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Asynchronous Decision-Making Dynamics under Best-Response
Update Rule in Finite Heterogeneous Populations

Pouria Ramazi and Ming Cao

Abstract—To study how sustainable cooperation might emerge
among self-interested interacting individuals, we investigate the
long-run behavior of the decision-making dynamics in a finite,
well-mixed population of individuals, who play collectively over
time a population game. Repeatedly each individual is activated
asynchronously to update her decision to either cooperate or
defect according to the myopic best-response rule. The game’s
payoff matrices, chosen to be those of either prisoner’s dilemma
or snowdrift games to underscore cooperation-centered social
dilemmas, are fixed, but can be distinct for different individuals.
So the overall population is heterogeneous. We first classify such
heterogeneous individuals into different types according to their
cooperating tendencies stipulated by their payoff matrices. Then
we show that no matter what initial strategies the individuals
decide to use, surprisingly one can always identify one type of
individuals as a benchmark such that after a sufficiently long but
finite time, individuals more cooperative compared to the bench-
mark always cooperate while those less cooperative compared to
the benchmark defect. When such fixation takes place, the total
number of cooperators in the population either becomes fixed
or fluctuates at most by one. Such insight provides theoretical
explanation for some complex behavior recently reported in
simulation studies that highlight the puzzling effect of individuals’
heterogeneity on collective decision-making dynamics.

I. INTRODUCTION

The study on mechanisms of emergence of cooperation
in self-interested social populations has attracted extensive
attention in the past decades [2]–[6]. One general consensus
is that human’s ability to learn plays a key role to build
up sustainable collective cooperation in a competitive envi-
ronment. Recent experimental studies [7]–[9] indicate that
in a social group how human subjects learn to update their
strategies may affect dramatically the outcome of the group’s
interactions. For example, the cooperation level of a group of
individuals is higher when each individual focuses more on
the frequencies of the behaviors of the peers (frequency-based
learning) instead of the success among the peers (success-
based learning) [7]. However, how the frequency-based indi-
viduals learn remains an open question, which requires much
more in-depth theoretical investigation on possible learning
rules and the resulted population decision-making dynamics.
Evolutionary game theory [10]–[15] has provided promising
theoretical tools, and in fact postulated a variety of dynamical
models under frequency-based learning [16]–[20]. In one
popular model, decision makers always follow the myopic
best-response update rule to maximize their utilities against
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their opponents based on the frequencies of their opponents’
strategies [21]–[24].

Various simulation based studies have disclosed several
features of such best-response evolutionary dynamics. For
homogeneous populations where individuals have the same
tendency to cooperate, people have identified the surprising
suppression of network effects in different game setups [25]–
[27]. For heterogeneous populations where individuals’ ten-
dencies to cooperate are different, we have reported a new
“level-off” phenomenon [28]; to be more specific, level-off
here refers to the phenomenon that starting with a population
of a low cooperation level, the level rises with the share of
more-cooperative individuals but then levels off as the share
reaches some threshold. These and other related simulation
studies [29] provide intuition on how the decision-making
dynamics in large populations governed by the best-response
rule evolve over time, but sometimes the results are descriptive
due to the lack of rigorous mathematical proofs. Some related
mathematical results can in general only be applied to homo-
geneous populations in specific setups, such as deterministic
updates within well-mixed and finite populations [30], infinite
population or mean field approximation [31]–[34], and noisy
updates [35]–[38]. Only a few papers with mathematical
analysis have studied heterogeneous populations [39], [40],
but still with restrictive assumptions like infinite populations
or deterministic updates. So a great challenge is to develop
new mathematically rigorous tools to analyze asynchronous
decision-making dynamics under the best-response update rule
in finite heterogeneous populations.

