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Abstract In the topical field of systems biology there is considerable interest in learning
regulatory networks, and various probabilistic machine learning methods have been pro-
posed to this end. Popular approaches include non-homogeneous dynamicBayesian networks
(DBNs), which can be employed tomodel time-varying regulatory processes. Almost all non-
homogeneous DBNs that have been proposed in the literature follow the same paradigm and
relax the homogeneity assumption by complementing the standard homogeneousDBNwith a
multiple changepoint process. Each time series segment defined by two demarcating change-
points is associated with separate interactions, and in this way the regulatory relationships
are allowed to vary over time. However, the configuration space of the data segmentations
(allocations) that can be obtained by changepoints is restricted. A complementary paradigm
is to combine DBNs with mixture models, which allow for free allocations of the data points
to mixture components. But this extension of the configuration space comes with the disad-
vantage that the temporal order of the data points can no longer be taken into account. In
this paper I present a novel non-homogeneous DBN model, which can be seen as a consen-
sus between the free allocation mixture DBN model and the changepoint-segmented DBN
model. The key idea is to assume that the underlying allocation of the temporal data points
follows a Hidden Markov model (HMM). The novel HMM–DBN model takes the temporal
structure of the time series into account without putting a restriction onto the configuration
space of the data point allocations. I define the novel HMM–DBN model and the competing
models such that the regulatory network structure is kept fixed among components, while the
network interaction parameters are allowed to vary, and I show how the novel HMM–DBN
model can be inferred with Markov Chain Monte Carlo (MCMC) simulations. For the new
HMM–DBNmodel I also present two new pairs ofMCMCmoves, which can be incorporated
into the recently proposed allocation sampler for mixture models to improve convergence
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of the MCMC simulations. In an extensive comparative evaluation study I systematically
compare the performance of the proposed HMM–DBN model with the performances of the
competing DBN models in a reverse engineering context, where the objective is to learn the
structure of a network from temporal network data.

Keywords Non-homogeneous dynamic Bayesian network · Hidden Markov model ·
Mixture model · Multiple changepoint process · Markov Chain Monte Carlo (MCMC) ·
Allocation sampler

1 Introduction

In the topical field of systems biology there is considerable interest in learning regulatory
networks, such as gene regulatory transcription networks (Friedman et al. 2000), protein
signal transduction cascades (Sachs et al. 2005), neural information flow networks (Smith
et al. 2006), or ecological networks (Aderhold et al. 2013). In the computational biology
and machine learning literature a variety of powerful probabilistic machine learning methods
based on graphical models, such as Bayesian networks (Friedman et al. 2000), have been
proposed to learn these networks from data. The standard assumption underlying the con-
ventional graphical models is that the observed time series are homogeneous so that potential
changes in the regulatory interactions are not taken into account. That is, the standard graphi-
cal models, e.g. the conventional homogeneous Gaussian dynamic Bayesian network (DBN)
model, describe a simple homogeneous linear dynamical system. Unfortunately, the assump-
tions of homogeneity and linearity are unrealistic for many applications in systems biology,
and thus can cause erroneous and misleading inference results. Regulatory interactions in
systems biology applications tend to be non-linear and adaptive so that they vary over time,
e.g. in response to changing environmental and experimental conditions.

Amore appropriate approach would therefore be the deduction of a detailed mathematical
description of the entire network domain in terms of mechanistic models, e.g. in the form of
coupled non-linear stochastic differential equations (DEs). Seminal examples have for exam-
ple been presented in Vyshemirsky andGirolami (2008) and Toni et al. (2009). Since a proper
Bayesian inference for those mechanistic models is computationally expensive, usually only
very small network domains with typically only 3–4 nodes are considered (Vyshemirsky and
Girolami 2008) or the inference is based on approximations (Toni et al. 2009). Therefore, in
standard applications of mechanistic models only a limited amount of different hypotheses
about the underlying network structure is compared, and the space of network structures is
not systematically searched for those networks that are most consistent with the observed
data. That is, mechanistic models cannot be used to learn regulatory networks from scratch
(i.e. without any prior hypotheses about potential network structures). Therefore, there have
been various efforts to relax the homogeneity assumption for undirected (see, e.g., Talih
and Hengartner 2005 or Xuan and Murphy 2007) and directed (see, e.g., Ahmed and Xing
2009) graphical models, as well as for dynamic Bayesian networks (see references below).
The key idea is to leave the class of homogeneous linear dynamic models, and to develop
novel non-homogeneous graphical models that balance between two requirements: On the
one hand, those models should offer enough flexibility so that they can appropriately cap-
ture the underlying non-homogeneous biological processes, and thus become competitive
to the mechanistic models. On the other hand, from a computational perspective it must be
possible to use these models to systematically search the space of network structures and to
learn the underlying regulatory relationships from scratch (i.e. in the absence of any hypoth-
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esis about the underlying network structure). The focus of this paper is to propose a novel
non-homogeneous dynamic Bayesian networks (DBN) model that fulfils both requirements.

Various DBN models have been proposed in the literature, and it can be distinguished
between DBNs for which the parameters in the likelihood can be integrated out in closed-
form, andDBNs forwhich themarginal likelihood is intractable. The latterDBNs tend to have
a greater flexibility, but they are more susceptible to over-fitting, since the network structures
and the interaction parameters have to be estimated simultaneously. Flexible DBNs with an
intractable likelihood can, for example, be constructed along the lines proposed in Imoto et al.
(2003), Rogers and Girolami (2005), or Ko et al. (2007).1 Here, I concentrate on DBNs for
which the network parameters can be integrated out in closed form. Although this requires
certain regularity conditions, such as parameter independence and prior conjugacy, to be ful-
filled, theseDBNshave two attractive features: (i) The data-overfitting problem is intrinsically
avoided, and (ii) “model-averaging” can be realised by efficient Reversible Jump Markov
Chain Monte Carlo (RJMCMC) simulations in discrete configuration spaces (Green 1995).

To obtain a closed-formexpression of themarginal likelihood inDBNmodels threemodels
with their respective conjugate prior distributions have been proposed in the literature: (i)
the multinomial distribution with the Dirichlet prior, leading to the BDe score (Cooper and
Herskovits 1992), (ii) the linear Gaussian distribution with the normal-Wishart prior, leading
to the BGe score (Geiger and Heckerman 1994), and (iii) a Bayesian linear regression model
with a Gaussian prior on the regression coefficients (see, e.g., Lèbre et al. 2010). The former
two approaches have originally been proposed for static Bayesian networks, but they can
be extended straightforwardly to model homogeneous DBNs, as demonstrated in Friedman
et al. (2000). Non-homogeneous DBNs with these two standard scores have for example
been developed in Robinson and Hartemink (2009) and Robinson and Hartemink (2010)
(with BDe), and inGrzegorczyk andHusmeier (2009) andGrzegorczyk andHusmeier (2011)
(with BGe). The key idea behind these non-homogeneous DBNs is to relax the homogeneity
assumption by complementing the standard homogeneous DBN with a Bayesian multiple
changepoint process. Each time series segment defined by two demarcating changepoints is
associated with separate interaction parameters, and in this way the regulatory relationships
are allowed to vary over time.

Recently, the Bayesian regression model, described in Lèbre et al. (2010), has become a
popular probabilistic model for non-homogeneous DBNs. A shortcoming of this “Bayesian
regression” DBN (BR-DBN) model, as originally proposed by Lèbre et al. (2010), is poten-
tial model over-flexibility, as different time series segments are associated with different
network structures, which for short time series will lead to over-fitting and inflated inference
uncertainty. Various regularised variants of this BR-DBN model have been proposed (see,
e.g., Dondelinger et al. 2010, 2012), and in other instantiations of the BR-DBN model, the
authors follow Grzegorczyk and Husmeier (2011) or Grzegorczyk and Husmeier (2013) and
keep the network structure fixed among segments so that only the interaction parameters
vary from segment to segment. In this paper I follow the latter works and focus on applica-
tions where cellular processes take place on a short time scale so that it is not the network
structure but rather the strength of the regulatory interactions that changes with time.2 For

1 Rogers and Girolami (2005) propose a sparse Bayesian regression approach with a type-II maximum like-
lihood estimation of the parameters. The model by Imoto et al. (2003) is based on heteroscedastic regression
and requires the Laplace approximation to be applied. Ko et al. (2007) propose to employ Gaussian mixture
models, and the authors resort to the Bayesian BIC criterion for model selection.
2 For example, in a gene regulatory transcription network, the ability of a transcription factor to bind to the
promoter of a gene is very unlikely to change on a short time scale (i.e. the network structure stays fixed);
but the extent to which binding happens (the interaction strength) may vary over time. On the other hand, for
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those models, which do not allow for segment-wise network changes, various information
coupling schemes with respect to the segment-specific network parameters have recently
been proposed (Grzegorczyk and Husmeier 2012a, b, 2013).

All these non-homogeneous DBNs, mentioned above, follow the same paradigm and
combine a classical homogeneousDBNmodelwith amultiple changepoint process.However,
the configuration space of the data segmentations that can be obtained by changepoints is
restricted. Let us consider these changepoint processes in the broader context of mixture
models, which are based on a free allocation of the data points to mixture components. From
this perspective the changepoints divide the time series into disjunct temporal segments, and
the segments (i.e. the data points within each segment) are assigned to disjunct (“mixture”)
components. That is, there is a one-to-one mapping between the temporal segments and the
mixture components, and hence, distant segments cannot be allocated to the same component;
throughout the paper Iwill also say: “a component once left cannot be revisited”. For instance,
if there are 10 temporal data points, then allocation schemes, such as [1112222211], are not
part of the segmentation space of multiple changepoint processes and would have to be
“approximated” by segmentations, such as [1112222233].

In earlier papers it has been proposed to combineBayesian networkswith classicalmixture
models (see, e.g., Ko et al. 2007 or Grzegorczyk et al. 2008). Unlike the DBNs with change-
points (CPS–DBNs), the proposed mixture DBN (MIX-DBN) allows for an unrestricted free
allocation of the data points to (mixture) components, and, hence, substantially increases the
configuration space of the possible data segmentations. However, for time series the temporal
order of the data points is not taken into account, and this inevitably incurs an information
loss, e.g. when a priori temporally neighbouring data points should be more likely to be
assigned to the same component than distant ones.

In biological systems various examples for periodic gene regulatory processes can be
found. E.g. plants, such asArabidopsis thaliana, possess a circadian clock and the underlying
molecular mechanisms depend on the presence/absence of light (see Sect. 3.3 for details and
literature references). That is, the gene regulatory processes in Arabidopsis are diurnal and
periodically depend on the daily dark:light (night:day) cycle. These daily alternations of
darkness (“1”) and light (“2”) phases are caused by an external factor, namely the rotation of
the earth, and they impose a periodic diurnal segmentation on the gene regulatory processes
in the circadian clock, e.g. a segmentation of the form [111222111222].3 Apart from this
plant biology example, described in more detail in Sect. 3.3, circadian rhythms also play an
important role in the regulatory processes in mammalian cells (see, e.g., Yan et al. 2008).
Another example are the periodic regulatory processes that can be observed during the cell
cycle (see, e.g., Whitfield et al. 2002 or Rustici et al. 2004). As discussed above, neither
the changepoint processes (CPS–DBN) nor the free allocation mixture models (MIX-DBN)
are adequate for learning periodic segmentations; the CPS–DBN model cannot revisit states
once left, while the MIX-DBN model completely ignores the temporal arrangement of the
data points.

In this paper I present a novel non-homogeneous dynamic Bayesian networkmodel, which
can be seen as a consensus between the free allocation mixture DBN model (MIX-DBN)

Footnote 2 continued
scenarios, such as morphogenesis, where the cellular processes take place on a long time scale, the assumption
of a fixed network structure might turn out to be too restrictive.
3 This segmentation may cover 12 equidistant time points, t1, . . . , t12, in a period of 48 hours (h) with a daily
12h:12h dark:light cycle. There is a 4h distance between the time points and it holds: t1 = 4h, t2 = 8h,
t3 = 12h (dark), t4 = 16h, t5 = 20h, t6 = 24h (light), t = 28h, t = 32h, t = 36h (dark), t10 = 40h,
t11 = 44h, t12 = 48h (light).
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and the changepoint-process-segmented DBN model (CPS–DBN). The idea is to assume
that the underlying allocation of the temporal data points follows a Hidden Markov model
(HMM). The novel DBN model, which I will refer to as the HMM–DBN model, does take
the temporal structure of the time series into account without putting any restriction onto the
configuration space of the allocations. With the HMM–DBNmodel, periodic segmentations,
such as [111222111222], can be inferred properly. In this paper I implement the novel model
with a network structure that is kept fixed among segments and I only allow the network
interaction parameters to vary in time. In a comparative evaluation study I demonstrate that the
novel HMM–DBNmodel has the attractive feature that it is competitive to both (i) the CPS–
DBN model for changepoint-segmented allocations and (ii) the MIX-DBN model for free
mixture allocations. I also show how the allocation of the data points can be inferred with the
allocation sampler (Nobile andFearnside 2007).As the allocation sampler has beendeveloped
for classicalGaussianmixturemodels, it does not exploit the temporal information. I therefore
propose to improve the allocation sampler by introducing two new pairs of complementary
MCMC moves, which utilise the temporal arrangement of the data points. Although the key
idea behind the proposed HMM–DBNmodel is generic, I present it in the context of the BR-
DBN model (Lèbre et al. 2010). With regard to the real-world applications (see Sects. 3.2
and 3.3) I follow Grzegorczyk and Husmeier (2011) and Grzegorczyk and Husmeier (2013)
and keep the network structure fixed among segments (components).

This paper is organized as follows: Sect. 2 provides a comprehensive exposition of the
mathematical details behind the HMM–DBN model. I also present two new pairs of moves
for the MCMC inference, and I briefly summarise the competing non-homogeneous DBN
models. Section 3 gives an overview to the data on which I apply and cross-compare the
models. I provide the details on how I implemented the HMM–DBNmodel for the compara-
tive evaluation study in Sect. 4. The results of a study, in which I systematically compare the
performances of the MIX-DBN, the CPS–DBN and the HMM–DBNmodel, are presented in
Sect. 5. A discussion of the computational costs and a brief outlook to future work is provided
in Sect. 6, before I draw my final conclusions in Sect. 7. Note that mathematical details from
Sect. 2 have been relegated to the Appendices 1–4.

2 Methodology

2.1 Bayesian regression models

In this subsection I briefly summarise the non-homogeneous Bayesian regression DBN (BR-
DBN) model, proposed by Lèbre et al. (2010). Recently, various different variants of the
original BR-DBN model have been developed, proposed and applied in the literature. Here
I consider the uncoupled BR-DBN variant, which has been recently used in Grzegorczyk
and Husmeier (2012a) and Grzegorczyk and Husmeier (2012b). Unlike all BR-DBN model
instantiations that have been developed so far, I combine the BR-DBN model with a free
allocation model rather than a multiple changepoint process.4 The free allocation BR-DBN
model, considered here, allows for more flexibility with respect to the configuration space of
the possible data allocations.

Consider a set of N nodes, g ∈ {1, . . . , N }, in a network, M = (π1(M), . . . , π N (M)),
where π g(M) denotes the parents of node g in M, that is the set of nodes with a directed

4 Note that similar free allocation mixture DBN approaches have earlier been proposed by Ko et al. (2007)
and Grzegorczyk et al. (2008).
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edge pointing to node g. For notational convenience, I write π g = π g(M) in the following
representations; i.e. I do not indicate the dependency on M explicitly .

Given a N -by-T data set matrix, D, where the rows correspond to the N nodes and the
columns correspond to T temporal observations, let yg,t denote the realisation of the random
variable associated with node g at time point t ∈ {1, . . . , T }, and let xπg ,t denote the vector
of realisations of the random variables associated with the parent nodes of node g, πg , at the
previous time point, (t − 1), and including a constant element equal to 1 (for the intercept).
With |π g| denoting the cardinality of the parent node set π g , the vector xπg ,t , which also
includes the element 1 for the intercept, is of size |π g| + 1.

Unlike the mixture model DBN in Grzegorczyk et al. (2008) I here consider node-specific
allocation vectors, Vg (g = 1, . . . , N ), where each vector Vg is of size T and defines a
free allocation of the last T − 1 observations, yg,2, . . . , yg,T , of node g to Kg components.
Vg(t) = k means that the observation yg,t is allocated to the kth component (t = 2, . . . , T
and k = 1, . . . ,Kg). Furthermore, I define yg,k to be the vector of observations that have
been allocated to component k by Vg (1 ≤ k ≤ Kg). In the free allocation regression models,
described below, the nodes g = 1, . . . , N are considered as target variables and their regressor
variables are the variables in their parent sets, namely π1, . . . ,π N . More precisely, yg,k is
the target vector for component k, and I have to arrange the corresponding observations of
the parent nodes, π g , appropriately in a regressor (or design) matrix, which I denote Xπg ,k .
Let the vector yg,k be of size nk , i.e. let nk observations have been allocated to component k,
then Xπg ,k is an (|π g| + 1)-by-nk matrix, and if the j th element of the target vector yg,k is
the observation yg,t , then the j th column of the regressor matrix, Xπg ,k , has to be the vector
xπg ,t . As each vector xπg,t includes a constant element for the intercept, the first row of the
design matrix, Xπ g,k , is a column vector of 1’s, which corresponds to the intercept.

