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ABSTRACT: Although nanostructured phase-change materials (PCMs) are considered
as the building blocks of next-generation phase-change memory and other emerging
optoelectronic applications, the kinetics of the crystallization, the central property in
switching, remains ambiguous in the high-temperature regime. Therefore, we present
here an innovative exploration of the crystallization kinetics of Ge2Sb2Te5 (GST)
nanoparticles (NPs) exploiting differential scanning calorimetry with ultrafast heating up
to 40 000 K s−1. Our results demonstrate that the non-Arrhenius thermal dependence of
viscosity at high temperature becomes an Arrhenius-like behavior when the glass
transition is approached, indicating a fragile-to-strong (FS) crossover in the as-deposited
amorphous GST NPs. The overall crystal growth rate of the GST NPs is unraveled as
well. This unique feature of the FS crossover is favorable for memory applications as it is
correlated to improved data retention. Furthermore, we show that methane
incorporation during NP production enhances the stability of the amorphous NP phase (and thereby data retention), while a
comparable maximum crystal growth rate is still observed. These results offer deep insight into the crystallization kinetics of
nanostructured GST, paving the way for designing nonvolatile memories with PCM dimensions smaller than 20 nm.

■ INTRODUCTION

Ge2Sb2Te5 (GST), one of the prototypical phase-change
materials (PCMs), enables rapid and reversible switching
between its amorphous and crystalline phases, which is
accompanied by large optical and electrical contrast. This
unique feature makes GST attractive for data-storage
applications1−3 and a strong contender for emerging
applications, such as solid-state displays,4 optical modulators,5

neuromorphic computing,6,7 on-chip photonic circuitry,8 and
plasmonic-based circuits.9 Crystallization lies at the heart of the
switching in phase-change technology; thus, a solid under-
standing of the crystallization kinetics entails a crucial aspect of
designing phase-change memory.
Conventional measurements are only able to investigate

crystallization kinetics within a relatively low temperature range
(near the glass transition temperature).10−13 However, in actual
applications, crystallization generally takes place at higher
temperatures. Despite its scientific and technologic relevance,
the analysis of the crystallization kinetics at these high
temperatures has remained for a long time highly challenging
due to the ultrashort time and length scales (ns and nm)
involved. This situation persisted until very recently, where
ultrafast differential scanning calorimetry (DSC) was utilized to
explore the crystallization process of GST films with heating
rates up to 40 000 K s−1.14 Using subsequent extensive
modeling, growth rates ranging from the glass transition
temperature to the melting temperature were derived for the
film structures, showing a remarkable breakdown of Arrhenius
behavior in the viscosity at heating rates beyond ∼500 K s−1.
Non-Arrhenius thermal dependence of the viscosity at high

temperatures has lately been widely observed in both
nucleation-dominated and growth-dominated PCMs. For
instance, for GST confined in memory cells it was
demonstrated that non-Arrhenius thermal dependence of
crystallization at high temperatures crosses over to a wide
temperature range at lower temperatures where still Arrhenius
behavior prevails.15−17 In recent years, also for other PCMs,
such as GeTe films,18 supercooled and melt-quenched
AgInSbTe films,19−21 and GeSb films,22,23 the crystallization
kinetics have been determined based on nonconventional
techniques with measurements spanning relatively wide
temperature ranges. All these works confirm the breakdown
of Arrhenius dependence for amorphous PCMs at high
temperatures. However, a question that remains is whether
this breakdown can be described on the basis of a model for
viscosity with a single value for the fragility.
In parallel, down-scaling the GST into (sublithographic)

nanostructures generates tremendous advantages for PCM-
based memory including ultrafast switching, low switching
power, and ultrahigh density. Therefore, many efforts have
been devoted to enter this promising field.24,25 In this context,
the fabrication of monodisperse GST nanoparticles (NPs) with
good size and composition control has been a great challenge
for a long time. We achieved a breakthrough by exploiting a
technique based on gas-phase condensation and magnetron
sputtering, which is capable of meeting the requirements of
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GST NP fabrication.26 Size-dependent crystallization was
observed through in situ heating in a transmission electron
microscope. Yet this previous work mainly focused on the
crystallization at relatively low temperatures because of the
limitation inherent to the in situ TEM heating method.
Therefore, the crystallization kinetics of GST NPs remains
unknown for the high-temperature regime. In this manuscript
we present a facile method to synthesize size- and composition-
controlled Ge2Sb2Te5 nanoparticles via gas-phase condensation,
followed by the unprecedented exploration of crystallization
kinetics of GST NPs via ultrafast DSC. By varying the heating
rate more than 3 orders of magnitude, the temperature-
dependent viscosity and growth rate of the crystallization have
been unraveled, providing evidence for a fragile-to-strong
crossover in as-deposited amorphous GST NPs. Moreover, it is
shown that methane addition during NP production is
advantageous for application of NPs in PCM-based devices
due to the fact that it increases the amorphous phase stability
near the glass transition temperature, whereas the maximum
switching speed at high temperature is not reduced.

