.00(0.107) 0.001(0.000) 0.029(0.003) 0.488(0.003) 0.668(0.003)
GICBIC 17.00(0.115) 0.001(0.000) 0.029(0.003) 0.488(0.003) 0.668(0.003)
GICFAN 6.000(0.205) 0.000(0.000) 0.005(0.001) 0.893(0.006) 0.167(0.009)
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Table 4.2: Results from the simulation studies when n = 200; for each scenario we
report the median number of variables included in the final model (Size), the mean
of the false positive rate (FPR), the false discovery rate (FDR), the false negative rate
(FNR) and F1-score (F1). Standard errors are in parentheses. Bold values identify the
best models for each scenario.

p d Criterion Size FPR FDR FNR F1

50 2 AIC 5.000(0.246) 0.108(0.005) 0.561(0.012) 0.000(0.000) 0.565(0.011)
BIC 2.000(0.039) 0.011(0.001) 0.145(0.009) 0.000(0.000) 0.907(0.006)
FAN13 2.000(0.029) 0.007(0.001) 0.102(0.008) 0.000(0.000) 0.936(0.005)
GICAIC 5.000(0.198) 0.087(0.004) 0.528(0.012) 0.000(0.000) 0.598(0.011)
GICBIC 2.000(0.038) 0.087(0.004) 0.528(0.012) 0.000(0.000) 0.598(0.011)
GICFAN 2.000(0.030) 0.007(0.001) 0.102(0.008) 0.001(0.001) 0.936(0.005)

8 AIC 8.000(0.028) 0.000(0.000) 0.000(0.000) 0.072(0.004) 0.961(0.002)
BIC 8.000(0.028) 0.000(0.000) 0.000(0.000) 0.072(0.004) 0.960(0.002)
FAN13 8.000(0.029) 0.000(0.000) 0.000(0.000) 0.072(0.004) 0.960(0.002)
GICAIC 8.000(0.028) 0.000(0.000) 0.000(0.000) 0.072(0.004) 0.961(0.002)
GICBIC 8.000(0.028) 0.000(0.000) 0.000(0.000) 0.072(0.004) 0.960(0.002)
GICFAN 8.000(0.028) 0.000(0.000) 0.000(0.000) 0.072(0.004) 0.960(0.002)

32 AIC 25.00(0.083) 0.005(0.001) 0.004(0.001) 0.246(0.003) 0.858(0.002)
BIC 24.00(0.084) 0.005(0.001) 0.003(0.001) 0.245(0.003) 0.857(0.002)
FAN13 24.00(0.084) 0.005(0.001) 0.003(0.000) 0.247(0.003) 0.856(0.002)
GICAIC 25.00(0.083) 0.005(0.001) 0.004(0.001) 0.246(0.003) 0.858(0.002)
GICBIC 25.00(0.083) 0.005(0.001) 0.004(0.001) 0.246(0.003) 0.858(0.002)
GICFAN 25.00(0.083) 0.005(0.001) 0.004(0.001) 0.245(0.003) 0.857(0.002)

1000 2 AIC 9.000(0.439) 0.010(0.000) 0.603(0.013) 0.000(0.000) 0.446(0.012)
BIC 2.000(0.041) 0.000(0.000) 0.124(0.009) 0.000(0.000) 0.920(0.006)
FAN13 2.000(0.013) 0.000(0.000) 0.023(0.004) 0.000(0.000) 0.986(0.002)
GICAIC 8.000(0.353) 0.000(0.000) 0.629(0.013) 0.000(0.000) 0.485(0.012)
GICBIC 2.000(0.040) 0.008(0.000) 0.629(0.013) 0.000(0.000) 0.485(0.012)
GICFAN 2.000(0.013) 0.000(0.000) 0.023(0.004) 0.000(0.000) 0.986(0.002)

8 AIC 6.000(0.028) 0.000(0.000) 0.000(0.004) 0.220(0.003) 0.874(0.002)
BIC 6.000(0.027) 0.000(0.000) 0.000(0.003) 0.222(0.003) 0.873(0.002)
FAN13 6.000(0.025) 0.000(0.000) 0.000(0.003) 0.230(0.006) 0.868(0.002)
GICAIC 6.000(0.028) 0.000(0.000) 0.000(0.004) 0.220(0.003) 0.874(0.002)
GICBIC 6.000(0.027) 0.000(0.000) 0.000(0.004) 0.220(0.003) 0.874(0.002)
GICFAN 6.000(0.026) 0.000(0.000) 0.000(0.003) 0.230(0.003) 0.868(0.002)

32 AIC 23.00(0.106) 0.000(0.000) 0.004(0.001) 0.300(0.003) 0.821(0.002)
BIC 22.00(0.115) 0.000(0.000) 0.004(0.001) 0.304(0.003) 0.818(0.002)
FAN13 21.00(0.087) 0.000(0.000) 0.003(0.000) 0.352(0.003) 0.783(0.003)
GICAIC 23.00(0.107) 0.000(0.000) 0.004(0.001) 0.300(0.003) 0.821(0.002)
GICBIC 23.00(0.115) 0.000(0.000) 0.004(0.001) 0.300(0.003) 0.821(0.002)
GICFAN 22.00(0.205) 0.000(0.000) 0.003(0.000) 0.340(0.003) 0.792(0.002)
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On the other hand, as the sample size increases from 50 to 200, the perfor-
mance of the six model selection criteria significantly improves especially when
the true model is not too sparse.From Table 4.2, all the methods have the same
performance in terms of FPRs and FDRs when the true model is less sparse,
while for a very sparse true model FAN13 and GICFAN perform better than
others. In all scenarios these methods have the same performance in terms
of FNRs.Moreover, the FAN13 and GICFAN criteria select the best model for
very sparse models in terms of F1-scores, whereas for less sparse models AIC,
GICAIC and GICBIC have the same F1-scores and perform slightly better than
others.

Summarizing, we found that in very sparse contexts, i.e., where not only
p≫ n but also the true number of effects is small (d≪ p), FAN13 performs well
in terms of F1-score, which is a weighted average of the FPR and the FNR. In
other settings GICAIC and GICBIC perform also well, slightly beating FAN13.
Although in all scenarios GICAIC and GICBIC have the same performance in
terms of FPRs, FDRs, FNRs and F1-scores, the GICBIC selects the accurate size
for the final model especially when the model is very sparse, and therefore it
performs slightly better than GICAIC overall.

4.5 Finding Genetic Signatures in Cancer Survival

In this section we test the predictive power of dgCox in four recent studies.
In particular, we focus on the identification of genes involved in the regulation
of colon cancer [59], prostate cancer [81], ovarian cancer [37] and skin cancer
[49]. The set-up of the four studies was similar. In the patient cancer was de-
tectedand treated. At the time of treatment a follow-up was started. In all cases,
the expression of several genes were measured in the affected tissue together
with the survival times of the patients, which is assumed to be censored if the
patients were alive when they left the study. Although other socio-economical
variables, such us age, sex, etc. are available, our analysis only focuses on the
impact of the gene expression levels on the patients survival.

Table 4.3 contains a brief description of the four datasets used in this section.
In the four scenarios p is larger than n. The dimensionality is especially high in
the cases of the colon and skin cancer where several thousands of genes were
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Table 4.3: Description of the four cancer experiments studied in this section. The four
datasets are available at http://www.ncbi.nlm.nih.gov/.

Cancer n # uncenso. p # genes selec. G.W. test Reference
Colon 125 70 23698 62 0.0224 [59]

Prostate 61 24 162 33 0.0333 [81]
Ovarian 103 57 306 48 0.0039 [37]

Skin 54 47 30807 21 0.025 [49]

used in the studies. In the prostate and ovarian cancers the number of covari-
ates is 162 and 306, which will also help us to study the performance of dgCox
when the number of variables is just a few orders of magnitude larger than the
number of observations.

In genomic studies it is a common hypothesis to assume that just a few num-
ber of genes affect the dependent variable of interest. To identify such genes in
our survival data analysis context, we estimate a relative hazard risk model us-
ing the dgLARS algorithm described in Section 4.3. To this end, we randomly
select a training sample that contains the 60% of the patients and we save the
remaining data to test the models. We calculate the paths coefficients in the
four scenarios and we select the optimal number of components by means of
the GIC_BIC criterion derived in Section 4.4.2. The number of selected genes in
each case is detailed in Table 4.3 ranging from 21 genes in the skin cancer data
set to 62 in the colon dataset.

In order to illustrate the prediction performance of the dgLARS method we
classify the test patients into a low-risk group and a high-risk groups by split-
ting the test sample into two subsets of equal size according to the individ-
ual predicted excess risk β⊤X. To test the groups separation we use the non-
parametric Peto & Peto modification of the Gehan-Wilcoxon test [71]. The p-
values obtained in the four scenarios are shown in Table 4.3. In Figure 4.2 we
show the Kaplan-Maier survival curves estimates for the two groups in together
with the original training survival curve. The differences are significant in the
four cases showing the predictive power of the survival function provided by
the selected genes. This results demonstrates the power of dgLARS as a tool in
medical analysis for massive gene screening studies.
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Figure 4.2: Illustration of the results obtained in the four datasets. The Kaplan-Meier
survival curves estimates for training data are shown together with the curves associ-
ated to the two groups obtained in the test sample by means of the predicted excess risk
β⊤X. In the four cases, the two groups in the test sample show a significant separation
according the Peto & Peto modification of the Gehan-Wilcoxon test.

4.5.1 Enrichment Analysis of the Found Genes Relevant for Skin Cancer

To gain some biological understanding of the process of cancer regulation
we performed an enrichment analysis of the 21 genes that have been found to
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Figure 4.3: Heatmap of the correlations of the 21 selected genes that have been found
to be influential in the skin cancer. In terms of the genes correlations two main groups
are apparent.
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be relevant in the regulation of the skin cancer.

We used DAVID (https://david.ncifcrf.gov/) to identity and annotate the
21 genes, using the available Illumina IDs. Interestingly, the three unidenti-
fied genes (ILMN_1854957, ILMN_1693800 and ILMN_1660955) along with two
genes ILMN_1763654 and ILMN_1725427 show a very low correlation among
each other but a high and negative variance with the remaining 16 genes. This
can be seen in the heatmap of the correlations of the 21 selected genes presented
in Figure 4.3.