Given a fixed graph topology M, which implies the parent node sets, πg , and thus the
regressor variables for each node g, as well as fixed allocation vectors, Vg , which imply the
node-specific allocations, I follow Lèbre et al. (2010) and apply a linear Gaussian regression
model to each target vector yg,k using Xπg ,k as regressor matrix:

yg,k = XT
πg ,kwg,k + εg,k, (1)

where wg,k is the (|π g| + 1)-dimensional vector of regression parameters, εg,k is the noise
vector, and the superscript symbol “T” denotes matrix transposition. I assume that the indi-
vidual elements of the noise vectors, εg,k , are i.i.d. Gaussian distributed with zero mean and
variance σ 2

g ; i.e. the noise variances are node-specific but do not depend on the component

k.5 The vectors εg,k (k = 1, . . . ,Kg) are then independently multivariate Gaussian distrib-
uted with zero mean vector and covariance matrix σ 2

g I, where I denotes the unit matrix. The
likelihood of the regression model is given by:

P(yg,k |Xπg ,k, wg,k, σg) = N
(

yg,k |XT
πg ,kwg,k, σ

2
g I

)
,

On the component-specific regression parameter vectors, wg,k , I impose the following con-
jugate Gaussian priors:

P
(

wg,k |σ 2
g , δg

)
= N

(
wg,k |0, δgσ

2
g I

)
(2)

5 This corresponds to the “noise variance hyperparameter coupling scheme” (S7) in Table 2 in Grzegorczyk
and Husmeier (2013). In Grzegorczyk and Husmeier (2013) this coupling scheme lead to better results than
node- and segment-specific noise variance hyperparameters, σ 2

g,k .
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BσAσ Aδ Bδ

σ2
g δg

wg,k

Vgπg

Xπg,k yg,k

g = 1, . . . ,N

k = 1, . . . ,Kg

For g = 1, . . . , N :
σ−2

g ∼ Gam(Aσ , Bσ)
δ−1
g ∼ Gam(Aδ, Bδ)

For k = 1, . . . ,Kg:
wg,k ∼ N (0, σ2

gδgI)

yg,k ∼ N (XT
πg,kwg,k, σ

2
gI)

Fig. 1 Compact representation of the employed free allocation Bayesian regression model. The grey cir-
cles refer to fixed (hyper-)parameters and the data (Xπg ,k and yg,k ), while the white circles refer to free
(hyper-)parameters. A detailed model description is provided in Sect. 2.1

where δg canbe interpreted as a gene-specific “signal-to-noise” (SNR)hyperparameter (Lèbre
et al. 2010). On the inverse noise variances, σ−2

g , and on the inverse SNR hyperparameters,
δ−1

g , I also impose conjugate priors, i.e. Gamma priors:

P(σ−2
g |Aσ , Bσ ) = Gam(σ−2

g |Aσ , Bσ ) = [Bσ ]Aσ

�(Aσ )

[
σ−2

g

]Aσ −1
e−Bσ σ−2

g (3)

P(δ−1
g |Aδ, Bδ) = Gam(δ−1

g |Aδ, Bδ) = [Bδ]Aδ

�(Aδ)

[
δ−1

g

]Aδ−1
e−Bδδ

−1
g (4)

with the fixed level-2 hyperparameters Aσ , Bσ , Aδ and Bδ . A compact representation of the
relationships among the (hyper-)parameters of the Bayesian regression models, described
above, can be found in Fig. 1. The free model parameters, indicated by white circles in Fig. 1,
have to be sampled from the posterior distribution. Due to standard conjugacy arguments the
full conditional distributions of the free parameters can be computed in closed form, and the
Gibbs-sampling scheme fromGrzegorczyk and Husmeier (2012b) can be applied to generate
a sample from the posterior distribution P(wg,1, . . . , wg,Kg , δg, σ

2
g |D). 6

To indicate the allocations implied by the allocation vector Vg , I introduce the symbols:

yg,Vg := {
yg,k

}
k=1,...,Kg

(5)

Xπg ,Vg := {
Xπg ,k

}
k=1,...,Kg

(6)

wg,Vg := {
wg,k

}
k=1,...,Kg

(7)

6 Note that according to the earlier definitions the data set, D, includes both: (i) the values of the target
variable vectors, yg,k , which are here assumed to be realisations of random variables, and (ii) the values of
the regressor matrices, Xg,k , which are here assumed to be non-random observations.
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Table 1 The MCMC sampling scheme for the free allocation Bayesian regression model shown in Fig. 1

For each node g = 1, . . . , N :

Input: The parent node set, πg , the allocation vector, Vg , and the current SNR

hyperparameter, δ(i−1)
g

MCMC iteration: (i − 1) → i :

• Conditional on δ
(i−1)
g sample a concrete variance hyperparameter, σ (i)

g , from

P(σ−2
g |yg,Vg , Xπg ,Vg , δ

(i−1)
g ) [see Eq. (10)]

• Afterwards sample component-specific regression parameter vectors, w(i)
g,k , from

P(wg,k |yg,k , Xπg ,k , σ
(i)
g , δ

(i−1)
g ) [see Eq. (9)]

Set: w(i)
g,Vg

:= (w(i)
g,1, . . . , w(i)

g,Kg
)

• Sample a new SNR hyperparameter δ
(i)
g from P(δ−1

g |w(i)
g,Vg

, σ
(i)
g )

[see Eq. (8)], and output: δ(i)
g

This table provides pseudo-code only; see Sect. 2.1 for a detailed description of the MCMC sampling scheme

The full conditional distributions of δ−1
g and wg,k are given by:

δ−1
g |

(
wg,Vg , σ

2
g

)
∼ Gam

⎛
⎝Aδ + Kg

(|π g| + 1
)

2
, Bδ + 1

2σ 2
g

Kg∑
k=1

wT
g,kwg,k

⎞
⎠ (8)

wg,k |
(

yg,k, Xπg ,k, σ
2
g , δg

)
∼ N

(
��

g,kXπg,kyg,k, σ
2
g ��

g,k

)
(9)

where Kg is the number of components for node g, |π g(M)| is the cardinality of the parent
set, π g , and ��

g,k =
(
δ−1

g I + Xπg,kXT
πg ,k

)−1
.

The inverse variance hyperparameters, σ−2
g , could also be sampled from the full condi-

tional distribution, but a computationally more efficient way is to to use a collapsed Gibbs
sampling step, in which the regression parameter vectors, wg,k , have been integrated out.
This marginalization yields:

σ−2
g |(yg,Vg , Xπg ,Vg , δg) ∼ Gam

⎛
⎝Aσ + T − 1

2
, Bσ +

∑Kg
k=1 	2

g,k

2

⎞
⎠ (10)

with the squared Mahalanobis distance 	2
g,k = yT

g,k

(
I + δgXT

πg,kXπg,k

)−1
yg,k .

If the parent node sets, π g , and the allocation vectors, Vg , are known and kept fixed,
Eqs. (8–10) can be used, as indicated in Table 1, to generate a sample from the posterior
distribution:

P
(

wg,Vg , δg, σ
2
g |D

)
∝

∏
g

P
(
δg

)
P

(
σ 2

g

)∏
k

P
(
wg,k |δg, σg

)
P

(
yg,k |Xπg ,k, σg, wg,k

)

(11)

However, in real-wold applications the allocation vectors, Vg , are usually unknown and
the objective is to infer the parent node sets, π g , which form the network structure,
M = (π1, . . . ,π N ). Note that the regression model is defined such that the likelihood
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can be marginalized over both the regression parameters, wg,k , and the noise variance hyper-
parameters, σg,k . For each node g the marginal likelihood is given by:

P
(
yg,Vg |Xπg,Vg , δg

) = �
( T −1

2 + Aσ

)
(2Bσ )Aσ

�(Aσ )(π)(T −1)/2
∏Kg

k=1 |�̃g,k |1/2
(
2Bσ + 	2

g

)−
(

T −1
2 +Aσ

)
(12)

where �̃g,k = I + δgXT
πg ,kXπg ,k , 	2

g = ∑Kg
k=1 	2

g,k , and the squared Mahalanobis distance

terms, 	2
g,k , were defined below Eq. (10); for a derivation see Grzegorczyk and Husmeier

(2012b).Note that themarginal likelihood inEq. (12) is invariantwith respect to a permutation
of the components’ labels, as I have imposed exchangeable (i.i.d.) priors on the component-
specific regression parameter vectors [see Eq. (2)].

2.2 Network structure inference

I assume the allocation vectors, Vg , still to be fixed, and I describe how the network structure,
M, can be inferred. For the prior on the network structures,M = (π1, . . . , πN ), I assume a
modular form:

P(M) =
N∏

g=1

P(πg) (13)

and uniform distributions for P(πg), subject to a fan-in restriction, |πg| ≤ F , for each g.
The individual parent node sets, πg , can then be inferred independently for each node g, and
the collection of parent node sets forms the network structure,M = (π1, . . . , πN ). For each
node g the full conditional distribution is given by:

P
(
πg|D, Vg, δg

) ∝ P
(
πg

)
P

(
yg,Vg |Xπg,Vg , δg

)
(14)

where the expressions for P(yg,Vg |Xπg,Vg , δg) can be computed with Eq. (12).
As the full conditional distribution of πg in Eq. (14) is not of closed form, I resort to

Metropolis-Hastings sampling techniques. For each node g the MCMC algorithm keeps the
SNR-hyperparameter, δg , and the allocation vector, Vg , fixed, and proposes to move from the

current parent node set, π(i−1)
g , to a new set π

(�)
g , where π

(�)
g is randomly chosen from the

systemS(π
(i−1)
g ) of all parent sets which can be reached (i) either by removing a single parent

node from π
(i−1)
g , (ii) or by adding a single parent node to π

(i−1)
g , unless the maximal fan-in,

F , is reached, (iii) or by a parent-node flip move.7 According to the Metropolis Hastings
criterion, the move is accepted with probability

A
(
π(i−1)

g → π(�)
g

)
= min

⎧
⎨
⎩1,

P
(

yg,Vg |Xπ
(�)
g ,Vg

, δg

)

P
(

yg,Vg |Xπ
(i−1)
g ,Vg

, δg

) ×
P

(
π

(�)
g

)

P
(
π

(i−1)
g

) ×
|S

(
π

(i−1)
g

)
|

|S
(
π�

g

)
|

⎫
⎬
⎭

(15)

where the likelihood-ratio can be computed with Eq. (12), the prior ratio is equal to 1,
and the Hastings-ratio is the ratio of the cardinalities of the two parent node set systems

7 The parent-node flip move was proposed in Grzegorczyk and Husmeier (2011) and randomly chooses a

parent node, u ∈ π
(i−1)
g , and randomly chooses a node v /∈ π

(i−1)
g , and then modifies π

(i−1)
g by substituting

parent node u for node v.
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Table 2 Pseudo-code for the MCMC inference of the parent node sets, πg , in the free allocation Bayesian
regression model shown in Fig. 1

For each node g = 1, . . . , N :

Input: The SNR hyperparameter, δg , the allocation vector, Vg , and the current parent node set, π
(i−1)
g

MCMC iteration: (i − 1) → i :

• Determine the system of parents sets, S(π
(i)
g ), that is the system of parent node sets that can be

reached from π
(i−1)
g by (i) either adding a node to π

(i−1)
g , (ii) or by deleting a node from π

(i−1)
g or

(iii) by exchanging a node u ∈ π
(i−1)
g for a node v /∈ π

(i−1)
g . Randomly select a new candidate

parent set, π(�)
g , from S(π

(i)
g )

• Accept the new parent node set, π(�)
g , with the probability given in Eq. (15). If the move is accepted,

set: π(i)
g = π

(�)
g . Otherwise leave the parent set unchanged, i.e. set π(i)

g = π
(i−1)
g . Output π(i)

g

S(π
(i−1)
g ) and S(π�

g ).8 If the move is accepted, set: π
(i)
g = π

(�)
g , or otherwise leave the

set unchanged, π
(i)
g = π

(i−1)
g . Pseudo code for this Metropolis-Hastings step is given in

Table 2. Given the current network, M(i−1) = (π
(i−1)
1 , . . . , π

(i−1)
N ), successively updating

the parent node sets, symbolically π
(i−1)
g → π

(i)
g (g = 1, . . . , N ), yields the new network

M(i) = (π
(i)
1 , . . . , π

(i)
N ).

2.3 Modelling the allocation vectors

In the last two subsections I have assumed that the allocation vectors are known and fixed,
although they will be unknown in many real-world applications. The focus of this subsec-
tion is on inferring the allocation vectors from the data. A common choice in the context of
dynamic Bayesian networks (DBNs) is the application of (node-specific) multiple change-
point processes to infer the segmentations; see references in Sect. 1.

Another approach, presented in Ko et al. (2007) and Grzegorczyk et al. (2008), is to
combine DBNs with a mixture model. The mixture approach is more flexible, as it allows
for a free allocation of the data points. E.g. for 11 data points and 3 mixture components
the allocation scheme [Vg(2), . . . , Vg(11)] = [1, 1, 3, 2, 3, 1, 2, 2, 1, 1] for the last 10 data
points is valid. The changepoint approach imposes sets of changepoints to divide the tem-
poral data points into disjunct segments. Since temporal observations follow a natural time
ordering and a priori neighbouring time points should be more likely to be allocated to
the same component than distant time points, the changepoint approach includes plausi-
ble prior knowledge. However, changepoint approaches have a restricted allocation space,
since data points in different segments have to be allocated to different components; i.e.
“a (segment) component once left cannot be revisited”. Consequently, certain allocation
schemes can only be approximated by imposing additional changepoints, e.g. in this exam-
ple the true allocation scheme [Vg(2), . . . , Vg(11)] = [1, 1, 1, 2, 2, 2, 1, 1, 1, 1] cannot be
modelled properly with changepoints; the best changepoint set approximation might be:
[Vg(2), . . . , Vg(11)] = [1, 1, 1, 2, 2, 2, 3, 3, 3, 3]. The mixture model, on the other hand,
can infer the correct allocation, but it ignores the temporal ordering of the data points. That
is, it treats the temporal data points (time points) as interchangeable units. This information

8 The prior ratio is equal to 1, as I have imposed a uniform distribution on the parent node sets. Due to the
fan-in restriction the cardinalities of the two systems of parent node sets can be different.
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loss implies in this example that all
(10
3

)
allocation vectors, which allocate seven time points

to component k = 1 and three time points to component k = 2, are a priori equally likely;
including allocation schemes, such as [Vg(2), . . . , Vg(11)] = [1, 2, 1, 1, 1, 2, 1, 1, 2, 1],
which might be very unlikely a priori.

A compromise between themixturemodel and the changepoint process is a hiddenMarkov
model (HMM). In HMMs there is a homogeneous Markovian dependency between the allo-
cations of the data points. In a Markov chain of order τ = 1 the allocation (state) of the t th
data point given the states of all earlier time points 2, 3, 4, . . . , t − 1 just depends on the
state of the immediately preceding time point t − 1. Moreover, in a homogeneous Markov
chain these transition probabilities stay constant over time, i.e. they do not depend on t . The
homogeneous state-transition probabilities can be chosen such that neighbouring points are
likely to be allocated to the same state, and states once left can be revisited. In this subsection
I show how to employ a HMM for the allocation vectors, Vg .

I model the allocation vectors, Vg , for each node, g, independently with a HMM. In a
first step I impose a truncated Poisson distribution with parameter λ on the number of states
(components). For Kg = 1, . . . ,KMAX this yields:

P
(Kg

) = Poi
(Kg|λ, 1 ≤ Kg ≤ KMAX

) ∝ λKg · e−λ

Kg! (16)

Afterwards, I impose aHMMwithKg states on the allocationvector,Vg . The allocationvector
can be identified with the temporally ordered sequence [Vg(2), . . . , Vg(T )] and its proba-
bility is the probability of the sequence: P(Vg|Kg) = P(Vg(2), . . . , Vg(T )|Kg). Assuming
a Markovian dependency of order τ = 1 for the state sequence, this leads to:

P
(
Vg|Kg

) = P
(
Vg(2)|Kg

) T∏
t=3

P
(
Vg(t)|Vg(t − 1),Kg

)
(17)

For t = 3, . . . , T let pg
k, j denote the probability for a transition from state k to state j :

pg
k, j = P

(
Vg(t) = j |Vg(t − 1) = k,Kg

)
(18)

This gives
∑Kg

j=1 pg
k, j = 1 and the probability vectors pg

k = (pg
k,1, . . . , pg

k,Kg
)T define

categorical (ormultinomial) random variables (k = 1, . . . ,Kg). OnVg(2) I impose a discrete
uniform distributionwith the possible outcomes {1, . . . ,Kg}. The probability of the sequence
[Vg(2), . . . , Vg(T )] conditional on {pg

k }k = {pg
k }k=1,...,Kg is then given by:

P
(
Vg|

{
pg

k

}
k

) = 1

Kg

Kg∏
k=1

Kg∏
j=1

(
pg

k, j

)nk, j
(19)

where nk, j = |{t |3 ≤ t ≤ T ∧ Vg(t) = j ∧ Vg(t − 1) = k}| is the number of transitions
from state k to state j in the sequence [Vg(2), . . . , Vg(T )]. For k = 1, . . .Kg I impose a
Dirichlet distribution with hyperparameter vector αk = (αk,1, . . . , αk,Kg )

T on pg
k :

P
(
pg

k

) = Dir(pg
k |αk) =

∏Kg
j=1 �

(
αk, j

)

�
(∑Kg

j=1 αk, j

)
Kg∏
j=1

(
pg

k, j

)αk, j −1
(20)
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Marginalizing over the set {pg
k }k in Eq. (19) gives the marginal distribution:

P
(
Vg|Kg

) =
∫
{
pg

k

}
k

P
(
Vg(2), . . . , Vg(T )| {pg

k

}}k
) · P

({
pg

k

}
k

)
d
{
pg

k

}
k (21)

With independently distributed random vectors pg
k , P({pg

k }k) = ∏Kg
k=1 P(pg

k ), where P(pg
k )

was defined in Eq. (20), the integral in Eq. (21) is effectively a product integral. Inserting
Eq. (19) into Eq. (21) yields:

P(Vg|Kg) = 1

Kg

Kg∏
k=1

⎛
⎝

∫

pg
k

P(pg
k )

Kg∏
j=1

(
pg

k, j

)nk, j
dpg

k

⎞
⎠ (22)

The inner integrals correspond toDirichlet-multinomial distributions,which can be computed
in closed form. This yields:

P
(
Vg|Kg

) = 1

Kg

Kg∏
k=1

�
(∑Kg

j=1 αk, j

)

�
(∑Kg

j=1 nk, j + αk, j

)
Kg∏
j=1

�
(
nk, j + αk, j

)

�
(
αk, j

) (23)

In the absence of any genuine prior knowledge about the state-transition probabilities, pg
k, j ,

I set αk, j = α in Eq. (20). The marginal distribution P(Vg|Kg) in Eq. (23) is then invariant
to permutations of the states’ labels.

2.4 The proposed HMM–DBN model

The proposed Hidden Markov model (HMM) dynamic Bayesian network (DBN) model,
which I refer to as the HMM–DBN model, is now fully specified. A compact representation
of the relationships among the data and all (hyper-)parameters of the HMM–DBN model is
given in Fig. 2. Figure 2 adds flexible parent node sets and allocation vectors along with their
prior distributions to Fig. 1. Unlike the earlier Bayesian regression DBN model, shown in
Fig. 1, the parent node sets and the allocation vectors are now flexible and have to be inferred.
The joint posterior distribution of the HMM–DBN model is given by:

P (M, V1, . . . , VN , δ1, . . . , δN ,K1, . . . ,KN |D) =
N∏

g=1

P
(
πg, Vg,Kg, δg|D

)
(24)

where M = (π1, . . . , πN ), and

P
(
πg, Vg,Kg, δg|D

) ∝ P(δg)P(πg)P
(Kg

)
P

(
Vg|Kg

)
P

(
yg,Vg |Xg,Vg , δg

)
(25)

In the latter equationKg is the number of possible states (components) for the gth allocation
vector, Vg , which implies the target vector segmentation, yg,Vg = {yg,1, . . . , yg,Kg }, and
the segmentation of the regressor matrices, Xπg ,Vg = {Xπg ,1, . . . , Xπg ,Kg }. The marginal
likelihood, P(yg,Vg |Xg,Vg , δg), can be computed with Eq. (12).

