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Abstract

Fall prediction in geriatric patients remains challenging because the increased fall risk

involves multiple, interrelated factors caused by natural aging and/or pathology. Therefore,

we used a multi-factorial statistical approach to model categories of modifiable fall risk fac-

tors among geriatric patients to identify fallers with highest sensitivity and specificity with a

focus on gait performance. Patients (n = 61, age = 79; 41% fallers) underwent extensive

screening in three categories: (1) patient characteristics (e.g., handgrip strength, medication

use, osteoporosis-related factors) (2) cognitive function (global cognition, memory, execu-

tive function), and (3) gait performance (speed-related and dynamic outcomes assessed by

tri-axial trunk accelerometry). Falls were registered prospectively (mean follow-up 8.6

months) and one year retrospectively. Principal Component Analysis (PCA) on 11 gait vari-

ables was performed to determine underlying gait properties. Three fall-classification mod-

els were then built using Partial Least Squares–Discriminant Analysis (PLS-DA), with

separate and combined analyses of the fall risk factors. PCA identified ‘pace’, ‘variability’,

and ‘coordination’ as key properties of gait. The best PLS-DA model produced a fall classifi-

cation accuracy of AUC = 0.93. The specificity of the model using patient characteristics

was 60% but reached 80% when cognitive and gait outcomes were added. The inclusion of

cognition and gait dynamics in fall classification models reduced misclassification. We there-

fore recommend assessing geriatric patients’ fall risk using a multi-factorial approach that

incorporates patient characteristics, cognition, and gait dynamics.
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Introduction

Approximately 30% of all old adults aged 65 or older experience a fall at least once a year. Falls

are associated with pain, functional impairments, morbidity, psychological side effects, and

even mortality [1]. Preventing falls therefore remains a health care priority and early identifica-

tion of individuals at risk is the first step in fall prevention. Older compared with younger

adults are more likely to fall due to age-related declines in sensory, cognitive, and neuromuscu-

lar function, leading to an impaired gait [2]. Consequently, impaired gait and balance, in addi-

tion to demographic characteristics (e.g., gender, age, anthropometry, polypharmacy), are

related to falls in community dwelling adults [3].

Age-related slowing of gait is the most documented gait outcome, with habitual gait speed

slowing by 16% per decade after age 60 [4–6]. A gait speed below 1.0 m/s signifies potential

clinical or sub-clinical impairment, such as mobility impairments, recurrent falling, loss of

independence and institutionalization [4]. While most studies are concerned with gait speed

as main mobility outcome, gait speed alone may lack sufficient specificity because multiple

age- and clinical conditions also induce gait slowing (e.g., low back pain, osteoarthritis, and

Parkinson’s disease). In addition to gait speed, a variety of measures can quantify the dynamic

nature and time-dependent variations of gait, such as detrended fluctuation analysis [7], sam-

ple entropy [8], harmonic ratio [9] and index of harmonicity [10], reflecting the presence of

long range correlations, gait predictability, gait symmetry, and gait smoothness, respectively.

Each of these gait dynamics reflect a unique characteristic of gait and can be considered as

complementary to each other. However, some gait measures are inter-related [11]. For

instance, the coefficient of variation of stride time increases as gait speed decreases [12]. Factor

analysis takes these inter-relations into account and reduces the dimensionality of the gait data

by identifying underlying clusters of gait characteristics. Previous studies identified such gait

clusters, reflecting different aspects of gait performance related to speed, variability, rhythm,

coordination [13–16]. Hence, extracting properties of gait can provide fundamental insights

into the meaning of gait function.

With respect to falling, accuracy of fall prediction models increases when characteristics of

gait are included [17,18]. For example, gait smoothness prospectively discriminated fallers

from non-fallers in community dwelling old adults with a sensitivity of 68.8% and a specificity

of 84.2% [18]. In addition, the accuracy of fall prediction models based on clinical tests com-

monly used in fall risk assessments such as questionnaires, handgrip strength, and neuropsy-

chological tests, increased by 0.14 when comprehensive gait analysis was added (AUC from

0.68 to 0.82, sensitivity: 70%; specificity: 81% [17]).