■ EXPERIMENTAL METHODS

GeSbTe Nanoparticle Synthesis. The Ge2Sb2Te5 (GST)
nanoparticles (NPs) were directly deposited on a precleaned
glass substrate without capping layer, utilizing a home-modified
nanocluster system Nanogen50 from Mantis Deposition Ltd.
The substrate was put close to the aperture of the aggregation
chamber in order to synthesize a large amount of NPs. The
main chamber (to collect the NPs) is evacuated to a pressure of
10−8 mbar. Amorphous GST NPs were directly synthesized by
sputtering the GST target (purity of 99.99%), employing a low
current (0.105 A) to avoid the formation of crystalline NPs.
The Ar gas flow (purity 99.9999%) used for the two types of
samples analyzed in the present work is 35 sccm, with H2/CH4

(purity 99.99%) as extra gas to facilitate the development of
nascent clusters in the plasma. In this manuscript, we show the
ability of preparing nanoparticles with a large yield, as shown in
the Figure S1 in Supporting Information (SI). The morphology
of the as-deposited NPs was subsequently characterized by
transmission electron microscopy (JEOL 2010) at 200 kV. The
composition of the NPs was characterized by energy-disperse
X-ray spectrometry (Thermo Instruments) attached to the
TEM, as shown in Figure S2 of the SI.

Ultrafast Differential Scanning Calorimetry Measure-
ment. The phase transitions of the samples were subsequently
measured by ultrafast differential scanning calorimetry (DSC,
Mettler-Toledo Flash DSC 1), with the sensor chips (USF-1)
each containing the actual sensor and reference area. The GST
NPs were scraped off from the glass substrate and then were
deposited on the effective area of the chip sensor. Instead of the
loose powder/multiflakes we used for Ge−Sb PCMs, a single
planar flake consisting of GST NPs parallel to the sensor
surface was adopted here to run the measurements. The
approximate area that was subjected to ultrafast heating is
roughly 60 × 60 μm2 and 20 × 20 μm2 for NPs (H2) and NPs
(CH4), respectively. This methodology remarkably increases
the thermal contact between the materials and the chip sensor,
as shown in Figure S3 of the SI with much less scattering of the
crystallization temperature in the Kissinger plot. Actually, our
results show that all previously published ultrafast DSC work
employing loose powder or multiflakes (of PCMs) can contain
erroneous results for the higher heating rate (and thus
temperature) regime. The heating rates (Φ) adopted in this
manuscript vary from 10 to 40 000 K s−1. At each Φ,
measurements were repeated at least 3 times for low Φ and 5−
10 times for high Φ, as the values of the crystallization
temperature become more scattered. Thermal lag and temper-
ature calibration of the Flash DSC are discussed in detail in
Section 2 of the SI.

Numerical Modeling. Similar to our previous work,23

numerical modeling utilizing JMAK theory has been performed
to interpret the data from the ultrafast DSC measurements. The
viscosity model (MYEGA model) we employed successfully for
the Ge−Sb alloy turned out inadequate to explain the
Arrhenius behavior persisting for such a large temperature
range in the Kissinger plot presented in the present work.
Therefore, the generalized MYEGA model was adopted for the
fitting.27 Note that in all the fittings performed in this
manuscript the fractional Stokes−Einstein relation between
viscosity and growth rate has been used, with ξ = 0.65
suggested by previous work.14 The details of JMAK modeling
can be found in the SI of our previous work.23 For this JMAK
model, descriptions of nucleation and growth are required. For
the description of nucleation it is assumed that it is
independent of time and temperature; i.e., we assume a
constant nuclei density (site saturation), analogous to what was
adopted for the modeling of GST films.14 However, in the SI of
the present work, we show that the results hardly change when

Figure 1. Morphology of Ge2Sb2Te5 (GST) nanoparticles (NPs). (a), (b) Bright-field image of the GST NPs produced with H2 (NPs (H2)) and
CH4 (NPs (CH4)), respectively. The average diameters of the NPs in these two samples are 16.0 ± 1.3 and 16.8 ± 1.7 nm, respectively. Insets show
the selected area electron diffraction patterns of the corresponding NPs, clearly demonstrating the amorphous nature of the as-deposited NPs.
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we adopt a more intricate steady-state nucleation model. For
the description of the growth (rate) eq 2 has been used, in
which the viscosity is described by the generalized MYEGA
model.
Apart from the ultrafast DSC data presented in the Kissinger

plot, also two relevant data points, one for GST NPs (H2) and
one for GST NPs (CH4), were added for very low heating rates
Φ (0.03 K s−1) based on our previous in situ TEM work.26 The
data point for GST NPs (H2) is reliable, but it is not precise for
GST NPs (CH4). The reason is that it is hard to accurately
control for different sample batches the amount of methane
incorporated in the gas phase during the NP sample
production. Therefore, this single data point for GST NPs
(CH4) in the Kissinger plot is not used when fitting the JMAK-
based model to the experimental data.

■ RESULTS AND DISCUSSION

Morphology and Size Distribution. Size-dependent
crystallization has been observed for Ge2Sb2Te5 (GST)
nanoparticles (NPs),26 where the size, morphology, structure,
and crystallization temperature of the as-deposited NPs have
been characterized by transmission electron microscopy
(TEM). As shown in Figure 1, relatively monodisperse GST