In this paper we consider a finite, well-mixed, hetero-
geneous population in which each individual, also referred
to as agent, has her own (possibly unique) utility function
when playing evolutionary games where the base game is
the classical prisoner’s dilemma or snowdrift game to capture
the well-known cooperation social dilemma. The agents are
activated asynchronously to revise their strategies according
to the best-response update rule. Our main results are to
explicitly determine the long run dynamic behavior without
using mean-field or other approximation methods. We are able
to show that no matter what initial strategies the individuals
decide to use, surprisingly one can always identify one type of
individuals as a benchmark such that after a sufficiently long
but finite time, more-cooperative individuals cooperate while
those less cooperative defect. It is also shown that the total
number of cooperators in the population will either become
fixed or fluctuate at most by one. The importance of the new
findings is threefold. First, these global convergence results
explain rigorously why sustainable cooperation can emerge
among selfish heterogeneous individuals. Second, the level-
off phenomenon [28] is validated and proved rigorously and



thus shows the subtlety of controlling the level of cooperation
if one wants to use population heterogenity as a means to
intervene collective decision-making processes. And third, the
different thresholds in the level-off behavior for populations
with diverse compositions indicate the sometimes restrictive
nature of the homogeneity assumption in social evolutionary
models.

The rest of the paper is organized as follows. In Section II,
we present the model for decision-making dynamics. The main
convergence results are shown in Section III. We in Section
IV focus on the mathematical characteristics of the level-off
phenomenon.

II. DECISION-MAKING UNDER BEST-RESPONSE UPDATES

We consider a finite, well-mixed population of n agents
that are participating in a population game evolving over time
t = 0, 1, . . . . Each agent can choose either to cooperate (C) or
defect (D). At each time t, an agent is activated to update her
strategy according to how well she is doing when she plays
her current strategy against the population. More specifically,
the four possible payoffs of an agent i, i = 1, . . . , n, are
summarized in the 2× 2 payoff matrix

Ai =

( C D

C Ri Si
D Ti Pi

)
, (1)

where the payoffs Ri, Ti, Si and Pi are real numbers cor-
responding to strategy pairs C-against-C, D-against-C, C-
against-D and D-against-D respectively. Let si(t) denote
agent i’s strategy at time t in the vector form, which is either
sC

∆
= [1 0]> to cooperate or sD ∆

= [0 1]> to defect. Obviously,
sC = 1 − sD with 1 = [1 1]>. So agent i’s payoff at time t
against the population can be calculated by

ui (si(t), sC(t)) = si(t)
>Ai sC(t)

where sC(t)
∆
=
[
nC(t) n− nC(t)

]>
and nC(t) denotes the

number of cooperators in the whole population at time t. The
myopic best-response update rule for agent i dictates that agent
i chooses the strategy that maximizes her payoff. In case both
cooperation and defection return the same payoff, we assume
agent i sticks to her current strategy. Therefore, the update
rule is that agent i sticks to her current strategy only if her
alternative strategy does not give her a higher payoff, namely

si(t+ 1) ={
si(t) if ui(si(t), sC(t)) ≥ ui(1− si(t), sC(t))

1− si(t) otherwise
.

(2)
As an illustration, the agents can be thought of as robots

participating in a group transportation task, who can decide
either to contribute to transport an object (C) or to free ride to
let the other robots to do the job (D). Payoffs then represent
the reward for accomplishing the task, minus the robot’s share
for transformation cost. In a different scenario, the agents can
also stand for drivers choosing to detour in order to reduce the
potential traffic jam (C) or choosing the shortest path knowing
this may increase the pressure for traffic management (D).

Penalties can roughly be thought of as the time spent by each
driver on the path, plus how much the driver is penalized to
increase the potential traffic jam.

