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Clustering-based algorithms for multi-vehicle task assignment in a
time-invariant drift field*

Xiaoshan Bai1,2, Weisheng Yan1, and Ming Cao2

Abstract— This paper studies the multi-vehicle task assign-
ment problem where several dispersed vehicles need to visit
a set of target locations in a time-invariant drift field while
trying to minimize the total travel time. Using optimal control
theory, we first design a path planning algorithm to minimize
the time for each vehicle to travel between two given locations in
the drift field. The path planning algorithm provides the cost
matrix for the target assignment, and generates routes once
the target locations are assigned to a vehicle. Then, we propose
several clustering strategies to assign the targets, and we use
two metrics to determine the visiting sequence of the targets
clustered to each vehicle. Mainly used to specify the minimum
time for a vehicle to travel between any two target locations,
the cost matrix is obtained using the path planning algorithm,
and is in general asymmetric due to time-invariant currents of
the drift field. We show that one of the clustering strategies
can obtain a min-cost arborescence of the asymmetric target-
vehicle graph where the weight of a directed edge between
two vertices is the minimum travel time from one vertex to the
other respecting the orientation. Using tools from graph theory,
a lower bound on the optimal solution is found, which can be
used to measure the proximity of a solution from the optimal.
Furthermore, by integrating the target clustering strategies with
the target visiting metrics, we obtain several task assignment
algorithms. Among them, two algorithms guarantee that all the
target locations will be visited within a computable maximal
travel time, which is at most twice of the optimal when the cost
matrix is symmetric. Finally, numerical simulations show that
the algorithms can quickly lead to a solution that is close to
the optimal.

I. INTRODUCTION

Multi-vehicle systems have been increasingly exploited to
effectively and efficiently accomplish difficult and complex
missions [1]. The associated multi-vehicle task assignment
problem is to assign a fleet of vehicles to visit a set of target
locations, while trying to minimize the vehicles’ total travel
distance [2] or time [3]. The task assignment problem for a
team of vehicles to visit a set of target locations is a variant of
the vehicle routing problem (VRP) where a fleet of vehicles
need to deliver products from one or several depots to a group
of dispersed customers [4], [5]. The VRP is NP-hard, which
implies that extremely long computation time may be needed
to obtain the optimal solution as the numbers of vehicles and
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customers grow. So existing research works usually test their
algorithms on the VRP benchmarks and compare the results
with those existing solutions of known performances [6].
The VRP has been dealt with using centralized computation
methods, including exact [7], [8], and heuristic algorithms
[6], [9], [10]; genetic algorithms (GAs) are the typical repre-
sentative of the latter [11]. The multi-vehicle task assignment
problem also has been shown to be NP-hard [12], and
heuristic algorithms are usually used to obtain a sub-optimal
solution [13], [14]. Taking into account task priority and
vehicle loading capacity, Shima et al. [13] designed a GA
for multiple unmanned aerial vehicles. If the utility of a task
is non-increasing as other tasks are added to the bundle list
before the task of concern, the auction algorithms proposed
in [14] guaranteed that their solution’s objective value is
within twice of the optimal. Furthermore, when the matrix
specifying the cost for a vehicle to travel between each
pair of locations is symmetric, the Prim Algorithm for the
multi-robot task assignment ensured that the robots’ total
travel cost is at most twice of the optimal [15]. However,
most of the discussed task assignment algorithms have been
developed under the restrictive assumption that there is no
external disturbance when a vehicle travels between two
given locations.

When a vehicle’s motion is affected by external distur-
bance such as winds or currents, the multi-vehicle task
assignment problem consists of two sub-problems, namely
how to assign subtasks as sequences of target locations
to individual vehicles and how to navigate a vehicle from
its initial location to a target location optimally. There are
some research works considering both the target assign-
ment and path planning for the employed vehicles [16]–
[18]. By simply requiring moving in straight lines between
prescribed locations, Han and Chung [16] employed an
autonomous underwater vehicle (AUV) to optimally visit
several target points considering the ocean currents and
obstacles. Furthermore, to enable multiple AUVs to visit
several target points in the time-varying (in a discrete time
scale) 3-D underwater environment, Zhu et al. [17] employed
the velocity synthesis approach to enable each AUV to
reach its targets along the shortest path and used the self-
organizing map neural network to realize the multi-AUV
target point assignment. Grid-modeling based graph methods
were designed by Eichhorn [18] for vehicle path planning
in a time-varying environment. Delmerico et al. [19] used
active aerial exploration for robot path planning through an
unknown terrain for search and rescue missions. The path
planning methods minimizing the travel distance between



two given locations in [16], [17] do not necessarily lead to the
minimal travel time between the locations. More importantly,
since the metric matrix representing the minimal travel time
between the target locations is in general asymmetric, the
existing algorithms, e.g. the Prim algorithm [15], may fail to
guarantee their performances.