With regard to the MCMC inference, described in Sect. 2.5, note that the posterior distrib-
ution in Eq. (24) is invariant (to permutations of the states’ labels), as the marginal likelihood
in Eq. (12) and the priors on the allocation vector in Eq. (23) (if αk, j = α) are invariant.
For Bayesian mixture models with invariant posterior distributions it is challenging to infer
the component-specific model parameters, since their marginal posterior distributions are
identical. There is a so called “non-identifiability problem” with respect to the components’
labels (see, e.g., Nobile and Fearnside 2007). For the HMM–DBN model the problem of
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BσAσ Aδ Bδ

σ2
g δg

wg,k

Vg

pg
k

αk

Kg λ

πg

Xπg,k yg,k

F

KMAX

k = 1, . . . ,Kg

g = 1, . . . ,N

k = 1, . . . ,Kg

πg ∼ Uni

|πg| ≤ F

For g = 1, . . . , N :
σ−2

g ∼ Gam(Aσ , Bσ)
δ−1
g ∼ Gam(Aδ, Bδ)

For k = 1, . . . ,Kg:
wg,k ∼ N (0, σ2

gδgI)
yg,k ∼ N (XT

πg,kwg,k, σ
2
gI)

For g = 1, . . . , N :
Kg ∝ Poi(λ)
1 ≤ Kg ≤ KMAX

For g = 1, . . . , N :

For k = 1, . . . ,Kg:

pg
k ∼ Dir(αk)

pg
k = (pg

k,1, . . . , p
g
k,Kg

)T

pg
k,j = P (Vg(t) = j|Vg(t) = k)

Fig. 2 Compact representation of the proposed HMM–DBN model. The graphical model in Fig. 1 has been
extended by additional fixed (grey circles) and free (white circles) (hyper-)parameters. Detailed descriptions
of the HMM–DBN model are provided in Sects. 2.1–2.3

non-identifiability has not be tackled, as the interest is not on state-specific parameters. Here,
I am interested in the network structure, M, and in the co-allocation of data points.9

2.5 Allocation vector inference

For the allocation vector inference, in principle, two different RJMCMC sampling strategies
(Green 1995) can be employed. The first technique is to implement a RJMCMC approach in
a continuous configuration space, where concrete instantiations of all free parameters of the
Bayesian regression model (i.e. the white circles in Fig. 1) are sampled, before the forward-
backward simulation algorithm (Boys et al. 2000) is used to sample the allocation vector
from its full conditional distribution via a Gibbs sampling step. This RJMCMC approach for
hidden Markov models has been proposed by Robert et al. (2000) and has become popular in
various fields of applications, such as DNA sequence analysis (see, e.g., Boys and Henderson
2004). However, the disadvantage of this approach is that the variation of the number of

9 For each node g the allocation vector, Vg , effectively defines a node-specific co-allocation matrix: Cg =
(Cg

s,t )s,t∈{2,...,T } withCg
s,t = 1 ifVg(s) = Vg(t), andCg

s,t = 0 ifVg(s) 	= Vg(t). Note that the node-specific
co-allocation matrices, Cg , are invariant to permutations of the states’ labels. See, e.g., Jasra et al. (2005) for
a detailed argumentation.
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hidden states, Kg , requires the implementation of efficient RJMCMC moves which switch
between models with different dimensionalities in continuous parameter spaces. Otherwise,
the RJMCMC simulations may become computationally inefficient (see, e.g., Nobile and
Fearnside 2007).

The second sampling strategy is based on RJMCMCmoves in the discrete allocation vec-
tor configuration space. In this approach the numbers of states and the allocation vectors are
sampled from the posterior distribution. This strategy can be usedwhen all state-specific para-
meters can be integrated out analytically so that the marginal likelihood does not depend on
state-specific continuous parameters.10 The main advantage of this second RJMCMC strat-
egy is that the resulting sampling scheme does not require any particular trans-dimensional
jumpingmoves in continuous configuration spaces. In the present paper I resort to this second
RJMCMC sampling strategy, and I employ the “allocation sampler” (Nobile and Fearnside
2007) for the allocation vector inference. The allocation sampler was proposed by Nobile and
Fearnside (2007) and has already been utilised in the context of mixture dynamic Bayesian
networks (MIX-DBNs) in Grzegorczyk et al. (2008). The allocation sampler consists of a
simple Gibbs sampling move and various more involved Metropolis-Hastings moves. The
mathematical details are briefly summarised in the “Appendix”. In Appendix 1 I describe a
simple Gibbs sampling move, which re-samples the allocation state of one single data point
from the full conditional distribution. Since this type of move yields very small steps in the
configuration space, Nobile and Fearnside (2007) proposed a set of more involved allocation
sampler moves. In Appendix 2 I describe these allocation sampler moves, namely theM1, the
M2, and the Ejection-Absorption (EA) move. However, the allocation sampler moves have
been developed for free allocation models, where data points are treated as interchangeable
units without any natural (here: temporal) arrangement. These moves are sub-optimal when
a Markovian dependency structure among the (temporal) data points is given. In Sects. 2.5.1
and 2.5.2 I therefore propose two new pairs of Metropolis-Hastings moves, which exploit the
temporal structure and thus improve convergence and mixing for the HMM–DBN model.
While the conceptualization of the ideas behind thesemoves is relatively simple and intuitive,
the mathematical implementation is involved, due to the need to ensure that the sampling
scheme satisfies the equations of detailed balance and converges to the proper posterior dis-
tribution. In Appendices 3 and 4 I rigorously formulate the mathematical details, and I show
for both pairs of moves that the two moves are complementary to each other. Hence, the
acceptance probabilities can be chosen according to the Metropolis-Hastings criterion, so as
to guarantee that the equation of detailed balance is fulfilled. Combining the SNR hyperpa-
rameter inference (see Table 1) and the network inference (see Table 2) with the moves on
the allocation vectors yields the MCMC sampling scheme for generating a sample from the
posterior distribution in Eq. (24). Table 3 shows how the sampling steps can be combined.

2.5.1 First pair of new HMM moves: the inclusion and the exclusion move

In this subsection I propose and verbally describe the novel inclusion and the novel
exclusion move for the HMM–DBN model. For each exclusion move there is a unique
complementary inclusion move, and vice-versa. The introduction of this pair of moves
can be best motivated by a simple example: Given 11 time points and the allocation
[Vg(2), . . . , Vg(11)] = [1, 1, 2, 2, 1, 1, 1, 2, 2, 2] for the last 10 data points. If there is

10 The proposed HMM–DBN model is based on the Bayesian regression model, shown in Fig. 1. Only the
regression parameter vectors, wg,k , are state-specific. As the regression parameters can be integrated out
analytically [see Eq. (10)], the marginal likelihood of the Bayesian regression model in Eq. (12) does not
depend on concrete instantiations of state-specific parameters.
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Table 3 Pseudo code for the MCMC sampling scheme

Input: The current state of the MCMC simulation. That is, the network:

M(i−1) = (π
(i−1)
1 , . . . , π

(i−1)
N ), the current numbers of states K(i−1)

1 , . . . ,K(i−1)
N , the current

allocation vectors, V(i−1)
1 , . . . , V(i−1)

N , and the current SNR hyperparameters, δ(i−1)
1 , . . . , δ

(i−1)
N

MCMC iteration: (i − 1) → i :

• Keep the networkM(i−1) and the allocation vectors, V(i−1)
g (g = 1, . . . , N ), fixed, and update the

SNR hyperparameters with the MCMC sampling scheme described in Table 1. For each g replace

δ
(i−1)
g by the outputed new SNR hyperparameter, δ(i)

g

• Keep the allocation vectors V(i−1)
g (g = 1, . . . , N ) and the SNR hyperparameters δ

(i)
g

(g = 1, . . . , N ) fixed, and update the network structure with the MCMC sampling scheme described

in Table 2. Replace the old graph,M(i−1), by the outputed new graph,M(i) = (π
(i)
1 , . . . , π

(i)
N )

• For g = 1, . . . , N :

Keep the parent set, π(i)
g , the number of states, K(i−1)

g , and the SNR hyperparameter, δ(i)
g , fixed,

and perform the Gibbs sampling move, described in Appendix 1, on V(i−1)
g . Let V†

g denote the
newly sampled allocation vector

• For g = 1, . . . , N :

Keep the parent set, π(i)
g , and the SNR hyperparameter, δ(i)

g , fixed. Draw a coin to decide whether
an allocation sampler move (see Appendix 2) or a new HMM move (see Sects. 2.5.1 and 2.5.2 and

Appendices 3 and 4) is performed on V†
g

− If an allocation sampler move is performed, randomly draw the move type: M1, M2 or

Ejection/Absorption, and perform the selected move on V†
g . Output the new allocation vector, V(i)

g ,

and the new number of states, K(i)
g

− If a new HMM move is performed, randomly draw the move type: Inclusion, Exclusion, Birth or

Death move, and perform the selected move on V†
g

Output the new allocation vector, V(i)
g , and the new number of states, K(i)

g

Output: The new state of the MCMC simulation. That is, the new network structure:

M(i) = (π
(i)
1 , . . . , π

(i)
N ), the new numbers of states K(i)

1 , . . . ,K(i)
N , the new allocation vectors,

V(i)
1 , . . . , V(i)

N , and the new SNR hyperparameters, δ(i)
1 , . . . , δ

(i)
N

a Markovian dependency structure, it appears to be useful to propose to re-allocate the
coherent time sequence [Vg(4), Vg(5)] = [2, 2] to state k = 1, since the surrounding ear-
lier (lower) and later (higher) time points ([Vg(2), Vg(3)] and [Vg(6), Vg(7), Vg(8)]) are
allocated to k = 1. The inclusion move proposes to “include” the surrounded sequence
[Vg(4), Vg(5)] into the state of the surrounding data points. This gives the new allocation
[Vg(2), . . . , Vg(11)] = [1, 1, 1, 1, 1, 1, 1, 2, 2, 2]. Given the new allocation, the comple-
mentary exclusion move has to cut the subsequence [Vg(4), Vg(5)] out of the coherent
sequence [Vg(2), . . . , Vg(8)] to move back to the original allocation. To this end, the exclu-
sion move selects the coherent sequence [Vg(2), . . . , Vg(8)] of data points that are allocated
to the same state (k = 1). Subsequently, it proposes to cut out a randomly selected sub-
sequence, which is then “excluded”, i.e. it is cut out and re-allocated to a new state (here:
k = 2). To guarantee that there is a complementary inclusion move for each exclusion move,
it is important to impose a constraint: The randomly selected subsequence is not allowed to
include the two limiting data points; i.e. the lower limit Vg(2) and the upper limit Vg(8) in
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the example. In Appendix 3 I rigorously formulate the mathematical details, and I show that
there is a unique exclusion move for each inclusion move, and vice-versa.

2.5.2 Second pair of new HMM moves: the birth and the death move

In this subsection I propose and verbally describe the novel death and the novel birth
move for the HMM–DBN model. For each birth move there is a unique complementary
death move, and vice-versa. The introduction of this pair of novel Metropolis-Hastings
moves can be best motivated by a simple example: Given 11 time points and the alloca-
tion vector [Vg(2), . . . , Vg(11)] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] for the last 10 data points,
then it appears to be useful to impose a changepoint, which re-allocates the last data
points to a new state k = 2. For example, re-allocating the last four data points yields
the new allocation vector [Vg(2), . . . , Vg(11)] = [1, 1, 1, 1, 1, 1, 2, 2, 2, 2]. The birth
move randomly selects a state k and re-allocates the last data points that are allocated
to k to a new state knew . Thereby the novel birth move also allows for moves, such as
[1, 1, 2, 2, 1, 1, 2, 2, 1, 1] → [1, 1, 2, 2, 1, 3, 2, 2, 3, 3], where the last two data points that
were allocated to state k = 1 have been re-allocated to a new state knew = 3.

Given the new allocation vector, [Vg(2), . . . , Vg(11)] = [1, 1, 2, 2, 1, 3, 2, 2, 3, 3] the
complementary death move has to re-allocate all data points that are allocated to state k = 3
back to state k = 1. To this end the death move selects the two states k = 1 and k = 3, and
then tests whether the data points allocated to state k = 1 and the data points allocated to
state k = 3 are “separated” (do not “overlap”). Formally, I will say that the two sets T1 = {t :
Vg(t) = 1} and T3 = {t : Vg(t) = 3} are separated if and only if: max(T1) < min(T3) or
min(T1) > max(T3). If the “separation test” is successful, the death move is valid and can be
performed. In the example, the highest time point allocated to k = 1, namely t = 5, precedes
the lowest time point allocated to k = 3, namely t = 6, so that the “test for separation”
is successful and the death move is valid. This formal test for separation is required, since
otherwise the new allocation vector could not have been reached by the novel birth move,
described above. In Appendix 4 I rigorously formulate the mathematical details, and I show
that there is a unique novel death move for each novel birth move, and vice-versa.

2.6 Competing dynamic Bayesian network models

I will perform a systematic comparative evaluation, in which I compare the proposed HMM–
DBN model with three competing DBN models. The traditional homogeneous DBN model
(HOM-DBN) is described in Sect. 2.6.1, and in Sects. 2.6.2 and 2.6.3 the free allocation
mixture DBN model (MIX-DBN) and the changepoint-segmented DBNmodel (CPS–DBN)
are briefly summarised. An overview to the models is given in Table 4.

2.6.1 The conventional homogeneous DBN model (HOM-DBN)

In the homogeneous DBN model the network interactions do not vary over time. There is
only one single state, Kg = 1, for each node g and the allocation vectors assign all data
points to state 1, Vg = (1, . . . , 1)T. The HOM-DBN is a special case of the HMM–DBN
model, whereKg and Vg are fixed and non-adaptable. In Fig. 2 the nodes Vg andKg become
fixed (grey), and the nodes for α

g
k , pg

k , Kg , λ, and KMAX can be removed. The HOM-DBN
model can be inferred with the MCMC sampling scheme in Table 3, but the allocation vector
moves have to be left out, as K(i)

g = 1 and V(i)
g = (1, . . . , 1)T for all i .

123



Mach Learn (2016) 102:155–207 171

Ta
bl

e
4

O
ve
rv
ie
w
to

th
e
fo
ur

(n
on

-)
ho

m
og

en
eo
us

dy
na
m
ic
B
ay
es
ia
n
ne
tw
or
k
m
od

el
s

H
O
M
-D

B
N

M
IX

-D
B
N

C
PS

–D
B
N

H
M
M
–D

B
N

H
om

og
en
eo
us

Y
es

N
o

N
o

N
o

L
ite
ra
tu
re

re
fe
re
nc
e(
s)

A
ki
n
to

st
an
da
rd

te
xt
-
bo
ok
s

A
ki
n
to

K
o
et
al
.(
20

07
)
an
d

G
rz
eg
or
cz
yk

et
al
.(
20

08
)

A
ki
n
to

L
èb
re

et
al
.(
20

10
)
an
d

va
ri
ou

s
fo
llo

w
-u
p
w
or
ks

Pr
op

os
ed

he
re

N
um

be
r
of

co
m
po

ne
nt
s

K g
=

1
K g

∝
P

oi
(λ

)
K g

∝
P

oi
(λ

)
K g

∝
P

oi
(λ

)

A
llo

ca
tio

n
ve
ct
or

V
g

V
g
(t

)
=

1
fo
r
al
lt

P
(V

g
(t

)
=

k|K
g
)
=

pg k
vi
a
ch
an
ge
po

in
ts

P
(V

g
(t

)
=

j|V
g
(t

−
1)

=
k,

K g
)
=

pg k,
j

H
yp
er
pa
ra
m
et
er
s
of

P
(V

g
|K

g
)

–
pg

=
(
pg 1

,
..

.,
pg K

g
)T

–
fo
r

k
=

1,
..

.,
K g

:

pg k
=

(
pg k,

1
,
..

.,
pg k,

K
g
)T

H
yp

er
-p
ri
or
s

–
pg

∼
–

pg k
∼

D
ir

(α
1
,
..

.,
α
K

g
)

–
D

ir
(α

k,
1
,
..

.,
α

k,
K

g
)

D
is
tr
ib
ut
io
n

P
(V

g
|K

g
)

–
Se
e
E
q.

(2
7)

Se
e
E
q.
(2
8)

Se
e
E
q.
(2
3)

M
C
M
C
m
ov
es

on
V

g
–

A
llo

ca
tio

n
sa
m
pl
er

C
ha
ng

ep
oi
nt

bi
rt
h,

de
at
h
an
d

A
llo

ca
tio

n
sa
m
pl
er

an
d

no
ve

l

se
e
A
pp
en
di
x
2

re
-a
llo

ca
tio

n
se
e
Se
ct
.2

.6
.3

H
M

M
m

ov
es

se
e
A
pp

en
di
ce
s
2–

4

D
et
ai
le
d
ex
pl
an
at
io
ns

ar
e
gi
ve
n
in

th
e
m
ai
n
te
xt

123



172 Mach Learn (2016) 102:155–207

2.6.2 The non-homogeneous mixture DBN model (MIX-DBN)

The mixture DBN model (MIX-DBN) combines the traditional DBN model with a free
allocation mixture model. As for the HMM–DBN model, I assume that the numbers of
mixture components follow truncated Poisson distributions, P(Kg) ∝ Poi(λ) for 1 ≤ Kg ≤
KMAX. And I impose a categorical (multinomial) distribution with hyperparameters pg =
(pg

1 , . . . , pg
Kg

)T on the components, pg
k := P(Vg(t) = k|Kg) for all t > 2. The probability

of the allocation vector is then given by:

P
(
Vg|pg) =

Kg∏
k=1

(
pg

k

)nk (26)

where nk = |{t |2 ≤ t ≤ T ∧ Vg(t) = k}| is the number of data points that are allocated to
component k by Vg . On pg I impose a conjugate Dirichlet distribution with hyperparameters
α = (α1, . . . , αKg )

T, P(pg) = Dir(pg|α). Marginalizing over pg yields:

P
(
Vg|Kg

) =
�

(∑Kg
k=1 αk

)

�
(∑Kg

k=1 (nk + αk)
)

Kg∏
k=1

� (nk + αk)

�(αk)
(27)

For αk = α the posterior distribution of the MIX-DBN model becomes invariant to permu-
tations of the components’ labels. The MIX-DBN model can be inferred with the MCMC
sampling scheme in Table 3, but exclusively allocation sampler moves can be performed on
Vg . The moves from Sects. 2.5.1 and 2.5.2 cannot be used, as the MIX-DBNmodel treats the
data points as interchangeable units (without any ordering). If the allocation sampler moves,
described in Appendix 2, are performed, the terms P(Vg|Kg) in the acceptance probabilities
have to be computed with Eq. (27) instead of Eq. (23).