NPs have been synthesized, with average diameters of 16.0 ±
1.3 and 16.8 ± 1.7 nm for NPs synthesized with either H2 or
CH4 added to the base Ar gas, hereafter named NPs (H2) and
NPs (CH4). Detailed size distributions of these two samples
can be found in Figure S4 of the Supporting Information (SI).
The similar sizes and narrow size distribution of the two GST
NP (CH4) and (H2) samples exclude size effects on the
crystallization observed in the present work. Although the NPs
were produced with a relatively high coverage, they are not
coalesced but only aggregated, as can be seen clearly in Figure
1. The spherical morphology is an indication of the amorphous
nature of the NPs, which is further confirmed by selected area
electron diffraction (SAED). As manifested by the insets of
Figure 1, the SAED patterns demonstrate that the NPs are
amorphous due to the lack of sharp crystalline rings. The
composition of these NPs is Ge:Sb:Te = 19:24:57 (±1) at.%, as
determined by energy-dispersive X-ray spectrometry; see the
spectrum in Figure S2 of the SI. Note that the TEM grids were
located at the periphery of the NP cluster beam during
production, retaining a lower coverage in comparison to the
center part; see the large amount of NPs in Figure S1 of the SI.
High yield synthesis of GST NPs has been achieved by gas-
phase condensation in order to obtain a good signal-to-noise

Figure 2. Ultrafast DSC traces for GST NPs. (a), (b) Ultrafast DSC traces for GST NPs (H2) and NPs (CH4), respectively, for heating rates (Φ)
ranging from 10 to 40 000 K s−1. Insets of (a) and (b) show the close-up of the crystallization peaks at lower Φ. (c) Zoomed-in ultrafast DSC traces
of rock-salt to rhombohedral structural transition in NPs (H2) at Φ ranging from 250 to 20 000 K s−1. (d) Evolution of the structural relaxation
temperatures with Φ for NPs (H2) and NPs (CH4). The blue and red curves in the figures hold for NPs (H2) and NPs (CH4), respectively.
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ratio when performing differential scanning calorimetry (DSC)
with ultrafast heating. Moreover, we have demonstrated that
the NPs do not coalesce during thermal heating in a
transmission electron micscope; see the SI of our previous
work.26 Therefore, the above factors enable and ensure the
thermal analysis of well-characterized NPs via ultrafast DSC.
Crystallization by Ultrafast DSC. The obtained ultrafast

DSC traces for the two GST NP (H2) and NP (CH4) samples
are shown in Figure 2a,b. The heating rates (Φ) used to obtain
the data of the present work vary more than 3 orders of
magnitude, from 10 to 40 000 K s−1. Note that a detectable
signal of crystallization only appears for Φ beyond 50 K s−1 for
the NPs (CH4). The temperatures for the amorphous to rock-
salt transition (Tp1) drastically increase when higher Φ are
applied to both samples; e.g., Tp1 of NPs (H2) shifts from 440
at 10 K s−1 to 542 K at 40 000 K s−1, as shown in Table S1.
Figure 2 also shows that NPs (CH4) have an (expected) higher
Tp1 than NPs (H2), particularly at low Φ. For example, Tp1 for
NPs (CH4) is ∼20 K higher than that of NPs (H2) at 50 K s−1.
In a previous work, we have revealed by in situ heating in a
TEM that methane addition during GST NP production
remarkably increase the Tp1 at relatively low heating rates.26

Nevertheless, here we observe that this gap of Tp1 gradually
decreases when Φ becomes higher and finally vanishes when Φ
reaches 40 000 K s−1. Surprisingly, at high Φ we observe a big
divergence in Tp1 for GST NPs (H2) compared to GST films as
reported in earlier work;14 see detailed data in Table S1. While
the Tp1s are very similar at 50 K s−1, the Tp1 of GST films
becomes ∼90 K higher than that of the NPs (H2) at 40 000 K
s−1. This gap can (at least partly) stem from two origins: (1)
the thermal lag between the thin film and the ultrafast chip
sensor, as is discussed in detail in section 2 of the SI, and (2) it
is still very well likely that the kinetics of NPs differs from that
of thin films. We did not have the appropriate thin-film samples
to verify this, and these tests are beyond the scope of the
present work; however, they are of interest for future research.
Furthermore, the rock-salt to trigonal structural transition is

also unambiguously observed for the NPs (H2) in the ultrafast

DSC traces when Φ is above 250 K s−1. The signal of this
transition is unexpected but intriguing as it was not detected for
GST films via ultrafast DSC measurement in previous work.14

This transition temperature (denoted hereafter as Tp2) displays
a clear dependence on Φ as well, where it increases when Φ
rises, even with a more drastic increment compared to Tp1.
Locating at around 553 at 250 K s−1, Tp2 moves to 633 K at 20
000 K s−1, as depicted in Figure 2c. It is noticeable that Tp2 is
invisible in the DSC signal at the lowest Φ because of the small
heat release involved compared to the amorphous to rock-salt
transition. Interestingly, the rock-salt to trigonal structural
transition is unobservable in NPs (CH4) in the present work
(Figure 2b). Several explanations could correlate to this feature:
(i) the addition of methane alters Tp2 to too high temperature
which is beyond the upper limit of ultrafast DSC (450 °C); (ii)
the incorporation of methane suppresses this structural
transition completely; (iii) with methane the transition can
still occur but with reduced latent heat (or spread over a larger
temperature range) such that it is not detected by the ultrafast
DSC. More systematic research is necessary before drawing
conclusions on this second transition, and this is out of the
scope of the present work. However, the appearance of this
specific transition also indicates good thermal contact between
the chip sensor and the NP flake, as the heat release involved in
this transition is much smaller than that of the amorphous to
rock-salt transition. The obtained Tp2 for GST NPs is much
lower than that of the GST films due to the expected strong
size dependence of Tp2, where it has been observed to reduce
sharply with decreasing thickness of GST films.28