The IDs of the selected genes and a brief description provided by DAVID are
detailed in Table 4.4. Within the 21 selected genes we found genes associated to
transcription factors (ILMN_1689083), conjugating enzymes (ILMN_1789732)
or DNA-damage-inducible transcripts (ILMN1_661599).

To provide further insight in the group of genes, we performed a Gene On-
tology (GO) annotation based on three groups of GO terms: Molecular function,
biological process and cellular component. In addition, we associated the 18
identified genes with the protein family. In Table 4.5 we account for the number
of genes in each one of the categories of the GO terms, the percentage of the sam-
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Table 4.4: Illumina IDs of the selected genes which have been found to be influential in
the skin cancer. A short description of the genes provided by the application DAVID is
included.

ILLUMINA ID Short description

ILMN1689083 general TF IIH, polypeptide 2, 44kDa; general TF IIH, polypeptide 2C;
general TF IIH, polypeptide 2B; general TF IIH, polypeptide 2D

ILMN_1674376 angiopoietin-like 4 Homo sapiens
ILMN_1786648 periaxin Homo sapiens
ILMN_1781536 fumarylacetoacetate hydrolase (fumarylacetoacetase) Homo sapiens
ILMN_1811644 family with sequence similarity 106, member A-like; family with

sequence similarity 106, member A; family with sequence similarity 106,
member B

ILMN_1763654 DENN/MADD domain containing 1B
ILMN_1685084 FK506 binding protein 7
ILMN_1785060 tetraspanin 14
ILMN_1666236 high mobility group AT-hook 2
ILMN_1661599 DNA-damage-inducible transcript 4
ILMN_1786105 pterin-4 alpha-carbinolamine dehydratase/dimerization cofactor of

hepatocyte nuclear factor 1 alpha
ILMN_1732226 DEAH (Asp-Glu-Ala-Asp/His) box polypeptide 57
ILMN_1778444 FK506 binding protein 5
ILMN_1883492 hypothetical LOC728152
ILMN_1725427 beta-2-microglobulin
ILMN_1662528 KIAA0947
ILMN_1789732 ubiquitin-conjugating enzyme E2 variant 1; ubiquitin-conjugating

enzyme E2 variant 1 pseudogene 2; transmembrane protein 189;
TMEM189-UBE2V1 readthrough transcript

ILMN_1722481 COX15 homolog, cytochrome c oxidase assembly protein (yeast)
ILMN_1854957 Not identified
ILMN_1693800 Not identified
ILMN_1660955 Not identified

ple of 18 identified genes sample in each GO term (associated to the previous
groups), and the percentage of genes in each category of each group. Regarding
the molecular function, we observe that 8 of the 18 genes are associated with
the catalytic activity. This result agrees with previous studies in skin cancer that
state that the telomerase complex activity is dependent on its catalytic subunit
[16]. Regarding the biological processes, 8 of the 18 genes are associated to cel-
lular processes and 9 of them are related to metabolic processes, which are also
known to affect this disease [64]. Organelles and other cells parts are the cel-
lular components mainly represented in the selected group of genes. Finally, it
is known that over-expression of Isomerase is related to different types of can-
cer, including skin cancer [15]. Interestingly, 3 genes are associated with this
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Table 4.5: Annotation of the 21 selected genes by dgLARS in the Skin cancer dataset.
The genes are grouped in terms of the gene ontology (GO) molecular function, biolog-
ical process, cellular components, and the protein class (PC). For each category of the
previous groups we compute the number of genes in the 21-genes sample, the % of the
21-genes sample in each GO term, and the % of genes in each category of each group.

Group #genes % sample % group

Molecular Function

Nucleic acid binding TF. activity (GO:0001071) 2 10.5% 10.5%
Binding (GO:0005488) 8 42.1% 42.1%
Receptor activity (GO:0004872) 1 5.3% 5.3%
Catalytic activity (GO:0003824) 8 42.1% 42.1%

Biological Process

Reproduction (GO:0000003) 1 5.3% 3.7%
Response to stimulus (GO:0050896) 4 21.1% 14.8%
Immune system process (GO:0002376) 2 10.5% 7.4%
Cellular process (GO:0009987) 8 42.1% 29.6%
Metabolic process (GO:0008152) 9 47.4% 33.3%
Biological regulation (GO:0065007) 1 5.3% 3.7%
Biological adhesion (GO:0022610) 2 10.5% 7.4%

Cellular Component

Membrane (GO:0016020) 2 10.5% 13.3%
Macromolecular complex (GO:0032991) 1 5.3% 6.7%
Cell part (GO:0044464) 6 31.6% 40.0%
Organelle (GO:0043226) 5 26.3% 33.3%
Extracellular region (GO:0005576) 1 5.3% 6.7%

Protein Class

Chaperone (PC00072) 2 10.5% 11.8%
Hydrolase (PC00121) 1 5.3% 5.9%
Cell adhesion molecule (PC00069) 1 5.3% 5.9%
Lyase (PC00144) 1 5.3% 5.9%
Transcription factor (PC00218) 1 5.3% 5.9%
Nucleic acid binding (PC00171) 2 10.5% 11.8%
Receptor (PC00197) 1 5.3% 5.9%
Defense/immunity protein (PC00090) 1 5.3% 5.9%
Calcium-binding protein (PC00060) 2 10.5% 11.8%
Isomerase (PC00135) 3 15.8% 17.6%
Signaling molecule (PC00207) 2 10.5% 11.8%

protein.
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4.6 Conclusions
In this chapter, we have introduced a general path-finding algorithm for

high-dimensional relative risk regression models, not based on an arbitrary
penalty, but on the underlying geometric structure of the partial likelihood.
The advantage of this method is that the estimates are invariant to arbitrary
changes in the measurement scales of the covariates. Unlike SCAD or L1 sparse
regression methods, no prior rescaling of the covariates is therefore needed.
The method can be used for a large class of survival models and we have im-
plementations for the Cox proportional hazards model and the excess relative
risk model.

We have introduced and compared several model selection criteria for these
sparse relative risk survival models through simulation studies. As our method
involves shrinkage of the parameters, the issue of the underlying degrees of
freedom of the sparse models is a complex one. We derive an estimator based
on the Generalized Information Criterion [55], which performs particularly well
when the true model is less sparse, whereas for a very sparse true model, the
method by [33] performs well.

The method has been implemented in an efficient R package, that can deal
with the high-dimensional and n << p settings, such as, for example, a skin
cancer study with p = 30, 807 predictors and n = 54 observations. We consider
four recent cancer survival studies, where we look for a genetic “survival sig-
nature”. Due to the large number of predictors, the studies are unsuitable for
traditional survival regression methods. Instead, the results we find go beyond
univariate importance and by means of an enrichment study can be linked to
potentially interesting biological explanations.
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Abstract

Since the value of the dispersion parameter ϕ affects the value of the log-
likelihood function, the value of various information criteria such as AIC and
BIC can be affected, and so considerations about the selection of the optimal
model are going to be significantly affected. In this chapter, we explain the
improved estimator of the dispersion parameter, proposed in [70], for high-
dimensional exponential dispersion generalized linear models, called General
Refitted Cross-Validation (GRCV) estimator with an algorithm to improve the
proposed estimator to obtain a more accurate estimator. Several dispersion pa-
rameter estimation methods and algorithms for computing the dgLARS solu-
tion curve, proposed in [13] and [70], are implemented in the new version of
the R-package dglars. A numerical study is conducted to compare the pro-
posed methods and algorithms. The proposed methods by means of the new
functions of the package are applied to analyze a real dataset.

Keywords: Dispersion parameter, dgLARS, Sparsity, High-dimensional GLMs,
dglars.
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5.1 Introduction

Modern statistical methods developed to study high-dimensional data sets,
namely data sets where the number of predictors, say p, is larger than the sam-
ple size n, are usually based on the idea to use a penalty function to estimate
a solution curve embedded in the parameter space and then to find the point
that represents the best compromise between sparsity and predictive behaviour
of the model. Recent statistical literature has a great number of contributions
devoted to this problem, such as the ℓ1-penalty function [94], the SCAD method
[31] and the Dantzig selector [20].

Differently from the methods cited above, [13] proposed a new approach
based on the differential geometrical representation of a GLM. The derived
method, that does not require an explicit penalty function, has been called dif-
ferential geometric LARS (dgLARS) method because it is defined generalizing
the geometrical ideas on which the least angle regression (LARS), proposed in
[29], is based. [70] extended the dgLARS method to the high-dimensional GLMs
based on the exponential dispersion models with arbitrary link functions. In
the same paper the authors proposed a classical estimation of the dispersion
parameter based on high-dimensional feature space and also a new estimation
method showed that is more accurate than the classical estimator.

From a computational point of view, the dgLARS method consists essentially
in the computation of the implicitly defined solution curve. In [13] this problem
is satisfactorily solved by using a predictor-corrector (PC) algorithm, that how-
ever has the drawback of becoming intractable when working with thousands
of predictors. From a computational point of view, using the PC algorithm lead
to an increase in the run times needed for computing the solution curve. In this
chapter we explain an improved version of the PC algorithm (IPC), proposed in
[70], to decrease the effects stemming from this problem for computing the so-
lution curve. The IPC algorithm allows the dgLARS method to be implemented
using less steps, greatly reducing the computational burden because of reduc-
ing the number of points of the solution curve. In addition these two algorithms
[12] proposed a much more efficient cyclic coordinate descend (CCD) algorithm
to fit the dgLARS solution curve when we work with a high-dimensional data
set. Although this algorithm is computationally fast, the solution curve (param-
eter estimation) is not accurate. We focus only on the PC and IPC algorithms,
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although all three algorithms are available in the new version of the R-package
dglars [9]. The package is available on the Comprehensive R Archive Network
(CRAN) at http://CRAN.R-project.org/package=dglars.