The accuracy of fall prediction models may be population-dependent and may not be gen-

eralizable to patients admitted to geriatric outpatient clinics. Geriatric patients are referred

based on general or specific decline by a general practitioner, and are typically characterized

by a combination of physical, psychological, and social problems. Hence, these patients can be

considered vulnerable and present with an increased risk for adverse events such as falling,

hospitalization, and ultimately death [19]. Geriatric outpatients thus differ from age-matched

controls recruited from the community, and multiple comorbidities profoundly affect gait.

Geriatric patients do not only walk slower than the clinical threshold of 1.0 m/s [4,20], but

chronic conditions also modify gait dynamics. For example, 50% of geriatric patients use poly-

pharmacy, which increases the risk for falls [21,22]. Also, nearly 50% of geriatric patients suffer

from osteoporotic vertebral fractures, a condition associated with an increase in thoracic

kyphosis, decrease in gait stability, and increased fall risk [23,24]. Moreover, up to 30% of geri-

atric patients above age 60 present with sarcopenia, which is also associated with gait slowing

and an increased fall risk [25]. Finally, the prevalence of cognitive impairment ranges from
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22–71% in old adults above age 65 [26] and contributes to slow gait, increased gait variability,

decreased gait stability, and increased fall risk [27].

Geriatric patients can thus be characterized by a unique set of variables that increases their

risk for a fall. Hence, one approach to identify fallers is by grouping fall risk factors into catego-

ries, e.g., demographic characteristics typically assessed in clinical practice, cognitive function,

as well as detailed gait performance, and use a multi-factorial data analysis method. Such an

approach would allow us to examine the role of each factor in fall risk. Subsequently, it facili-

tates the development of personalized interventions strategies to modify medication [22], cog-

nition [28], and physical activity levels [6]. The latter interventions can be considered crucial

to fall-prone, geriatric patients. The present study therefore aims to statistically model catego-

ries of fall risk factors that identify geriatric fallers with the highest sensitivity and specificity,

with a focus on gait. To this aim, we pursued two complementary objectives: (1) to identify

unique gait properties by extracting underlying clusters from 11 gait measures and remove

redundancies in these measures using factor analysis and (2) to examine if the sensitivity and

specificity of a fall risk model improves when adding first cognitive measures to demographics,

and adding then gait factors identified by the factors analysis. We hypothesized that different

gait measures sum into the key features of gait, related to speed and dynamics. Because comor-

bidities are known to significantly affect geriatric patients’ gait performance, we expect that

sensitivity, specificity or both will increase fall classification when gait properties are added to

the statistical model.

Materials and methods

Study population

The present study included 61 patients (41 women and 20 men) of a database of patients that

visited the geriatric dayclinic of the MC Slotervaart Hospital, Amsterdam between 2011 and

2013 [23,29,30]. Patients were admitted to the dayclinic based on a medical referral by a gen-

eral practitioner and underwent extensive screening for physical, psychological, and cognitive

functions. All outcome measures except for gait function, hand grip strength, and fall status

were part of standard procedures at the diagnostic geriatric dayclinic of the MC Slotervaart

hospital. Inclusion criteria were: age 70 or older. Exclusion criteria were: (1) Inability to walk

for at least three minutes without a walking aid, (2) inability to speak and understand the

Dutch language, and (3) having mobility disability caused by neurological or orthopedic con-

ditions, limiting function in one or both legs. The Medical Ethical Committee of the MC Slo-

tervaart Hospital approved the study protocol. Written informed consent was obtained from

all participants or their legal representatives.

Outcome measures

Determination of fall status. A fall was defined as unintentionally coming to rest on the

ground, floor, or other lower level [31]. Patients were interviewed retrospectively about the

number of falls over the past year. Also, falls were prospectively registered with a ‘fall calendar’,

for which patients were contacted monthly up to 12 monthly by telephone follow-up, with a

minimum of 6 months. For patients with an MMSE-score below 24, fall history was obtained

from a caregiver. A patient was classified as ‘faller’ when one or more falls occurred retrospec-

tively or prospectively. Because the purpose of the present study was to examine (modifiable)

factors involved in fall risk, we aimed to include the whole spectrum of fallers, including retro-

and prospective fallers. Therefore, the study design was essentially cross-sectional.