In our previous work [20], the multi-AUV routing problem
was studied in temporally piece-wise constant ocean currents
aiming at minimizing the total travel time. In addition, time-
optimal coverage control of multiple vehicles in a drift
field was studied in [21] where the time-optimal paths
were generated over a sequence of discrete time instants.
In this paper, we investigate the task assignment problem
for which several dispersed vehicles need to visit a set of
target locations in a time-invariant drift field while trying to
minimize the total travel time. To solve the problem, we first
design a path planning method to deal with the vehicle path
planning in currents. Then, we propose several clustering
strategies to assign the target locations to the vehicles, and
we use two metrics to put the target locations assigned to
each vehicle in an ordered sequence. Our main contributions
are as follows. Firstly, based on the accessible area analysis
and optimal control theory, the proposed planning algorithm
can generate the time-optimal path for a vehicle to travel
between two prescribed locations in a drift field, which
provides the travel cost matrix to be used later for the
task assignment. Secondly, a lower bound on the optimality
of the solution to the task assignment problem with the
asymmetric travel cost matrix is achieved using one of
the proposed clustering strategies. As the task assignment
problem is NP-hard [12], [15], the lower bound can be used
to approximately measure the quality of a solution. Lastly, we
have studied how the asymmetric travel cost matrix caused
by the drift field influences the performances of different
clustering algorithms. Two novel algorithms, in the form of
integrating the clustering strategies with the target-inserting
metrics, guarantee that the total travel time to visit all the
target locations is within a reasonable computable upper
bound, which, when the cost matrix is symmetric, is twice
of the optimal.

The rest of this paper is organized as follows. In Section
II, the formulation of the task assignment problem is given.
Section III presents the path planning algorithm which gen-
erates the optimal navigation control law, and in Section IV
several target clustering strategies and two target inserting
metrics are discussed. We present the simulation results in
Section V and conclude the paper in Section VI.

II. PROBLEM FORMULATION

To formulate the problem rigorously, we first introduce the
definition of the arborescence of a digraph in graph theory.

Definition 1: (arborescence [22]) An arborescence is a
digraph with a single root in which, there is exactly one
directed path from the root to any other vertex.

Based on Definition 1, we extend the concept of arbores-
cence with a single root to a general one with several roots.

Definition 2: (Generalized arborescence) A generalized
arborescence is a digraph with several roots in which, there
is exactly one directed path from one and only one of all the
roots to any non-root vertex.

Now we are ready to define the research problem.

A. Problem description

Consider a fleet of m homogeneous vehicles initially
randomly distributed in a planar time-invariant drift field.
They need to visit n target locations while trying to minimize
the total travel time. The vehicles are not required to return to
their initial locations after visiting the targets (namely we are
considering a variation of the open vehicle routing problem
[23]), and their net speed is affected by the speed of the
currents in the drift field.

B. Formulation as an optimization problem

We use the vector v⃗c = [vcx, vcy]
T to describe the drift

velocity of the time-invariant field with respect to some
coordinate system fixed to the ground. Note that v⃗c changes
with locations. We assume that the vehicles are driven by
constant thrust, and consequently their velocity v⃗ is with
constant speed v relative to the field [13], [24]. Since the
dimension of the drift field is significantly larger than the
vehicles’ size, we assume that the vehicles are free of turning
ratio constraints. The kinematics of each vehicle are

ẋ = v cosψ + vcx, ẏ = v sinψ + vcy, (1)

where [x, y]T is the vehicle’s position and ψ is the vehicle’s
navigation angle.

We label the target locations by 1, . . . , n, and let T =
{1, . . . , n} be the set of these indices. Let R denote the
set of indices of all the vehicles’ initial locations, namely
R = {n+ 1, · · · , n+m}, m ≤ n. For each pair of distinct
i ∈ T ∪ R and j ∈ T , let t(i, j) denote the minimal time
for a vehicle to travel from i to j using a properly designed
navigation control. Let σij be the path-planning mapping that
maps the indices i ∈ T ∪ R and j ∈ T of the starting and
ending locations of a vehicle to a binary value, which equals
one if and only if it is planned that there exists a vehicle
travels from location i to j. So σii = 0 for all i ∈ T ∪ R.
Then, the problem is to minimize the total travel time for
visiting all the target locations

f =
∑

i∈R∪T ,j∈T
t(i, j)σij , (2)

subject to∑
i∈R∪T

σij = 1, ∀ j ∈ T ; (3)∑
j∈T

σij ≤ 1, ∀ i ∈ T ∪ R; (4)∑
i,j∈S

σij ≤ |S| − 1, ∀ S ⊆ T , |S| ≥ 2. (5)

Constraint (3) ensures that each target location is visited once
and only once; (4) ensures that each target and vehicle initial



location is departed at most once; and (5) guarantees that
there is no subtour among the target locations.