The remaining of this paper is organized as follows. In Section 5.2 we briefly
review the differential geometrical theory underlying the dgLARS method and
briefly explain the dispersion parameter estimation methods. In Section 5.3 is
devoted to the description of some functions implemented in the dglars pack-
age that can be used to estimate the dispersion parameter, and also use the func-
tions implemented in the package to compare run times between two different
algorithms. In Section 5.4, by simulation studies we compare the behavior of the
proposed estimation methods and also run times between the PC and IPC algo-
rithms. In Section 5.5 we use the functions implemented in the dglars package
to study two real data sets, and finally, in Section 5.6 we draw some conclusions.

5.2 Methodological Background
In this section we describe very briefly the dgLARS method and the disper-

sion parameter estimation methods. The interested reader is referred to [11] and
[70]. The dgLARS method defines a continuous solution path for GLM, and the
aim of the method is to define a continuous model path with highest likelihood
with the fewest number of variables.

5.2.1 dgLARS Method

Let Y be a scalar random variable with probability density function belong-
ing to the exponential family p(y; θ, ϕ) = exp{(yθ − b(θ))/a(ϕ) + c(y, ϕ)}, where
θ ∈ Θ ⊆ R is called canonical parameter, ϕ ∈ Φ ⊆ R+ is called dispersion
parameter and a(·), b(·) and c(·, ·) are specific given functions. We shall assume
that Θ is an open set. The expected value of Y is related to the canonical param-
eter by the mean value mapping, namely E(Y) = µ = τ(θ) = ∂b(θ)/∂θ, where
τ : int(Θ)→ Ω. Similarly, the variance ofY is related to its expected value by the
identity Var(Y) = a(ϕ)V(µ), where V(µ) is called variance function. Since µ is a
reparameterization of the model, in the following of this paper we denoted by
p(y;µ, ϕ) the probability density function of Y . Let X be the p-dimensional vec-
tor of random predictors. Under this setting a GLM is based on the assumption

http://CRAN.R-project.org/package=dglars
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that the conditional expected value of Y giveX = x is specified by the link func-
tion g(·), namely g(E(Y|X = x)) = β0 +

∑p
m=1 xm βm. For the notation purposes

it is more convenient to denote g−1(β0 +
∑p

m=1 xm βm) = µ(x⊤β) = µ(η), where
x0 = 1. When we work with n independent and identically distributed copies
of the the pair (Y ,X ), the marginal distribution of the n-dimensional random
vector Y = (Y1,Y2, . . . ,Yn)

⊤ is an element of the set

S =

{
p(y;µ, ϕ) =

n∏
i=1

p(yi;µi, ϕ) : µ ∈ Ωn, ϕ ∈ R+

}
,

which is a minimal and regular exponential family of order n then it can be
treated as a differential manifold in which µ is a coordinate system [5]. For
a rigorous definition of a differential manifold the reader is referred to [90].
The tangent space of S at the point p(y;µ) is defined as the linear vector space
spanned by the n score functions ∂iℓ(µ, ϕ;Y) = ∂ log p(Y ;µ, ϕ)/∂µi, namely

Tp(µ)S = span{∂1ℓ(µ, ϕ;Y), ∂2ℓ(µ, ϕ;Y), . . . , ∂nℓ(µ, ϕ;Y)}.

In order to study the geometrical structure of a GLM, we shall assume that
β → {g−1(x⊤

1 β), . . . , g
−1(x⊤

nβ)}⊤ = µ(β) is an embedding, this means that the
set M = {pY(y;µ(β), ϕ) ∈ S : β ∈ Rp+1, ϕ ∈ R+} is a p + 1-dimensional
submanifold of S , which inherits the dualistic structure from its ambient space,
then, as a simple consequence of theorem 3.5 in [6],M is a dually flat space only
when we work with the canonical link function. The tangent space ofM at the
point p(y;µ(β), ϕ), denoted by Tp(µ(β))M, is the linear vector space spanned by
the p+ 1 score functions ∂mℓ(β, ϕ;Y) = ∂ log p(Y ;µ(β), ϕ)/∂βm.

The dgLARS estimator is based on a differential geometric characterization
of the Rao score test statistic, which is obtained considering the inner product
between the bases of the tangent space Tp(µ(β))M and the tangent residual vec-
tor r(β, ϕ,y;Y) =

∑n
i=1 rβ,i ∂iℓ(β, ϕ;Y), where rβ,i = yi − µi(β). The dgLARS

method is a sequential method developed to estimate a sparse solution curve
embedded in the in the parameter space B. To explore the sparse structure of
a GLM, we can use the following differential geometric characterization of the



5.2. Methodological Background 129
[a\

mth element of the score vector, i.e.,

∂mℓ(β;Y) = ⟨∂mℓ(β;Y); r(β,y;Y)⟩p(µ(β))

= cos(ρm(β)) · ||r(β,y;Y)||p(µ(β)) · I1/2mm(β), (5.1)

where Imm(β) is the Fisher information for βm, and ρm(β) is a generalization
of the Euclidean notion of angle between the mth column of the design matrix
and the residual vector rβ = (rβ,i)i={1,2,...,n}. The dispersion parameter can be
deleted out of the equation [70].

Importantly, Equation (5.1) shows that the gradient of the log-likelihood
function does not generalize the equiangularity condition proposed in [29] to
define the LARS algorithm, since the latter does not consider the variation re-
lated to I1/2mm(β), which in the case of a GLM is typically not constant. One can
see that the signed Rao score test statistic can be geometrically characterized as
follows:

rm(β) = I−1/2
mm (β) · ∂mℓ(β;Y)

= cos(ρm(β)) · ∥r(β,y;Y)∥p(µ(β)). (5.2)

This equation shows that, for generalized linear models, we can define dgLARS
with respect to the Rao score test statistics, rather than the angles. From Equa-
tion (5.2) we shall say that two given predictors, say m and n, satisfy the gen-
eralized equiangularity condition at the point β when |rm(β)| = |rn(β)|. Inside
the dgLARS theory, the generalized equiangularity condition is used to identify
the predictors that are included in the active set. Formally, for a given value
of the Rao score test statistic γ ∈ R+ the corresponding active set is denoted
by Â(γ) and the dgLARS estimator, denoted by β̂(γ), is such that the following
conditions are satisfied:

∀m ∈ Â(γ) ⇒ rm(β̂(γ)) = smγ, (5.3)

∀m ∈ Âc(γ) ⇒
∣∣∣rm(β̂(γ))∣∣∣ < γ, (5.4)

where sm = sign(β̂m(γ)) and Âc(γ) is the complement of the active set.

[29] show that the LASSO solution curve can be obtained by a simple mod-
ification of the LARS method. Let β̂(γ) be the solution of a GLM penalized
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using the ℓ1-penalty function, then it is easy to show that the sign of any
non-zero coefficient has to agree with the sign of the score function, namely
sign(∂mℓ(β̂(γ);y)) = sign(β̂m(γ)). When this condition is violated the corre-
sponding predictor is removed from the active set. The dgLARS method can
be easily modified to compute a differential geometric extension of the LASSO
solution curve, called the dgLASSO solution curve. For more details about the
dgLASSO method see [11]. The dgLASSO estimator of a GLM is given by Equa-
tions (5.3) and (5.4), such that also the following restrictions on the signs of the
non-zero coefficients are satisfied

sign(rm(β̂(γ))) = sign(β̂m(γ)), ∀m ∈ A(γ),

where γ ∈ [0, γmax] is a fixed value.

The dgLASSO method computes the dgLASSO solution curve in the same
way as the dgLARS method, but it removes a predictor from the active set when
the sign of the corresponding estimate is not in agreement with the sign of the
Rao score test statistic. Although for the LASSO and SCAD estimators the prob-
lem of how to estimate the dispersion parameter ϕ is still an open question and
theoretical results are not available, for the dgLARS and dgLASSO estimators
[70] tried to present a dispersion parameter estimation method. For this, in
Section 5.2.3, we will give a briefly description on the dispersion parameter es-
timation methods.

5.2.2 Estimation of the dgLARS Solution Path

From a computational point of view, the problem of how to estimate the
dgLARS solution curve can be formalized in the following way. Formally, the
dgLARS method computes a finite sequence of transition points, say 0 ≤ γ(p) ≤
. . . ≤ γ(2) ≤ γ(1), such that for each γ(k) , where 2 ≤ k ≤ p, the following
condition can occur:

∃m ∈ Âc(γ(k−1)) such that ∣∣∣rm(β̂(γ(k)))∣∣∣ = γ(k) (5.5)

then Â(γ(k)) = Â(γ(k−1)) ∪ {m},



5.2. Methodological Background 131
[a\

which means that a new predictor is included in the active set when the gen-
eralized equiangularity condition is satisfied. When we want to estimate the
dgLASSO solution curve, it is necessary to add the following condition

∃m ∈ Â(γ(k−1)) such that

sign(rm(β̂(γ(k)))) ̸= sign(β̂m(γ(k))) (5.6)

then Â(γ(k)) = Â(γ(k−1)) \ {m},

which means that an active predictor is removed from the active set if the sign
of the corresponding signed Rao score test statistic is not in agreement with the
sign of the estimated coefficient. In order to simplify our notation, in the follow-
ing of this section we shall assume that Â(γ) = {0, 1, 2, . . . , k}, where the index
0 stands for the intercept. Observing that for each γ ∈ (γ(k+1); γ(k)] the signs of
the estimated coefficients do not change, condition (5.3) tells us that, for a fixed
value of the tuning parameter γ, the dgLARS estimator can be defined as the
Z-estimator implicitly defined by the following system of estimating equations:

r0(β̂(γ)) = 0

r1(β̂(γ))− s1γ = 0

r2(β̂(γ))− s2γ = 0
...

...
rk(β̂(γ))− skγ = 0.

(5.7)

where si = sign(β̂i(γ)).

[13] proposed to use a predictor-corrector (PC) method to compute the
dgLARS/dgLASSO solution curve. From a computational point of view, us-
ing the PC algorithm lead to an increase in the run times needed for com-
puting the solution curve. In the following of the section, we briefly review
the improved version of the PC algorithm to decrease the effects stemming
from this problem for computing the solution curve. For more details the in-
terested reader is referred to [70]. We define φ̃A(γ) = φA(γ) − vAγ, where
φA(γ) = (∂0ℓ(β̂A(γ);y), r1(β̂A(γ)), · · · , rk(β̂A(γ)))

⊤ and vA = (0, υ1, . . . , υk)
⊤.