Patient characteristics. Demographic information including age, gender, and body mass

index (BMI) were recorded. Maximal grip strength of the dominant hand [32], was quantified
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with a Jamar hand-held dynamometer (average of 3 trials). The number of comorbidities

was categorized with the Charlson Comorbidity Index (CCI) [33]. Medications were classi-

fied according to the Anatomical Therapeutic Chemical (ACT) codes (WHO, 2013) and

quantified as the total number of ‘Fall Risk Increasing Drugs’ (FRIDs), including psychotro-

pic and diuretic drugs [22]. Lateral X-rays of the thoracic spine were analyzed to determine

the degree of thoracic kyphosis, indicated by the Cobb angle between the superior endplate

of the second thoracic vertebra and the inferior endplate of the twelfth thoracic vertebra

[23]. Finally, fall risk was assessed according to the Longitudinal Aging Study Amsterdam

(LASA) fall risk profile [34].

Cognitive function. Global cognition was assessed with the Mini Mental State Examina-

tion (MMSE) with scores below 24 denoting cognitive impairment [35]. The 7-minute screen

[36] was administered to assess memory and executive function using the Benton’s Temporal

Orientation (BTO), the Enhanced Cued Recall (ECR), the animal verbal fluency and the clock

drawing test.

Gait performance. All patients walked 160 meters at habitual speed on an 80-meter long

hallway. A tri-axial accelerometer (87x45x14 mm; sample frequency 100 Hz; Dynaport1

MiniMod, McRoberts BV, The Hague, the Netherlands) was attached to the lower back at the

level of the third lumbar spine segment to measure medio-lateral (ML) and anterior-posterior

(AP) trunk accelerations. Vertical (V) acceleration signals were not analyzed because peaks in

these signals sometimes showed clipping and were therefore unreliable. Acceleration signals

were analyzed with custom-made software in MATLAB (version 2014b; The MathWorks,

Inc). Except for the calculation of the Sample Entropy, the signals were corrected for horizon-

tal tilt and low-pass filtered with a 2nd order Butterworth filter with a cut-off frequency of 15

Hz. Outliers due to turns were removed from the data using a median filter. We determined

11 gait outcomes, reflecting different and complementary gait properties.

Walking speed was calculated by dividing distance walked by the time. Peak accelerations

from AP signals were used to detect time indices of left and right foot contacts. Mean and coef-

ficient of variation (CV) of stride times were computed from the time interval between two

consecutive ipsilateral foot contacts. Step consistency was quantified by the standard deviation

(SD) of the relative phase between sequential ipsilateral indices of foot contact [37]. Higher SD

of the relative phase implies a more inconsistent gait pattern. Long-range correlations between

strides were quantified by the scaling exponent α using detrended fluctuation analysis [7]. A

value of 0.5� α� 1 suggests the presence of long-range correlations and signifies that future

fluctuations in strides are more accurately predicted by previous fluctuations.

The Root Mean Square (RMS) of the AP and ML acceleration quantified the variability in

the magnitude of the trunk accelerations. The Index of Harmonicity (IH) was computed to

examine the smoothness (frequency content) of the signal, using spectral analysis. Perfect

smooth trunk accelerations would reveal an IH of 1 [10]. To quantify the degree of predictabil-

ity of trunk acceleration time series, the Sample Entropy (SEn) was calculated [38]. A complete

predictable (periodic) signal will adopt a SEn of 0, with a larger SEn representing a less predict-

able gait.

Statistical analysis

Principal Component Analysis (PCA) with a Varimax rotation and Kaiser normalization was

performed on the 11 gait variables to determine underlying gait properties, and to reduce the

dimensionality of the data to unique factors. The number of extracted principal components

(PC’s) was determined by analyzing the scree plot which reveals the percentage explained vari-

ance by each component (usually referred as ‘factor scores’). PC’s with eigenvalues larger than
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1 were considered eligible for inclusion in the final model. The regression coefficients of the

extracted PC’s were then used for further analyses [14].