2.6.3 The non-homogeneous changepoint DBN model (CPS–DBN)

The changepoint DBN model (CPS–DBN) combines the traditional DBN model with a
multiple changepoint process. As before, I assume that Kg follows a truncated Poisson
distribution, P(Kg) ∝ Poi(λ) for 1 ≤ Kg ≤ KMAX. I identify Kg with Kg − 1 changepoints
bg,1, . . . , bg,Kg−1 on the set {2, . . . , T − 1}. For node g this yields: Vg(t) = k if and only if
bg,k−1 < t ≤ bg,k , where bg,0 := 1 and bg,Kg := T . Following Green (1995) I assume that
the changepoints are distributed as the even-numbered order statistics of L := 2(Kg −1)+1
points uniformly and independently distributed on the set {2, . . . , T − 1}. This induces the
following prior distribution on the allocation vectors:

P
(
Vg|Kg

) = 1(
T − 2

2
(Kg − 1

) + 1

)
Kg−1∏
k=0

(
bg,k+1 − bg,k − 1

)
(28)

The allocation vectors can be inferred via changepoint birth, death and re-allocation moves
along the lines of the RJMCMC algorithm of Green (1995).

The changepoint reallocationmove fromV(i−1)
g toV�

g randomly selects one changepoint

bg, j from the changepoint set, {bg,1, . . . , b
g,K(i−1)

g −1
}, induced by V(i−1)

g . The replacement

changepoint is randomly drawn from the set
{
bg, j−1 + 2, . . . , bg, j+1 − 2

}
. This yields the

new candidate allocation vector V�
g , and K� = K(i−1).
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The changepoint birth move from [V(i−1)
g ,K(i−1)

g ] to [V�
g,K�

g] randomly draws the
location of one single new changepoint from the set of all valid new changepoint locations:

B† :=
{

b : 2 ≤ b ≤ T − 1 ∧ ∀ j ∈
{
1, . . . ,K(i−1)

g − 1
}

: |b − bg, j | > 1
}

(29)

Adding the new changepoint to the changepoint set yields V�
g , and K�

g = K(i−1)
g + 1.

The changepoint death move from [V(i−1)
g ,K(i−1)

g ] to [V�
g,K�

g] is complementary to the

birth move. It randomly selects one of the changepoints induced by V(i−1)
g and delets it. V�

g

is the new candidate allocation vector after deletion, and K�
g = K(i−1)

g − 1.
The acceptance probabilities for these moves are given by A = min{1, R}, with

R = P(yg,V�
g
|Xg,V�

g
, δg)

P(y
g,V(i−1)

g
|X

g,V(i−1)
g

, δg)
· P(V�

g|K�
g)P(K�

g)

P(V(i−1)
g |K(i−1)

g )P(K(i−1)
g )

· Q (30)

where Q is the Hastings ratio, which can be computed for each of the three changepoint
move types (see, e.g., Green 1995). If the move is accepted, set V(i)

g = V�
g and K(i)

g = K�
g ,

or otherwise set: V(i)
g = V(i−1)

g and K(i)
g = K(i−1)

g .
The CPS–DBN model can be inferred with the MCMC sampling scheme described in

Table 3, but the moves on the allocation vectors have to be replaced by the changepoint birth,
death and re-allocation moves, described in this subsection.

I also include the globally coupled variant of the CPS–DBNmodel, proposed in Grzegor-
czyk and Husmeier (2012b) and Grzegorczyk and Husmeier (2013), in my comparative
evaluation study. The key idea is to hierarchically couple the segment-specific regres-
sion parameter vectors, wg,k , in Eq. (2) to allow for information-sharing with respect
to the regression parameters. In the coupled CPS–DBN model Eq. (2) is replaced by
P(wg,k |σ 2

g , δg) = N (wg,k |mg, δgσ
2
g I), and the mean vector, mg , is now a flexible hyperpa-

rameter and has amultivariate standardGaussian distribution, symbolically:mg,k ∼ N (0, I);
see, e.g., Grzegorczyk and Husmeier (2013) for the mathematical details. However, as the
coupled CPS–DBN model is not in the primary scope of the present paper, I focus on the
standard CPS–DBN model and discuss the results of the coupled CPS–DBN model only
casually.

2.7 Network-wide (shared) allocation vectors

The non-homogeneous DBN models have been formulated with node-specific allocation
vectors, Vg (g = 1, . . . , N ). That is, the allocations vary from node to node, and have
to be inferred independently for each node g. This gives very flexible DBN models. For
applications where all nodes are a priori expected to share the same segmentation the node-
specific allocation vectors can be replaced by a network-wide allocation vector, which is
then shared by all nodes, Vg = V and Kg = K for all g. For network-wide allocation
vectors the moves from Sect. 2.5 have to be adapted. The probability terms P(Kg) and
P(Vg|Kg) have to be replaced by P(K) and P(V|K), respectively. And each allocation
vector change, V(i−1) → V�, applies to all nodes. The marginal likelihood terms (e.g. in
the acceptance probabilities), P(yg,Vg |Xg,Vg , δg), have to be replaced by product terms:∏N

g=1 P(yg,V|Xg,V, δg).
The usage of network-wide allocation vectors imposes a substantial restriction on the con-

figuration space of the allocations. The underlying allocation vector can then be inferredmore
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accurately, as conceptual problems associated with model over-flexibility (data-overfitting)
are alleviated.

2.8 Marginal edge posterior probabilities

The MCMC sampling scheme for the HMM–DBN model is outlined in Table 3, and in
Sects. 2.6.1–2.6.3 I provide details on how to modify this scheme for the competing models.
I perform 200I iterations in total, and to avoid autocorrelations in the MCMC trajectories
I take samples in equidistant intervals (every 100th iteration). From the sample of length
2I I withdraw the first I samples to allow for a “burn-in phase”, and I keep the remain-
ing sample of length I : {M(i), V(i)

1 , . . . , V(i)
N , δ

(i)
1 , . . . , δ

(i)
N }i=I+1,...,2I . From the networks,

M(I+1), . . . ,M(2I ), I compute marginal edge posterior probabilities. The estimated mar-
ginal posterior probability of the edge from node n to node j (n, j ∈ {1, . . . , N}) is:

en, j = 1

I

2·I∑
i=I+1

M(i)(n, j) (31)

where M(i)(n, j) is 1 if M(i) contains the edge n → j , and 0 otherwise.
I also estimate the marginal posterior probabilities, Cg

s,t , of two data points s and t (s, t ∈
{2, . . . , T }) being assigned to the same state by the allocation Vg:

Ĉg
s,t = 1

I
·
∣∣∣
{

i : i ∈ {I + 1, . . . , 2I } ∧ V(i)
g (s) = V(i)

g (t)
}∣∣∣

I will refer to Ĉg = (Ĉg
s,t )s,t∈{2,...,T } as the estimated connectivity (co-allocation) matrix.

2.9 Criterions for quantifying the network reconstruction accuracy

If the true network, M‡, is known, I evaluate the network reconstruction accuracy in terms
of the areas under the precision recall curve. Let M‡(n, j) = 1 indicate that M‡ possesses
the edge from node n to node j , while M‡(n, j) = 0 indicates that the edge n → j
is not in M‡. The models yield marginal edge posterior probabilities en, j ∈ [0, 1] for
every possible edge n → j . For ζ ∈ [0, 1] I define E(ζ ) as the set of all edges whose
posterior probabilities exceed the threshold ζ . For each E(ζ ) the number of true positive
T P[ζ ], false positive F P[ζ ], and false negative F N [ζ ] edges can be counted, and the recall,
R[ζ ] = T P[ζ ]/(T P[ζ ] + F N [ζ ]), and the precision, P[ζ ] = T P[ζ ]/(T P[ζ ] + F P[ζ ]),
score can be computed.11 Plotting the P[ζ ] values (vertical axis) against the corresponding
R[ζ ] values (horizontal axis) and connecting neighbouring points by a nonlinear interpolation
(Davis and Goadrich 2006) gives the Precision-Recall (PR) curve. The area under the PR
curve (AUC-PR) is a quantitativemeasure, and can be obtained by numerically integrating the
PR curve; larger AUC-PR values indicate a better network reconstruction accuracy. Another
measure for the network reconstruction accuracy is the area under the receiver operator
characteristic curve (AUC-ROC). I employ AUC-ROC values only to confirm that all trends
in terms of the AUC-PR measure can also be obtained with the AUC-ROC measure; for
details on AUC-ROC scores see Davis and Goadrich (2006).

11 The precision is the proportion of correctly predicted interactions out of the total number of predicted
interactions. The recall is the proportion of true interactions that are correctly identified.
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2.10 Potential scale reduction factors (PSRFs) for network edges

The diagnostic that I apply to evaluate convergence, proposed in Grzegorczyk and Husmeier
(2011), is based on the potential scale reduction factors (PSRFs); see Brooks and Gelman
(1998) for details. I assume that H independent MCMC simulations, with 200I iterations
each, have been performed on the same data set. I set I = 500, and to monitor the PSRFs
for the number of MCMC iterations I compute the marginal edge posterior probabilities for
each simulation h = 1, . . . , H after 200s iterations (s = 1, 2, . . . , I ). Let e[h,s]

n, j denote the
probability of the edge n → j obtained with MCMC simulation h after 200s iterations,
where s equidistant samples (every 100th iteration) are taken after the burn in phase of length
100s. For s = 1, . . . , I I compute the “between-chain” and the “within-chain” variance:

Bs(n, j) = 1

H − 1

H∑
h=1

(
e[h,s]

n, j − e[.,s]
n, j

)2
(32)

Ws(n, j) = 1

H(s − 1)

H∑
h=1

s∑
i=1

(
M(i,h)(n, j) − e[h,s]

n, j

)2
(33)

where e[.,s]
n, j is the mean of e[1,s]

n, j , . . . , e[H,s]
n, j , and M(i,h)(n, j) is 1 if the i th network in the

sample, taken from the hth simulation, contains the edge n → j , and 0 otherwise. Following
Brooks and Gelman (1998) the PSRFs(n, j) of the edge n → j is given by:

PSRFs(n, j) =
(
1 − 1

s

)Ws(n, j) + (
1 + 1

H

)Bs(n, j)

Ws(n, j)
(34)

where PSRF values near 1 indicate that the MCMC simulations are close to the stationary
distribution. I use as a PSRF-based convergence diagnostic the fraction of edges C(ξ, s)
whose PSRF is lower than a threshold ξ (e.g. ξ = 1.1 and ξ = 1.01). The fractions C(ξ, s)
can be monitored against the numbers of MCMC iterations 200s.

3 Data

3.1 Simulated data from the RAF pathway

For the RAF pathway, shown in Fig. 3, I generate synthetic network data. I employ a
function V , which assigns a state k ∈ {1, . . . ,Kg} to each temporal data point t = 2, . . . , T .
V (t) = k means that data point t is assigned to the kth state. For each interaction between
a node, g, and its parent nodes, which are defined by the RAF pathway, I require regression
parameter vectors,which vary over time.Data points that are assigned to the same state k share
the same regression parameter vectors, while the regression parameters differ among states.
Let wg,k denote the regression parameter vector (including the intercept) for the interaction
between node g and its parent nodes for all time points that are assigned to state k. I distinguish
two sampling scenarios for sampling random regression parameter vector instantiations.
The first sampling strategy (scenario S1) has recently been employed in Grzegorczyk and
Husmeier (2012b) and Grzegorczyk and Husmeier (2013) and guarantees that all regression
parameter vectors,wg,k , share the same amplitude, |wg,k |2 = 1.The second sampling strategy
(scenario S2), which has for example been employed in Werhli et al. (2006), guarantees that
the absolute value of each single element of the regression coefficient vector is in between
0.5 and 2.
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Fig. 3 The topology of the RAF pathway, as reported in Sachs et al. (2005). The RAF protein signalling
transduction pathway consists of 11 proteins (pip3, plcg, pip2, pkc, p38, raf, pka, jnk, mek, erk, and act) and
the edges represent protein interactions

Sampling scenario (S1) For each node g ∈ {1, . . . , N } and each state k ∈ {1, . . . ,K},
I sample random vectors from standard multivariate Gaussian distributed vectors, w†

g,k ∼
N (0, I), and I normalize these random vectors to obtain regression parameter vectors, wg,k

of Euclidean norm (amplitude) one: wg,k = w†
g,k/|w†

g,k |2.
Sampling scenario (S2) For each node g ∈ {1, . . . , N } and each state k ∈ {1, . . . ,K}, I

sample each element of the regression parameter vector, wg,k , independently from a continu-
ous uniform distribution on the interval [0.5, 2], and for each element (regression coefficient)
I afterwards draw a coin to determine its sign.

As strategy (S2) yields higher amplitudes, |wg,k |2, on average, I employ this sampling
scenario when I compare the DBN models with node specific allocation vectors. For the
DBN models with shared allocation vectors, Vg = V for all g, I follow strategy (S1).12

Given the sampled regression parameter vectors, wg,k , which either stem from S1 or from
S2, concrete data set instantiations, D, can be generated. Let Dg,t denote the observation
for node g at time point t . For the first time point, t = 1, I sample the realisations of the
N = 11 nodes from independent univariate Gaussian distributions, Dg,1 ∼ N (0, 1) for all
g. Afterwards, I generate realisations for t = 2, . . . , T :

Dg,t =
(
1,DT

πg,t−1

)
wg,V (t) + εg,t (35)

where Dπg,t−1 is the vector of the realisations of gth parent nodes at the previous time point
t − 1, the function V (.) assigns each data point t to a state k ∈ {1, . . . ,Kg}, and the noise
variables εg,t are independently standard Gaussian distributed, εg,t ∼ N (0, 1). The element
1 is included for the intercept.

For each data set instantiation,D, I add additive white noise in a gene-wise manner to vary
the signal-to-noise ratio (SNR). For each node, g, I compute the standard deviation, sg , of its
T realisations, Dg,1, . . . ,Dg,T , and I add i.i.d. Gaussian noise with zero mean and standard
deviation SNR−1 · sg to each data point, where SNR is the pre-defined signal-to-noise ratio
level. That is, I substitute Dg,t for Dg,t + vg,t (t = 1, . . . , T ), where vg,1, . . . , vg,T are

12 Note that I follow an unsupervised approach in my simulation study. That is, unlike related studies in
Dondelinger et al. (2010), Husmeier et al. (2010), Dondelinger et al. (2012), Grzegorczyk and Husmeier
(2012a), Grzegorczyk and Husmeier (2012b), and Grzegorczyk and Husmeier (2013) I here consider the
allocation vectors to be unknown. Consequently, in particular the DBN models with node-specific allocation
vectors can only be inferred properly when the amplitudes of the regression parameter vectors are sufficiently
high. See Sect. 2.7 for details.
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Table 5 Overview to the allocation scheme of the synthetic network data sets

True allocation
scheme VT RU E

1111 1122 112233 1212 121212 MIX 1122 1212 121212

True no. of states
KT RU E

1 2 3 2 2 2 2 2 2

Total no. of data
points T

33 33 49 33 49 33 33 33 49

Regression
parameter
sampling

S1 S1 S1 S1 S1 S1 S2 S2 S2

Node-specific
allocation
inference

No No No No No No Yes Yes Yes

Detailed explanations are given in Sect. 3.1

realisations of i.i.d. N (0, (SN R−1 · sg)
2) variables. I distinguish five signal-to-noise ratio

levels: SNR= 16, SNR= 8, SNR= 4, SNR= 2, and SNR= 1.
The focus of my study is on different allocation schemes, i.e. different functions V :

{1, . . . , T } → {1, . . . ,K}. I assume that each data set consists of an initial first data point
followed by H equidistant segments, h = 1, . . . , H , and that each segment h comprises
T� = 8 coherent time points. For example, for H = 4 the data set contains T = 1+ H ·T�=33
temporal data points, and the coherent time points in {2, . . . , 9}, {10, . . . , 17}, {18, . . . , 25},
and {26, . . . , 33} correspond to the four segments h = 1, . . . , 4. The time points belonging
to the same segment are always assigned to the same state k, while different segments can
be assigned to different states. For notational convenience, I introduce boldface-symbols to
indicate the true allocation scheme. Let k denote the row vector (k, . . . , k) of length H� = 8
(k = 1, . . . ,K). For example, to indicate an allocation vector Vg that assigns the segments
h = 1 and h = 3 to state k = 1, and the segments h = 2 and h = 4 to state k = 2, it can
then be written compactly:

[
Vg(2), . . . , Vg(33)

] =
⎡
⎣1, . . . , 1︸ ︷︷ ︸

8×
, 2, . . . , 2︸ ︷︷ ︸

8×
, 1, . . . , 1︸ ︷︷ ︸

8×
, 2, . . . , 2︸ ︷︷ ︸

8×

⎤
⎦ =: 1212.

Furthermore, let the symbol “MIX” indicate an allocation scheme that does not consist of
segments, but assigns each of the states k ∈ {1, . . . ,K} to T� = (T −1)/K randomly selected
data points. For example, for T = 33 and K = 2 I divide the time point set {2, . . . , T }
randomly into two disjunct subsets, consisting of T� = 16 data points each. Then I assign
the state k = 1 to the data points in the first subset, and the state k = 2 to the data points
in the second subset. An overview to the allocation schemes that I employ in my study is
given in Table 5. For each of the nine allocation schemes I distinguish five SNR levels, and I
generate 20 independent data instantiations for each combination of allocation scheme and
SNR level; i.e. 9 × 5 × 20 = 900 data sets in total.

3.2 Synthetic biology in Saccharomyces cerevisiae

A popular benchmark gene expression data set for non-homogeneous DBN models has been
provided by Cantone et al. (2009). The authors synthetically designed a small network in
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Saccharomyces cerevisiae (yeast). This network, consisting of N = 5 genes, is depicted in
the right panel of Fig. 10. The authors measured expression levels of these genes in vivo
with quantitative real-time Polymerase Chain Reaction at 37 time points over 8h. During the
experiment Cantone et al. (2009) changed the carbon source from galactose to glucose.13

As 16 measurements were taken in galactose and 21 measurements were taken in glucose,
there are the following observations for each node g: Dgal

g,1 , . . . , Dgal
g,16, Dglu

g,1 , . . . , Dglu
g,21.