In the ultrafast DSC traces, a heat release prior to the
amorphous to rock-salt transition is also observed, indicated as
T1 in Figure 2d. This exothermic heat flow was ascribed to
structural relaxation of the amorphous phase by previous
researchers,29 as the temperature is too low for crystallization.
For instance, for GST NPs (H2) at a heating rate of 100 K s−1

the temperature T1 is 120 °C compared to the crystallization
temperature Tp1 of ∼180 °C. At this T1 temperature,
crystallization only occurs after very long times. For example,

Figure 3. Kissinger plot with optimized model fits to the data. (a) Kissinger plot for NPs (H2) and NPs (CH4). Blue solid circles and blue open
circles denote the amorphous to rock-salt transition temperatures (Tp1) and rock-salt to rhombohedral transition temperatures (Tp2) of NPs (H2).
The red solid circles represent Tp1 of NPs (CH4). Dotted lines show the corresponding fits to these data. The black stars show earlier reported Tp1 of
GST films by ultrafast DSC.14 The blue and red triangles correspond to the Tp1 of NPs (H2) and NPs (CH4), respectively, as obtained using in situ
heating in the TEM.26 (b) Linear fit to the Kissinger plot at lower Φ (up to 10 000 K s−1), leading to crystallization activation energy of 2.22 and
2.43 eV at−1 for NPs (H2) and NPs (CH4), respectively.
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for GST nanowires with a width of 60 nm, the amorphous
phase can remain present for ∼106 s.24 Therefore, with high
heating rate (100 K/s), the heating process from 25 to 125 °C
takes only 1 s that is way below the time required to start
crystallization at 120 °C. Therefore, no signal for crystallization
should be observed at these temperatures indicated by the
arrows in Figure 2d. This structural relaxation has been found
in other amorphous materials, such as silicon and germanium,
and it is attributed to the presence of a spectrum of activation
energies for the sites where relaxation takes place.30,31 For both
the GST NP (CH4) and NP (H2) samples, T1 moves toward
the onset of the amorphous to rock-salt transition as Φ rises.
Kissinger Analysis. To further understand the crystal-

lization kinetics of the NPs, Kissinger analysis is employed. For
crystallization, the activation energy can be obtained using the
following equation proposed by Kissinger32

= −
ΦQ

R

d T

d T

ln( / )

(1/ )
p

p

2

(1)

with Q being the activation energy for crystallization, R the gas
constant, Φ the heating rate, and Tp the peak temperature in
the DSC signal. For a crystallization process complying with
Arrhenius behavior, the (constant) activation energy can be
derived straightforwardly. Figure 3a shows the crystallization
data for GST NPs obtained by ultrafast DSC at different Φ,
with the blue and red solid circles signifying Tp1 data for NPs
(H2) and NPs (CH4), respectively. The single flake method-
ology (instead of an ensemble of loose flakes) utilized in
running the ultrafast heating here effectively improves the
thermal contact between the chip sensor and the NP flake,
inducing clearly less scatter in Tp1 in comparison with the
employment of loose powder or multiflakes; see more details in
Figure S3 of the SI. At low Φ, the Arrhenius behavior is
maintained, as indicated by the Kissinger plot (Figure 3).
Surprisingly, the Arrhenius behavior for the NPs persists for a
considerably larger Φ range (up to 10 000 K s−1) in contrast to
GST films previously studied where Arrhenius behavior was
reported to break down already at ∼500 K s−1,14 as shown
Figure 3a by the black stars. It is also observable that NPs
(CH4) have a higher activation energy for crystallization than
NPs (H2) within the Arrhenius behavior range. The Kissinger
plot at lower Φ has been zoomed in and linearly fitted (Figure
3b), with an activation energy for crystallization determined as
2.22 and 2.43 eV at−1 for NPs (H2) and NPs (CH4),
respectively. These values coincide well with the reported
values for GST films, in a range between 2 and 3 eV by
conventional DSC or electrical resistance measure-
ments.10,33−36 The increase of activation energy induced by
CH4 incorporation is similar to the enhanced activation energy
by carbon doping of GST films.37

Nevertheless, further increase in Φ (beyond 10 000 K s−1)
prompts the breakdown of the Arrhenius behavior, generating a
curvature in the Kissinger plot. As a result, the activation energy
for crystallization diminishes with the increment of temperature
and vanishes at higher temperatures. In order to appropriately
interpret these data, Johnson−Mehl−Avrami−Kolmogorov
(JMAK) theory has been adopted to fit the Kissinger plot,
analogous to our previous work on GeSb alloy.23 The growth
rate of crystallization is vital to utilize the JMAK theory, which
can be written as19

πλ η
= − − Δ

ξ
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with U(T) as the growth rate, ratom the atomic radius (∼1.5 Å),
λ the diffusional jump distance (∼2.99 Å), Rhyd the hydro-
dynamic radius (Rhyd = ratom), kB the Boltzmann constant, η(T)
the temperature-dependent viscosity, ξ the decoupling
parameter of the Stokes−Einstein equation (ξ ≤ 1), and
ΔG(T) the change of Gibbs free energy, which can be
described, according to Thomson and Spaepen, as38

Δ =
Δ −

+

⎛
⎝⎜

⎞
⎠⎟G T

H T T
T

T
T T

( )
( ) 2m m

m m (3)

where ΔHm is the latent heat of melting, approximately 0.152
eV at−1,39 and Tm is set to 890 K.16 Note that fractional
Stokes−Einstein equation (U ∝ η−ξ with ξ ≤ 1) is intrinsically
included in eq 2, as the breakdown of Stokes−Einstein relation
has been observed in a large number of supercooled glass
forming liquids and in particular PCMs and it is attributed to
dynamical heterogeneities.14,40 For the GST NPs we set ξ =
0.65, a value similar to GST films.14