Remark 1: If ignoring the effect of the field currents on the
speed of the vehicles, the task assignment problem just pre-
sented reduces to the uncapacitated multi-depot open vehicle
routing problem with the symmetric travel cost matrix [5]. We
refer the interested reader to [5] for detailed discussions on
the relationship between a standard vehicle routing problem
and the multi-depot open vehicle routing problem.

After formulating the task assignment problem as a con-
strained minimization problem, we present in the following
section a component of the path planning that is critical for
solving the overall optimization problem.

III. PATH PLANNING ALGORITHM GIVEN THE STARTING
AND TARGET LOCATIONS

To plan the optimal path that minimizes the travel time
in a given field with currents, we first look at the accessible
region of a vehicle starting from an arbitrary location. Then
using optimal control theory, we construct the navigation rule
that guides a vehicle to travel between two given locations
following the path using the minimum time.

A. Accessible region analysis
As before, v⃗c is used to denote the velocity of the

currents, which changes with location; its amplitude is vc.
As in (1), the vehicle’s velocity relative to the field is v⃗ with
the amplitude v. Similarly, we use v⃗n to denote the vehicle’s
net velocity with amplitude vn. Obviously, the vehicle can
reach all locations of the field given enough time if v > vc.
For this reason, we make this standing assumption for the
rest of the paper.

Assumption 1: It holds for all locations of the field and all
time that v > vc.

Consequently, with this assumption, each vehicle can
travel from any given location to any given other target
location and the travel time depends on the path planned
and the associated navigation rule, which will be discussed
in the following subsection.

B. Optimal navigation law
We now show how to navigate a vehicle between any two

given locations with the minimum traveling time.
Lemma 1: Under Assumption 1, for a vehicle with kine-

matics (1), to travel with the minimum time between any
given starting and ending locations of the time-invariant drift
field with the current velocity v⃗c, the rate of change of the
vehicle’s optimal navigation angle ψ∗ must satisfy

ψ̇∗ = −∂vcx
∂y

cos2 ψ∗ + (
∂vcx
∂x

− ∂vcy
∂y

) sinψ∗ cosψ∗

+
∂vcy
∂x

sin2 ψ∗. (6)
Proof: Let t0 and tf be the starting and finishing times

respectively. Then to minimize the travel time, is to minimize
the objective function

J =

∫ tf

t0

dt = tf − t0.

Define the corresponding Hamiltonian to be

H(t, [x, y]T , λ, ψ) = 1 + λT [ẋ, ẏ]T

= 1 + λ1(v cosψ + vcx)

+λ2(v sinψ + vcy), (7)

where λ = [λ1, λ2]
T is the two-dimensional Lagrangian mul-

tiplier. From Pontryagin’s minimum principle of variational
analysis in optimal control theory [25, P188], it must be true
that the optimal Lagrangian multiplier λ∗ and the optimal
navigation angle ψ∗ satisfy

λ̇∗ = − ∂H

∂[x, y]T
(8)

0 =
∂H

∂ψ
(9)

Since (9) holds for all t ≥ t0, the time derivative of its
right-hand side must also be zero. So we have

λ̇∗1 sinψ
∗ + λ∗1ψ̇

∗ cosψ∗ = λ̇∗2 cosψ
∗ − λ∗2ψ̇

∗ sinψ∗.

Combining with what can be obtained from (8)

λ̇∗1 = −λ∗1
∂vcx
∂x

− λ∗2
∂vcy
∂x

λ̇∗2 = −λ∗1
∂vcx
∂y

− λ∗2
∂vcy
∂y

,

the optimal navigation control ψ∗ must satisfy (6) when tf −
t0 is minimized.

Because of Assumption 1, we know that a solution ψ, and
thus the optimal solution ψ∗, always exist. Theorem 1 gives
a necessary condition on ψ̇∗; what remains to be determined
is the initial orientation ψ∗(0). After knowing ψ∗(0) and ψ̇∗,
the optimal navigation angle ψ∗(t), t > 0, can be determined
through the integration of ψ̇∗ over t. However, to determine
ψ∗(0) with the initial location [x0, y0]

T and the finishing
location [xf , yf ]

T , one needs to solve the two-point boundary
problem:{

xf = x0 +
∫ tf
t0
[v cos(ψ∗(0) +

∫ t

t0
ψ̇∗dτ) + vcx]dt,

yf = y0 +
∫ tf
t0
[v sin(ψ∗(0) +

∫ t

t0
ψ̇∗dτ) + vcy]dt.

(10)

The solution ψ∗(0) to (10) in general can be found numeri-
cally using the shooting method [26]. As becomes clear later
in an example, the structure of the current velocity [vcx, vcy]

T

in the field can be utilized to simplify the computation.
Let i, j and k be three arbitrary different locations. We

first give some property on the optimal travel time matrix of
the task assignment problem.