When studying homogeneous populations, people are
mainly interested in how the portion of cooperators changes
over time; for heterogeneous populations like in this paper, the
more complex central topic is how the portions of cooperators
with different utility functions evolve. Towards this end, we
classify the heterogeneous individuals into different types
according to their cooperating tendencies stipulated by their
payoff matrices Ai in (1). We focus on those Ai with special
structures [28]: the entries of Ai satisfy

Ti > Ri > max{Si, Pi}, Si 6= Pi. (3)

Then Ai corresponds to either a prisoner’s dilemma (PD)
game satisfying Pi > Si or a snowdrift (SD) game satisfying
Si > Pi. We call each agent with a PD (resp. SD) payoff
matrix a PD agent (resp. SD agent). In fact, as we will later
show in Lemma 1, PD agents always tend to defect under
(2); however, an SD agent’s tendency to cooperate depends
on the ratio Si−Pi

Ti−Ri+Si−Pi , namely, the higher the ratio is, the
more cooperative the agent becomes, except for those ratios
in the same interval ( kn ,

k+1
n ) for some k ∈ {0, 1, . . . , n− 1}

that result in the same cooperative tendency. For this reason,
we categorize all those SD players whose ratios are within
the same interval ( kn ,

k+1
n ) into the same type. Moreover, all

those SD players whose ratios equal k
n , naturally fall into

the same type as well. We assume there are altogether l > 0
types and label them by 1, . . . , l according to the descending
order of the ratios. Correspondingly, each SD agent of the
jth, j ∈ {1, . . . , l}, type is called an SDj agent. Then there
are altogether l + 1 types of agents after taking into account
the PD agents. Let nPD denote the number of PD agents
and nSDj the number of SDj agents. Then the heterogeneity
of the population is characterized by the type-vector

p
∆
= (nSD1

, nSD2
, . . . , nSDl , nPD)

and obviously

p ∈ Pn
∆
=

{
p ∈ Zl+1

∣∣∣ l+1∑
i=1

pi = n, pi ≥ 0

}
.

We find that after scaling up the agents’ ratios by n, some
comparisons involving the numbers of different types of agents
can be easier to be made. For this reason and to have the same
number after scaling up the ratios of same-type agents, we
define the temper of an SDj agent i to be

n∗SDj =
1

2

⌊
n

Si − Pi
Ti −Ri + Si − Pi

⌋
+

1

2

⌈
n

Si − Pi
Ti −Ri + Si − Pi

⌉
(4)

where for a real number a, dae and bac return the smallest
integer no less than a and the largest integer no greater than
a respectively. The temper of a PD agent is defined to be
zero. We study the effects of heterogeneity of the population
when similar types are sufficiently apart in tempers; to be more
precise, we assume

n∗SDi−1
> dn∗SDie and bn∗SDic > n∗SDi+1

, ∀i ∈ {2, . . . , l−1}.
(5)



We use nCSDi to denote the number of cooperators among the
SDi players and nCPD that among the PD players. Then we
stack all the nCSDi and nCPD together, and call the resulted
(l + 1)-dimensional vector the distribution of cooperators of
the whole population

x
∆
=
(
nCSD1

, nCSD2
, . . . , nCSDl , n

C
PD

)
.

The main goal of this paper is to study given the type of
a heterogeneous population p ∈ P , how the system state x
evolves over time t under the update rule (2) and the activation
sequence of the agents. Here, we assume that the agents are
activated persistently as follows.
Persistent activation assumption: For every agent i ∈
{1, . . . , n} and any time t = 0, 1, 2, . . ., there exists some
finite time t′ ≥ t at which agent i is activated.
This is a very mild assumption that holds almost surely, that is
with probability one, in most of the usual stochastic settings,
e.g., when each agent is activated at a rate determined by a
Poisson clock [41].

Given the asynchronous, nonlinear nature of the dynamics
of x(t), it is not clear whether x(t) will converge at all. In
fact, we will show that depending on the given type p, the state
x(t) converges to either a single state or a set of two states,
and more importantly the convergence takes place globally in
finite time. The key technical step is to construct a Lyapunov-
like function. We provide the details of our main convergence
results and their proofs in the next section.

III. CONVERGENCE OF THE BEST-RESPONSE DYNAMICS

To understand better the best response update rule (2), we
first rewrite it in the form emphasizing the effects of the
agents’ tempers.