To examine the contribution of different fall risk factors, three Partial Least Squares Dis-

criminant Analyses (PLS-DA) were performed using the PLS_toolbox for MatLab (version

3.7.1; Eigenvector Research Inc.). PLS-DA combines PCA and regression analysis and can

handle data consisting of a large number of independent, highly collinear, inter-related vari-

ables with relatively few observations (subjects) [39]. Note that such a handling of multicolli-

nearity is important, in particular with respect to gait outcomes (e.g., gait speed and stride

time are highly correlated [40]). In the PLS-DA analyses, patient characteristics, cognitive and

gait measures represented the independent variables (X), and fall-status the categorical, depen-

dent variable (Y). The analysis seeks to find underlying latent variables (LV’s) to investigate

fundamental relations between the matrices X and Y by modelling the covariance structures in

these two spaces, and removing common variance. All variables were normalized to unit vari-

ance. The optimal number of LV’s was determined using the scree plot and defined at the level

where a plateau phase in the goodness of prediction (Q2) was reached [39]. Cross-validation

was performed using venetian-blind (number of data-splits: 7).

Three models were developed based on: (1) only patient characteristics, (2) patient charac-

teristics and cognitive function, and (3) patient characteristics, cognitive function, and the

regression coefficients derived from the factor analysis; the gait factors. Outcome measures of

the PLS-DA included scores (individual patients observations) and weights (contribution of

fall risk factors to the model), quantifying the relationship between fall risk factors and fall sta-

tus. The variance explained reflected how variables are clustered within each LV. Classification

accuracy of the models was quantified as sensitivity, specificity, and area under the curve

(AUC) based on Youden’s criterion, and visualized with receiving operating characteristic

(ROC) curves, with an AUC of 1 representing a perfect fit.

Results

Patient characteristics

Table 1 shows characteristics for fallers (mean age 80.2±4.7) and non-fallers (78.8±5.1).

Falls

Retrospective fall data was registered from all 61 patients during the interview. From six

patients, follow-up fall calendar data was obtained for less than 6 months, because patients

changed address, or withdrawn from participation and did not want to be contacted any lon-

ger. The mean follow-up duration was 8.6 months. Twenty-five patients were classified as fall-

ers (41%); 18 retrospective fallers, 19 prospective fallers, and 12 patients fell during the last

year as well as during follow-up.

Gait analysis

Three PC’s with eigenvalues > 1 and absolute factor loadings > 0.4 explained 67.50% of the

total variance of the 11 gait measures. PC1 reflected measures related to gait speed, stride

times, and the amplitude of trunk accelerations and was labeled ‘pace’. PC2 and PC3 repre-

sented measures related to gait variability and coordination respectively, and were labeled ‘var-

iability’ and ‘coordination’ (Table 2). These three identified gait components were then used

for the PLS-DA analyses below.
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The PLS-DA models

Table 3 and Fig 1 show the results of the three PLS-DA models. Model 1 included 3 LV’s,

model 2 also included 3 LV’s, and 5 LV’s were extracted for model 3. Note that in all models,

LV1 explains most of the variance in the independent variables (X) and falls (Y), followed by

LV2 and by LV3, but based on the Q2 criteria, five LV’s were included. Classification accuracy

of the first model with patient characteristics increased from 0.86 to 0.90 (AUC) when cogni-

tive measures were added. Model accuracy further increased from 0.90 to 0.93 (AUC) when

the principal gait components derived were subsequently added. In particular specificity

increased in the second model from 60% to 72% and reached 80% when gait measures were

included.

Table 1. Patient characteristics for fallers and non-fallers (mean ± SD).