Lemma 2: The minimum travel times for a vehicle to trav-
el between two locations can be asymmetric; the minimum
travel times between any three locations i, j and k satisfy
the inequality t(i, k) ≤ t(i, j) + t(j, k).

Proof: We first prove that the minimum travel times
between two locations is in general asymmetric. To simplify
the proof, we consider the case when the currents v⃗c are
spatially invariant. Thus, the optimal navigation angle for a



0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

1

2

 

 
Location 1
Location 2
Optimal path from 1 to 2
Optimal path from 2 to 1

Fig. 1: Optimal path planning for a vehicle with v = 1
to travel between two locations in the drift field v⃗c =
10−2[0.3x+0.2y,−0.2x+0.3y]T where the minimum travel
times are t(1, 2) = 73.0058s and t(2, 1) = 103.3586s.

vehicle to travel from i to j is constant according to Theorem
1. In other words, the direction of the net velocity for the
vehicle to travel from i to j is directly towards j and the
magnitude of the net velocity is constant, and vice versa.
Consequently, the optimal travel times t(i, j) and t(j, i) are
asymmetric as long as the magnitudes of the two net speeds
are different since the travel distances are both the Euclidean
distance between i and j. The magnitudes of the net speeds
for a vehicle to travel from i to j and from j to i are the
same only when v⃗c is perpendicular to the vector pointing
from i to j. Thus, the first half of the statement is proved.
(Using the path planning method, we give an example in Fig.
1 to show the property of the asymmetric minimum travel
times between two locations.)

Under the optimal navigation law (6), a vehicle takes the
minimum travel time t(i, k) to travel from i to k. It is obvious
that only if j is located on the optimal path from i to k, one
has t(i, k) = t(i, j)+t(j, k). On the other hand, t(i, k) would
not be the minimum travel time should t(i, k) > t(i, j) +
t(j, k), since the navigation law shown in Theorem 1 is time
optimal. The proof is complete.

IV. TASK ASSIGNMENT ALGORITHMS

A. Target clustering strategies

In this subsection, three strategies are presented to cluster
the target locations to the vehicles based on the optimal travel
time matrix t = t(i, j)i∈R∪T ,j∈T obtained from the path
planning algorithm.

1) Voronoi clustering: Inspired by the coverage control s-
tudy where each vehicle can reach any point of its partitioned
area with the shortest travel time among all the vehicles [21],
we first propose the Voronoi clustering strategy assigning
each target k to the vehicle j⋆ such that

j⋆ = argmin
j∈R

t(pj , k), (11)

where t(pj , k) is the minimum travel time for vehicle j to
visit target k from its initial location pj . In the case that a

target location is on one of the boundaries of the Voronoi
areas, it is randomly clustered to one of the vehicles whose
Voronoi areas share the boundary.

2) Extended Voronoi clustering: In the task assignment
problem, the vehicles need to visit all the target locations
which is different from the coverage control problem [21]
where a vehicle in essence only visits one target (although
its location is unknown beforehand). In other words, Voronoi
clustering might lead to assignment unfairness to the target
locations. Thus, we extend the Voronoi clustering strategy
by assigning each target according to the locations of those
targets already assigned and the locations of all the vehicles.

Let Tj contain the indices of those targets that have already
been assigned to vehicle j and the target set T u contain the
indices of those unclustered targets, which is initialized as
T . Then, the first target k⋆ in T u to be clustered and its
assigned vehicle j⋆ are determined by

(j⋆, k⋆) = argmin
i∈Tj ,j∈R,k∈T u

t(i, k), (12)

where the targets already assigned to the vehicles affect the
clustering of the remaining targets. After clustering target k⋆,
T u is updated to

T u = T u \ {k⋆}, (13)

while the targets assigned to vehicle j⋆ are updated to

Tj⋆ = Tj⋆
∪

{k⋆}. (14)

3) Marginal-cost-based clustering: In this subsection, a
marginal-cost-based clustering strategy is designed which de-
termines the visiting sequence of a target during its clustering
process.

Let oj be the route containing the ordered targets already
assigned to j. Then, the first target k⋆ in T u to be clustered,
its assigned vehicle j⋆ and the inserting position q⋆ are

(k⋆, j⋆, q⋆) = argmin
k∈T u,j∈R,q≤|oj |+1

t(oj ⊕q k)− t(oj), (15)

where the operation oj⊕qk inserts target k at the qth position
of oj . Target k is inserted to the end of oj if q = |oj | + 1,
and t(oj) denotes the total travel time for vehicle j to visit
all the targets in oj .

B. Target-visiting metrics

For targets clustered by the strategies in IV-A.1 and IV-
A.2, their visiting sequence is not determined. Putting the
target locations assigned to each vehicle into a sequence to
minimize the vehicle’s travel time is in fact the traveling
salesman problem (TSP) [27]. In this subsection, we design
two target-visiting metrics: the nearest inserting principle and
smallest marginal cost principle.



