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On the sufficient conditions for input-to-state safety

Muhammad Zakiyullah Romdlony and Bayu Jayawardhana

Abstract— In this paper, we present a novel notion of input-
to-state safety (ISSf) for general nonlinear systems which can
be useful for certifying system’s safety under the influence of
external bounded input (or disturbance) signals. We provide
sufficient conditions for ISSf using barrier function/certificate
which are analogous to the input-to-state stability Lyapunov
function.

I. INTRODUCTION

Robustness analysis tools for safety certification of safety-
critical cyber physical systems have recently been proposed
in [14], [15]. In these papers, the notion of input-to-state
safety (ISSf) is introduced that captures the dynamical effect
of external disturbance/input signals to the safety of the
systems. The notion can be used to describe the robustness
of a number of safety control designs which have recently
been proposed in literature. To name a few, we refer to our
approach based on control Lyapunov-Barrier function in [12],
[13] and to the min-norm control approach using quadratic
programming as in [1], [3], [8], [19].

In [1], [3] and [19], the authors proposed an optimization
problem, in the form of a quadratic programming, where
both control Lyapunov and control Barrier inequalities are
formulated in the constraints. The proposed method general-
izes the well-known pointwise min-norm control method for
designing a control law using control Lyapunov functions
via an optimization problem [10]. It has been successfully
implemented in the cruise control of autonomous vehicle
as reported in [8]. Another direct approach is pursued in
[11], [13] which is based on the direct merging of control
Lyapunov function and control Barrier function. The merging
process results in a control Lyapunov-Barrier function which
can be used to stabilize the system with guaranteed safety
by using Sontag’s universal control law.

Despite the appealing idea in the aforementioned works
for guaranteeing stability and safety, it remains unclear on
how to analyze the robustness of the closed-loop system in
the presence of external (disturbance) input signals.

There are many tools available for analyzing the robust-
ness of systems’ stability, including, H∞ and L2-stability
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theories [16], [4], absolute stability theory [6], input-to-
state stability (ISS) theory [18] and many others. However,
analogous tools for systems’ safety are still lacking which
makes it difficult to carry out robustness analysis to the afore-
mentioned results that deal with the problem of stabilization
with guaranteed safety.

The seminal work in [17], [18] on the characterization of
input-to-state stability has been one of the most important
tools in the stability analysis of nonlinear systems. It has
allowed us to study stability of interconnected systems,
to quantify systems’ robustness with respect to external
disturbances and to provide means for constructing a robustly
stabilizing control law. The use of ISS Lyapunov function is
crucial in all of these applications. In the following decade,
the concept of ISS has been used and/or generalized in
various directions with a commonality on the robustness
analysis of systems’ stability. However, safety and constraint
aspects have not been considered in this framework.

In this paper, we propose a new notion of input-to-
state safety which is an adaptation of ISS inequality to the
systems’ safety case. In particular, instead of the usual ISS
inequality where the state trajectory x(t) of the system can
be bounded from above by a term that depends on initial
condition and decays to zero and another term that depends
on the L∞-norm of the external input signal u(t), we look at
the following inequality

σ(|x(t)|D )≥min{µ (|x(0)|D , t) ,δ}−φ (‖u(t)‖) (1)

where D is the set of unsafe state, |x|D denotes the distance
of x to D , the function σ is strictly increasing function, µ is
strictly increasing function in both arguments, δ > 0 and φ as
the gain function that is dependent on input u, akin to the ISS
case. As will be discussed later in Section 3, the inequality
(1) will be called input-to-state safety (ISSf) inequality.

Roughly speaking, this inequality can be interpreted as
follows. When there is no external input signal u, then the
state trajectory will never get closer to D . On the other hand,
if there is an external input signal then it may jeopardize the
systems’ safety when the input signal u is taken sufficiently
large. The above interpretation serves very well with what
we can expect in real systems where external disturbance
input can potentially bring the system into the unsafe state.

Complementary to the work of Xu etal. in [19], we adapt
the ISS framework a’la Sontag to the systems’ safety case
through the use of ISSf barrier function which implies (1).
Preliminary work on this concept has been presented in [14]
which is restricted to the case of exponential input-to-state
safety. In this paper, we extend it to general nonlinear case,
as well as to the analysis of feedback interconnection.



This paper is organized as follows. In Section 2, we briefly
recall the notion of stabilization with guaranteed safety, of
ISS and of barrier certificate. In Section 3, we introduce
formally the notion of input-to-state safety and present our
main results on the characterization of ISSf using ISSf barrier
functions. Finally, the conclusion is given in Section 4.