An appropriate viscosity model is required to determine the
growth rate in eq 2. Although the model proposed by Mauro et
al.41 (MYEGA model hereinafter) provides, as we proved,23 a
much better description of the viscosity of Ge−Sb phase-
change materials as compared to the one from Cohen and
Grest,42 it yields inferior fits to the present data for GST NPs
owing to its inability to afford Arrhenius behavior in a large
temperature range. If the MYEGA model (with a single fragility
value) is adopted, it provides very high values of fragility for the
NPs (H2), m = 203, which is higher than the theoretical value
for kinetic fragility for glass forming liquids (m = 176).43

Furthermore, this model leads to very high crystallization
temperatures at low heating rates, resulting in a large mismatch
to the data obtained by in situ heating in TEM, as shown in
Figure S5 of the SI. Furthermore, for NPs (CH4), it only fits
well in the low heating rate range. In contrast, the generalized
MYEGA model can avoid all the above problems. Note that the
quality of the fits using either the MYEGA model or the Cohen
and Grest model remains poor even using more sophisticated
models for nucleation instead of the simple constant nuclei
density (site saturation) adopted initially. Therefore, we tested
a generalized MYEGA model since it enabled a successful
description of the complex viscosity in metallic glass-forming
liquids27

η η= ∞

+
− + −⎡⎣ ⎤⎦( ) ( )

T

T W W

log ( ) log ( )
1

exp expC
T

C
T

10 10

1 2
1 2

(4)

with η(∞) being viscosity at infinite temperature (here it is
taken as 10−3 Pa s), T the temperature, and W1, C1, W2, and C2
the fitting parameters. This model illustrates that two intrinsic
terms of viscosity subsist in the liquid, and these two terms can
transfer to each other upon cooling or heating. The blue and
red dotted curves in Figure 3a denote the modeled Kissinger
plots utilizing the generalized MYEGA model (eq 4), showing
excellent fits to the corresponding experimental data, with
fitting quality evaluated by adjusted R2 (0.973 and 0.984,
respectively). The derived fitting parameters are W1 = 6921.8,
C1 = 7490.2, W2 = 6.63 × 10−4, and C2 = 517.2 for NPs (H2)
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and W1 = 8259.3, C1 = 8091.9, W2 = 5.27 × 10−4, and C2 =
510.2 for NPs (CH4). Note that the data become more
scattered when Φ becomes high, particularly for Φ above
10 000 K s−1. Therefore, only three data points at the most
right side for Φ beyond 10 000 K s−1 are weighted to be the
most representative data, as they exemplify the best thermal
contact between the chip sensor and the NP flake.
Moreover, the evolution of Tp2 with Φ is also depicted in

Figure 3a. A non-Arrhenius behavior is evidently revealed in
this figure, inferring a temperature-dependent activation energy
for this structural transition. Without a proper growth rate
model for this transition, it is currently not possible to model
the Kissinger curve via JMAK theory.
Viscosity and Fragility of Ge2Sb2Te5 Nanoparticles.

Viscosity is of fundamental and practical relevance for glass
forming liquids as it is directly associated with the glass
transition and relaxation process, indicating the mobility of the
atoms, and therefore it is coupled to the growth rate of
crystallization. As the unknown parameters in eq 4 have been
determined through fitting, the viscosity of the as-deposited
amorphous NPs as a function of temperature can be derived
straightforwardly; see the red and blue solid curves in the
Angell plot of Figure 4, where the temperature-dependent

viscosity of GST films reported previously by Orava et al. is also
depicted in comparison (black dotted curve in Figure 4).14

Unlike the MYEGA model, eq 4 does not directly provide the
value of glass transition temperature (Tg) and fragility. Here we
set Tg as the temperature at which the viscosity equals 1012 Pa s,
and then Tg values are determined as 373 and 403 K for NPs
(H2) and NPs (CH4), respectively. This value for the NPs (H2)
is close to the reported values for the GST films (373−383
K).14,44 As indicated in a previous work,26 the crystallization
temperature for NPs (H2) is slightly lower than that of GST
films (∼10 K), therefore the akin Tg is plausible as the glass

transition usually takes place ∼10 K lower than Tp1 at a Φ of 40
K min−1 for GST films.29 The increase of Tg caused by the CH4
incorporation is ∼30 K, which agrees excellently with the rise of
Tp1, as shown here by the ultrafast DSC measurements and by
the in situ TEM characterization of our earlier work.26 The

fragility, defined as =
η

=
m

d T

d T T
T T

(log ( )

( / )
10

g
g

, is determined from the

Angell plot for these NPs as well. The fragility of NPs (H2) is
57, consistent with the value from a previous work (m = 47 for
nondoped GST films).45 Methane addition slightly increases
the fragility to a value of 62. These values for fragility are
considerably lower compared to the value obtained earlier for
GST films (m = 90).14

Fragile-to-Strong Crossover. In the Angell plot, an
Arrhenius behavior results in a fragility approaching ∼15,
such as holds for SiO2,

46 categorized as a strong (supercooled)
liquid (cf. Figure 4). Larger values of fragility lead to non-
Arrhenius behavior, classified as fragile, such as has been
presented for the GST films.14 However, in some (under-
cooled) liquids a single fragility model is not able to describe
the temperature dependence of viscosity. Then, the coexistence
of Arrhenius behavior at low temperature and non-Arrhenius
behavior at high temperature has been successfully explained by
a fragile-to-strong (FS) crossover,27 which is a ubiquitous
feature in glass formers. First discovered in water,49 this
phenomenon has thereafter been observed in glass-forming
liquids,27 chalcogenides,50,51 and Ag−In−Sb−Te PCMs.20 For
instance, Figure 4 portrays the experimental viscosity data for
Ge15Te85 (black open triangles) at temperatures near Tg