Lemma 1: When an agent i ∈ {1, . . . , n} updates its strategy
si(t) at time t ≥ 0 according to (2), then

si(t+ 1) = sD (6)

if i is a PD agent, and

si(t+ 1) =


sC nC(t) < n∗SDj
si(t) nC(t) = n∗SDj
sD nC(t) > n∗SDj

(7)

if i is an SDj agent for some j ∈ {1, . . . , l}.
Proof: See subsection A in the Appendix.

Lemma 1 tells us that a PD agent will always update
to defect while an SD agent’s decision depends on the
comparison between its temper and the current total number
of cooperators in the whole population. So the largest possible
number of cooperators after every agent has updated at least
once is n − nPD =

∑l
j=1 nSDj . In this case, an immediate

observation is that if

n− nPD < n∗SDl , (8)

and even when all the possible cooperators (namely all the SD
players) are indeed cooperating, the least cooperative type of
SD player, ie. SDl players, will all cooperate. This motivates
us to distinguish populations with various p’s according to
whether the inequality (8) holds.

Definition 1: For any of those p with which (8) holds, we
say the corresponding population is biased since in it even
the least cooperative type of SD agents tends to cooperate;
otherwise, we say the population is unbiased.

We first observe that, from Lemma 1, if any PD agent is
activated, her updated strategy is always to defect. Because of
the persistent activation assumption, after a sufficient number
of updates, all the PD agents have been activated at least once,
then all of them stick to defection afterwards. We summarize
it below.

Lemma 2: There exists a finite time tPD such that

x(t) =
(
nCSD1

(t), nCSD2
(t), . . . , nCSDl(t), 0

)
∀t ≥ tPD.

In the rest of the paper, we use tPD in Lemma 2 to denote
the time that the convergence to the state stipulated in the
lemma has taken place. The long-run behavior for biased
populations is rather straightforward to establish, which is
presented in the following theorem.

Theorem 1: For a given biased population, there exists some
time τ such that for all t ≥ τ

x(t) = (nSD1
, nSD2

, . . . , nSDl , 0).

Proof: For a biased population, it holds that

nC(t) ≤
∑l

j=1
nSDj ∀t ≥ tPD

(8) :
∑l

j=1
nSDj = n− nPD < n∗SDl

(5) :n∗SDl ≤ n
∗
SDi ∀i ∈ {1, . . . , l}

⇒
nC(t) < n∗SDi ∀i ∈ {1, . . . , l},∀t ≥ tPD.

Hence, from Lemma 1, if any of the SD agents is acti-
vated after tPD, she chooses cooperation as her strategy.
Furthermore, since the agents are activated persistently, there
exists some time τ ≥ tPD such that all of the SD agents
have become activated before τ , and thus choose cooperation
without changing it afterwards. So the proof is complete.

However, the analysis of the long-run behavior for unbiased
populations is much more complicated, and we need some
additional technical notions. For an unbiased population, we
can still examine the accumulated number of SD players
according to their ordering, and more precisely we define the
benchmark

kp
∆
= min

{
k
∣∣∣ k ∈ {1, . . . , l}, k∑

i=1

nSDi ≥ n∗SDk

}
(9)

and call the SDkp agents the benchmark agents since such
players, as will be shown later, indicate clearly who will
always cooperate in the long run. The following property
follows directly from this definition of kp:

j∑
i=1

nSDi < n∗SDj ∀j < kp. (10)

Now we are ready to present the first main result of this
section, which identifies the invariant set of the system for



unbiased populations. To do so, we define the following (l+1)-
dimensional vectors

x∗
∆
= (nSD1

, . . . , nSDkp−1
, 0, . . . , 0),

x∗−
∆
= (nSD1

, . . . , nSDkp−1
, bn∗SDkp c −

kp−1∑
j=1

nSDj , 0, . . . , 0),

x∗+
∆
= (nSD1

, . . . , nSDkp−1
, dn∗SDkp e −

kp−1∑
j=1

nSDj , 0, . . . , 0).