II. PRELIMINARIES

Notation. Throughout this paper, we consider an affine
non-linear system described by

ẋ = f (x)+g(x)u, x(0) = x0, (2)

where x(t) ∈ Rn denotes a state vector, u(t) ∈ U ⊆ Rm

denotes an (external) input or disturbance to the system. The
functions f (x) and g(x) are C 1 where the space C 1(Rl ,Rm)
consists of all continuously differentiable functions F : Rl→
Rm. Without loss of generality and for simplicity of presen-
tation, we will assume throughout that the solution to (2) is
complete (i.e., it exists for all t ≥ 0) for any bounded signal
u. This assumption holds when the system has the input-to-
state stability property which we will recall shortly.

For a given signal x : R+→ Rn, its Lp norm is given by
‖x‖Lp := (

∫
∞

0 ‖x(t)‖pdt)1/p for p = [1,∞) and its L∞ norm is
defined by ‖x‖L∞ := (ess) supt(‖x(t)‖). For a given bounded
set M ⊂X ⊂Rn, we define the distance of a point ξ ∈Rn

with respect to M by |ξ |M := mina∈M ‖ξ −a‖ where ‖ · ‖
is a metric norm. We define an open ball centered at a point
a ∈ Rn with radius r > 0 by Br(a) := {ξ ∈ Rn|‖ξ −a‖< r}
and its closure is denoted by Br(a).

We define the class of continuous strictly increasing func-
tions α : R+ → R+ by P and denote by K all functions
α ∈P which satisfy α(0) = 0. Moreover, K∞ denotes all
functions α ∈ K which satisfy α(r)→ ∞ as r → ∞. By
K L we denote all functions β : R+×R+→ R+ such that
β (·, t) ∈K for a fixed t ≥ 0 and β (s, ·) is decreasing and
converging to zero for a fixed s≥ 0. Correspondingly, we also
denote by K K all functions µ : R+×R+→ R+ such that
f (0,0) = 0 and f (s, t) is srictly increasing in both arguments.

Let X0 ⊂ Rn be the set of initial conditions and let an
open and bounded set D ⊂ Rn be the set of unsafe states,
where we assume that D ∩X0 = /0. For a given set D ⊂Rn,
we denote the boundary of D by ∂D and the closure of D
by D .

Following safety definition in [13], the (autonomous)
system (2) with u = 0 is called safe if for all x0 ∈X0 and for
all t ∈ R+, x(t) /∈ D . Additionally, (2) with u = 0 is called
(asymptotically) stable with guaranteed safety if it is both
(asymptotically) stable and safe.

As discussed briefly in the Introduction, analyzing the ro-
bustness of systems stability in the presence of an (external)
input signal can be done using the input-to-state stability
(ISS) framework [17], [18]. Let us briefly recall the ISS
concept from [18].

The system (2) is called input-to-state stable if there exist
a β ∈K L and γ ∈K such that for any u∈ L∞ and x0 ∈X0,
the following inequality holds for all t:

‖x(t)‖ ≤ β (‖x0‖, t)+ γ(‖u‖L∞([0,t))). (3)

In this notion, the functions β and γ in (3) describe the
decaying effect from a non-zero initial condition x0 and the
influence of a bounded input signal u to the state trajectory x,
respectively. The Lyapunov characterization of ISS systems
is provided in the following well-known theorem from [17],
[18].

Theorem 1: The system (2) is ISS if and only if there
exists a smooth V : Rn→R+, functions α1,α2,α3 ∈K∞ and
a function γ ∈K such that

α1(‖ξ‖)≤V (ξ )≤ α2(‖ξ‖) (4)

and

∂V (ξ )

∂ξ
( f (ξ )+g(ξ )v)≤−α3(‖ξ‖)+ γ(‖v‖) (5)

hold for all ξ ∈ Rn and for all v ∈ Rm.
The notion of ISS and its Lyapunov characterization as

above have been seminal in the study of nonlinear systems
robustness with respect to the uncertainties in the initial con-
ditions and to the external disturbance signals. For instance,
a well-known nonlinear small-gain theorem in [7] is based
on the use of β and γ . The study of convergence input
convergence state property as in [5] is based on the use
of ISS Lyapunov function. However, as mentioned in the
Introduction, existing results on robustness have focused on
the systems’ stability and there is not many attention on the
robustness analysis on systems’ safety.

Let us recall few main results in literature on safety
analysis. In order to verify the safety of system (2) with
respect to a given unsafe set D , a Lyapunov-like function
which is called barrier certificate has been introduced in
[9] where the safety of the system can be verified through
the satisfaction of a Lyapunov-like inequality without having
to explicitly evaluate all possible systems’ trajectories. The
barrier certificate theorem is summarized as follows.