The first measurements in galactose and glucose, Dgal
g,1 and Dglu

g,1 , were taken during washing
steps, in which the extant glucose (galactose) was removed and new galactose (glucose)
was added. Consequently, these two measurements were biased by external circumstances
and have to be removed from the time series. After removal of these two measurements,
the remaining time series was (i) standardized via a log transformation, before (ii) a z-score
transformation over all measured expressions, {Dgal

g,2 , . . . , Dgal
g,16, Dglu

g,2 , . . . , Dglu
g,21}g=1,...,5,

was performed to standardize the measured data to zero mean and a standard deviation of
one. With respect to the data analysis it has to be taken into account that the measurement,
Dglu

g,2 is not related to the last measurement, Dgal
g,16, in galactose, since the measurement in

between (during the washing period), Dglu
g,1 , had to be removed. That is, neither for Dgal

g,2

nor for Dglu
g,2 are there measurements of the preceding time point. Consequently, for each

gene g only the data points Dgal
g,3 , . . . , Dgal

g,16, Dglu
g,3 , . . . , Dglu

g,21 can be used as targets in the
DBN models; the corresponding values of the regressor variables (parent nodes) are given
by: Dgal

πg,2, . . . , Dgal
πg ,15, Dglu

πg ,2, . . . , Dglu
πg ,20.

3.3 Circadian rhythms in Arabidopsis thaliana

Plants assimilate carbon via photosynthesis during the day, but have a negative carbon bal-
ance at night. The plants can buffer these daily carbon budget alternations by diurnal gene
regulatory processes. They store some of the assimilated carbon as starch during the day (in
the presence of light), and use the stored starch as a carbon supply during the night (in the
absence of light). In order to synchronize this diurnal process with the external 24-h photo
period, plants have a circadian clock that can potentially provide predictive, temporal regula-
tion of metabolic processes over the day:night (light:dark) cycle. The molecular mechanisms
behind this circadian regulation have not been fully elucidated yet.

I use four individual (independent) gene expression time series from Arabidopsis thaliana
to study the diurnal gene regulatory processes among nine genes involved in the circadian
clock.14 In the four experiments E1–E4 the Arabidopsis plants were entrained in different
dark:light cycles: 12h:12h (E1 and E2), 10h:10h (E3), and 14h:14h (E4). In the experiments
T = 12 (E1) or T = 13 (E2–E4)measurements were taken either in 4-h (E1 and E2) or in 2-h
(E3 and E4) intervals. After the pre-experimental dark:light entrainment, the measurements
were taken under experimentally generated constant light condition. RNA amounts were
extracted with Affymetrix microarrays, and the data were background-corrected and RMA-
normalized. The experimental protocols as well as more details on the time series can be
found in Mockler et al. (2007) (E1), Edwards et al. (2006) (E2), and Grzegorczyk et al.
(2008) (E3–E4).

13 While the structure of the yeast network is identical for both carbon sources, the regulatory interaction
strengths depend on the carbon source (Cantone et al. 2009).
14 These genes are: LHY, TOC1, CCA1, ELF4, ELF3, GI, PRR9, PRR5, and PRR3.
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For my data analysis I merge the four time series E1–E4 into one single data set by
successively arranging them, symbolically: E1, . . . , E4. The expression values at the first
time points of the time series are not related to the expression values at the last time point
of the preceding time series; e.g. the value of gene g at the first time point in E2, DE2

g,1, is

not related to the values of the genes at the last time point of E1, {DE1
g,T |g = 1, . . . , N }.

Therefore, the first time points, DE1
g,1, DE2

g,1, DE3
g,1, and DE4

g,1, have to be removed from the
merged time series. That is, those four observations cannot be used as targets, as there are no
measurements for their potential parent nodes (at the preceding time points).

My objective differs from the earlier studies. Neither do I assume the three boundaries
between the four individual time series to be known (as inGrzegorczyk andHusmeier (2013))
nor do I try to infer them (as in Grzegorczyk and Husmeier (2011)). My focus is on capturing
the diurnal nature (i.e. the alternating dark:light cycles) of the gene regulatory processes in
the circadian clock.

4 Simulation study

4.1 The objectives of my empirical studies

First, I want to perform a comparative evaluation study to investigate under which circum-
stances the proposed HMM–DBN model achieves a higher network reconstruction accuracy
than the competing DBN models. Second, I want to provide empirical evidence that the
new MCMC moves, proposed in Sects. 2.5.1 and 2.5.2, improve convergence and mixing
of the MCMC simulations. In Sect. 5.2 I employ data from the RAF pathway to systemati-
cally compare the network reconstruction accuracies of the DBN models, shown in Table 4,
for various underlying segmentation schemes, shown in Table 5. The data are generated as
explained in Sect. 3.1, and I distinguish five different SNR levels. I infer the DBN models
with MCMC simulations and I compute marginal edge posterior probabilities to reverse-
engineer the RAF pathway. As the RAF pathway does not possess self-feedback loops, i.e.
edges, such as g → g, I impose the constraint g /∈ πg (g = 1, . . . , N ). Except for a first
preliminary study in Sect. 5.1 I assume the segmentations to be unknown. That is, unlike
related studies (see, e.g., Dondelinger et al. 2010; Husmeier et al. 2010; Dondelinger et al.
2012; Grzegorczyk and Husmeier 2012b, a, 2013), I here follow an unsupervised approach,
in which the allocation vectors have to be inferred from the data. For the RAF pathway data
I also compare the inferred segmentations with the true segmentations, and I show that the
new MCMC moves substantially improve convergence and mixing. In Sect. 5.4 I employ
the gene expression time series from Saccharomyces cerevisiae, described in Sect. 3.2, to
extend my comparative evaluation by a real-world in vivo application from synthetic biol-
ogy. Again I assume the segmentations to be unknown, and I exclude self-feedback loops,
as the true network does not possess self-feedback loops. Although this application is quite
small, the data have been measured in a true biological system, for which the true network
is known. This study allows for an objective comparison of the performances of the DBN
models on real biological data. In Sect. 5.5 I analyse the four gene expression time series
from Arabidopsis thaliana, described in Sect. 3.3. For the Arabidopsis data a proper evalu-
ation in terms of the network reconstruction accuracy is infeasible owing to the absence of
a gold standard. My primary focus is thus on capturing the diurnal nature of the regulatory
processes. Since the true Arabidopsis network is not known, I do not rule out self-feedback
loops.
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4.2 Hyperparameter settings

The HMM–DBN model is presented as a graphical model in Fig. 2, and values for the fix
hyperparameters have to be chosen. In consistency with earlier studies on Bayesian net-
works I restrict the maximal cardinality of the parent node sets to F = 3.15 According
to Eqs. (3–4) the inverse variance hyperparameters, σ−2

g (g = 1, . . . , N ), and the inverse
SNR hyperparameters, δ−1

g (g = 1, . . . , N ), are Gamma distributed with two hyperpara-
meters each. I again follow earlier related studies, in which the Bayesian regression DBN
model from Sect. 2.1 was used, and I set: σ−2

g ∼ Gam(Aσ = 0.005, Bσ = 0.005) and
δ−1

g ∼ Gam(Aδ = 2, Bδ = 0.2).16 Note that an extensive study in Grzegorczyk and Hus-
meier (2013) has shown that there is robustness with respect to different choices of these
four hyperparameters. I also have to fix the hyperparameters of the Dirichlet priors for the
MIX-DBN and the HMM–DBN model. In the absence of prior knowledge I follow Nobile
and Fearnside (2007) and set αi = 1 in Eq. (27) and αk, j = 1 in Eq. (23). For the non-
homogeneous DBNmodels I setKMAX = 10 and λ = 1 in the truncated Poisson prior on the
number of states (HMM) or components (MIX) or segments (CPS); see, e.g., Eq. (16).

4.3 MCMC simulation lengths and convergence diagnostics

I infer the DBN models with MCMC simulations, and for each simulation I perform 200I
(with I = 500) iterations. I take samples in equidistant intervals (every 100th iteration). From
the resulting sample of length 1000 I withdraw the first 500 samples (“burn-in phase”), and I
use the remaining sample of length 500 to compute the marginal edge posterior probabilities
(see Sect. 2.8). To assess convergence and mixing I apply trace plot (Giudici and Castelo
2003) and potential scale reduction factor (Gelman andRubin 1992) diagnostics.With respect
to the PSRF based criterion, described in Sect. 2.10, I found that the PSRF’s of all edges
were below 1.1 for the above mentioned simulation lengths. If the true network is known, I
evaluate the network reconstruction accuracy in terms of the areas under the precision recall
curve (AUC-PR), as described in Sect. 2.9.

5 Results

5.1 Pre-study: the supervised approach

I start with a pre-study, in which I cross-compare the network reconstruction accuracies
of the proposed HMM–DBN model and the CPS–DBN model. I generate RAF pathway
data for the segmentation (Vg(2), . . . , Vg(T )) = 1212 and I employ strategy (S1) from
Sect. 3.1 to sample the regression parameters. Unlike in the later studies (i), I here fix the
noise level (SNR= 16) and vary the numbers of data points instead, and (ii) I assume the
segmentation to be known and fixed (“supervised approach”). For the proposed HMM–DBN
model I can impose the true underlying allocation vectors. The CPS–DBN model employs
changepoints to divide the data into disjunct segments with different states. Consequently,
the true segmentation, 1212, is not a member of the allocation vector configuration space
of the CPS–DBN model and has to be approximated by 1234. I vary the number of data

15 See, e.g., Friedman and Koller (2003) or Grzegorczyk and Husmeier (2011).
16 See, e.g., Lèbre et al. (2010), Grzegorczyk and Husmeier (2012a), or Grzegorczyk and Husmeier (2012b).
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Fig. 4 Supervised approach: network reconstruction accuracy for RAF pathway data with the segmentation
scheme 1212. Data were generated with the regression parameter sampling strategy (S1), and the allocations
were assumed to be known and fixed (“supervised approach”). For the proposed HMM–DBN model the true
allocation vectors, (Vg(2), . . . , Vg(T )) = 1212, were imposed. For the CPS–DBN model the allocation
vectors (Vg(2), . . . , Vg(T )) = 1234 were used, as this model cannot revisit states once left. The left panel
monitors the performances in terms of average AUC-PR scores. The horizontal axis refers to the segment
sizes T�; the total number of data points is equal to T = 1 + 4 · T�. The right panel monitors the average
AUC-PR score difference between the HMM–DBN and the CPS–DBNmodel. The AUC-PR scores and score
differences are averages over 20 data instantiations, with error bars indicating two-sided 95% t-test confidence
intervals

points per segment, T� ∈ {2, 4, 8, 16, 32, 64}, and the total number of data points is given
by: T = 1 + H · T�, where H = 4 is the number of temporal segments. The results are
shown in Fig. 4 and reveal a clear trend. The network reconstruction accuracy of both models
increases in the number of data points, T�, and the proposed HMM–DBN model performs
consistently better than the CPS–DBN model for T� ≤ 32. The difference in favour of the
HMM–DBN model peaks at T� = 4 and gets lower as T� increases. Except for T� = 32
(T = 129) and T� = 64 (T = 257), where both models yield an almost perfect network
reconstruction accuracy (AUC-PR≈ 1), the performance improvement of the HMM–DBN
model is significant; see the t-test confidence intervals in the right panel of Fig. 4.

5.2 Network reconstruction and allocation vector accuracy for various
segmentation schemes

In this subsection I cross-compare the performances of the four DBN models from Table 4.
I generate RAF pathway data for various segmentations, as listed in Table 5, and I fol-
low an unsupervised approach, i.e. I assume the segmentations to be unknown so that the
allocation vectors have to be inferred from the data. I implement the models with node-
specific and network-wide allocation vectors, and I distinguish the strategies (S1) and (S2)
from Sect. 3.1 for sampling random instantiations of the regression parameters. I keep the
numbers of data points per segment fixed (T� = 8) and I vary the noise level (SNR∈
{16, 8, 4, 2, 1}). The network reconstruction accuracy results for the models with network-
wide allocations vectors, Vg = V, are shown in Figs. 5 and 6. The results obtained with
node-specific allocation vectors, Vg , are shown in Fig. 7. The results can be summarised as
follows.
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Fig. 5 Network reconstruction accuracy for the synthetic RAF pathway data for different segmentation
schemes. Data were generated with the regression parameter sampling strategy (S1) for different allocation
schemes; see Sect. 3.1 and Table 5 for details. The DBN models were implemented with network-wide
allocation vectors, Vg = V. The three columns refer to three different segmentation schemes, 1111, 1122,
and 112233. The panels in the top row monitor the network reconstruction accuracy in terms of average
AUC-PR scores for the HOM-DBN, the CPS–DBN, the MIX-DBN, and the proposed HMM–DBN model.
The horizontal axis refers to five different SNR levels. The following rows monitor the average AUC-PR
differences between the proposed HMM–DBN model and the other three DBN models, HMM versus HOM
(2nd row), HMM versus CPS (3rd row), and HMM versus MIX (4th row). The AUC-PR scores and AUC-PR
score differences are averages over 20 independent data instantiations, with error bars indicating two-sided
95% t-test confidence intervals. Note that identical plots with AUC-ROC scores (not provided) show very
similar trends

5.2.1 Network reconstruction accuracies

(1) Homogeneous data: The segmentation 1111 in Fig. 5 refers to homogeneous data.
As the number of states is equal to one, K = 1, the regression parameter vectors, wg,1

(g = 1, . . . , N ), do not vary over time. Fig. 5 shows that the models perform approximately
equally well for this scenario. That is, the non-homogeneous models (CPS, MIX, and HMM)
do not overfit the data by inferring spurious segmentations and are thus not inferior to the
homogeneous DBN (HOM).

(2) Changepoint-segmented data: The segmentations 1122 and 112233 in Fig. 5 and the
segmentation 1122 in Fig. 7 refer to classical changepoint-segmented time series. There are 2–
3 different states,Kg , and states once left are not revisited. Consequently, these segmentations
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Fig. 6 Network reconstruction accuracy for the synthetic RAF pathway data for different segmentation
schemes. This figure is identical to Fig. 5 except that the three allocation schemes, 1212, 121212, and MIX are
considered. Data were generated with the regression parameter sampling strategy (S1) and the DBN models
were implemented with network-wide allocation vectors. See caption of Fig. 5 for further details

can be easily inferred with the CPS–DBN model, which imposes changepoints to divide
the data into disjunct segments with different states. The HOM-DBN model, which cannot
segment these non-homogeneous time series, performs substantially worse than the other
three models. For the MIX-DBN model, which ignores the temporal ordering of the data
points, these segmentations are more difficult to learn than for the CPS–DBN and the HMM–
DBN model. The latter models reach the highest network reconstruction accuracies and
systematically outperform theMIX-DBNmodel. The CPS–DBN and theHMM–DBNmodel
perform almost equally well with two exceptions: The CPS–DBN model outperforms the
HMM–DBN model on segmentation 112233 in the right column of Fig. 5 for the two lowest
SNR values (SNR= 2 and SNR= 1) and on segmentation 1212 in the left column of Fig. 7 for
the noise levels SNR= 4 and SNR= 2. For noisy data, the CPS–DBNmodel benefits from its
restricted allocation vector configuration space,which here includes the true segmentations.17

(3) Mixture data: The segmentation scheme MIX in Fig. 6 refers to mixture model data. As
explained in Sect. 3.1, the data points are randomly assigned to two states (k ∈ {1, 2}) with
17 This trend cannot be observed for the highest noise level in the left column of Fig. 7. It seems that SNR= 1
makes the data too noisy for the models with node-specific allocation vectors so that the CPS–DBN model
performs as worse as the other three models, i.e. all models fail at equal measure.
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Fig. 7 Network reconstruction accuracy for the synthetic RAF pathway data for different segmentation
schemes. This figure is similar to Figs. 5 and 6. Unlike the earlier figures, data were generated with the
regression parameter sampling strategy (S2) and the DBN models were implemented with node-specific
allocation vectors, Vg . The three columns refer to three different segmentation schemes, 1122, 1212, and
121212. See caption of Fig. 5 for further details

different regression parameter vectors. For the allocation the temporal ordering of the data
points is not taken into account. For this scenario the HOM-DBN model and the CPS–DBN
model both yield the lowest network reconstruction accuracies. The HOM-DBNmodel fails,
as it cannot deal with non-homogeneity at all; the CPS–DBNmodel fails, as the true (mixture)
allocation scheme is not included in its restricted allocation vector configuration space. The
MIX-DBN model and the HMM–DBN model both perform systematically superior to the
HOM-DBN and the CPS–DBN model. Only for SNR= 4 and SNR= 2 the MIX-DBN
model performs slightly superior to the HMM–DBN model. For noisy data the MIX-DBN
model benefits from its completely free allocation vectors. Unlike the HMM–DBN model,
the MIX-DBN model employs a free allocation model, which is here in agreement with the
data generating mechanism; i.e. a random free allocation of the data points. Although the
HMM–DBNmodel can infer free allocations, it does take the temporal ordering into account
by putting less prior weight onto (random) allocations (without any temporal dependencies).
For noisy data the prior on the allocation vectors becomes important, and so the HMM–DBN
model is disadvantaged compared to the MIX-DBN model, whose allocation vector prior
ignores the temporal ordering of the data points altogether.
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Fig. 8 Graphical representation of the inferred temporal connectivity matrices for the RAF pathway data with
SNR= 16. The figure is arranged as a matrix, and the columns correspond to four different allocation schemes.
The top row shows the true connectivity structures, and the following rows correspond to the non-homogeneous
DBNmodels. Data were generated with sampling strategy (S2) from Sect. 3.1. The models were implemented
with network-wide allocation vectors, Vg = V. The heatmaps in rows 2–4 indicate the estimated posterior
probability of two data points being assigned to the same state. The probabilities are represented by a grey
shading, where white corresponds to 1, and black corresponds to 0. The axes refer to the time points. In each
heatmap the probabilities are averages over 20 data instantiations

(4) Periodic data: The segmentations 1212 and 121212 in Figs. 6 and 7 have a temporal
structure but do not correspond to changepoint-segmented data, since the states are revisited.
The dependency structure behind these segmentations is compatible with a Hidden Markov
model and I will refer to them as “periodic data”. As for the mixture data (MIX) the HOM-
DBN and the CPS–DBN model cannot deal with these periodic segmentations and perform
consistently and significantly worse than the HMM–DBN model unless the data are very
noisy (SNR= 1). Only for the simulations with network-wide allocation vectors on seg-
mentation 1212 in Fig. 6 the difference between the HMM–DBN and the CPS–DBN model
are moderate only.18 The MIX-DBN model also achieves consistently lower network recon-
struction accuracies than the proposed HMM–DBN model, but the differences in favour of
the HMM–DBN model are less pronounced. Form the left and middle column in Fig. 6 it
appears that the MIX-DBN model is outperformed for the moderate noise levels, where the
network reconstruction is neither perfect (AUC-PR � 1) nor impossible (AUC-PR  0.5).