By differentiating φ̃A(γ) with respect to γ, we can locally approximate the solu-
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tion curve at γ −∆γ by the following expression

β̂A(γ −∆γ) ≈ β̃A(γ −∆γ) = β̂A(γ)−∆γ ·
(
∂φA(γ)

∂β̂A(γ)

)−1

vA , (5.8)

where ∆γ ∈ [0; γ − γ(k+1)] and ∂φA(γ)/∂β̂A(γ) is the Jacobian matrix of the
vector function φA(γ) evaluated at the point β̂A(γ). An efficient implementation
of the improved PC method requires a suitable method to compute the smallest
step size ∆γ that changes the active set of the non-zero coefficients. For each
mc ∈ Ac(γ) we have a value for ∆γmc as follows

∆γm
c

=

{
∆γ1 if 0 ≤ ∆γ1 ≤ γ;

∆γ2 if o.w.

with

∆γ1 =
γ − rmc(β̂A(γ))

1− drmc(β̂A(γ))

dγ

and ∆γ2 =
γ + rmc(β̂A(γ))

1 +
drmc(β̂A(γ))

dγ

,

We consider the smallest value of the set of ∆γmcs as a optimal value for the
step size, namely

∆γopt = min
{
∆γm

c |mc ∈ Ac(γ)
}
. (5.9)

Equation (5.8) with the step size given in Equation (5.9) are used for the predic-
tor step of the PC algorithm. In the corrector step, β̃A(γ−∆γ) is used as starting
point for the Newton-Raphson algorithm that is used to solve (5.7).

When we want to estimate the dgLASSO solution curve it is necessary to
adjust the step size given by Equation (5.9) in order to consider Equation (5.6).
From Equation (5.8), it is easy to see that the first sign change will, approxi-
mately, occur at

∆γopt_out = min
m∈A(k)

{βm(γ(k))/dm(γ(k))}, (5.10)

where dm(γ
(k)) = (∂φA(γ

(k))/∂β̂A(γ
(k)))−1vA. The predictor step of the im-

proved PC algorithm developed to estimate the dgLASSO solution curve is
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Table 5.1: Pseudo-code of the improved PC algorithm to compute the solution curve
defined by the dgLARS method for a model with the intercept.

Step Algorithm

1 First compute β̂0 = (β̂0, 0, . . . , 0)

2 A ← argmaxmc∈Ac(γ){|rmc(β̂P)|} and γ ← |r1(β̂0)|
3 Repeat

4 Use (5.9) to compute△γopt and set△γ ←△γopt and γ ← γ −△γopt

5 Use (5.8) to compute β̃A(γ) (predictor step)

6 Use β̃A(γ) as starting point to solve system (5.7) (corrector step)

7 For all mac ∈ Ac(γ) compute rmc(β̂A(γ))

8 If ∃N ⊂ Ac(γ) such that
∣∣∣rmc∗(β̂A(γ))

∣∣∣ > γ for all mc∗ ∈ N , then

9 use (5.11) to compute γ
(m)
rf and set γrf ← max

m
{γ(m)

rf }
10 first set△γ ←△γopt − (γrf − γ) and then γ ← γrf , and go to step 5

11 If ∃mc ∈ Ac(γ) such that
∣∣∣rmc(β̂A(γ))

∣∣∣ = ∣∣∣rm(β̂A(γ))
∣∣∣ for all m ∈ A(γ),

12 then update A(γ) and Ac(γ)

13 Until convergence criterion rule is met

based on Equation (5.8) with step size ∆γ = min{∆γ,∆γopt_out}.
Since the optimal step size is based on a local approximation, we also include

an exclusion step for removing incorrectly included variables in the model. De-
termining how to implement this exclusion step is the main difference between
the PC and IPC algorithms. When an incorrect variable is included in the model
after the corrector step, we have that there exists a non-active variable such
that the absolute value of the corresponding Rao score test statistic is greater
than γ. To adjust the step size in the case of incorrectly including certain vari-
ables in the active set, the PC algorithm reduces the optimal step size from the
previous step, △γopt, using a contractor factor cf , which is a fixed value, i.e.,
γcf = γnew+△γopt−(∆γopt ·cf). While the IPC algorithm applies the regula-falsi
(rf ) method which always converges. The regula-falsi method draws a secant
from h(γnew) to h(γold), and estimates the root as where it crosses the γ-axis, so
that in our case h(γ) = rmc(β̂A(γ)) − smc · γ where smc = sign{rmc(β̂A(γnew))}
and mc ∈ Ac(γ). From (5.3), we have that h(γ) = rm(β̂A(γ)) − smγ = 0 for
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all m ∈ A(γ). Indeed, after the corrector step, when there is a non-active vari-
able such that the absolute value of the corresponding Rao score test statistic is
greater than γ, we want to find a exact point, γrf , which is very close or even
equal to the true point, called transition point, that changes the active set, so
that at the end, it reduces the number of the points of the solution curve. It is
easy to verify that the root γrf is given by

γrf =
γnew rmc(β̂A(γold))− γold rmc(β̂A(γnew))

rmc(β̂A(γold))− rmc(β̂A(γnew)) + smc · (γnew − γold)
, ∀mc ∈ Ac(γnew),

(5.11)

where smc = sign{rmc(β̂A(γnew))}. Then, we first set△γ = △γopt − (γrf − γnew)
and then γ = γrf , to be able to go to the predictor step.

If at γnew there exists a set N (γnew) ⊂ Ac(γnew) such that |rmc∗(β̂A(γnew))| >
γnew for all mc∗ ∈ N (γnew), the equation (5.11) gives a vector with an element
of γ(m)

rf , so that we consider γrf = max
m
{γ(m)

rf }, and if max
m
{γ(m)

rf } is greater than
γold, then we consider γrf = γold. When the Newton-Raphson algorithm does
not converge, the step size is reduced by the contractor factor cf , and then the
predictor and corrector steps are repeated.

In total, the main difference of the PC and IPC algorithms is the different
techniques used in these algorithms for adjusting the step size to find the true
transition points. In Table 5.1 we report the pseudo-code of the improved PC
algorithm for a model with the intercept. In Section 5.3.3 and 5.4.1 we exam-
ine the performance of the IPC algorithm and compare it with the original PC
algorithm by using the functions in the dglars package.

5.2.3 Estimations of the Dispersion Parameter

Since the value of the dispersion parameter ϕ affects the value of the log-
likelihood function, the value of various information criteria such as AIC and
BIC can be affected, and so considerations about the selection of the optimal
model are going to be significantly affected. There are three commonly used
estimates of the dispersion parameter: deviance, maximum likelihood (ml) and
Pearson methods, see [60]. For high-dimensional generalized linear models,
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[70] used a generalized version of the Pearson estimator ϕ̂
P
(γ) as follows:

ϕ̂
P
(γ) =

1

n− k(γ)
n∑

i=1

(yi − g−1(x⊤
i β̂A(γ)))

2

V (g−1(x⊤
i β̂A(γ)))

, (5.12)

where k(γ) = |A(γ)| = #{j : β̂j(γ) ̸= 0} such that β̂j(γ) is the element of the
extended dgLARS estimator β̂A(γ). In the same paper the authors proposed a
four-stage refitted procedure for estimating the dispersion parameter in high-
dimensional GLMs via a data splitting technique, called General Refitted Cross-
Validation (GRCV) estimator, to attenuate the influence of irrelevant variables
with high spurious correlations. In the rest of this section, we briefly explain
the GRCV estimator and its iterative algorithm.

The idea of the GRCV method is as follows; We split the data (yn,Xn×p) ran-
domly into two halves (y(1)

n1
,X(1)

n1×p) and (y(2)
n2
,X(2)

n2×p), where n1+n2 = n. Without
loss of generality, for notational simplicity, we assume that the sample size n is
even, and n1 = n2 = n/2. In the first stage, our high dimensional variable se-
lection method, extended dgLARS, is applied to these two data sets separately
to estimate whole solution path, which yields β̂A1(γ) selected by (y(1),X(1)) and
β̂A2(γ) selected by (y(2),X(2)), where |A1| ≤ min(n

2
−1, p) and |A2| ≤ min(n

2
−1, p).

In the second stage, we do model selection on each data set to determine two
small subsets of selected variables Â1 and Â2, where Â1 ⊆ A1 and Â2 ⊆ A2. For
this we estimate ϕ by (5.12) on the two data sets separately, ϕ̂(1)

P
(γ) and ϕ̂(2)

P
(γ),

to obtain the log-likelihood functions ℓ(β̂A1(γ), ϕ̂;y(1)) and ℓ(β̂A2(γ), ϕ̂;y(2)), re-
spectively.

In the third stage, the MLE method is applied to each subset of the data
with the variables selected by another subset of the data, namely (y(2),X(2)

Â1
) and

(y(1),X(1)

Â2
), to re-estimate the coefficient β. Since the MLE may not always exist

in GLMs, in this stage we propose to use the dgLARS method to estimate the
coefficients based on the selected variables, β̂Â1

(γ0) and β̂Â2
(γ0), where γ0 is

close to zero, because the dgLARS estimate β̂A(0) is equal to the MLE of βA.

The refitting in the third stage is fundamental to reduce the influence of the
spurious variables in the second stage of variable selection. Finally, in the fourth
stage, we estimate ϕ by averaging the two following estimators on the two data
sets (y(2),X(2)

Â1
) and (y(1),X(1)

Â2
);
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ϕ̂1(Â2) =
1

n
2
− |Â2|

n
2∑

i=1

(
y
(1)
i − g−1

(
(x(1)⊤

i,Â2
β̂Â2

(0)
))2

V
(
g−1

(
x(1)⊤
i,Â2

β̂Â2
(0)
)) ,

and

ϕ̂2(Â1) =
1

n
2
− |Â1|

n
2∑

i=1

(
y
(2)
i − g−1

(
x(2)⊤
i,Â1

β̂Â1
(0)
))2

V
(
g−1

(
x(2)⊤
i,Â1

β̂Â1
(0)
)) ,

where x(l)

i,Âj
is the ith row of the lth subset of the data X(l)

Âj
, |Âj| = #{k : (β̂Âj

(γ))k ̸=
0}, β̂Âj

(γ) is the extended dgLARS estimator at γ, so that γ ∈ [0, γmax], and
β̂Âj

(0) is the ML estimate of βÂj
. The average of these two estimators is the

GRCV estimator:

ϕ̂
GRCV

(Â1, Â2) =
ϕ̂1(Â2) + ϕ̂2(Â1)

2
. (5.13)

An extension of the GRCV technique to get a more accurate estimate is using
a repeated data splitting procedure; since there are many ways to split the data
randomly, many GRCV estimators can be obtained. To reduce the influence of
the randomness in the data splitting we may take the average of the resulting
estimators. For a review of the GRCV method, the reader is referred to [70].