Theorem 2: Consider the (autonomous) system (2) with
u = 0, i.e., ẋ = f (x) where x(t) ∈ X ⊂ Rn, with a given
unsafe set D ⊂X and set of initial conditions X0 ⊂X .
Assume that there exists a barrier certificate B : X → R
satisfying

B(ξ )> 0 ∀ξ ∈D (6)
B(ξ )< 0 ∀ξ ∈X0 (7)

∂B(ξ )
∂ξ

f (ξ )≤ 0 ∀ξ ∈X such that B(ξ ) = 0. (8)

Then the system is safe.

The proof of this theorem is based on the fact that the
evolution of B starting from a non-positive value (c.f. (7))
will never cross the zero level set due to (8), i.e., the state
trajectory will always be safe according to (6).

Although the safety result as in Theorem 2 is formulated
only for autonomous systems, an extension to the non-
autonomous case has also been presented in [9]. For the case
where an external input u is considered, e.g., the complete



system as in (2), the safety condition (8) becomes

∂B(ξ )
∂ξ

( f (ξ )+g(ξ )v)≤ 0 ∀(ξ ,v) ∈X ×U (9)

where U ⊂Rm denotes the admissible set of input. However,
the condition (9) is a very restrictive assumption since it must
hold for all u(t) ∈ U including the case when the initial
condition x(0) is very close to D . It means that when we
start very close to the unsafe state, the system must always
remain safe for whatever type of input signals u as long as it
has values in U . In this case, we can say that such system is
very robust with respect to bounded external input signals. In
practice, we should expect a certain degree of fragility in the
system, in the sense that, if we start very close to the unsafe
state, a small external input signal can already jeopardize the
systems’ safety; a feature that is not captured in (9).

Instead of considering the inequality (9), we will consider
a more restrictive condition on B for our main results later,
where the non-increasing assumption of B as in (8) is
replaced by a strict inequality as follows

∂B(ξ )
∂ξ

f (ξ )≤−α(|x|D ) (10)

where α is a K function.
In [13], [20], the use of such barrier function B for control

design that guarantees safety has been presented. It is shown
in these works that the standard Lyapunov-based control
design can directly be extended to solving the safety problem
by replacing the Lyapunov function with the barrier one.
Interested readers are referred to [13] for control design
methods that solve the stabilization with guaranteed safety
by merging the control Lyapunov function with the control
barrier function.

III. INPUT-TO-STATE SAFETY

In this section, we will explore a new notion of input-to-
state safety as a tool to analyze the robustness of systems’
safety. In particular, we focus our study on extending exist-
ing results on barrier certificate to the input-to-state safety
framework; akin to the role of Lyapunov stability theory in
the input-to-state stability results.

Definition 1: The system (2) is called input-to-state safe
(ISSf) locally in X ⊂Rn and with respect to the set of unsafe
state D ⊂X if for all x0 ∈ Rn\D , there exist σ ,φ ∈K ,
µ ∈K K and δ > 0 such that

σ(|x(t)|D )≥min{µ(|x0|D , t),δ}−φ (‖u(t)‖) (11)

holds for almost all t ∈ [0,∞) and for all admissible1 (x0,u),
where the constant δ > 0 can be dependent on boundary of
X .

If a system is ISSf, we can infer from (11) that the system
(2) may be brought to the unsafe state if the L∞-norm of u
is sufficiently large such that the RHS of (11) is negative.
Hence one can quantify the robustness of the system’s safety

1By admissible (x0,u), we mean that the tuple is such that the RHS of
(11) is strictly positive for almost all t ≥ 0.

with respect to an external input signal using this notion. For
instance, if the initial condition x0 is in the neighborhood of
the boundary of unsafe state D then (11) shows that a small
external input signal u may steer the state trajectory to enter
D ; even when the autonomous case is safe. Since the first
element on the RHS of (11) is a K K function, it implies
that the distance between x(t) and D is lower-bounded by
a strictly increasing function until x(t) leaves X . As this
lower-bound of the distance is non-decreasing with time, (11)
means that the system can eventually withstand larger input
signal.

We can also take a different view to the ISSf inequality
above. If u is considered to be a disturbance signal with
known magnitude, e.g., ‖u‖L∞ ≤ k with k > 0, then (11)
provides us with information on the admissible x0 such that
the RHS of (11) remains positive so that the system under
such external disturbance will remain safe.

Let us now investigate the ISS-Lyapunov like condition
for input-to-state safety of system (2) in the following
proposition.

Proposition 1: Consider system (2) with a given unsafe
set D ⊂X ⊂ Rn. Suppose that there exists an ISSf barrier
function B ∈ C 1(Rn,R) satisfying

−α1(|ξ |D )≤ B(ξ )≤−α2(|ξ |D ) ∀ξ ∈ Rn\D (12)
∂B(ξ )

∂ξ
( f (ξ )+g(ξ )v)≤−α3(|ξ |D )+α4(‖v‖)

∀ξ ∈X \D ,∀v ∈U , (13)

where αi ∈K∞, i=1,..4. Assume further that the system is
ISS.