Variable Fallers (n = 25) Non-fallers (n = 36)

Patient characteristics

Body Mass Index (kg/m2) 27.7 ± 4.2 26.0 ± 3.5

Handgripa (Newton) 23.7 ± 8.0 27.2 ± 8.8*

Charlson Comorbidity Indexb 1.6 ± 1.4 1.3 ± 1.2

Longitudinal Aging Study Amsterdam fall risk profiled 8.0 ± 1.2 2.4 ± 0.4*

Cobb Anglec (degrees) 52.0 ± 14.5 50.0 ± 12.7

Fall Risk Increasing Drugsb (number) 1.3 ± 1.2 1.3 ± 1.4

Cognition Scale

Mini Mental State Examinationa 23.1 ± 4.8 23.8 ± 3.7 0–30

Benton’s Temporal Orientation testb 19.2 ± 6.4 10.0 ± 3.3 0–113

Enhanced Cued Recall testa 11.7 ± 4.1 10.4 ± 5.0 0–16

Clock Drawing testa 10.1 ± 2.5 10.6 ± 2.5 0–14

Verbal Fluency testa 13.3 ± 1.5 14.1 ± 0.9 0–40

* p < 0.05.
a A higher score indicates better performance.
b A higher score indicates worse performance.
c Values above >50 affect postural control.
d A score of� 8 points indicates an increased risk for recurrent falling.

https://doi.org/10.1371/journal.pone.0178615.t001

Table 2. Loadings of the gait variables (eigenvalue >1 and absolute loadings > 0.4) as revealed by PCA with Varimax rotation.

Gait measures Pace Variability Coordination

Walking Speed -.848

Root Mean Square AP -.844

Root Mean Square ML -.820

Index of Harmonicity ML .791

Stride Time .748

CV Stride Time .583 .435

Step Consistency .781

Long range correlations -.774

Sample Entropy AP .677

Sample Entropy ML .850

Index of Harmonicity AP .512

CV = Coefficient of Variation; AP = Anterior-Posterior; ML = Medio-Lateral.

https://doi.org/10.1371/journal.pone.0178615.t002
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Table 4 presents the amount of explained variance per independent variable of each

included LV of the final model (model 3). The results signify that X-variables are clustered

within the LV’s. Motor performance (gait components and handgrip strength) and the LASA

Table 3. Characteristics of the three PLS-DA models: Number of latent variables, variance explained in X (fall risk factors) and Y (fall-status), and

classification accuracy of fallers and non-fallers.

Model Factors included Number of

LV’s

X-block (%) Y-block (%) Sensitivity (%) Specificity (%) AUC

1 Patient characteristics 3 LV1 23.7 32.5 92 60 0.86

LV2 15.0 6.5

LV3 15.9 0.7

Sum 54.5 39.7

2 Patient characteristics + cognition 3 LV1 15.1 34.5 89 72 0.90

LV2 13.1 9.5

LV3 20.5 2.1

Sum 48.7 46.1

3 Patient characteristics + cognition + gait 5 LV1 31.8 33.6 92 80 0.93

LV2 7.8 13.5

LV3 18.4 1.3

LV4 7.5 1.4

LV5 5.3 0.8

Sum 52.4 50.7

LV = Latent Variable; AUC = Area Under the Curve.

https://doi.org/10.1371/journal.pone.0178615.t003

Fig 1. Receiving operating characteristic—Curves for the three fall classification models. Model 1 = Patient characteristics;

Model 2 = Patient characteristics + cognitive outcomes; Model 3 = Patient characteristics + cognitive outcomes + gait outcomes.

AUC = Area Under the Curve.

https://doi.org/10.1371/journal.pone.0178615.g001
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were mainly presented in LV1, cognitive function in LV2 and LV3, and patient characteristics

in LV4 and LV5.

Biplots of the final model provide a graphical representation of the Y-variable (falls) and

weights of the X-variables (patient characteristics, cognitive outcomes, and gait outcomes)

with respect to the LV’s (Fig 2). Fallers and non-fallers present in sharply separated clusters.

The coordinates (size) of the weight vectors reflect the importance of the X-variable to the

LV’s. In this figure, the direction of the vectors reflects how these X-variables relate to fallers or

non-fallers. The weights show that LASA, BTO, BMI and gait pace are particularly relevant in

the identification of fallers, whereas handgrip, clock drawing, verbal fluency, gait variability,

and gait coordination are relevant in the identification of non-fallers.