5.2.2 The estimated marginal connectivity matrices

For the non-homogeneous DBN models I estimate the marginal connectivity matrices, as
described in Sect. 2.8. Figure 8 shows heatmap representations of the average connectivity

18 In the middle column of Fig. 6 the CPS–DBN model tends to infer three changepoints and to approximate
the allocation scheme 1212 by 1234. As the allocation vectors are network-wide these changepoints apply
to all nodes and thus have “enough support” from the data. A similar approximation for the segmentation
121212 fails, since 5 changepoints would be required to obtain 123456. For the simulations with node-specific
allocation vectors in the middle column of Fig. 7 the approximation fails, as the three changepoints would
have to be learnt for each node independently; i.e. without “sufficient support” from the data.
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matrices for the segmentations 1122, 112233, 1212, and 121212 of the simulations with
network-wide allocation vectors and SNR= 16. Figure 8 shows that the estimated connec-
tivity matrices are consistent with my findings for the network reconstruction accuracy. The
HMM–DBN model (bottom row in Fig. 8) infers the underlying segmentations (top row in
Fig. 8) more accurately than the MIX-DBN model (2nd row in Fig. 8). That is, both models
detect the underlying compartments, but the components are separated substantially stronger
by the proposed HMM–DBN model. The CPS-model perfectly separates the segments only
for those segmentations, 1122 and 112233, that are in agreement with its allocation vector
configuration space. The segmentations 1212 and 121212 can only be approximated by 1234
and 123456, respectively, and the segments are then separated only weakly (last two panels
in the 3rd row of Fig. 8).

5.2.3 Summary

The results shown in Figs. 5, 6, 7 and 8 demonstrate that the proposed HMM–DBN model
is more robust than the competing DBN models with respect to a variation of the underlying
allocation. The HOM-DBNmodel cannot deal with non-homogeneous data at all. The CPS–
DBN model fails when the underlying segmentation cannot be approximated properly by
changepoints. The MIX-DBN model fails when the underlying segmentation has a temporal
structure, which cannot be taken into account. The proposed HMM–DBN model is always
among the best-scoring models, and it significantly outperforms the competing models for
periodic segmentations, such as 1212 and 121212.

Finally, note that I also applied the coupled variant of the CPS–DBN model from Grze-
gorczyk and Husmeier (2013); see Sect. 2.6.3 for a brief description of the coupling scheme.
However, for the RAF-pathway data I have never observed a significant difference between
the AUC-PR scores of the coupled CPS–DBNmodel and the AUC-PR scores of the standard
CPS–DBN model. This finding is not surprising and consistent with the empirical results
reported in Grzegorczyk and Husmeier (2013): As described in Sect. 3.1, I here sample inde-
pendent state-specific regression parameters so that coupling the regression parameters is
unlikely to yield any information gain.19

5.3 Convergence comparison for the HMM–DBN model

In this subsection I assess the degree of convergence and mixing of three different MCMC
sampling schemes for the proposedHMM–DBNmodel. TheMCMCsampling scheme for the
HMM–DBNmodel is outlined inTable 3. I vary the 4th sampling step, i.e. the allocationvector
inference part, to demonstrate that the adoption of the new moves, proposed in Sects. 2.5.1
and 2.5.2, improves convergence. The firstMCMC sampling scheme, referred to asMIX and
HMM moves, is the sampling scheme provided in Table 3. That is, a coin is drawn to decide
randomly whether an allocation sampler (MIX) or a new (HMM) move is performed. Both
move types are equally likely (pM I X = 0.5 and pH M M = 0.5). I consider two alternative
schemes; each employing only one particular move-type. The second scheme, referred to as
MIX moves only, performs exclusively allocation sampler (MIX)moves (i.e. I set pM I X = 1
and pH M M = 0). The third scheme, referred to as HMM moves only, performs only the
new HMM moves (i.e. I set pH M M = 1 and pM I X = 0). I use the convergence criterion
from Sect. 2.10, and I monitor the fractions of edges with a PSRF lower than the target values

19 Similar results have been reported in Fig. 5 in Grzegorczyk and Husmeier (2013), where the amplitude
ε = 1 indicates that the segment-specific regression parameter vectors are (nearly) independent.
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ξ = 1.1 and ξ = 1.01.20 The average results for the simulations with node-specific allocation
vectors for the segmentation schemes 1122 and 121212 are shown in Fig. 9.

A clear outcome of the convergence diagnostic is that the MCMC sampling scheme MIX
and HMM moves, which combines both types of moves, yields the best convergence: About
100% of the edges satisfy the standard convergence criterion (PSRF< 1.1) already after 50k
iterations. For the sampling scheme new HMM moves only scheme there is considerable
scope for improvement. For the segmentation scheme 121212 on average only about 90%
of the edges satisfy the convergence criterion PSRF< 1.1 after 50k iterations. The sampling
scheme old MIX moves only fails to converge properly for the segmentation scheme 1122;
only about 98% (92%) percent of the edges satisfy the criterion PSRF< 1.1 (PSRF< 1.01)
after 50k iterations. Note that the same average percentage rates are reached with the MIX
and HMM moves already after 10k (20k) iterations. This suggests that the inclusion of the
newMCMCmoves, proposed in Sects. 2.5.1 and 2.5.2, is advantageous. The novel moves are
as straightforward to implement as the allocation sampler moves, described in Appendix 2,
and yield a convergence improvement.

5.4 Network reconstruction in Saccharomyces cerevisiae (yeast)

In this subsection I cross-compare the network reconstruction accuracy of the DBN models
on a small but topical data set from synthetic biology. The (true) yeast network, which was
synthetically designed by Cantone et al. (2009), is depicted in the right panel of Fig. 10. Gene
expression time series were measured in synthetically designed yeast cells, as described in
Sect. 3.2. I apply each of the non-homogeneous DBNmodels (CPS, coupled CPS, HMM, and
MIX) with node-specific, Vg and with network-wide, Vg = V, allocation vectors. Hence,
I compare the performances of eight non-homogeneous DBN models and the conventional
homogeneous DBN model. For each of the nine DBN models I run 5 independent MCMC
simulations. The network reconstruction accuracy results (in terms of mean AUC-PR scores)
are represented as histograms in Fig. 10. It can be seen that the non-homogeneous DBN
models consistently achieve higher AUC-PR scores when they are implemented with node-
specific allocation vectors. Two-sided Student’s t-tests show that the improvement achieved
with node-specific allocation vectors is significant for the CPS–DBN model (p value 0.015),
the coupled CPS–DBN model (p = 0.048) and the HMM–DBN model (p value 0.011).
For both allocation vector variants (node-specific and network wide) the proposed HMM–
DBN reaches the highest average AUC-PR scores. In terms of the p values of two-sided
t-tests the differences in favour of the proposed HMM–DBN model are significant except
for the comparison with the coupled CPS–DBN model.21 When implemented with node-
specific allocation vectors the coupled CPS–DBN model and the proposed HMM–DBN
model perform approximately equally well (p = 0.517).

This finding is in agreement with earlier results on the RAF-pathway data in Sect. 5.2.
Because of the carbon source switch from galactose to glucose the true segmentation of the
yeast time series should be roughly of the form 1122. For this segmentation it was found
that the MIX-DBN model, which ignores the temporal order of the time points, performs
substantially worse than the CPS–DBN and the HMM–DBN model; see, e.g., the middle

20 The target value ξ = 1.1 is usually taken as an indication of “sufficient” convergence. Lower target values,
such as ξ = 1.01, indicate a better degree of convergence.
21 I obtained the following t-tests p values: Network-wide allocation vectors: HMM versus HOM (p =
0.002), HMM versus CPS (p = 0.048), HMM versus coupled CPS (p = 0.517), and HMM versus MIX (p =
0.005); node-specific allocation vectors: HMM versus HOM (p = 0.008), HMM versus CPS (p = 0.020),
HMM versus coupled CPS (p = 0.0733) and HMM versus MIX (p = 0.001).
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Fig. 10 Network reconstruction accuracy in Saccharomyces cerevisiae (yeast). Cantone et al. (2009) syn-
thetically designed the network and measured in vivo gene expression levels with real-time polymerase chain
reaction. The histograms show the network reconstruction accuracies in terms of AUC-PR scores. The left
(right) histogram refers tomodels with network-wide (node-specific) allocation vectors. Both histograms show
bars of the average AUC-PR scores obtained with the HOM-DBN (white), the CPS–DBN (light grey), the
coupled CPS–DBN (grey), the proposed HMM–DBN (black), and the MIX-DBN (dark grey) model. Average
AUC-PR scores are computed from five independent MCMC simulations; the error bars indicate the standard
deviations

column in Fig. 5 and the left column in Fig. 7. The improved network reconstruction accuracy
of the coupled CPS–DBN model is in agreement with earlier reported results (see, e.g.,
Fig. 12 in Grzegorczyk and Husmeier 2013). The results in Fig. 10 suggest that the same
improvement (i.e. the same “regularisation effect”) can also be reached by a more flexible
data segmentation scheme, namely the proposed HMM–DBN model. Finally, I also applied
the coupling scheme from Grzegorczyk and Husmeier (2013) to the proposed HMM–DBN
model; see Sect. 2.6.3 for a brief description of this coupling scheme. For the “coupled”
HMM–DBN model I have not observed further improvements, but a slight (non-significant)
decrease of the average AUC-PR scores.

5.5 Network reconstruction in Arabidopsis thaliana

In this subsection I compare the performances of the non-homogeneous DBN models on a
merged gene expression time series from Arabidopsis thaliana. One single long Arabidopsis
time series has been obtained by successively arranging four individual short gene expres-
sion time series from different experiments, as explained in more detail in Sect. 3.3. In the
four individual experiments (E1–E4) the gene expressions have been measured under con-
stant light condition, but the plants were entrained in different experimentally controlled
light-dark cycles. In the first two experiments E1 and E2 the plants were entrained in a
12h:12h light/dark-cycle and measurements were taken in 4h intervals, and in E3 and E4
measurementswere taken in 2h intervals and the plantswere entrained in the light/dark-cycles
10h:10h (E3) and 14h:14h (E4).

From a biological perspective the regulatory relationships among the circadian genes
in Arabidopsis follow a two-stage process, which is related to the diurnal nature of the
environmental dark-light cycle. Two groups of genes can be distinguished: Morning genes
whose activities peak in the presence of light (i.e. in the morning), and evening genes whose
activities peak in the absence of light (i.e. in the evening). Although all gene expression
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measurements in E1–E4 were taken under artificially generated constant light condition, the
two-stage nature of the regulatory mechanisms will be preserved by the circadian clock (see,
e.g., Johnson et al. 2003; McClung 2006). That is, even under constant light condition the
regulatory processes (approximately) follow the diurnal dark:light cycle, in which the plants
were entrained before the experiment. Since the dark:light cycle affects the activities of both
the morning and the evening genes (i.e. the whole regulatory network) rather than specific
genes only (Johnson et al. 2003; McClung 2006), I implement the non-homogeneous DBN
models with network-wide allocation vectors, Vg = V; see Sect. 2.7 for details.

Heatmap representations of the inferred connectivity matrices are shown in Fig. 11a.
All the non-homogeneous models (MIX-DBN, CPS–DBN, coupled CPS–DBN, and HMM–
DBN) infer a two-stage process with the number of states (components) peaking at K = 2.
The CPS–DBNmodel and the coupled CPS–DBNmodel (see Sect. 2.6.3) both infer the same
segmentation with one single changepoint between E2 and E3 (see left panel in Fig. 11a). As
theCPS–DBNmodels can only infer changepoint-divided segmentations,where the segments
are assigned to disjunct components (i.e. a state once left cannot be revisited), they do not
capture the true underlying segmentation of the Arabidopsis time series. The changepoint of
the CPS–DBN models appears to be related to different experimental conditions in E1–E2
and E3–E4 (here: e.g. the distance between measurements). The inferred segmentation does
not reflect the diurnal nature of the regulatory process. For themergedArabidopsis time series
the preservations of the entrained dark:light cycles corresponds to a segmentation scheme
of the form “121212 . . .”. Hence, the failure of the CPS–DBN model is in agreement with
results observed for the synthetic RAF-pathway data. In Sect. 5.2 I found for segmentations,
such as 1212 and 121212, that the CPS–DBN model cannot infer the correct segmentation;
see, e.g., the last two panels in the third row of Fig. 8.

From the middle and the right panel in Fig. 11a it can be seen that the inferred connectivity
structures of the MIX-DBN model and the proposed HMM–DBN model are (also) very
similar. I now have a closer look at the connectivity structures within the four individual
time series. Figure 11b shows heatmap representations of the connectivity structures within
E1–E4.22 The (sub-)heatmaps in Fig. 11b confirm the conjecture that the MIX-DBN and the
HMM–DBNmodel infer very similar connectivities; i.e. the patterns in the top row are almost
identical to the patterns in the bottom row. In particular, it can also be seen that the inferred
segmentations are actually related to the dark:light cycles in which the Arabidopsis plants
were entrained. In the heatmaps the “whitewindows around the diagonal” represent connected
blocks, i.e. segments of data points that are assigned to the same state (component). The “white
windows” in E3 (time points 26, . . . , 30) and in E4 (time points 38, . . . , 44) represent time
intervals of length (5 × 2 h =)10h and (7 × 2 h =)14h, and thus are in agreement with the
entrainment cycles 10h:10h (E3) and 14h:14h (E4), respectively. In E1 and E2 there is at
least a certain tendency towards segments (“white windows”) consisting of 3 data points. In
E1 and E2, where measurements were taken in 4h intervals, three neighbouring data points
cover a time interval of length (3 × 4 h =)12h, what corresponds to the entrainment cycle
12h:12h of E1–E2. This suggests that the MIX-DBN model and the HMM–DBN model
infer the same connectivity structure, which is related to the diurnal nature of the dark:light
cycle and thus in agreement with biology.23

22 Technically, the corresponding areas of the heatmaps in Fig. 11a have simply been cut out.
23 I also applied the HMM–DBN model with node-specific allocation vectors to the Arabidopsis data. The
results (not shown) suggest that the expected segmentation(s) cannot be inferred properly with node-specific
allocation vectors. For most of the genes only one single state (Kg = 1) was inferred, while for other genes
with Kg = 2 the inferred segmentation did not seem to be properly related to the pre-entrained dark:light
cycles.
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Fig. 11 Inference results on the Arabidopsis gene expression data. In the heatmaps in panels (a) and (b) the
grey shading indicates the posterior probability of two data points being assigned to the same state, ranging
from0 (black) to 1 (white). aHeatmaps of the connectivitymatrices inferred on themerged data set. Themerged
data set consists of four individual time series (E1–E4), which were arranged successively; see Sect. 3.3 for
details. In the three panels the axes represent the indices of the data points, and the axes are ticked at the
boundaries of the four individual time series. The CPS–DBN and the coupled CPS–DBN model both infer
approximately the same segmentation (see left panel) with one single changepoint in between E2 and E3. b
Sub-heatmaps extracted (“cut out”) from the heatmaps in panel (a). The extracted sub-heatmaps show the
connectivity structures within the four individual time series E1–E4. Note that the temporal distance between
neighbouring data points is 4h in E1 and E2, while measurements in E3 and E4 have been taken in 2h intervals.
c Scatter plots of the marginal edge posterior probabilities inferred on the merged data set. In each panel the
marginal edge posterior probabilities of two DBN models have been plotted against each other

Figure 11c shows scatter plots of the marginal edge posterior probabilities inferred with
the non-homogeneous DBN models. As the MIX-DBN and the HMM–DBN model have
inferred the same connectivity structure, it is not surprising that their marginal edge posterior
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Fig. 12 Reconstructed gene regulatory network inArabidopsis thaliana. ThemergedArabidopsis data set was
analysed with the proposed HMM–DBN model to reverse-engineer the interactions among the nine circadian
genes. The graph shows all edges with a marginal posterior probability greater than 0.5; except for three self-
feedback-loops (L HY → L HY , G I → G I and P R R9 → P R R9) which have been left out. The morning
(evening) genes are represented by white (grey) circles. Edges connecting either two morning genes or two
evening genes with each other are represent by thin lines, while the bold edges refer to connections between
the morning and the evening genes. Moreover, each individual edge is drawn either in black or in grey to
distinguish whether it originates at the morning (black edge) or at the evening (grey edge) genes

probabilities are strongly correlated (see right panel of Fig. 11c). On the other hand, the
CPS–DBN models, which could not capture the underlying dark:light cycle, yield deviating
marginal edge posterior probabilities. That is, despite a certain correlation in the left and
middle panel of Fig. 11c there are edges for which different marginal posterior probabilities
have been inferred.