Then the system is input-to-state safe locally in X and
w.r.t. D . In particular, for any θ ,ε ∈ (0,1) and for all x0 ∈
Rn\D , the ISSf inequality (11) holds for all t ≥ 0 and for
all admissible (x0,u) where σ(s) = s, δ = min{ε|ξ |D : ∀ξ ∈
∂X },

µ(s, t) = εα
−1
1 (α̃(α2(s), t)) ∀s, t ≥ 0

and

φ(s) = α
−1
2 ◦α1 ◦α

−1
3 ◦

α4(s)
θ

∀s≥ 0

with α̃ ∈K K be the solution of the following initial value
problem

ẏ = (1−θ)α3 ◦α
−1
1 (y), y(0) = s ∈ R+,

so that α̃(s, t) := y(t) for all s≥ 0. �

The complete proof of the proposition can be found in
[15]. The main idea of the proof is that we evaluate the
evolution of the barrier function B along the trajectory of
the state x for a given bounded input signal u. Following
a similar derivation of ISS property from an ISS Lyapunov
function, we can show that when the input is small then the
distance is bounded from below by an increasing function
of time and, on the other hand, when the input is large then
the distance can be lower bounded by a positive function that



depends on input. Finally, we can patch the two lower-bound
functions together.

The ISS assumption in this proposition can be relaxed
by weaker conditions that can guarantee the boundedness
of |x(t)|D . For instance, we can assume that the system is
integral input-to-state stable or it is practically input-to-state
stable.

One can see from Proposition 1 that the inequalities in
(12) and (13) are reminiscent to those used in the study of
ISS Lyapunov function. In this context, the inequality (13)
resembles the dissipation inequality in the ISS Lyapunov
function and the growth of B as in (12) can be likened to the
growth of V as in (4), albeit they grow with different sign
as well as with different metric norm.

We can now combine the notion of input-to-state stability
and that of input-to-state safety which allows us to study the
robustness of a stable and safe system with respect to an
external input signal u.

Definition 2: System (2) is called ISS with guaranteed
safety (ISS-GS) with respect to D if there exists X ⊂ Rn

such that the system (2) is both input-to-state stable and
input-to-state safe locally in X and w.r.t. D ⊂X .

It is trivial to show that if there exist both an ISS Lyapunov
function V satisfying (4)–(5) and an ISSf barrier function B
satisfying (12)–(13) locally on X ⊂ Rn with D ⊂X then
the system is input-to-state stable with guaranteed safety.
Instead of considering two separate functions V and B as
suggested before, we can also consider combining the ISS
Lyapunov inequality (5) and ISSf barrier inequality (13) as
shown in the following corollary.

Corollary 1: Suppose that there exists W : Rn → R and
D ⊂X ⊂ Rn such that

α1(‖ξ‖)≤W (ξ )≤ α2(‖ξ‖) ∀ξ ∈ Rn (14)
−α3(|ξ |D )≤W (ξ )− c≤−α4(|ξ |D ) ∀ξ ∈X \D (15)
∂W (ξ )

∂ξ
( f (ξ )+g(ξ )v)≤−α5(‖ξ‖)−ΞX (ξ )α6(|ξ |D )

+α7(‖v‖) (16)

where ΞX is an indicator function for X , c > 0, the func-
tions αi ∈K∞ for i = 1, ..7. Then it is ISS with guaranteed
safety with respect to D .

Proof : It is trivial to check that W (x) qualifies as an ISS
Lyapunov function satisfying (4)–(5) and as an ISSf barrier
function satisfying (12)–(13) locally in X . The ISS property
follows trivially from (14) and (16) and Theorem 1.

Let B(ξ ) =W (ξ )−c for all ξ ∈X \D . Subsequently, let
the function B be extended smoothly to ξ ∈ Rn\X so that
(12) holds for all Rn\D . It follows from (16) that

∂B(ξ )
∂ξ

( f (ξ )+g(ξ )v)≤−α6(|ξ |D )+α7(‖v‖)

holds for all ξ ∈X \D and for all v ∈ U . By Proposition
1, it implies that it is ISSf. �

IV. CONCLUSION

In this paper, we have presented a new notion of input-to-
state safety for nonlinear systems which is complementary
to the well-known input-to-state stability notion and pro-
vides safety certification for the system under the influence
of external disturbance signals. We present also sufficient
conditions for a nonlinear system to be ISSf by using a
barrier certificate/function satisfying a dissipation inequality
that resembles the ISS Lyapunov function.
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