48 and
melting temperature (Tm),

47
fitted with the corresponding

dashed curve utilizing eq 4, where a distinct FS crossover is
illustrated. The FS crossover in Ge15Te85 is confirmed by
another work employing the Adam−Gibbs equation to fit the
viscosity.51 For GST NPs, the FS crossover is likewise
discerned, demonstrated by the red and blue solid curves in
Figure 4. With the strong segment near Tg, the viscosity drops
exponentially with the increment of temperature with an
intermediate fragility (strong), whereas a further increase in
temperature yields a nonexponential decline of viscosity
(fragile). The FS crossover in GST NPs is weaker than that
of Ge15Te85, where the two segments of viscosity are clearly
distinguished. Still, as we explain in the next paragraph, there
are strong arguments that the FS crossover actually occurs in
GST NPs and that it is not a misinterpretation of a (more
ordinary) glass transition.
A similar temperature dependence of the growth rate as in

the present work was also observed for AgInSbTe PCMs, where
the Arrhenius dependence of viscosity was found at lower
temperatures, while the MYEGA model (non-Arrhenius
dependence) was obtained at higher temperatures.19,21 At
that time it was proposed that the Arrhenius behavior correlates
to the glassy state, whereas the non-Arrhenius behavior is
associated with the supercooled liquid state. In this scenario,
this divergence in temperature dependence of viscosity appears
at the junction between glass and supercooled liquid. If our
observed (FS transition) behavior is explained as a glass
transition, that would lead to a Tg of ∼438 K for GST NPs
(H2). Taking this value for Tg, we then obtain a viscosity at Tg
of 103 Pa s. It is obvious that this viscosity is in conflict with the
definition of glass transition temperature (where the viscosity is
1012 Pa s). Moreover, we also observed crystallization at a
temperature about 20 K lower than this supposed Tg of ∼438

Figure 4. Angell plot for viscosity. The blue and red solid curves
represent the modeled viscosity for NPs (H2) and NPs (CH4),
respectively. The black open circles are the viscosity data for SiO2 in
order to show a strong (undercooled) liquid.46 The black open
triangles and the corresponding fitting curve are the experimental
data47,48 and fitting curve utilizing eq 4 for Ge15Te85. The blue stars are
the viscosity data for nitrogen-doped GST films,16 with corresponding
fitting curves adopting eq 4. Black dotted curve shows the viscosity for
GST films explored by ultrafast DSC.14
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K,26 which is also inconsistent with the notation that
crystallization is only possible above Tg. Clearly, with the
fragile-to-strong crossover model, these conflicts are avoided.
Therefore, the FS crossover is a more plausible explanation of
our observations than the (supercooled liquid to) glass
transition.
The present results therefore show the presence of the FS

crossover, which already was signified by the large Arrhenius
region shown in Figure 3b. It occurs for both samples
approximately at 0.85 Tg/T, a Tg-scaled temperature lower
than that of Ge15Te85 and AgInSbTe.20 The CH4 addition has
negligible influence on this crossover. For GST films reported
by Orava et al., however, the FS crossover was not observed,
and a viscosity model with a single fragility value (Cohen and
Grest model) was adopted to fit the Kissinger plot obtained
through ultrafast DSC,14 denoted as the black dotted curve in
Figure 4. The high fragility of GST films results in a sharp
reduction of viscosity at temperatures just above Tg. Yet, the
lower fragility for GST NPs, caused by the FS crossover, yields
a less acute decline in viscosity. Consequently, the GST NPs
exhibit a higher viscosity at lower temperature in comparison to
the GST films, as distinguished at ∼0.9−1 Tg/T in Figure 4.
These results thus suggest that NPs are advantageous in phase-
change memory as higher viscosity correlates to lower atomic
diffusivity and therefore longer data retention time.
In a previous work,16 the growth rate of nitrogen-doped GST

(N-GST) in memory cells was directly measured in a large
temperature regime (from ∼420 to ∼530 K), where the overall
growth rate of the N-GST deviates in temperature dependence:
Arrhenius behavior at low temperature and non-Arrhenius
behavior at high temperature. The experimental data for growth
rate were transposed to viscosity using eq 2, with decoupling
parameter ξ = 0.72 and other parameters (viz. Tm, ratom, λ, and
Rhyd in eq 2) from this article. ξ is adjusted to make η(Tg) =
1012 Pa s, and this value of ξ is close to that for GST films
reported previously.14 The transposed viscosity is presented as
blue stars in Figure 4. The MYEGA model for viscosity with
one fragility cannot fit these data when specifying η(Tm) as 1.2
× 10−3 Pa s.52 In contrast, the generalized MYEGA model (eq
4) yields a good fit to the viscosity of N-GST, providing a
strong indication that the FS crossover also occurs in these N-
doped GST films employed in memory cells. In another
work,17 a similar temperature dependence in the growth rate of
GST is observed, and two terms of temperature dependence
were utilized to fit the Kissinger plot for GST confined in a
memory cell. Yet, the FS crossover was not proposed to explain
the observed behavior, but in light of the present work it has
thus been generally observed for GST in memory cells.
It has been suggested that FS crossover exists only in growth-

dominated PCMs but not in nucleation-dominated PCMs.53

Melt-quenched GST PCMs confined in a cell are considered
(by their nanoscale volume) as growth-dominated PCMs.17