Algorithm 1 The Extended Voronoi clustering for achieving
a min-cost generalized arborescence (MCGA) of a directed
graph.
Input: Locations of targets in T and vehicles in R, the travel time

matrix t for digraph G.
Output: An MCGA of G.

1: Initialize MCGA←R.
2: while T ̸= ∅ do
3: (j⋆, p⋆)← argmin(j,p)∈MCGA×T t(j, p).
4: Add p⋆ in MCGA and connect it with j⋆ using an edge

with weight t(j⋆, p⋆).
5: T ← T \ {p⋆}.
6: end while

1) Nearest inserting principle: The first metric is the
nearest inserting principle where vehicle j always inserts an
unordered target location in Tj with the smallest travel time
into the end of its route oj . Let the target set T u

j contain the
targets in Tj that have not been inserted into oj . Then, the
first target in T u

j to be inserted for vehicle j is

k⋆ = argmin
i=oj(|oj |),k∈T u

j

t(i, k), (16)

Then, T u
j and oj are updated as

T u
j = T u

j \ {k⋆}, oj = oj ⊕|oj |+1 k
⋆. (17)

The inserting procedure continues until all the targets in Tj
are inserted into vehicle j’s target list oj .

2) Smallest marginal cost principle: The other one is the
smallest marginal cost principle, which determines the first
target k⋆ in T u

j to be inserted and its visiting sequence q⋆

for each vehicle j by

(k⋆, q⋆) = argmin
q≤|oj |+1,k∈T u

j

t(oj ⊕q k)− t(oj). (18)

Then, T u
j and oj are updated as

T u
j = T u

j \ {k⋆}, oj = oj ⊕q⋆ k
⋆. (19)

C. Correctness of the proposed strategies

Let G be a digraph whose vertices contain all the vehicles’
initial positions and the target locations. The weight for a
directed edge is the minimum time for a vehicle to travel
from the starting vertex to the ending vertex if at least
one vertex represents a target location, and is otherwise
zero. Compared with the Prim algorithm used to find a
minimum spanning tree for a undirected graph [28], we use
the clustering strategy proposed in IV-A.2 to obtain a min-
cost generalized arborescence (MCGA) for the digraph G.
The procedure to achieve an MCGA is shown in Algorithm
1. Let fa be the sum of all the edge weights of an MCGA
of G, and fo be the optimal objective value in (2). Then, we
first investigate some property of the optimal solution to the
problem with an asymmetric travel cost matrix.

Lemma 3: It holds that fa ≤ fo.
Proof: We first prove the statement when m, the

number of all the vehicles, is one. In this case, only one
vehicle needs to visit all the target locations, which is a

variant of the TSP [29]. An optimal route to visit all the
targets is in fact an arborescence of G according to Definition
1. As fa is the cost of the min-cost arborescence, fa ≤ fo.

When m > 1, from the definition of the generalized
arborescence in Definition 2, the optimal solution of the
problem is also a generalized arborescence of G, in which
both the outdegree and indegree of each vertex is at most
one. As fa is the sum of all the edge weights of the min-
cost generalized arborescence, the proof is complete.

The min-cost generalized arborescence contains exactly
m − 1 zero cost edges where m is the number of all the
vehicles. Removing the zero cost edges to get an arbores-
cence for each vehicle and duplicating each directed edge
of the arborescence but with the opposite direction, we can
construct a Eulerian graph for each vehicle (this is inspired
by the multi-vehicle algorithm [30]). Let fda be the sum of
all the edge weights of the arborescences after duplicating
their directed edges.

Lemma 4: The optimal total travel time fo is upper
bounded by fo ≤ fda, where fda = 2fa if the travel cost
matrix is symmetric.

Proof: For the first statement, similar to the multi-
vehicle algorithm operating on undirected graphs [30], we
can obtain a TSP tour for each vehicle based on the corre-
sponding Eulerian graph. As the directed edges satisfy the
inequality in Lemma 2, the total travel time of each vehicle
is at most the sum of all the edge weights of the duplicated
arborescence for each vehicle. Thus, the total travel time of
all the vehicles is not greater than the sum of all the edge
weights of the duplicated generalized arborescence. As the
total travel time of each feasible solution is an upper bound
for the optimal solution, the first statement is proved.

When the travel cost matrix is symmetric, the minimum
travel times between any two vertices in G are the same.
Thus, fda = 2fa as fda is the sum of all the edge weights
of the duplicated generalized arborescence.