In the following of this section we present the iterative algorithm proposed
by [70] to show how the GRCV estimator can be improved to have numerically
more stable and accurate behavior. This algorithm yields a new estimate for ϕ,
called the MGRCV estimate.

As mentioned above, inside the second stage of the GRCV estimator the
value of the model selection criterion (AIC, BIC or k-fold CV) should be calcu-
lated. Since the AIC and BIC criteria depend on the dispersion parameter, the
dispersion parameter has to be estimated and for this reason the generalized
Pearson estimator ϕ̂

P
(γ), given in (5.12), is used inside the extended dgLARS

method during the calculation of the solution path.

To decrease the influence of the classical Pearson estimate on the GRCV es-
timate ϕ̂

GRCV
and improve its accuracy, we propose an algorithm which repeats
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Table 5.2: Pseudo code for the iterative algorithm to stabilize the GRCV estimator with
T iterations.

Step Algorithm
1 pearson← 1
2 grcv.vec← 0

3 i← 1

4 while i ≤ T

5 split the data into two random groups: D1 and D2

6 apply the extended dgLARS to D1 and D2 separately to obtain whole
solution paths β̂A1(γ) and β̂A2(γ) (first stage)

7 if pearson = 1 then

8 use (5.12) to compute ϕ̂(1)
P

(γ) and ϕ̂(2)
P

(γ) for D1 and D2

9 use ϕ̂(1)
P

(γ) and ϕ̂(2)
P

(γ) to do model selection
∗

on D1 and D2, respectiv-
ely, to obtain Â1 and Â2 (second stage)

10 pearson← 0
11 else

12 use ϕ̂GRCV (Â1, Â2) for model selection
∗

on each D1 and D2 to obtain
Â1 and Â2 (second stage)

13 end if

14 apply again extended dgLARS to D1 and D2 separately to obtain β̂Â1
(0)

and β̂Â2
(0) (third stage)

15 use (5.13) to compute ϕ̂GRCV (Â1, Â2) (fourth stage)
16 grcv.vec[ i ]← ϕ̂GRCV (Â1, Â2)

17 i← i+ 1

18 end while

19 ϕ̂MGRCV ←median( grcv.vec )
20 use ϕ̂MGRCV to do model selection

* The AIC or BIC criteria.

the process of finding the GRCV estimate iteratively, such that for the (k + 1)th

iteration the kth GRCV estimate (ϕ̂(k)

GRCV
) is used to compute the new (k + 1)th

GRCV estimate (ϕ̂(k+1)

GRCV
), and so on. Therefore, by using this algorithm, the

GRCV estimator uses the Pearson-type estimate inside its process only for the
first time, and after that the algorithm applies the obtained GRCV estimates
inside the extended dgLARS algorithm instead of the generalized Pearson esti-
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mate.
Since the estimate contains some random variation due to the random CV

splits, D1 and D2, the algorithm will not numerically converge, one in practice
simply needs to define a maximal number of iterations T (which should not be
too large). Therefore, the median of the T GRCV estimates, called MGRCV esti-
mate, is used as the final GRCV estimate ϕ̂

MGRCV
= median{ϕ̂(1)

GRCV
, . . . , ϕ̂

(T )

GRCV
}.

The MGRCV estimate ϕ̂
MGRCV

is more stable and accurate than the first estimate
ϕ̂

(1)

GRCV
. Finally, the overall model selection is performed using ϕ̂

MGRCV
. Table

5.2 shows how this algorithm works. It should be mentioned that, in this table,
ϕ̂(1)

P
(γ) and ϕ̂(2)

P
(γ) are vectors of the estimates calculated during the solution

path, while ϕ̂
GRCV

(Â1, Â2) is a fixed number.

5.3 The dglars package
The dglars package [9] is an R [77] package containing a collection of tools re-

lated to the dgLARS method, for more details see [11]. The package is available
on the Comprehensive R Archive Network (CRAN) at http://CRAN.R-project.

org/.
The new version of the dglars package (version 2.0.0) supports the

gaussian, binomial, poisson, Gamma and inverse.gaussian families
with the most commonly used link functions. The main function of this pack-
age, dglars(),

dglars(formula, family = gaussian, g, unpenalized, b_wght,

data, subset, contrast = NULL, control = list())

is a wrapper function implemented to handle the formula interface usually used
in R to create the n × p-dimensional design matrix X and the n-dimensional
response vector y. This function is used to compute the dgLARS/dgLASSO
solution curve. As in the glm package, the user can specify family and link
function using the argument family, see Section 5.3.2. This can be a character
string naming a family function or the result of a call to a family function. In the
new version of the package, the model can be specified combining family and
link functions as described in Table 5.3. By default the gaussian family with
identity link function is used.

http://CRAN.R-project.org/
http://CRAN.R-project.org/
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Table 5.3: Some families and their link functions that can be used in the dglars package.

Family Link function
gaussian "identity", "log", "inverse"
binomial "logit", "probit", "cauchit", "cloglog", "log"
poisson "log", "identity", "sqrt"
Gamma "inverse", "log", "identity"
inverse.gaussian "1/muˆ2", "inverse", "log", "identity"

The argument control is a named list of control parameters with the fol-
lowing elements

control = list(algorithm = "pc", method = "dgLASSO",

g0 = NULL, nNR = 200, nv = NULL, eps = 1.0e-05,

np = NULL, dg_max = 0, NReps = 1.0e-06, cf = 0.5,

ncrct = 50, nccd = 1.0e+05)

Using the control parameter algorithm it is possible to select the algo-
rithm used to fit the dgLARS solution curve, i.e., setting algorithm = "pc"

the default PC algorithm is used, whereas the IPC and CCD algorithms are
used when algorithm = "ipc" and algorithm = "ccd" are selected,
respectively. In order to reduce the computational time needed to com-
pute the dgLARS/dgLASSO solution curve, the three algorithms are writ-
ten in Fortran 90. The argument method is used to choose between the
dgLASSO solution curve (method = "dgLASSO") and the dgLARS solution
curve (method = "dgLARS"). The g0 control parameter is used to define
the smallest value of the tuning parameter, by default this parameter is set to
1.0e-06 when p > n and to 0.05 otherwise. For more details about the other
control parameters and arguments see [11, 9].

In the following of this section we describe the phihat() and
phihat.fit() functions which are now available in the new version of the
package.

5.3.1 Description of the phihat() and phihat.fit() functions

Since the gaussian, Gamma and inverse Gaussian error distributions have
an additional dispersion parameter, this package implements the functions
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phihat() and phihat.fit(), to estimate the dispersion parameter for high-
dimensional exponential dispersion GLMs by means of four methods:

• phihat(), estimates of the dispersion parameter ϕ by means of the de-
viance, maximum likelihood estimation, generalized Pearson and GRCV
methods.

• phihat.fit(), estimate of the dispersion parameter ϕ by means of the
GRCV method.

The use of the function is the following:

phihat(object, type = c("pearson", "deviance", "mle",

"grcv"), g = NULL, ordering = "AIC", n_rep = 5,

n_iter = 5)

phihat.fit(X, y, type = c("grcv"), ordering = "AIC",

n_rep = 5, n_iter = 5, control = list())

with arguments

object fitted dglars object.

type a description of the used estimator.

g vector of values of the tuning parameter γ. This argument are
used only when type is equal to "grcv".

ordering a description of the model selection tool used in the second
stage of the GRCV estimator to select one of the "AIC", "BIC" or
"CV" criterion. Default is ordering = "AIC". This argument
is used only when type is equal to "grcv".

n_rep a non negative integer used to specify the number of repeata-
tions only for the GRCV estimator (type = "grcv"). To get a
more accurate estimator the user can use a repeated data split-
ting procedure. Default is n_rep = 5.
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n_iter a non negative integer used to specify the maximum num-
ber of iterations for the iterative GRCV algorithm (only
when type = "grcv"). If n_iter is greater than or
equal to 2 then the algorithm gives the median of these
n_iter GRCV estimates, called MGRCV estimate ϕ̂MGRCV =

median(ϕ̂
(1)
GRCV , . . . , ϕ̂

(n_iter)
GRCV ). Default is n_iter = 5.

control a list of control parameters available only for type = "grcv",
and supplies any of the control parameters explained in the
function dglars() .

X design matrix of dimension n× p.

y response vector.

When there is a fitted ‘dglars’ object the function phihat() can be used
to estimate the dispersion parameter ϕ by any of the four methods, while the
user can use phihat.fit() with the design matrix X and the response vector
y to estimate the parameter ϕ only by the GRCV estimator.

phihat() returns a vector with the estimates of the dispersion parameter.
When type = "grcv" all elements of the vector are the same, because the
GRCV estimator does not depend on the tuning parameter γ while the other
three estimators do. For more details see [70] and [9].

The optional argument g is used to specified the values of the tuning param-
eter γ; if not specified (default), the estimates of the dispersion parameter are
computed for the sequence of models storage in the argument object (see the
example in Section 5.3.2).

When gaussian, Gamma or inverse Gaussian is used, the function
dglars() returns the vector of the estimates of the dispersion parameter ϕ;
by default, the generalized Pearson statistic is used as estimator but the user
can use the function phihat() to specify other estimators. For the binomial
and Poisson family, the dispersion parameter is assumed known and equal to
one.

The function phihat() is called by the logLik(), AIC() and coef()

methods for ‘dglars’ objects:

logLik(object, phi = c("pearson", "deviance", "mle",
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"grcv"), ...)