Finally, I use the inferred marginal edge posterior probabilities of the proposed HMM–
DBNmodel to predict the regulatory relationships in the circadian clock. Figure 12 shows the
predicted network possessing only those edges whose marginal posterior probability exceeds
the threshold of 0.5. Unfortunately, there is no gold-standard network for the circadian clock
in Arabidopsis so that the network reconstruction accuracy cannot be evaluated properly.
However, the reconstructed network, shown in Fig. 12, possesses several edges that are
consistent with the biological literature:

According to the biological literature (see, e.g.,McClung 2006) themorning genes activate
the evening genes, and the evening genes inhibit the morning genes. In the predicted network
there are six edges pointing from the morning genes to the evening genes and five edges
pointing from the evening genes to the morning genes. McClung (2006) also reports that
CCA1 and LHY are the central regulators among the morning genes.24 From Fig. 12 it can
be seen that four of the six edges pointing from the morning to the evening genes actually
originate from LHY and CCA1 and that four of the five evening genes are regulated either
by LHY or by CCA1. In particular, the regulation of the evening genes TOC1 and ELF4
by the central regulators CCA1/LHY has already been reported in Alabadi et al. (2001)
and Kikis et al. (2005). Among the edges originating from the evening genes the two edges
E L F3 → CC A1 and E L F3 → L HY are consistent with the biological finding in Kikis
et al. (2005) that ELF3 is necessary for light-induced CCA1 and LHY expression. Moreover,
the edges E L F3 → T OC1 and G I → T OC1 are also in agreement with the literature, as

24 Note that according to Miwa et al. (2007) the central regulators CCA1 and LHY are partially redundant
homologues.
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Table 6 Average computational costs (and standard deviations), measured for the MCMC simulations on the
synthetic RAF network data with N = 11 nodes

True allocation
scheme

1111 1122 112233 1212 121212 MIX

HOM 101.1 (±0.6) 100.1 (±0.2) 107.9 (±0.3) 99.8 (±0.4) 107.8 (±0.4) 101.2 (±0.9)

CPS 158.6 (±1.1) 173.2 (±14.9) 191.8 (±15.0) 175.9 (±14.4) 179.9 (±21.3) 162.7 (±5.1)

MIX 240.2 (±37.0) 331.3 (±52.3) 378.6 (±57.7) 342.9 (±49.8) 373.1 (±54.0) 335.1 (±52.7)

HMM 241.9 (±31.1) 348.8 (±45.1) 384.1 (±52.7) 374.8 (±42.1) 393.0 (±63.5) 338.6 (±26.4)

In these scenarios all models were implemented with network-wide (shared) segmentations. The computa-
tional costs in this table are given in seconds per simulation with 10,000 MCMC iterations. More details on
the simulation settings can be found in Table 5. All simulations were run using Matlab� on a Desktop PC
with 3.20GHz Intel Core processor and 8GB RAM

Table 7 Average computational costs (and standard deviations), measured for the MCMC simulations on the
synthetic RAF network data with N = 11 nodes

True allocation scheme 1122 1212 121212

HOM 101.7 (±0.8) 99.7 (±0.2) 108.4 (±1.2)

CPS 269.5 (±16.5) 254.4 (±13.4) 268.7 (±14.3)

MIX 387.5 (±28.9) 382.6 (±34.1) 411.7 (±42.0)

HMM 475.6 (±34.3) 437.6 (±31.6) 486.1 (±39.5)

In these scenarios all models were implemented with node-specific segmentations. The computational costs
in this table are given in seconds per simulation with 10,000 MCMC iterations. More details on the simulation
settings can be found in Table 5. All simulations were run using Matlab� on a Desktop PC with 3.20GHz
Intel Core processor and 8GB RAM

Miwa et al. (2006) found that both genes ELF3 andGI are involved in the interaction between
CCA1 and TOC1. Within the group of evening genes, the reconstructed network contains
one single feedback loop G I ↔ T OC1 between GI and TOC1. Exactly this feedback loop
has also been found in Locke et al. (2005).

6 Discussions

6.1 Computational costs of the MCMC inference

In this subsection I brieflydiscuss the computational costs of the requiredMCMCsimulations.
For the proposed HMM–DBNmodel I used the Matlab� software to implement the MCMC
algorithm, as outlined in the pseudo code, provided in Tables 1, 2 and 3, and I ran all MCMC
simulations on a standard Desktop PC. For the three competing DBN models I modified the
algorithm, as outlined in Sect. 2.6. Tables 6 and 7 show the measured computational costs for
theMCMC simulations on the synthetic RAF network data, which were analysed in Sect. 5.2.
As expected, the three non-homogeneous DBN models are associated with substantially
higher computational costs than the traditional homogeneous DBN model (HOM-DBN). It
can also be seen that the computational costs for the HOM-DBN model stay almost constant
across all nine data scenarios. TheMCMCsimulations for the non-homogeneous changepoint
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DBN model (CPS–DBN) are consistently cheaper than the simulations for the two free
allocation models, namely the MIX-DBN model and the proposed HMM–DBNmodel. This
is due to the fact that the CPS–DBN model works on a restricted configuration space of the
allocation vectors only; see Sect. 2.3 for details. The most interesting comparison is between
the MIX-DBN model and the proposed HMM–DBN model, since both models allow for
unrestricted free allocations and, hence, share the same (maximal) configuration space w.r.t.
the allocation vectors. It can be seen the computational costs for the MCMC simulations
are increased for the proposed MIX-DBN model. The difference is due to the fact that the
new MCMC moves, proposed here, are slightly more expensive than the original allocation
sampler moves. Although the difference appears to be irrelevant w.r.t. practical applications,
it should be noted that the increase in the computational costs could be avoided by inferring
the HMM–DBN model by allocation sampler moves only.

Since all MCMC simulations on a network with N = 11 nodes could be finished within
minutes on a standard Desktop PC, I would expect that the novel HMM–DBN model can
also be applied to larger network domains (e.g. with N = 100 nodes) in reasonable time. On
the other hand, it certainly has to be taken into account that the number of possible parent sets
grows at least polynomially in the number of network nodes N .25 In this context it is worth
mentioning that the MCMC simulations for the HMM–DBN model with network-specific
allocation vectors can be run in parallel (e.g. on a computer cluster). That is, as there is
no information-sharing among genes, the HMM–DBN model can be applied independently
to each gene g to infer its particular parent set πg and its allocation vector Vg . Given the
increasing availability of high-performance computer clusters, I would thus argue that it
is not the number of network nodes N but the number of observations T which restricts
the applicability of the HMM–DBN model. E.g. in modern systems biology applications
the number of measured observations T is usually substantially smaller than the number of
variables (e.g. genes) N , symbolically T << N , leading to diffuse posterior distributions.
Hence, even if an MCMC sampling scheme guaranteed that the huge space of possible
network structures could be systematically searched for those networks with “high” posterior
probabilities, a lack of significance would have to be expected. I would then recommend
reducing the size of the network by restricting on the most important variables (e.g. genes).
Often biological prior knowledge can be exploited to reduce the network to a reasonable size;
e.g. for the Arabidopsis thaliana data (see Sect. 3.3) the focus was set on the nine potentially
“most important” circadian clock genes.

6.2 Outlook and future work

In this article I proposed a novel non-homogeneous DBN model, namely the HMM–DBN
model, for which I assumed that the regulatory network structure, G, is identical for all com-
ponents (segments). Keeping the network structure constant allows for information-sharing
among components (w.r.t. the network topology), and is certainly an appropriate assump-
tion for the two presented real-world applications: (i) cellular response to fast environmental
change in yeast (see Sect. 5.4) and (ii) the circadian clock network in Arabidopis thaliana
(see Sect. 5.5). For certain other scenarios, e.g. morphogenesis, where the cellular processes
take place on a longer time scale, the assumption of a fixed network structure might turn out
to be too restrictive. For those applications it might be interesting to allow the network struc-
ture to vary with time and to implement the HMM–DBN model with component-specific

25 Note that the number of possible parent sets grows polynomially in N if a fan-in restriction F is imposed
on the cardinality of the parent sets, while it grows super-exponentially in N if there is no fan-in restriction.
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network structures. This can, in principle, be accomplished straightforwardly, e.g. along the
lines proposed and discussed in Lèbre et al. (2010) or Dondelinger et al. (2012).

An alternative extension of the proposed HMM–DBN model can be reached by incorpo-
rating the hierarchical global information-coupling scheme, proposed in Grzegorczyk and
Husmeier (2013). The implementation of a coupled version of the HMM–DBN model is
straightforward, and can be beneficial for applications where the component-specific net-
work interaction parameters are similar to each other. For the yeast data (see Sect. 5.4) I
incoporated the global information-coupling scheme into the changepoint-segmented DBN
model (CPS–DBN) and the proposed HMM–DBN model, and I included these two new
model variants into my cross-method comparison. In both cases the coupling did not yield
substantially different results: For the coupled CPS–DBN model there was a slight (signifi-
cant) improvement of the network reconstruction accuracy (see Fig. 10), and for the coupled
HMM–DBN model I saw a slight (non-significant) decrease in the network reconstruction
accuracy (see main text in Sect. 5.4). From a more general perspective, I would expect that
the improvement through information-coupling, will be less pronounced for the HMM–DBN
model than for the CPS–DBN model. With the CPS–DBN model, states once left cannot be
revisited so that information-coupling is required for sharing information between distant
time points. Unlike the CPS–DBNmodel, the proposed HMM–DBNmodel explicitly allows
distant time points to be allocated to the same component and to share the same network
interaction parameters.

7 Conclusion

I have proposed a novel non-homogeneous dynamic Bayesian network (DBN) model, which
combines a conventional DBN with a Hidden Markov model (HMM). The key idea behind
this HMM–DBN model is to assume that the temporal data points of a time series are
allocated to different states (components) by a HMM. A graphical representation of the
HMM–DBN model is provided in Table 2. My work complements earlier works which
combined DBNmodels either with multiple changepoint processes (CPS–DBN) or with free
allocation mixture (MIX-DBN) models; see Sect. 1 for various literature references. The
CPS–DBN models, on the one hand, employ a multiple changepoint process to divide a
time series into temporal segments with a one-to-one mapping between segments and states
(components): All data points within a segment are assigned to the same state, but data points
from different segments have to be allocated to different states; i.e. “a state (component) once
left cannot be revisited”. This imposes a very strong restriction onto the configuration space
of the possible data segmentations. The MIX-DBN model, on the other hand, allows for
an unrestricted free allocation of the data points to states (mixture components) but loses
important information about the data, since it cannot take the temporal ordering of the data
points into account.

The novel HMM–DBN model is a consensus between the CPS–DBN and the MIX-DBN
model, as it does take the temporal structure of the data into account without putting any
restriction onto the configuration space of the data segmentations. The novel HMM–DBN
model can be inferred with two different Reversible JumpMarkov ChainMonte Carlo (RJM-
CMC) techniques, as briefly discussed in Sect. 2.5. In this paper I have shown how the
allocation sampler from Nobile and Fearnside (2007) can be used for inference, and in
Sects. 2.5.1–2.5.2 I have proposed two new pairs of complementary moves to improve mix-
ing and convergence of the allocation sampler. Pseudo code of the proposedMCMC sampling
scheme is provided in Table 3.
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In Sect. 5.2 I have performed an extensive comparative evaluation study on synthetic
RAF-pathway data to provide empirical evidence that the proposed HMM–DBN model is a
consensus between the MIX-DBN and the CPS–DBN model. A brief overview to the four
competing DBNmodels, which I cross-compared in my evaluation study, is given in Table 5.
In my study I considered various segmentation scenarios, as listed in Table 4. For scenarios
where the CPS–DBN model performed significantly better than the MIX-DBN model and
vice-versa I found that the performance of the proposed HMM–DBN model was always
very close (and only rarely significantly different) to the performance of the better-scoring
DBN model. For scenarios with periodic segmentations the proposed HMM–DBN model
outperformed the competing MIX-DBN model and the CPS–DBN models.

I have also cross-compared the learning performances of the four DBN models on two
real-world applications from systems biology (see Sects. 5.4 and 5.5). My cross-method
comparison for the real-world data also confirmed that the proposed HMM–DBN model
is a consensus between the CPS–DBN and the MIX-DBN model. For a non-homogeneous
yeast gene expression time series, which consists of two (“changepoint-divided”) temporal
segments related to two different carbon sources, the free allocation MIX-DBN model has
failed to reconstruct the underlying network, while the coupled CPS–DBN (Grzegorczyk and
Husmeier 2013) and the proposed HMM–DBN model have performed substantially better;
see Sect. 5.4 for details.

For a non-homogeneous Arabidopsis gene expression time series, in which the regulatory
processes are diurnal and periodic, i.e. the processes follow recurrent entrained dark:light
cycles, the CPS–DBNmodels have failed to capture the underlying data segmentation, while
the MIX-DBN and the proposed HMM–DBN model both inferred a segmentation, which is
in agreement with plant biology; see Sects. 3.3 and 5.5 for details. I have used the results of
the HMM–DBNmodel to reconstruct the network among the circadian genes in Arabidopsis.
As discussed in Sect. 5.5, the reconstructed network shows features that are consistent with
the biological literature.
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Appendix 1: Sweep Gibbs move on the allocation vector

The Gibbs move keeps the network M = (π1, . . . , πN ) and the SNR hyperparameters
fixed, and I describe the i th MCMC iteration, (i − 1) → i , for node g. The move re-
allocates one single data point to a new state. If the number of states is currently equal to one,
K(i−1)

g = 1, skip themove. Otherwise randomly select one single observation t ∈ {2, . . . , T }.
For k = 1, . . . ,K(i−1)

g replace the t th element of the current allocation vector V(i−1)
g by state

k to obtain the vector Vg,[tk ]. Sample the new allocation vector V(i)
g from the full conditional

distribution. For k = 1, . . . ,K(i−1)
g :
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P
(

V(i)
g = Vg,[tk ]

)
=

P
(

Vg,[tk ]|K(i−1)
g

)
P

(
yg,Vg,[tk ] |Xg,Vg,[tk ] , δg

)

∑K(i−1)
g

u=1 P
(

Vg,[tu ]|K(i−1)
g

)
P

(
yg,Vg,[tu ] |Xg,Vg,[tu ],δg

) (36)

As this move does not change the number of states, it has to be set: K(i)
g = K(i−1)

g .

Appendix 2: The mixture model allocation sampler (MIX) moves

The MIX MCMC moves, presented in this appendix, have been developed by Nobile and
Fearnside (2007) for Gaussian mixture models. Nobile and Fearnside (2007) proposed the
resulting “allocation sampler” as an alternative to computationally expensiveReversible Jump
MarkovChainMonteCarlo sampling schemes (Green1995); seeNobile andFearnside (2007)
for details.

The M1 move

If the number of states is currently equal to one, K(i−1)
g = 1, skip the move. Otherwise

randomly select two states k and k̃ among the K(i−1)
g available, and draw a random number

p̃ from a Beta(a,a) distribution with a = 1. Consider the set H = {t : V(i−1)
g (t) = k ∨

V(i−1)
g (t) = k̃} of all data points that are allocated either to state k or to state k̃ by V(i−1)

g . Re-
allocate each point of the set H either to component k (with probability p̃) or to component
k̃ (with probability, 1 − p̃). This gives a new allocation vector, V�

g , which is accepted with
probability:

A = min

⎧⎨
⎩1,

P
(

V�
g|K(i−1)

g

)
P(yg,V�

g
|Xg,V�

g
, δg)

P
(

V(i−1)
g |K(i−1)

g

)
P

(
y

g,V(i−1)
g

|X
g,V(i−1)

g
, δg

) ·
Q

(
V(i−1)

g |V�
g

)

Q
(

V�
g|V(i−1)

g

)
⎫⎬
⎭ (37)

The prior probabilities and the marginal likelihood terms can be computed with Eqs. (12),
(23) and (16). Nobile and Fearnside (2007) show that the Hastings ratio is given by:

Q
(

V(i−1)
g |V�

g

)

Q
(

V�
g|V(i−1)

g

) = �(a + nk)�(a + nk̃)

�(a + n�
k)�(a + n�

k̃
)

(38)

where nk and nk̃ are the numbers of data points that are allocated to the states k and k̃ by

V(i−1)
g , and n�

k and n�

k̃
are the numbers of data points that are allocated to the states k and k̃

by V�
g . If the move is accepted, set V(i)

g = V�
g , or otherwise set: V(i)

g = V(i−1)
g . As the move

cannot change the number of states, set: K(i)
g = K(i−1)

g .

The M2 move

If the number of states is currently equal to one, K(i−1)
g = 1, skip the move. Otherwise

randomly select two states k and k̃ among the K(i−1)
g available.

If the kth component is empty, the move fails outright. Otherwise draw a random number
u from a uniform distribution on {1, . . . , nk}, where nk is the number of data points t with
V(i−1)

g (t) = k. Randomly select u observations from the nk data points and re-allocate them
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to state k̃ to obtain the new candidate allocation vector V�
g . The new allocation vector is

accepted with the probability given in Eq. (37), except that the Hastings Ratio is different.
As shown in Nobile and Fearnside (2007), the Hastings ratio is:

Q
(

V(i−1)
g |V�

g

)

Q
(

V�
g|V(i−1)

g

) = nk

nk̃ + u
· nk ! · nk̃ !
(nk − u)! · (nk̃ + u)! (39)

where nk and nk̃ are the numbers of data points allocated to the states k and k̃ by V(i−1)
g .

If the move is accepted, set V(i)
g = V�

g , or otherwise set: V(i)
g = V(i−1)

g . As the M2 move

cannot change the number of states, set: K(i)
g = K(i−1)

g .

The EA (ejection/absorption) moves

If K(i−1)
g = 1, then an ejection move has to be performed. If K(i−1)

g = KMAX, then an

absorption move has to be performed. For K(i−1)
g ∈ {2, . . . ,KMAX − 1} the move type

(ejection or absorption) is randomly drawn.