Using the extended Voronoi clustering strategy in Algo-
rithm 1, we achieve a min-cost arborescence for each vehicle.
Then, we can utilize the target-inserting metrics proposed in
IV-B.2 to put the targets on each arborescence into sequence.
Integrating the extended Voronoi clustering strategy with the
smallest marginal cost principle, we obtain a task assignment
algorithm, called EVM for simplification. Let fEVM be the
total travel time of the solution resulting from EVM.

Theorem 1: The task assignment algorithm EVM guaran-
tees that fEVM/fo ≤ fda/fa.

Proof: The proof is conducted by induction. The
solution resulting from EVM has the same target assignment
compared with that of the duplicated min-cost generalized
arborescence as they use the same target clustering strategy
(12). Let f jda be the sum of all the edge weights of the du-
plicated arborescence for vehicle j. Then, fda =

∑
j∈R f jda.

The first target k⋆ to be inserted in oj is determined by (18)
for EVM. It is straightforward to see that the first target
inserted in oj is the same as the first target inserted in the
min-cost arborescence for vehicle j according to line 3 of



Algorithm 1. Thus, f j1EVM ≤ f j1da as f j1EVM = f j1da , where
the superscripts 1 and j are associated with the total travel
time for vehicle j to visit the first target inserted in oj .

Now suppose the first |Tj | − 1 targets inserted in oj and
those inserted in the arborescence for vehicle j are the same
and f

j|Tj |−1
EVM ≤ f

j|Tj |−1
da , where Tj contains all the targets

in the end assigned to vehicle j. As the inequality specified
in Lemma 2 holds for the optimal travel times between the
vertices in G and according to (18), for EVM the marginal
travel time incurred by inserting the last target k into oj is

δf jEVM = min
q≤|oj |+1

t(oj ⊕q k)− t(oj)

= min{ min
q≤|oj |−1

(t(oqj , k) + t(k, oq+1
j )

−t(oqj , o
q+1
j )), t(pj , k) + t(k, o1j )− t(pj , o

1
j ),

t(o
|oj |
j , k)}

≤ min
q≤|oj |−1

{t(oqj , k) + t(k, oqj),

t(k, oq+1
j ) + t(oq+1

j , k)}, (20)

where pj is the initial location of vehicle j and oqj is the qth
target on oj . On the other hand, considering the travel time
cost on duplicating the edge of the min-cost arborescence,
the minimum travel time incurred by inserting the last target
k into the arborescence for vehicle j is

δf jda = t(k, oq
⋆

j ) + min
q≤|oj |

t(oqj , k). (21)

where q⋆ = argminq≤|oj | t(o
q
j , k). It then follows that

δf jEVM ≤ δf jda.
Combining (20), (21) and f j|Tj |−1

EVM ≤ f
j|Tj |−1
da , we get

f
j|Tj |
EVM = f

j|Tj |−1
EVM + δf jEVM

≤ f
j|Tj |−1
da + δf jda. (22)

As f jda = f
j|Tj |−1
da + δf jda, it holds that f j|Tj |

EVM ≤ f
j|Tj |
da

for each vehicle j. Thus,
∑

j∈R f jEVM ≤
∑

j∈R f jda, which
proves fEVM ≤ fda. Combining with fa ≤ fo in view of
Lemma 3 and fEVM ≤ fda, we have fEVM/fo ≤ fda/fa.

Theorem 1 gives an upper bound of the worst case per-
formance of EVM compared with an optimal solution with
the asymmetric travel cost matrix, which extends the upper
bound result in [15] for the problem with the symmetric
travel cost matrix. Furthermore, based on Lemma 4, the
upper bound fda/fa is 2 if the travel cost matrix is symmetric
which is the same as in [15]. We now investigate the property
of the marginal-cost-based clustering strategy (MC) in IV-
A.3 which directly puts the target locations assigned to each
vehicle into the sequence during their assignment. Let fMC

be the total travel time of a solution resulting from MC.
Theorem 2: The task assignment algorithm MC guaran-

tees that the total travel time fMC ≤ fEVM .
Proof: The proof is carried out by induction. The

algorithm MC assigns the target locations according to (15),
while EVM is based on (12). One can check that the first
targets chosen by the two algorithms are the same. Thus,

f1MC ≤ f1EVM , where the superscript 1 means the total travel
time after assigning the first target.

Now suppose the first |T |− 1 targets assigned by the two
algorithms are the same and f

|T |−1
MC ≤ f

|T |−1
EVM . From the

inequality in Lemma 2 and according to (15), for MC the
marginal travel time incurred by inserting the last target k is

δfMC = min
j∈R,q≤|oj |+1

t(oj ⊕q k)− t(oj)

≤ min
q≤|oj⋆ |+1

t(oj⋆ ⊕q k)− t(oj⋆), (23)

where j⋆ = argmini∈oj ,j∈R t(i, k) is determined by (12)
and oj contains those targets already assigned to vehicle j.
On the other hand, EVM assigns the last target k as

δfEVM = min
q≤|oj⋆ |+1

t(oj⋆ ⊕q k)− t(oj⋆). (24)

where j⋆ = argmini∈oj ,j∈R t(i, k). Thus, δfMC ≤ δfEVM .
Combining (23), (24) and f |T |−1

MC ≤ f
|T |−1
EVM , we get

fMC = f
|T |−1
MC + δfMC

≤ f
|T |−1
EVM + δfEVM . (25)

As fEVM = f
|T |−1
EVM + δfEVM , it holds that fMC ≤ fEVM .