AIC(object, phi = c("pearson", "deviance", "mle", "grcv"),

k = 2, complexity = c("df", "gdf"), ...)

coef(object, type = c("pearson", "deviance", "mle",

"grcv"), ...)

when the argument phi (or type in coef()) is set to any of the four estimation
methods, i.e., "pearson", "deviance", "mle" or "grcv". In the dglars package,
the summary() method:

summary(object, type = c("AIC", "BIC"),

digits = max(3, getOption("digits") - 3), ...)

uses the generalized Pearson estimator to define the BIC or AIC values, but
the user can use "dots" to pass to the method AIC() the additional arguments
needed to compute a more general measure of goodness-of-fit, e.g., "phi", "k"
or "complexity". For the description of these arguments and methods see [9].

5.3.2 An example of use for a simulated Gamma model

To gain more insight about the use of the phihat() function and the dif-
ferences among the estimation methods, we have simulated a data set from a
Gamma regression model with the log link function where sample size is equal
to 20 and p = 100. We assume that only the first two predictors influence the
response variable. First we load the dglars package in the R session by the code

R> library("dglars")

The corresponding R code is given by:

R> set.seed(112358)

R> n <- 100

R> p <- 5

R> s <- 2

R> X <- matrix(abs(rnorm(n * p)), n, p)

R> bs <- rep(2, s)
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R> Xs <- X[, 1:s]

R> eta <- drop(1 + (Xs %*% bs))

R> mu <- Gamma("log")$linkinv(eta)

R> shape <- 0.5

R> phi <- 1 / shape

R> y <- rgamma(n, shape = shape, scale = mu * phi)

R> fit <- dglars(y ~ X, Gamma("log"),

+ control = list(algorithm = "ipc",

+ method = "dgLARS"))

The fit object is a fitted object of S3 class ‘dglars’. For this object, we ap-
ply the dgLARS method with the IPC algorithm. Using the summary()method
the user can obtain more information about the estimated sequence of models
for the ‘dglars’ object. For example, the following R code shows the output
printed by the summary() method with the BIC criterion and the GRCV esti-
mate for the dispersion parameter.

R> summary(fit, type = "BIC", phi = "grcv")

Call: dglars(formula = y ~ X, family = Gamma("log"),

control = list(algorithm = "ipc",

method = "dgLARS"))

Sequence g %Dev df BIC Rank

12.50763 0.00000 2 1245 10

+ X2

10.45156 0.08625 3 1223 9

10.44988 0.08631 3 1223 8

+ X1

2.476473 0.55899 4 1079 7

2.452213 0.55969 4 1079 6

+ X4

1.048410 0.60506 5 1069 2

1.041003 0.60520 5 1069 1 <-

+ X5

0.719319 0.61228 6 1071 4
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0.711903 0.61241 6 1071 3

+ X3

0.000001 0.62372 7 1072 5

Details:

BIC values computed using k = 4.605 and

complexity = ‘df’, dispersion parameter

estimated by ‘grcv’

=================================================

Summary of the Selected Model

Formula: y ~ X1 + X2 + X4

Family: ‘Gamma’

Link: ‘log’

Coefficients:

Estimate

Int. 1.6560

X1 1.5282

X2 1.4554

X4 0.3665

Dispersion parameter: 1.996 (estimated by ‘grcv’ method)

---

g: 1.041

Null deviance: 627.4

Residual deviance: 247.7

BIC: 1069

Algorithm ‘ipc’ ( method = ‘dgLARS’ )

From this output we can see that the dgLARS method first finds the true pre-
dictors (X1 and X2) and then includes the other false predictors. The ranking of
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the estimated models obtained by the number of estimated non-zero coefficients
as a measure of goodness of fit (complexity = "df") is also shown and the
corresponding best model is identified by an arrow on the right. The formula
of the identified best model, the corresponding estimated coefficients and the
estimate of the dispersion parameter ϕ are shown in the second section of the
output. These values are obtained at the optimal value of the tuning parameter
γ which can be calculated by the BIC or AIC criteria. For example, from the
previous output we can see that the values of the BIC criterion, GRCV estimate
and optimal tuning parameter are 1069, 1.996 and 1.041, respectively.

Since the deviance, MLE and generalized Pearson estimators depend on the
tuning parameter γ, the values of these estimates can change during the solu-
tion path. But the GRCV estimator is fixed by changing the tuning parame-
ter. These estimates can be extracted using the phihat() and phihat.fit()

functions. For example, with the following R code we can see the sequence of
the values of the tuning parameter with the estimated values of the dispersion
parameter by means of the generalized Pearson and GRCV methods. For the
GRCV method we apply the BIC criterion and the 10 times of iterations inside
the algorithm.

R> set.seed(11235)

R> g <- fit$g

R> grcv <- phihat(fit, type = "grcv", ordering = "BIC",

+ n_iter = 10)

R> pearson <- phihat(fit, type = "pearson")

R> deviance <- phihat(fit, type = "deviance")

R> mle <- phihat(fit, type = "mle")

R> path <- cbind(g, pearson, deviance, mle, grcv)

R> print(path, digits = 3)

g pearson deviance mle grcv

[1,] 1.25e+01 31.13 6.34 3.83 2

[2,] 1.05e+01 22.24 5.85 3.59 2

[3,] 1.04e+01 22.23 5.85 3.59 2

[4,] 2.48e+00 2.82 2.85 2.06 2

[5,] 2.45e+00 2.81 2.85 2.06 2
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[6,] 1.05e+00 1.96 2.58 1.89 2

[7,] 1.04e+00 1.95 2.58 1.88 2

[8,] 7.19e-01 1.84 2.56 1.86 2

[9,] 7.12e-01 1.84 2.56 1.86 2

[10,] 1.00e-06 1.73 2.51 1.81 2

By the following R code, we can specify the values of the tuning parameter
γ to compute the estimate of the dispersion parameter;

R> set.seed(11235)

R> new_g <- seq(range(fit$g)[2], range(fit$g)[1],

+ by = -1.0)

R> grcv <- phihat(fit, type = "grcv",

+ ordering = "BIC", n_iter = 10, g=new_g)

R> pearson <- phihat(fit, type = "pearson", g=new_g)

R> deviance <- phihat(fit, type = "deviance", g=new_g)

R> mle <- phihat(fit, type = "mle", g=new_g)

R> path <- cbind(new_g, pearson, deviance, mle, grcv)

R> print(path, digits = 3)

new_g pearson deviance mle grcv

[1,] 12.508 31.13 6.34 3.83 2

[2,] 11.508 26.39 6.12 3.71 2

[3,] 10.508 22.43 5.86 3.59 2

[4,] 9.508 14.12 5.35 3.34 2

[5,] 8.508 8.90 4.83 3.09 2

[6,] 7.508 5.88 4.37 2.87 2

[7,] 6.508 4.16 3.96 2.66 2

[8,] 5.508 3.21 3.60 2.47 2

[9,] 4.508 2.75 3.30 2.31 2

[10,] 3.508 2.63 3.04 2.17 2

[11,] 2.508 2.81 2.86 2.06 2

[12,] 1.508 2.11 2.65 1.93 2

[13,] 0.508 1.77 2.55 1.84 2
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5.3.3 Comparing PC and IPC Algorithms

The dglars package implements three different algorithms to compute the
dgLARS solution curve, i.e., the PC, IPC and CCD algorithms. Although these
algorithms compute the same solution curve, the results can be looked different.
Here, however, we focus only on the PC and IPC algorithms to compare their
performance by means of a simple simulation; for extensive simulation study
see Section 5.4.1. For information about comparing the CCD and PC algorithms
see [11].

To gain more insight we consider the following R code to simulate an in-
verse Gaussian model with the canonical link function (link = "1/muˆ2")
and sample size equal to 100 and 5 predictors. First we load the statmod pack-
age to use the function rinvgauss() for generating the random numbers for
the inverse Gaussian distribution by the code

R> library("statmod")

The corresponding R code is given by:

R> set.seed(112358)

R> n <- 200

R> p <- 10

R> X <- matrix(abs(rnorm(n * p)), n, p)

R> b <- 1:2

R> eta <- drop(b[1] + (X[, 1] * b[2]))

R> mu <- inverse.gaussian()$linkinv(eta)

R> phi <- 0.5

R> y <- rinvgauss(n, mean = mu, disp = phi)

Only the first predictor affects the response variable y. By the following code
we estimate the dgLASSO solution curve using the PC and the improved PC
algorithm, respectively;

R> fit_pc <- dglars(y ~ X, inverse.gaussian("1/mu^2"),

+ control = list(algorithm = "pc",

+ method = "dgLASSO"))

R> fit_ipc <- dglars(y ~ X, inverse.gaussian("1/mu^2"),

+ control = list(algorithm = "ipc",

+ method = "dgLASSO"))
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By printing the ‘dglars’ object fit_pc for our simulated data set, we can
see that by using the PC algorithm the dgLASSO solution curve has the 34 tran-
sition points;

R> fit_pc

Call: dglars(formula = y ~ X,

family = inverse.gaussian("1/mu^2"),

control = list(algorithm = "pc",

method = "dgLASSO"))

Sequence g Dev %Dev n. non zero

1.30330 90.33 0.00000 1

+X1

0.99185 87.57 0.03052 2

0.83912 86.60 0.04131 2

0.76325 86.19 0.04580 2

0.72543 86.01 0.04784 2

0.70654 85.92 0.04881 2

0.68766 85.84 0.04974 2

+X6

0.59029 85.16 0.05717 3

0.59014 85.16 0.05718 3

+X9

0.55107 84.80 0.06125 4

0.53169 84.62 0.06317 4

0.52204 84.54 0.06409 4

0.51240 84.46 0.06500 4

+X4

0.43666 83.70 0.07339 5

0.39888 83.37 0.07708 5

0.36111 83.06 0.08044 5

+X3

0.33442 82.83 0.08306 6

0.32116 82.71 0.08429 6
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0.31455 82.66 0.08489 6