While GST films are considered as nucleation-dominated
PCMs, GST NPs, on the other hand, also possess growth-
dominated crystallization ascribed to the extremely small
volume for crystallization caused by down-scaling. For instance,
in our previous work we found by high-resolution TEM only
single crystalline NPs.26 Nevertheless, small crystal domains are
generally expected for surface-induced heterogeneous nuclea-
tion dominated crystallization of GST PCMs.54 However, the
NPs in the present work are apparently that small that they still
form single crystals. Therefore, it might be possible that the
presence of the FS crossover in GST NPs compared to its

absence in GST films can be attributed to the down-scaling
induced change in the crystallization mechanism from
nucleation dominant to growth dominant.

Overall Growth Rate of Ge2Sb2Te5 Nanoparticles. The
overall growth rate of the crystallization for the GST NPs is of
technological relevance, e.g., for PC memories, as it is
associated with data retention at the lower temperatures and
the switching speed at higher temperatures. The blue and red
solid curves in Figure 5 show the overall growth rate, as derived

using eq 2, ranging from Tg to Tm for both NPs (H2) and NPs
(CH4), respectively. In comparison, the growth rate of GST
films obtained by Orava et al. is also depicted as a black dashed
curve in Figure 5.14 The maximum growth rate (Um) for these 2
types of NPs is very similar, 1.7 and 1.6 m s−1, with Um taking
place at approximately 0.7 T/Tm. These values for NPs are
reasonably close to Um of GST films, as can be observed in
Figure 5 by comparing the blue and red solid curves for the
GST NPs with the black dashed curve holding for GST films.
In a previous work, the growth rate of Ge−Sb alloy reaches a
maximum value at ∼0.9 T/Tm,

23 which is plausible, because the
Um of growth-dominated PCMs is considered to occur at a
higher T/Tm compared to nucleation-dominated PCMs.20

Although the NPs (CH4) possess a lower growth rate at
lower temperature range (below 520 K), it coincides with the
one for NPs (H2) when the temperature is beyond 590 K. The
lower growth rate for NPs (CH4) at low temperature is similar
to the retardation induced by carbon doping in GST films,37 as
carbon (a byproduct decomposed from methane in plasmas) is
expected to be incorporated into the NPs. When the
temperature becomes higher, the FS crossover appears, and
then the fragile regime of viscosity is accessed. As a
consequence, the viscosity strongly drops to equivalent values
generating final convergence of the growth rates. This trend is
also indicated by the viscosity in Figure 4, where the difference

Figure 5. The growth rates of GST NPs between Tg and Tm. Blue and
red curves represent the data for GST (H2) and GST (CH4),
respectively. The black dashed curve is the growth rate for GST
films,14 while the black data points are from direct measurements via
transmission electron microscopy11,13 and atomic force microscopy.12

The directly measured growth rate for nitrogen-doped GST films is
also shown in this figure;16 see the blue stars in this figure. The light
yellow shaded area denotes the actual measurement regime accessed
by ultrafast DSC.
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is less apparent, because Figure 4 is normalized with respect to
Tg. This makes the NPs (CH4) preferable for PC memory
application as lower growth rates at low temperatures
associated with a higher activation energy indicate a longer
data retention time; meanwhile, the still comparable growth
rates at higher temperature enable sufficient rapid switching (to
the crystalline SET state); see the more detailed discussion in
Section 5 of the SI.
The growth rate undergoes an Arrhenius-like behavior at

temperatures just above Tg, and non-Arrhenius behavior
emerges with a further increase of temperature, demonstrating
a temperature-dependent activation energy (Eg, derived from
the gradient of this curve) for crystal growth during
crystallization. With similar slopes to the independent data
near Tg, the Eg is determined as ∼2.8 and ∼3.2 eV at−1 for the
NPs (H2) and NPs (CH4), as can be seen in Figure S6. For
Ge2Sb2Te5 films it is well-established that the activation energy
for crystallization and for growth near Tg is in the range 2.2−3.0
eV at−1.10−13,36,55 In comparison, the growth rate of GST films
derived in ref 14 presents a considerably higher activation
energy, ∼5.0 eV at−1 near Tg, which appears unrealistic.
Although a high fragility of the GST thin film can lead to a high
activation energy, this fragility was obtained fully through
modeling and fitting and not based on any directly measured
data, inferring that the high fragility for the thin film could be
erroneous.
However, it is still evident that the growth rates for the NPs

(H2) observed in the present work exhibit a large gap (∼2
orders of magnitude) with the directly measured data obtained
for GST films (open black data points in Figure 5).11−13 This
discrepancy can have several origins, e.g.: (1) The NPs (H2)
crystallize at lower temperature than films, leading to a faster
growth rate at the same temperature. The NPs (CH4) represent
an evidently lower growth rate at the same temperature
compared to NPs (H2) due to the increase of Tp. Similarly, the
nitrogen-doped GST films (confined in memory cells) even
show smaller growth rate than GST films,16 as demonstrated by
the blue stars in Figure 5. (2) The constant nuclei density
hypothesis that was adopted in JMAK modeling is over-
simplified and may result in an erroneous fitting of the data in
the Kissinger plot and therefore may cause a considerable shift
to higher growth rates at the lower temperatures. However,
several clearly more advanced models for nucleation were also
tested, and these models did not significantly reduce the gap
between the growth rates derived for the NPs (H2) (blue solid
line in Figure 5) and the directly measured data obtained for
GST films (black open data points in Figure 5); for more
details see the SI and in particular Figure S7.