The proposed clustering-based algorithms can be applied
to the task assignment problem for time-varying drift fields
by assigning the target locations to the vehicles based on a
time-varying travel cost matrix which needs to get updated as
the drift field changes. This obviously will affect the visiting
sequence of target locations, and as a result, the performance
of the solution constructed by the clustering-based algorithms
at any given time can only be guaranteed for a limited time
thereafter.

Now we have presented all the theoretical results of this
paper, in the following section, we carry out simulation
studies.

V. SIMULATIONS

One can obtain four task assignment algorithms after
integrating the target clustering strategies with the target-
inserting metrics: integrating the Voronoi clustering strategy
with the nearest principle (VN); integrating the Voronoi
clustering strategy with the smallest marginal cost principle
(VM); integrating the extended Voronoi clustering strategy
with the nearest principle (EVN); and integrating the extend-
ed Voronoi clustering strategy with the smallest marginal cost
principle (EVM). As the marginal-cost-based clustering strat-
egy (MC) directly determines the targets’ visiting sequence
during their assignment, it is already a task assignment algo-
rithm. Integrating with the proposed path planning method,
the existing task assignment algorithms can be used to solve
the task assignment problem. The proposed clustering-based
algorithms are compared with a GA which is a popular
heuristic algorithm for VRP [11]. The GA encodes each
target as a numbered gene and inserts m − 1 marker genes
into the target genes. Then, each chromosome represents a
candidate solution to the task assignment problem. The GA



TABLE I: The average solution quality q of the algorithms
(A) on 400 scenarios for the task assignment problem under
different instances (I) where n50m10 means 10 vehicles need
to visit 50 target locations.
PPPPPPI

A VN VM EVN EVM MC GA

n50m10 1.8641 1.5099 1.6811 1.3222 1.1581 1.4626
n100m10 2.0078 1.5877 1.7956 1.3725 1.2077 1.7987
n110m10 2.0090 1.5770 1.7955 1.3730 1.2159 1.8968
n120m10 2.0180 1.5888 1.8059 1.3792 1.2264 1.9993
n120m12 2.0333 1.6067 1.7750 1.3662 1.2076 2.0869
n120m14 2.0481 1.6188 1.7499 1.3575 1.1918 2.1669
n120m16 2.0570 1.6318 1.7293 1.3468 1.1774 2.2309
n120m18 2.0607 1.6399 1.7127 1.3338 1.1660 2.2963
n120m20 2.0592 1.6418 1.7003 1.3276 1.1562 2.3777

employs the widely used tournament selection because of
its efficiency and simplicity, which preserves gene diversity
while guaranteeing all individuals might be selected [31].

Monte Carlo simulations are carried out to test the pro-
posed algorithms, where all the experiments have been per-
formed on an Intel Core i5−4590 CPU 3.30 GHz with 8 GB
RAM, with algorithms compiled by Matlab under Windows
7. The solution quality of each algorithm is quantified by

q =
f

fa
, (26)

where f is the objective value in (2) and fa is the sum of all
the edge weights of an MCGA of the target-vehicle digraph
G. Since fa ≤ fo, from Lemma 3 where fo is the total travel
time of an optimal solution, a value of the ratio q closer to
1 means a better performance of the solution.

The algorithms are tested on the task assignment prob-
lem for multiple vehicles with v = 1 in a square drift
field with edge length 103m and v⃗c = 10−3[0.3x +
0.2y,−0.2x + 0.3y]T . The number of chromosomes in
the GA is empirically set as 120, and the crossover rate
and mutation rate for the GA are 0.9 and 0.1. The GA
terminates at the maximal iteration number 350. Sev-
eral instances n50m10, n100m10, n110m10, n120m10,
n120m12, n120m14, n120m16, n120m18 and n120m20
are generated where n50m10 means 10 vehicles need to
visit 50 target locations. For each instance, 400 scenarios
of the initial positions of the targets and vehicles are ran-
domly generated. The average q of the algorithms on each
instance is shown in Table I, and the corresponding average
computation time for each algorithm is listed in Table II.
Firstly, Table I shows VM performs better than VN, and
EVM performs better than EVN. The four algorithms first
cluster the target locations to the vehicles, and then employ
the nearest principle or the smallest marginal cost principle
to put the target locations assigned to each vehicle into
sequence. In other words, the target locations have the same
assignment for VM and VN, and for EVM and EVN. Thus,
the better performances of VM over VN and EVM over
EVN imply that the smallest marginal cost principle is more
effective than the nearest principle to put the target locations
into sequence. The reason lies partly in the fact that for