0.30794 82.61 0.08547 6

+X2

0.30603 82.59 0.08570 7

+X5

0.19255 81.42 0.09858 8

0.13938 81.06 0.10260 8

0.11402 80.93 0.10406 8

0.10167 80.87 0.10467 8

0.09559 80.85 0.10494 8

0.09257 80.84 0.10507 8

0.08956 80.83 0.10519 8

+X10

0.05807 80.72 0.10640 9

0.05803 80.72 0.10640 9

+X8

0.05191 80.70 0.10659 10

0.04886 80.69 0.10668 10

0.04582 80.68 0.10676 10

+X7

0.00010 80.62 0.10747 11

Algorithm ‘pc’ ( method = ‘dgLASSO’ ) with exit = 0

The number of the iterations to compute the solution points by the PC algo-
rithm and the values of the tuning parameter can be obtained by the following
code:

R> fit_pc$np

[1] 34

R> fit_pc$g

[1] 1.3032970549 0.9918525125 0.8391243838 0.7632531467

[5] 0.7254261662 0.7065384830 0.6876634402 0.5902862409
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[9] 0.5901385647 0.5510746529 0.5316927115 0.5220378797

[13] 0.5124007653 0.4366644718 0.3988758027 0.3611128245

[17] 0.3344235555 0.3211580697 0.3145454019 0.3079428460

[21] 0.3060269170 0.1925485474 0.1393809155 0.1140160987

[25] 0.1016708751 0.0955858509 0.0925656090 0.0895565832

[29] 0.0580652597 0.0580312821 0.0519057820 0.0488601606

[33] 0.0458231185 0.0001000001

By printing fit_ipc, we can see that the IPC algorithm reduces the number
of the iterations during computing the solution curve such that leads to poten-
tially computational saving;

R> fit_ipc

Call: dglars(formula = y ~ X,

family = inverse.gaussian("1/mu^2"),

control = list(algorithm = "ipc",

method = "dgLASSO"))

Sequence g Dev %Dev n. non zero

1.303297 90.33 0.00000 1

+ X1

0.687731 85.84 0.04974 2

0.687668 85.84 0.04974 2

+ X6

0.590286 85.16 0.05717 3

0.590139 85.16 0.05718 3

+ X9

0.512409 84.46 0.06500 4

+ X4

0.361118 83.06 0.08044 5

+ X3

0.307947 82.61 0.08547 6

+ X2

0.306027 82.59 0.08570 7

+ X5
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0.090291 80.83 0.10516 8

0.089560 80.83 0.10519 8

+ X10

0.058065 80.72 0.10640 9

0.058031 80.72 0.10640 9

+ X8

0.045826 80.68 0.10676 10

+ X7

0.000001 80.62 0.10747 11

Algorithm ‘ipc’ ( method = ‘dgLASSO’ ) with exit = 0

By the following code we can see that when we use the IPC algorithm, the
number of iterations is less than half of the number of iterations when we use
the PC algorithm, so that it leads to a decrease in the run times needed for
computing the solution curve;

R> fit_ipc$np

[1] 15

R> fit_ipc$g

[1] 1.303297e+00 6.877312e-01 6.876676e-01 5.902864e-01

[5] 5.901386e-01 5.124086e-01 3.611181e-01 3.079471e-01

[9] 3.060270e-01 9.029056e-02 8.956011e-02 5.806524e-02

[13] 5.803128e-02 4.582614e-02 1.000056e-06

From a computational point of view, the main consequence of using the tech-
nique used in the improved PC algorithm to adjust the step size and find the
true transition points is a decrease in the run times. In next section, we investi-
gate the performance of the improved PC algorithm by a simulation study.
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5.4 Simulation Studies
In this section we present a comprehensive simulation study to investigate

the performance of the improved PC algorithm implemented in the dglars pack-
age.

5.4.1 Comparison of Run Times

In this section we compare the improved PC algorithm (IPC) with the origi-
nal PC algorithm proposed in [13]. Although these two algorithms compute the
same solution curve, the results can be looked different. As mentioned before,
the main problem of the PC algorithm is related to the number of the points of
the solution curve (q), so that the number of arithmetic operations needed to
compute the solution curve causes an increase in the run times.

In order to better understand the effects of the number of the points of the
solution curve (q) on the run times of the two algorithms, we use a simple sim-
ulation study based on a Gamma model with a non-canonical link function
(log) with sample size equal to n = (50, 100, 200) and p = (10, 100, 500). The
study is based on three different configurations of the covariance structure of
the p predictors, such that X1, X2, · · · , Xn sampled from an N(0,Σ) distribu-
tion, where the diagonal elements of Σ are 1 and the off-diagonal elements fol-
low corr(Xi;Xj) = ρ|i−j|, where i ̸= j and ρ = (0, 0.9). To simulate the response
vector we use a model with intercept and choose

β = (1, 2, 2, 2︸ ︷︷ ︸
3

, 0, · · · , 0︸ ︷︷ ︸
p−3

).

In Table 5.4 we report the average CPU times in seconds and the mean num-
ber of the points of the solution curve (q) coming from 100 simulation runs.
All timings reported were carried out on a personal computer with Intel Core
i5 520M dual-core processor. This table shows that the IPC algorithm has a
lower average CPU time than the PC algorithm. Moreover, the mean number of
the points of the solution curve (q) in the IPC algorithm is always less than q in
the PC algorithm. Since the IPC algorithm reduces the number of the points of
the solution curve (q), it is obvious that its speed is more than the PC algorithm.
Thus, we clearly see that the proposed IPC algorithm is always faster than the
PC algorithm. The difference between the two algorithms is greater when ρ = 0
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Table 5.4: Average CPU times (time) in seconds to compute the solution curve using the
IPC and PC algorithms based on the Gamma regression model, and the mean number
of the points of the solution curve (q). Bold values identify the best algorithms for each
scenario.

n
50 100 200

ρ p PC IPC PC IPC PC IPC

10 time 0.340 0.202 0.358 0.204 0.430 0.237
q 35.48 21.88 35.07 20.78 35.38 20.18

0 100 time 23.23 17.73 87.5 70.48 179.1 136.0
q 118.6 87.61 196.9 148.0 192.9 142.4

500 time 145.8 116.4 583.8 497.3 1409 1252
q 120.2 90.70 198.7 156.6 321.2 271.2

10 time 0.359 0.245 0.374 0.260 0.430 0.285
q 32.78 22.12 33.05 21.82 32.54 21.37

0.9 100 time 20.75 16.55 59.33 50.07 170.0 146.1
q 109.4 83.11 158.3 125.9 172.2 137.6

500 time 136.1 112.4 485.6 432.6 1986 1803
q 111.7 87.30 181.6 150.0 298.8 257.0

(no correlation among the predictors).
Moreover, in Figure 5.1 we show the average CPU times and the mean num-

ber of the points of the solution curve (q) for the considered algorithms from
the simulation study based on the Gamma regression model when n = 200 and
ρ = 0. Both timing and q are showed as a function of the number of predictors
p = (10, 100, 500). The difference between the two algorithms can be clearly
seen in these figures.

5.5 Application to Real Data
In this section we analyze a real dataset by using the functions available in

the dglars package. In Section 5.5.1 we consider the branchmark Diabetes data
available in the dglars package.

5.5.1 Diabetes Dataset

In this section we use the functions available in the dglars package to study
the sparse structure of a inverse Gaussian regression model applied to the dia-
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Figure 5.1: (a) CPU times, (b) mean number of the points of the solution curve, q, for
the IPC and PC algorithms from the simulation study based on the Gamma regression
model with n = 200 and ρ = 0, which are showed as a function of p.

betes data used in [29] and [46], among others. The response y is a quantitative
measure of disease progression for patients with diabetes one year later. The
data includes 10 baseline measurements (design matrix x) for each patient, such
as "age", "sex" (gender, which is binary), "bmi" (body mass index), "map" (mean
arterial blood pressure), and six blood serum measurements: "ldl" (high-density
lipoprotein), "hdl" (low-density lipoprotein), "ltg" (lamotrigine), "glu" (glucose),
"tc" (triglyceride) and "tch" (total cholesterol), in addition to 45 interactions and
9 quadratic terms, for a total of 64 variables (design matrix x2) for each pa-
tient, so that this data has n = 442 observations on p = 64 variables. For
high-dimensional purpose we add a thousand noise variables to the original
data to also have a high-dimensional dataset with p = 1064 (design matrix x3).
These low- and high-dimensional diabetes data (diabetesH) can be found in
the dglars package. The aim of the study is to identify which of the covariates
are important factors in disease progression. For that we need to estimate the
dispersion parameter to be able to do model selection.

To study the considered dataset, we first load the data in the R session



5.5. Application to Real Data 155
[a\

R> data("diabetesH", package = "dglars")

R> attach(diabetesH)

The diabetesH data-frame has 442 rows and 4 columns as follows:

x : a matrix with 10 columns,

x2 : a matrix with 64 columns,

x3 : a matrix with 1064 columns,

y : a numeric vector with a length of 10.

First, we estimate the optimal value of the tuning parameter by the 10-fold
cross-validation method by using the cvdglars() function, i.e.,

R> cv_diabetes <- cvdglars(y ~ x, inverse.gaussian("log"),

+ data = diabetesH, control =

+ list(algorithm = "ipc", method = "dgLARS"))

R> cv_diabetes

Call: cvdglars(formula = y ~ x,

family = inverse.gaussian("log"),

data = diabetesH, control = list(

algorithm = "ipc", method = "dgLARS"))

Coefficients:

Estimate

Int. 4.9539

sex -2.0273

bmi 2.8447

map 2.1969

tc -0.3811

hdl -2.4124

ltg 3.8501

Dispersion parameter: 0.001141
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Details:

number of non zero estimates: 7

cross-validation deviance: 0.06296

g: 0.01533

n. fold: 10

Algorithm ‘ipc’ ( method = ‘dgLARS’ )

This output shows that the dgLARS method selects a inverse Gaussian re-
gression model with eight covariates that can be seen by the following code:

R> cv_diabetes$formula

y ~ sex + bmi + map + tc + hdl + ltg

Moreover, the optimal tuning parameter is 0.01533 and the dispersion pa-
rameter estimate by the generalized Pearson method is 0.001141.

We then call our functions to fit the dgLARS method and estimate the dis-
persion parameter by the GRCV method to do the model selection by the BIC
criterion.