Discussion

We applied a factor analysis to speed- and dynamic-related measures of gait and we then statis-

tically modeled combinations of factors that classified geriatric fallers with the highest sensitiv-

ity and specificity. The factor analysis identified pace, variability, and coordination as key

properties of gait. A model that included patient characteristics, cognitive function, as well as

gait performance produced high classification accuracy (AUC = 0.93) and showed an increase

in specificity from 60% to 80% compared to a model that only included patient characteristics.

We discuss how a successful fall risk assessment in the future will most likely include a large

array of variables to optimize the identification of fallers among geriatric outpatients.

First, PCA applied to 11 gait variables revealed three unique gait properties: pace, variabil-

ity, and coordination. ‘Pace’ comprised speed-related measures, namely gait speed, stride time,

and the amplitude of AP and ML accelerations (RMS). ‘Variability’ and ‘coordination’ are con-

sidered as gait properties that reflect the dynamics of gait and were mainly derived from trunk

accelerations. The loading structure was consistent, except for the IH in ML direction, which

loaded on the pace component (absolute loading: 0.791) while it was expected to load on the

Table 4. Explained variance (%) per independent variable of the 5 extracted latent variables in model 3.

Independent variable LV1 LV2 LV3 LV4 LV5 Sum

Gait

Gait Pace 12.2 0.0 6.0 2.2 1.0 22.2

Gait Variability 0.3 5.9 5.5 7.2 2.1 21.0

Gait Coordination 20.4 13.3 1.3 0.4 3.6 39.0

Cognition

Mini Mental State Examination 7.7 0.5 58.7 7.5 4.6 86.6

Benton’s Temporal Orientation test 1.7 0.5 58.7 0.5 1.3 62.7

Enhanced Cued Recall test 6.3 5.5 53.4 0.1 4.8 70.0

Clock Drawing test 9.1 12.9 21.7 0.7 8.5 52.0

Verbal Fluency test 10.4 15.5 28.1 16.1 0.1 70.3

Patient characteristics

Fall Risk Increasing Drugs 2.8 8.2 2.3 18.4 4.5 36.2

Charlson Comorbidity Index 0.2 6.0 9.0 21.1 0.0 36.4

Body Mass Index 3.8 8.3 4.1 28.9 26.4 71.5

Longitudinal Aging Study Amsterdam 74.4 2.4 0.7 1.4 5.6 84.5

Handgrip 40.9 15.6 8.9 0.2 0.6 66.2

Cobb Angle 2.5 0.8 0.0 0.0 10.6 13.9

LV = Latent Variable

https://doi.org/10.1371/journal.pone.0178615.t004
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Fig 2. Biplots of latent variables (LV’s) 1 vs. 2 (upper trace) and LV’s 1 vs. 3 (lower trace) provide a

graphical representation of the response variable (fall-status) and weights of the independent
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coordination component. This might imply that IH ML is related to gait speed. In general, the

extracted components were comparable with components identified by previous studies [13–

16].

Second, three PLS-DA models were generated and compared (Table 2 and Fig 1). The

first model based on patient characteristics already produced high classification accuracy

(AUC = 0.86). LASA clearly outperformed the other variables, as indicated by the size of the

weight vectors. LASA provides an extensive screening tool consisting of nine fall-related fac-

tors such as dizziness, fear of falling, alcohol intake, fall history, and education level [34].

Although sensitivity of this first model was quite high (80%), specificity remained relatively

low (60%). A low specificity (i.e., true negative rate) hampers clinical application because non-

fallers will be erroneously identified as fallers and such misclassifications may induce fear of

falling and unnecessary interventions.

Adding cognitive measures to the model increased specificity by 12%, to 72% (Table 3).

Age-related decline in gait and cognition co-occurs because brain areas that control gait partly

overlap with brain areas that control cognitive function [2]. Gait dysfunction can thus be

expected in the presence of cognitive impairment [27,41] and an impaired gait control in turn

increases fall risk. On the other hand, old adults rely on executive functions in daily activities

that require divided attention (e.g., in traffic and walking while talking). Impairment in execu-

tive functions may thus cause dangerous situations and increase fall risk.