TABLE II: The corresponding average computation time
(s) for the algorithms (A) to get the solution to the task
assignment problem under different instances (I).
PPPPPPI

A VN VM EVN EVM MC GA

n50m10 0.0279 0.0281 0.0418 0.0423 0.0326 86.7761
n100m10 0.0500 0.0574 0.0984 0.1410 0.0590 140.6570
n110m10 0.0519 0.1130 0.0988 0.2904 0.0722 150.0892
n120m10 0.2381 0.2424 0.3665 0.4288 0.2493 163.2563
n120m12 0.2415 0.2440 0.4363 0.4434 0.2593 172.2250
n120m14 0.2480 0.2483 0.4453 0.4472 0.2616 176.7572
n120m16 0.2510 0.2541 0.4537 0.4566 0.2821 183.0387
n120m18 0.2563 0.2571 0.4655 0.4685 0.2913 197.1980
n120m20 0.2585 0.2597 0.4733 0.4744 0.3048 226.9434

each vehicle, the smallest marginal cost principle leads to the
ordering of the target locations after computing the incurred
travel cost at all possible positions on the vehicle’s route; in
contrast, the nearest principle is myopic in the sense that it
inserts the target location with the minimal incurred cost at
the end of the vehicle’s route.

Secondly, Table I shows EVM performs better than VM,
and EVN performs better than VN, which reflects the ad-
vantage of the extended Voronoi clustering strategy over the
Voronoi clustering strategy. The reason is that the former
strategy clusters a target using both the vehicles’ initial
locations and the clustered targets’ locations, while the later
only uses the vehicles’ initial locations. Finally, MC performs
better than EVM as shown in Table I, which verifies Theorem
2. The reason is that MC considers the overall incurred travel
cost for all the vehicles when clustering a target, which
makes use of the complete geographic information on the
vehicles’ locations and the clustered targets’ locations. In
addition, the q of VM, EVN, EVM and MC shown in Table
I is stably below twice of the optimal for each instance,
which displays the efficient and robust performances of the
algorithms. However, the GA’s performance deteriorates as
the size of the problem increases as shown in the last column
of Table I. Finally, in Table II the mean computation time
of the proposed algorithms does not increase too much
compared with the GA, which shows the proposed algorithms
can scale with the problem size. The reason is that the
clustering-based algorithms are heuristic in the sense that
they assign the targets based on the geographic locations of
the vehicles as well as the locations of those targets already
clustered. The small computation time implies in particular
the efficiency of the proposed algorithms when the solution’s
quality is improved by location-based clustering.

To further evaluate the solution quality q for the 400
scenarios of each instance, the Wilcoxon signed-rank test
is carried out in a two-tail test with the 5% significance
level for each pair of the algorithms. It is clear that the q of
400 scenarios on each instance differ significantly between
the proposed algorithms (q from left to right corresponds to
MC → EVM → VM → EV N → V N ). This implies
the algorithms have an increasingly better performance as
V N −EV N −VM −EVM −MC. The Wilcoxon signed-
rank test shows that the performance of the GA deteriorates



as the problem size increases, which is better than VM and
worse than EVM for n50m10, better than VN, worse than
VM and the same as EVN for n100m10, better than VN
and worse than EVN for n110m10, worse than EVN and
the same as VN for n120m10, and worse than VN for the
remaining instances. The results of the Wilcoxon signed-rank
test are consistent with what is shown in Table I.

VI. CONCLUSION

In this paper, we have investigated the task assignment
problem in which multiple dispersed vehicles need to ef-
ficiently visit a set of target locations in a time-invariant
drift field. A path planning method has been first designed
which enables the vehicles to move between two prescribed
locations in a drift field with the minimal time. The travel
cost matrix resulting from the path planning method provides
the route information for the target location assignment. In
addition, several target clustering strategies and two target
inserting principles have been proposed. The target clustering
strategies assign the target locations to the vehicles based on
the travel cost matrix while the target inserting principles put
the target locations assigned to each vehicle into sequence.
Integrating the clustering strategies and the target inserting
principles, we have obtained several algorithms which can
efficiently solve the target visiting problem. The paper’s prac-
tical contributions are threefold: First, the deduced optimal
navigation law provides a guiding principle for navigating
vehicles in the presence of winds or currents. Second, the
definition of the generalized arborescence helps to clarify
for practitioners the space of feasible solutions to the task
assignment problem. Third, the four clustering-based strate-
gies offer a set of tools for different scenarios in logistic
applications. The proposed algorithms will be extended in a
drift field where some obstacles exist. We are also planning
to test the algorithms using robot fish.
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