R> diabetes_dglars <- dglars(y ~ x,

+ inverse.gaussian("log"), data = diabetesH,

+ control = list(algorithm = "ipc", method = "dgLARS"))

R> summary(diabetes_dglars, type = "BIC", phi = "grcv")

Call: dglars.fit(X = x, y = y,

family = inverse.gaussian("log"),

control =list(method = "dgLARS", algorithm = "ipc"))

Sequence g %Dev df BIC Rank

0.505974 0.00000 2 5089 18

+ bmi

0.481473 0.02290 3 5084 17

0.481262 0.02309 3 5084 16

+ ltg
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0.250152 0.26744 4 4952 15

0.233248 0.27846 4 4945 13

0.233174 0.27851 4 4945 12

+ map

0.222313 0.28613 5 4946 14

+ hdl

0.100212 0.36560 6 4895 11

0.099904 0.36572 6 4895 10

+ sex

0.030320 0.41322 7 4865 2

0.030263 0.41324 7 4865 1 <-

+ tc

0.014883 0.41892 8 4866 3

+ glu

0.005757 0.42063 9 4871 4

+ tch

0.002389 0.42122 10 4877 6

0.002384 0.42122 10 4877 5

+ ldl

0.001704 0.42199 11 4882 8

0.001691 0.42200 11 4882 7

+ age

0.000001 0.42272 12 4887 9

Details:

BIC values computed using k = 6.091 and

complexity = ‘df’, dispersion parameter

estimated by ‘grcv’

===============================================================

Summary of the Selected Model

Formula: y ~ sex + bmi + map + hdl + ltg

Family: ‘inverse.gaussian’
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Link: ‘log’

Coefficients:

Estimate

Int. 4.9495

sex -1.6834

bmi 2.7786

map 1.9536

hdl -2.2917

ltg 3.5420

Dispersion parameter: 0.001140 (estimated by ‘grcv’ method)

---

g: 0.03026

Null deviance: 1.0361

Residual deviance: 0.6079

BIC: 4864.8971

Algorithm ‘ipc’ ( method = ‘dgLARS’ )

The fitted model, the estimate of the coefficients, the GRCV estimate of the
dispersion parameter (0.001140) and the optimal value of the tuning parameter
(0.03026) can be found in this output. We can estimate the dispersion parameter
by the GRCV method without a fitted ’dglrs’ object and only with the design
matrix (x) and the response variable (y) by the following code:

R> phihat.fit(x,y, type = c("grcv"))

[1] 0.001139591

The outputs of the two model selection tools (BIC and CV) shows that five
predictors ("sex", "bmi", "map", "hdl" and "ltg") are selected by the BIC criterion
while the CV method, in addition to the five predictors selected by the BIC,
selects the predictor "tc" as another important variable.

To finish this section, we compare the run times of the original PC and im-
proved PC algorithms with the following R code:
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R> system.time(diabetes_dglars_pc <- dglars(y ~ x,

+ inverse.gaussian("log"), data = diabetesH,

+ control = list(algorithm = "pc", method = "dgLARS")))

user system elapsed

0.440 0.000 0.437

R> diabetes_dglars_pc$np

[1] 21

R> system.time(diabetes_dglars_ipc <- dglars(y ~ x,

+ inverse.gaussian("log"), data = diabetesH,

+ control = list(algorithm = "ipc", method = "dgLARS")))

user system elapsed

0.364 0.000 0.363

R> diabetes_dglars_ipc$np

[1] 18

Since the number of points of the dgLARS solution curve in the improved
PC algorithm is less than the number of points in the original PC algorithm, the
total run time for computing the solution path by the IPC algorithm is less than
the run time by the PC algorithm.

5.6 Conclusions
We briefly reviewed the differential geometrical theory underlying the

dgLARS method and briefly explained the dispersion parameter estimation
methods. We described some functions implemented in the new version of the
dglars package that can be used to estimate the dispersion parameter, and we
also used these functions to compare run times between two different PC and
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IPC algorithms. In simulations and the actual datasets we have shown that the
improved PC algorithm is faster than the original PC algorithm, and now the
dgLARS method can be used for a variety of distributions with different types
of the canonical and non-canonical link functions. A new version of dglars [9]
with new functions is available on CRAN.



Academic Summaries

Summary

A large class of modelling and prediction problems involve outcomes
that belong to an exponential family distribution. Generalized linear models
(GLMs) are a standard way of dealing with such situations. GLMs can be ex-
tended to deal with high-dimensional feature spaces. Penalized inference ap-
proaches, such as the ℓ1 or SCAD, or extensions of least angle regression, such as
dgLARS, have been proposed to deal with GLMs with high-dimensional feature
spaces. Although the theory underlying these methods is in principle generic,
the implementation has remained restricted to dispersion free models, such as
the Poisson and logistic regression models in which the dispersion parameter is
equal to one.

The aim of Chapter 2 is to extend the differential geometric least angle re-
gression method for high-dimensional GLMs to arbitrary exponential disper-
sion family distributions with arbitrary link functions. This entails, first, extend-
ing the improved predictor-corrector (IPC) algorithm to arbitrary distributions
and link functions, and second, proposing a classical estimator of the dispersion
parameter. Furthermore, improvements to the computational algorithm lead to
an important speed-up of the PC algorithm. In Chapter 3, we develop a new
method to make high-dimensional inference on the dispersion parameter of the
exponential family. Moreover, we propose an iterative algorithm to improve the
accuracy of the new proposed method. Simulation studies provide supporting
evidence concerning the proposed efficient algorithm for estimating dispersion
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parameter. The resulting methods have been implemented in the R-package
dglars.

Many clinical and epidemiological studies rely on survival modelling to de-
tect clinically relevant factors that affect various event histories. With the in-
troduction of high-throughput technologies in the clinical and even large-scale
epidemiological studies, the need for inference tools that are able to deal with
fat data-structures, i.e., relatively small number of observations compared to
the number of features, is becoming more prominent. Chapter 4 introduces a
principled sparse inference methodology for proportional hazards modelling,
based on differential geometrical analyses of the high-dimensional likelihood
surface.

Since the value of the dispersion parameter ϕ affects the value of the log-
likelihood function, the value of various information criteria such as AIC and
BIC can be affected, and so considerations about the selection of the optimal
model are going to be significantly affected. In Chapter 5, we explain the
improved estimator of the dispersion parameter, proposed in [70], for high-
dimensional exponential dispersion generalized linear models, called General
Refitted Cross-Validation (GRCV) estimator with an algorithm to improve the
proposed estimator to obtain a more accurate estimator. Several dispersion pa-
rameter estimation methods and algorithms for computing the dgLARS solu-
tion curve, proposed in [13] and [70], are implemented in the new version of
the R-package dglars [14].
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Samenvatting

Een grote groep van modellerings- en voorspellingsproblemen betreffen
uitkomsten die behoren tot een exponentiële familieverdeling. Gegeneral-
izeerde lineaire modellen (GLMs) zijn een standaard manier om dergelijke situ-
aties te behandelen. Zelfs in hoogdimensionale kenmerkruimten kunnen GLMs
uitgebreid worden om dergelijke situaties aan te pakken. Penalized inferen-
tie benaderingen, zoals de ℓ1 of SCAD, of extensies van de minste hoekre-
gressie, zoals dgLARS, zijn voorgesteld voor GLMs met hoogdimensionale ken-
merkenruimtes. Hoewel de theorie die aan deze methodes ten grondslag ligt in
principe generiek is, blijft de implementatie beperkt tot dispersievrije modellen,
zoals de Poisson- en logistieke regressiemodellen waarin de dispersieparameter
gelijk is aan één.

Het doel van Hoofdstuk 2 is het uitbreiden van de differentiaal ge-
ometrische minimale hoekregressie methode voor hoge-dimensionale GLMs
naar willekeurige exponentiële dispersie familie verdelingen met willekeurige
verbindingsfuncties. Dit houdt in dat, eerst, het verbeterde predictor-corrector
(IPC) algoritme wordt uitgebreid naar willekeurige verdelingen en verbind-
ingsfuncties, en ten tweede, een klassieke schatter van de dispersieparameter
wordt voorgesteld. Voorts leiden verbeteringen van het berekeningsalgoritme
tot een belangrijke versnelling van het PC-algoritme. In Hoofdstuk 3 ontwikke-
len wij een nieuwe methode om de hoogdimensionale inferentie van de dis-
persieparameter van de exponentiële familie mogelijk te maken. Bovendien
stellen we een iteratief algoritme voor om de nauwkeurigheid van de nieuwe
voorgestelde methode te verbeteren. Simulatiestudies bieden ondersteunend
bewijs over het voorgestelde efficiënte algoritme voor het beoordelen van de
dispersieparameter. De resulterende methoden zijn geïmplementeerd in het R-
pakket dglars.

Veel klinische en epidemiologische studies zijn gebaseerd op overlev-
ingsmodellering om klinisch relevante factoren te detecteren die verschil-
lende gebeurtenisgeschiedenissen beïnvloeden. Met de introductie van high-
throughput technologieën in de klinische en zelfs grootschalige epidemiologis-
che studies, is de behoefte aan inferentie instrumenten die in staat zijn om te
gaan met vette datastructuren, dat wil zeggen een relatief klein aantal waarne-
mingen in vergelijking met het aantal kenmerken, prominenter geworden.
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Hoofdstuk 4 introduceert een principiële sparse inferentie methodologie voor
proportionele gevaren modellering, gebaseerd op differentiële geometrische
analyses van het hoogdimensionale waarschijnlijkheid oppervlak.

Aangezien de waarde van de dispersieparameter ϕ de waarde van de log-
waarschijnlijkheidsfunctie beïnvloedt, kan de waarde van verschillende infor-
matiecriteria zoals AIC en BIC worden beïnvloed en tevens overwegingen over
de selectie van het optimale model. In Hoofdstuk 5, leggen we de verbe-
terde schatter van de dispersieparameter voor, die in [70] voorgesteld wordt,
voor hoge-dimensionale exponentiële dispersie generalizeerde lineaire mod-
ellen. Hij draagt de naam General Refitted Cross Validation (GRCV) schatter
en we stellen een algorithme voor om deze schatter te implementeren. Verschil-
lende dispersieparameterschattingmethoden en algoritmen voor het berekenen
van de dgLARS-oplossingscurve, voorgesteld in [13] en [70], worden geïmple-
menteerd in de nieuwe versie van het R-pakket dglars [14].
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