Adding gait outcomes to the model further increased the models’ specificity by 8%, to 80%

(Table 3). Progressive age-related deterioration in neuromuscular and neurophysiological

function engenders decline in sensory systems, sarcopenia, slower movement time and central

processing, all linked to deficits in gait and balance [42]. In particular gait components ‘vari-

ability’ and ‘coordination’ accounted for the increase in specificity, as indicated by the size and

direction of the corresponding vectors towards non-fallers (high specificity). These results sup-

port the idea that speed-related measures such as gait speed and (CoV) stride time (captured

by the pace domain) may be sufficient for classifying fallers only. They do, however, lack speci-

ficity that could result in misclassification of non-fallers. Gait speed is widely recognized as an

important variable associated with many clinical conditions later in life [4]. The results of the

present study show that combining gait speed and speed-related measures with dynamic gait

measures will increase specificity and thus classification accuracy. Hence, gait dynamics could

be added to measures usually addressed in clinical practice. Nowadays, extensive gait analysis

is more easily accessible for clinical practice due to the rapid development of off-the-shelf

smartphones, iPods and similar smart devices. Equipped with built-in accelerometers and

gyroscopes, the devices are light, inexpensive, easy to handle, and thus suitable to analyze gait

in a clinic [43]. However, despite technological advances, we note that future studies should

examine the clinical applicability of such smart devices.

While one could question whether the 8% gain in specificity is it worth to add gait perfor-

mance to the screening assessments, we signify the importance of a correct fall prediction on a

clinical level. Misclassification (non-fallers that are classified as fallers) may induce fear of fall-

ing and unnecessary interventions and therefore hampers clinical application. Future studies

variables (patient characteristics, cognitive, and gait factors) with respect to the included LV’s. As

clearly shown, fallers and non-fallers (green and red respectively) are clustered. Weight vector size

reflects the importance of the variable to the model. The direction of the vector refers to whether

variables mainly relate to classification of fallers (sensitivity) or non-fallers (specificity). BMI = Body

Mass Index; CCI = Charlson Comorbidity Index; LASA = Longitudinal Aging Study Amsterdam; FRIDs = Fall

Risk Increasing Drugs; MMSE = Mini Mental State Examination; BTO = Benton Temporal Orientation;

ECR = Enhanced Cued Recall.

https://doi.org/10.1371/journal.pone.0178615.g002
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could compare the sensitivity of gait dynamics with existing fall risk tools that examine physi-

cal function in the identification of fallers and non-fallers, such as the Physiological Profile

Assessment (PPA) test [44]. Such tests may complement each other and reduce the need for

excessive testing. In addition, the integration of test results could help to unravel underlying

mechanisms of gait dysfunction and neurophysiological changes.

Because of typical challenges associated with clinical research (e.g., recruitment, retention)

in this patient group, the sample size of the present study was relatively small (n = 61). As a

consequence, because standardization of the follow-up period would induce an in-balance of

fallers and non-fallers groups, we choose not to exclude the patients who did not complete the

fall calendar for all 12 months. Although exclusion of those patients did not significantly

change the results, we recognize this as a potential limitation. Finally, the generalizability of

the present study can be considered challenging. However, an increasing number of hospitals

is nowadays equipped with a specialized geriatric outpatient clinic. Therefore, assessments

used in the present study are often part of regular screening methods, which facilitates applica-

bility and generalizability.

In conclusion, geriatric patients represent a vulnerable population with an increased risk

for falling. Fall risk assessment including modifiable fall risk factors revealed high classifica-

tion accuracy (AUC = 0.93). Although patient characteristics can accurately identify fallers,

the evaluation of executive function and gait dynamics reduced misclassification with an

increase in specificity from 60% to 80%. Therefore, we underscore the need for a multifacto-

rial approach in fall risk assessment in geriatric patients, including a comprehensive evalua-

tion of patient characteristics, cognitive function, and gait performance. These fall risk

factors should ultimately be targeted by individualized interventions to reduce fall risk.
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