The ejection move

Randomly select a state k ∈ {1, . . . ,K(i−1)
g }. Make a draw pE from a Beta(a, a) distribution

and re-allocate each data point allocated to component k by V(i−1)
g with probability pE to a

new state with label K(i−1)
g + 1 to obtain the new candidate allocation vector V�

g . The new

number of states, associated with V�
g , is K�

g = K(i−1)
g + 1. The acceptance probability is

A = min{1, R} where

R =
P

(
V�

g|K�
g

)
P

(
K�

g

)
P

(
yg,V�

g
|Xg,V�

g
, δg

)

P
(

V(i−1)
g |K(i−1)

g

)
P

(
K(i−1)

g

)
P

(
y

g,V(i−1)
g

|X
g,V(i−1)

g
, δg

) · Q (40)

and Nobile and Fearnside (2007) show that the Hastings ratio is given by:

Q =
Q

(
[V(i−1)

g ,K(i−1)
g ]|[V�

g,K�
g]

)

Q
(
[V�

g,K�
g]|[V(i−1)

g ,K(i−1)
g ]

) = pE · �(a)2

�(2a)
· �(2a + nk)

�(a + n∗
k̃
)�(a + n∗

k)
(41)

where nk is the number of observations allocated to the kth state by V(i−1)
g , n∗

k̃
and n∗

k are

the numbers of data points allocated to the states k̃ and k by V�
g . The factor pE is equal to

one for K(i−1)
g ∈ {2, . . . ,KMAX − 2}; while pE = 0.5 for K(i−1)

g = 1, and pE = 2 for

K(i−1)
g = KMAX − 1. If the move is accepted, set V(i)

g = V�
g and K(i)

g = K(i−1)
g + 1, or

otherwise set: V(i)
g = V(i−1)

g and K(i)
g = K(i−1)

g . As suggested by Nobile and Fearnside
(2007), I select the parameter a of the Beta(a,a) by numerically solving the equation:

�(2a)

�(a)
· �(a + nk)

�(2a + nk)
= 0.1

where nk is the number of data points allocated to state k by V(i−1)
g , and I use a lookup table

in my implementation. See Nobile and Fearnside (2007) for further details.
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The absorption move

Randomly select two states k, k̃ ∈ {1, . . . ,K(i−1)
g } with k̃ 	= k. Re-allocate all data points

allocated to state k̃ by the current allocation vector, V(i−1)
g , to state k to obtain the new

allocation vector V�
g . Then V�

g does not allocate data points to state k̃. If the (unemployed)

state, k̃, is not equal to the maximal state, K(i−1)
g , swap the labels of the states k̃ and K(i−1)

g ;

i.e. set V�
g(t) = k̃ for all t with V(i−1)

g (t) = K(i−1)
g . Afterwards delete the (unemployed)

maximal stateK(i−1)
g , and setK�

g = K(i−1)
g −1. The acceptance probability is A = min{1, R},

where R was specified in Eq. (40), and the Hastings ratio is now given by:

Q A =
Q

(
[V(i−1)

g ,K(i−1)
g ]|[V�

g,K�
g]

)

Q
(
[V�

g,K�
g]|[V(i−1)

g ,K(i−1)
g ]

) = pA · �(2a)

�(a)2
· �(a + nk̃)�(a + nk)

�(2a + n∗
k)

where n∗
k is the number of data points allocated to state k by the new candidate vector,

V�
g , nk and nk̃ are the numbers of data points allocated to the states k and k̃ by V(i−1)

g ,
a is the parameter of the Beta(a,a) distribution in the ejection move, and pA = 0.5 for
K(i−1)

g = KMAX, pA = 2 for K(i−1)
g = 2, while pA = 1 otherwise. If the move is accepted,

set V(i)
g = V�

g and K(i)
g = K(i−1)

g − 1, or otherwise set: V(i)
g = V(i−1)

g and K(i)
g = K(i−1)

g .

Appendix 3: The novel inclusion and the novel exclusion move
for the proposed HMM–DBN model

The novel inclusion move and the novel exclusion move both keep the network M =
(π1, . . . , πN ) and the SNR hyperparameters fixed. I describe the i th MCMC iteration,
(i − 1) → i , of this pair of moves for node g. If the current number of states is equal
to one, K(i−1)

g = 1, skip the move. Otherwise, draw an unbiased coin to decide, whether an

inclusion or an exclusionmove is performed. Given the current allocation vector,V(i−1)
g , both

moves propose a new candidate allocation vector V�
g . If the move is accepted, set V(i)

g = V�
g ,

or otherwise leave the allocation vector unchanged,V(i)
g = V(i−1)

g . Since neither the inclusion

nor the exclusion move changes the number of states, set K(i)
g = K(i−1)

g .

The exclusion move

Randomly select one time point t0 ∈ {2, . . . , T }, and consider the state k := V(i−1)
g (t0)

to which the selected time point is currently allocated to. Determine the highest time point
sE ∈ {2, . . . , t0 − 1} that is not allocated to state k:

sE = max
{

t̃ ∈ {2, . . . , t0 − 1} : V(i−1)
g (t̃) 	= k

}
(42)

If sE is not well-defined, set sE = 1 instead. Afterwards, determine the lowest time point
tE ∈ {t0 + 1, . . . , T } that is not allocated to state k:

tE = min
{

t̃ ∈ {t0 + 1, . . . , T } : V(i−1)
g (t̃) 	= k

}
(43)

If tE is not well-defined, set tE = T + 1 instead.
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Consider the sequence sE +1, . . . , tE −1. It follows fromEqs. (42–43) that all data points in
the sequence are currently allocated to state k. The length of this sequence is L E = tE −sE −1.
If L E < 3, skip themove. Otherwise, draw a random number u1 from the set {1, . . . , L E −2},
and subsequently a randomnumber u2 from the set {0, . . . , L E −2−u1}. u1 can be interpreted
as the “subsequence length” and u2 can be interpreted as the “lag”, since the exclusion move
proposes to re-allocate the data points sE + u2 + 2, . . . , sE + u2 + 1 + u1 to a new state k̃,
where k̃ 	= k is randomly drawn from allK(i−1)

g −1 states unequal to k. For the new candidate
allocation vector, V�

g , this yields: V�
g(t) = k̃ if t ∈ {sE + u2 + 2, . . . , sE + u2 + 1+ u1}, and

V�
g(t) = V(i−1)

g (t) for t /∈ {sE + u2 + 2, . . . , sE + u2 + 1 + u1}. The Hastings is given by:

QE

(
V�

g|V(i−1)
g

)
= L E

T − 1
· 1

L E − 2
· 1

L E − 1 − u1
· 1

K(i−1)
g − 1

(44)

The first factor is the probability of selecting one point of the sequence sE + 1, . . . , tE − 1
of length L E , the second and the third factor are the probabilities for selecting u1 and u2,
respectively, and the last factor is the probability for selecting k̃ 	= k.

The inclusion move

Randomly select one time point t0 ∈ {2, . . . , T }, and consider the state k := V(i−1)
g (t0)

to which the selected time point is currently allocated to. Determine the highest time point
sI ∈ {2, . . . , t0 − 1} that is not allocated to state k:

sI = max
{

t̃ ∈ {2, . . . , t0 − 1} : V(i−1)
g (t̃) 	= k

}
(45)

If sI is not well-defined, skip the move. Otherwise, determine the lowest time point tI ∈
{t0 + 1, . . . , T } that is not allocated to state k:

tI = min
{

t̃ ∈ {t0 + 1, . . . , T } : V(i−1)
g (t̃) 	= k

}
(46)

If tI is not well-defined, skip the inclusion move.
Only if sI and tI are both well-defined, test whether V(i−1)

g (sI ) is equal to V(i−1)
g (tI ). If

this ”equal boundaries“ test fails, skip the inclusion move. If the test is successful it holds:
V(i−1)

g (t) = k for t ∈ {sI + 1, . . . , tI − 1} and V(i−1)
g (sI ) = V(i−1)

g (tI ) =: k̃ where k̃ 	= k.
The inclusion move proposes to re-allocate all time points t ∈ {sI + 1, . . . , tI − 1} to state
k̃, i.e. to the state of the surrounding time points sI and tI . This yields for the new candidate
allocation vector,V�

g: For t = 2, . . . , T setV�
g(t) = k̃ if t ∈ {sI +1, . . . , tI −1}, or otherwise

set V�
g(t) = V(i−1)

g (t). The proposal probability

QI

(
V�

g|V(i−1)
g

)
= L I

T − 1
(47)

is the probability of selecting one point t0 of the sequence sI + 1, . . . , tI − 1 of length
L I = tI − sI − 1.

Complementary inclusion move for the exclusion move

Consider the exclusion move from V(i−1)
g to V�

g , described above. The data points in the
sequence sE +u2 +2, . . . , sE +u2 +1+u1, which were originally allocated to state k, have
been re-allocated to state k̃. The design of the exclusion move ensures that the new candidate
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vector, V�
g , still allocates the two surrounding time points to state k, V�

g(sE + u2 + 1) =
k = V�

g(sE + u2 + 2 + u1). The complementary move, which proposes to move back from

V�
g to V(i−1)

g , is the inclusion move, which re-allocates the sequence sE + u2 + 2, . . . , sE +
u2 + 1 + u1 back to state k. To this end, the complementary inclusion move has to select
a point t0 ∈ {sE + u2 + 2, . . . , sE + u2 + u1 + 1}. It follows that sI = sE + u2 + 1 and
tI = sE + u2 + u1 + 2 in Eqs. (45–46) are well-defined, and it is guaranteed that the “equal
boundaries” test: V�

g(sE + u2 + 1) = k̃ = V�
g(sE + u2 + u1 + 2) with k̃ 	= k is successful.

Thus, the complementary inclusion move has the proposal probability:

QC
I

(
V(i−1)

g |V�
g

)
= L E

T − 1
(48)

where L E = u1 is the subsequence length parameter, which has been randomly drawn during
the exclusion move. Hence, according to the Metropolis-Hastings criterion, the exclusion
move, described above, is accepted with probability A = min{1, R}, where

R =
P

(
V�

g|K(i−1)
)

P
(

yg,V�
g
|Xg,V�

g
, δg

)

P
(

V(i−1)
g |K(i−1)

)
P

(
y

g,V(i−1)
g

|X
g,V(i−1)

g
, δg

) ·
QC

I

(
V(i−1)

g |V�
g

)

QE

(
V�

g|V(i−1)
g

) (49)

The likelihood ratio can be computed with Eq. (12), and the Hastings ratio can be computed
with Eqs. (44) and (48).

Complementary exclusion move for the inclusion move

Consider the inclusion move from V(i−1)
g to V�

g , described above. The data points in the
sequence sI + 1, . . . , tI − 1, which were allocated to state k, have been re-allocated to state
k̃, and the design of the inclusion move ensures that the new candidate vector, V�

g , allocates

the surrounding time points to state k̃ as well: V�
g(sI ) = k̃ = V�

g(tI ).

The complementary move, which proposes to move back from V�
g to V(i−1)

g , is the exclu-
sion move, which re-allocates the subsequence sI + 1, . . . , tI − 1 of length L I = tI − sI − 1
to state k. To this end, the complementary exclusion move has to select one single point t0
out of the sequence sC

E + 1, . . . , tC
E − 1 where

sC
E := max

{
t̃ ∈ {2, . . . , sI − 1} : V�

g(t̃) 	= k̃
}

(50)

and sC
E = 1 if sC

E is not well-defined.

tC
E := min

{
t̃ ∈ {tI + 1, . . . , T } : V(�

g (t̃) 	= k̃
}

(51)

and tC
E = T + 1 if tC

E is not well-defined.
Having selected t0, the “subsequence length” u1 := L I and the “lag” u2 := sI − sC

E − 1
have to be sampled out of the sets {1, . . . , LC

E − 2} and {0, . . . , LC
E − 2 − u1}, respectively,

where LC
E := tC

E − sC
E − 1 is the length of the sequence sC

E + 1, . . . , tC
E − 1. Finally, the

complementary exclusion move has to randomly draw the state k from all K(i−1)
g − 1 states

unequal to k̃. Thus, the complementary exclusion move has the proposal probability:

QC
E (V�

g|V(i−1)
g ) = LC

E

T − 1
· 1

LC
E − 2

· 1

LC
E − 1 − u1

· 1

K(i−1)
g − 1

(52)
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Hence, according to the standard Metropolis-Hastings criterion, the inclusion move,
described above, is accepted with probability A = min{1, R}, where

R =
P

(
V�

g|K(i−1)
)

P
(

yg,V�
g
|Xg,V�

g
, δg

)

P
(

V(i−1)
g |K(i−1)

)
P

(
y

g,V(i−1)
g

|X
g,V(i−1)

g
, δg

) ·
QC

E

(
V(i−1)

g |V�
g

)

QI

(
V�

g|V(i−1)
g

) (53)

The likelihood ratio can be computed with Eq. (12), and the Hastings ratio can be computed
with Eqs. (47) and (52).

Appendix 4: The novel birth and the novel death move for the proposed
HMM–DBN model

The novel birth and the novel death move both keep the network M = (π1, . . . , πN ) and
the SNR hyperparameters fixed. I describe the i th MCMC iteration, (i − 1) → i , of the
Metropolis-Hastings Birth/Death move for node g. Draw an unbiased coin to decide whether
a birth or a death move is performed. Given the current allocation vector, V(i−1)

g , the birth

move proposes to increase the number of states by 1, K�
g = K(i−1)

g + 1, while the death

move proposes to decrease the number of states by 1,K�
g = K(i−1)

g −1. Thereby both moves

propose a new candidate allocation vector V�
g . If the move is accepted, set V(i)

g = V�
g and

K(i)
g = K�

g , or otherwise leave the allocation vector unchanged, i.e. set: V(i)
g = V(i−1)

g and

K(i)
g = K(i−1)

g .

The novel birth move

If the current number of states has reached the maximum, K(i−1)
g = KMAX, skip the move.

Otherwise, randomly select one state k0 ∈ {1, . . . ,K(i−1)
g } and determine the set of all data

points that are currently allocated to state k0:

T0 =
{

t ∈ {2, . . . , T } |V(i−1)
g (t) = k0

}
(54)

If the number of data points in the set T0 is lower than 2, |T0| < 2, skip the birth move.
Otherwise, draw a random number b1 from the set {1, . . . , |T0| − 1}. Order the time points
in the set T0, and let t1, . . . , t|T0| denote the ordering of the data points in the set T0. The
birth move proposes to re-allocate the last |T0| − b1 data points, t = tb1+1, . . . , t|T0|, with
V(i−1)

g (t) = k0 to a new state knew := K(i−1)
g + 1. The new candidate allocation vector is

given by: V�
g(t) = knew for t = tb1+1, . . . , t|T0|, and V�

g(t) = V(i−1)
g (t) for all other data

points t . The proposal probability is given by:

Q B

(
[V�

g,K�
g]|[V(i−1)

g ,K(i−1)
g ]

)
= 1

K(i−1)
g

· 1

|T0| − 1
(55)

The novel death move

If the number of states is equal to one, K(i−1)
g = 1, skip the move. Otherwise, randomly

select k1 and k2 with k1 < k2 out of the set {1, . . . ,K(i−1)
g }. Determine the sets of data points
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that are currently allocated to k1 and k2:

T1 =
{

t ∈ {2, . . . , T } |V(i−1)
g (t) = k1

}
(56)

T2 =
{

t ∈ {2, . . . , T } |V(i−1)
g (t) = k2

}
(57)

If one of the two sets is empty, skip the move. Otherwise, order the data points in T1 and
T2, and let t [1]1 , . . . , t [1]|T1| and t [2]1 , . . . , t [2]|T2| denote the orders of the time points in T1 and T2,
respectively. Check whether the time points in T1 and T2 are “separated” (not “overlapping”),
i.e. check if either t [1]1 > t [2]|T2| or t [2]1 > t [1]|T1|. If the test fails, skip the move. Otherwise, the
birth move proposes to re-allocate all time points in the set T2 to state k1. The new candidate
allocation vector is then given by: V�

g(t) = k1 for t ∈ T2, and V�
g(t) = V(i−1)

g (t) for t /∈ T2,
and the proposal probability is:

Q D

(
[V�

g,K�
g]|[V(i−1)

g ,K(i−1)
g ]

)
= 2

K(i−1)
g ·

(
K(i−1)

g − 1
) (58)

The new candidate allocation vector,V�
g , does not allocate time points to the state k2 anymore.

If k2 	= K(i−1)
g , perform a swap move, i.e. set V�

g(t) = k2 for all t with V(i−1)
g (t) = K(i−1)

g .

The last state is then obsolete and can be deleted, i.e. set: K�
g = K(i−1)

g − 1.

Complementary death move for the birth move

Consider the birth move from [V(i−1)
g ,K(i−1)

g ] to [V�
g,K�

g], described above. The data points
tb1+1, . . . , t|T0|, which were allocated to state k0, have been re-allocated to the new state

knew = K(i−1)
g + 1. The complementary death move has to select the states k0 and knew out

of the set {1, . . . ,K�
g}, where K�

g = K(i−1)
g + 1, and then has to re-allocate all data points in

the set

T C
0 =

{
t ∈ {2, . . . , T } |V�

g(t) = knew

}
(59)

back to state k0. The design of the birth move ensures that the two sets

T C
1 =

{
t ∈ {2, . . . , T } |V�

g(t) = k0
}

(60)

T C
2 =

{
t ∈ {2, . . . , T } |V�

g(t) = knew

}
(61)

are non-empty, and that the highest time point in T C
1 precedes the lowest time point in T C

2 ,
i.e. that the two sets are “separated” (non-overlapping). Hence, the complementary death
move can be performed, i.e. will not be skipped, and has the proposal probability:

QC
D([V(i−1)

g ,K(i−1)
g ]|]V�

g,K�
g]) = 2(

K(i−1)
g + 1

)
· K(i−1)

g

(62)

According to the standard Metropolis-Hastings criterion, the birth move, described above, is
accepted with probability A = min{1, R}, where

R =
P(K�

g)P
(

V�
g|K�

g

)
P

(
yg,V�

g
|Xg,V�

g
, δg

)

P
(
K(i−1)

g

)
P

(
V(i−1)

g |K(i−1)
g

)
P

(
y

g,V(i−1)
g

|X
g,V(i−1)

g
, δg

) · Q (63)
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and

Q = QC
D([V(i−1)

g ,K(i−1)
g ]|[V�

g,K�
g]

Q B([V�
g,K�

g]|[V(i−1)
g ,K(i−1)

g ])
(64)

The likelihood ratio can be computed with Eq. (12), and the Hastings ratio, Q, can be
computed with Eqs. (55) and (62).

Complementary birth move for the death move

Consider the death move from [V(i−1)
g ,K(i−1)

g ] to [V�
g,K�

g], described above. The birth move
has proposed to re-allocate all time points of the set.

T2 =
{

t ∈ {2, . . . , T } |V(i−1)
g (t) = k2

}
(65)

to state k1. The complementary birth move has to select the state k1 ∈ {1, . . . ,K�
g}, and the

design of the death move guarantees that the set:

T C
0 =

{
t ∈ {2, . . . , T } |V�

g(t) = k1
}

(66)

has a cardinality greater than 2. Subsequently, the random number bC
1 := |T C

0 | − |T2| has to
be drawn from the set {1, . . . , |T C

0 | − 1}. Ordering all the time points in the set T C
0 , yields

the order t1, . . . , t|T C
0 |, and the complementary birth move proposes to re-allocate the last

|T C
0 |− bC

1 = |T2| time points, t = tbC
1 +1, . . . , t|T C

0 | to a new state knew := K(i−1)
g + 1.26 The

design of the death move, i.e. the successfully passed “separation” test, guarantees that the
data points tbC

1 +1, . . . , t|T C
0 | correspond to the data points in the set T2. The complementary

birth move has the proposal probability:

QC
B([V(i−1)

g ,K(i−1)
g ]|]V�

g,K�
g]) = 1

K�
g

· 1

|T C
0 | − 1

(67)

Hence, according to the standard Metropolis-Hastings criterion, the death move, described
above, is accepted with probability A = min{1, R}, where R was defined in Eq. (63) and the
Hastings Ratio, Q, is now given by:

Q = QC
B([V(i−1)

g ,K(i−1)
g ]|[V�

g,K�
g]

Q D([V�
g,K�

g]|[V(i−1)
g ,K(i−1)

g ])
(68)

and can be computed with Eqs. (58) and (67).
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