■ CONCLUSIONS
Ultrafast differential scanning calorimetry has been employed to
investigate the crystallization kinetics of Ge2Sb2Te5 phase-
change nanoparticles (NPs) synthesized by gas-phase con-
densation. The NPs show a relatively narrow size distribution
around an average diameter of ∼16 nm. Varying the heating
rate during the DSC measurements with 3 orders of magnitude,
it is observed that (1) the crystallization rate complies with
Arrhenius behavior within an (unexpectedly) large temperature
range directly above Tg (for Tg/T values from 0.85 to 1) and
(2) a non-Arrhenius fragile behavior occurs at higher
temperatures (for Tg/T values lower than 0.85). This unique
feature can be explained well (only) by utilizing a fragile-to-
strong crossover model for the viscosity, from which the overall

viscosity and growth rate of the NPs have been derived. This
crossover is clearly observed here for the Ge2Sb2Te5 NPs, while
it was not observed earlier for GST films. This enables NPs to
have both longer data retention times at low temperatures and
high switching speed at high temperatures, entailing the NPs to
be an advantageous contender in phase-change materials based
devices. Moreover, it is demonstrated that CH4 incorporation
during the NP production reduces the crystal growth rate by
about 2 orders of magnitude at lower temperatures and thus
improves the data retention, whereas the maximum growth rate
remains unchanged. This positive “doping” effect makes
Ge2Sb2Te5 NPs even more suitable candidates for phase-
change memory applications.
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Gonzaĺez-Hernańdez, J. Determination of the Glass Transition and
Nucleation Temperatures in Ge2Sb2Te5 Sputtered Films. J. Appl. Phys.
2002, 91 (2), 697−702.
(45) Cho, J.-Y.; Kim, D.; Park, Y.-J.; Yang, T.-Y.; Lee, Y.-Y.; Joo, Y.-C.
The Phase-Change Kinetics of Amorphous Ge2Sb2Te5 and Device
Characteristics Investigated by Thin-Film Mechanics. Acta Mater.
2015, 94, 143−151.
(46) Angell, C. A. Formation of Glasses from Liquids and
Biopolymers. Science 1995, 267 (5206), 1924−1935.
(47) Neumann, H.; Herwig, F.; Hoyer, W. The Short Range Order of
Liquid Eutectic AIII-Te and AIV-Te Alloys. J. Non-Cryst. Solids 1996,
205−207 (Part 1), 438−442.

The Journal of Physical Chemistry C Article

DOI: 10.1021/acs.jpcc.6b11707
J. Phys. Chem. C 2017, 121, 8569−8578

8577

http://dx.doi.org/10.1038/ncomms5314
http://dx.doi.org/10.1038/ncomms5314
http://dx.doi.org/10.1038/ncomms3371
http://dx.doi.org/10.1038/srep39546
http://dx.doi.org/10.1021/acs.jpcc.6b11707


(48) Rocca, J.; Erazu,́ M.; Fontana, M.; Arcondo, B. Crystallization
Process on Amorphous GeTeSb Samples near to Eutectic Point
Ge15Te85. J. Non-Cryst. Solids 2009, 355 (37−42), 2068−2073.
(49) Ito, K.; Moynihan, C. T.; Angell, C. A. Thermodynamic
Determination of Fragility in Liquids and a Fragile-to-Strong Liquid
Transition in Water. Nature 1999, 398 (6727), 492−495.
(50) Stølen, S.; Grande, T.; Johnsen, H.-B. Fragility Transition in
GeSe 2 − Se Liquids. Phys. Chem. Chem. Phys. 2002, 4 (14), 3396−
3399.
(51) Wei, S.; Lucas, P.; Angell, C. A. Phase Change Alloy Viscosities
down to Tg Using Adam-Gibbs-Equation Fittings to Excess Entropy
Data: A Fragile-to-Strong Transition. J. Appl. Phys. 2015, 118 (3),
034903.
(52) Akola, J.; Jones, R. O. Structural Phase Transitions on the
Nanoscale: The Crucial Pattern in the Phase-Change Materials
Ge2Sb2Te5 and GeTe. Phys. Rev. B: Condens. Matter Mater. Phys.
2007, 76 (23), 235201.
(53) Orava, J.; Weber, H.; Kaban, I.; Greer, A. L. Viscosity of Liquid
Ag−In−Sb−Te: Evidence of a Fragile-to-Strong Crossover. J. Chem.
Phys. 2016, 144 (19), 194503.
(54) Lee, S.-H.; Jung, Y.; Agarwal, R. Size-Dependent Surface-
Induced Heterogeneous Nucleation Driven Phase-Change in
Ge2Sb2Te5 Nanowires. Nano Lett. 2008, 8 (10), 3303−3309.
(55) Redaelli, A.; Pirovano, A.; Tortorelli, I.; Ielmini, D.; Lacaita, A.
L. A Reliable Technique for Experimental Evaluation of Crystallization
Activation Energy in PCMs. IEEE Electron Device Lett. 2008, 29 (1),
41−43.

The Journal of Physical Chemistry C Article

DOI: 10.1021/acs.jpcc.6b11707
J. Phys. Chem. C 2017, 121, 8569−8578

8578

http://dx.doi.org/10.1021/acs.jpcc.6b11707