Note that these three vectors differ only in their kpth element;
such elements in x∗− and x∗+ in general differ by one, and
are the same if and only if n∗SDkp is an integer. For unbiased
populations, we further classify them into two categories: we
say the population is clean-cut if

∑kp−1
j=1 nSDj ≥ n∗SDkp ,

otherwise, ruffled.
Proposition 1: For a given unbiased population with the

benchmark kp, when the population is clean-cut, x∗ is invari-
ant; otherwise when it is ruffled, {x∗−, x∗+} is.

We need the following lemma in the proof.
Lemma 3: If x(t0) ∈ {x∗, x∗−, x∗+} at some t0 ≥ tPD, then

nCSDi(t0 + 1) = nCSDi(t0) = 0 ∀i > kp, (11)

nCSDi(t0 + 1) = nCSDi(t0) = nSDi ∀i < kp. (12)

Proof: See Subsection B in the Appendix.
Proof of Proposition 1: It suffices to show that for some

t0 ≥ tPD, in clean-cut populations

(x(t0) = x∗) ⇒ (x(t) = x∗ ∀t ≥ t0) , (13)

and in ruffled populations(
x(t0) ∈ {x∗−, x∗+}

)
⇒
(
x(t) ∈ {x∗−, x∗+} ∀t ≥ t0

)
. (14)

We first observe that in a clean-cut population at x∗,
nCSDkp (t0) = 0. Then from (46) and Lemma 1, we know that

nCSDkp (t0 + 1) = nCSDkp (t0) = 0. (15)

Combining (15) with (11) and (12) in Lemma 3, we conclude
that (13) holds for t = t0 + 1 and then by induction holds for
any t ≥ t0.

We then observe that in a ruffled population at x∗− and x∗+,

nCSDkp (t0) ∈
{
bn∗SDkp c−

kp−1∑
j=1

nSDj , dn∗SDkp e−
kp−1∑
j=1

nSDj
}
.

(16)
Then one of the following three cases must takes place.

Case 1: bn∗SDkp c −
∑kp−1
j=1 nSDj = dn∗SDkp e −∑kp−1

j=1 nSDj . Then bn∗SDkp c = dn∗SDkp e = n∗SDkp , implying
that nC(t0) = n∗SDkp . Hence, from Lemma 1, if an SDkp

agent is active at t0, she will not change her strategy. There-
fore,

nCSDkp (t0 + 1) = nCSDkp (t0)

= bn∗SDkp c −
kp−1∑
j=1

nSDj = dn∗SDkp e −
kp−1∑
j=1

nSDj . (17)

Case 2: nCSDkp (t0) = dn∗SDkp e −
∑kp−1
j=1 nSDj and

dn∗SDkp e 6= n∗SDkp . Then

nC(t0) = dn∗SDkp e > n∗SDkp .

Hence, from Lemma 1, if an SDkp agent is active at t0, she
updates to sD at t0 + 1. So

nCSDkp (t0 + 1) = nCSDkp (t0)− 1 = bn∗SDkp c −
kp−1∑
j=1

nSDj .

(18)
Case 3: nCSDkp (t0) = bn∗SDkp c −

∑kp−1
j=1 nSDj and

bn∗SDkp c 6= n∗SDkp . Then

nC(t0) = bn∗SDkp c < n∗SDkp .

Hence, from 1, when an SDkp agent is active at t0, she updates
to sC at t0 + 1. So

nCSDkp (t0 + 1) = nCSDkp (t0) + 1 = dn∗SDkp e −
kp−1∑
j=1

nSDj .

(19)
Moreover, when the active agent at t0 is not an SDkp agent,
we have that

nCSDkp (t0 + 1) = nCSDkp (t0). (20)

Combining (17), (18), (19) and (20) together, we have

nCSDkp (t0+1) ∈
{
bn∗SDkp c−

kp−1∑
j=1

nSDj , dn∗SDkp e−
kp−1∑
j=1

nSDj
}
.

Combining the above deduction with (11) and (12) in Lemma
3, we conclude that (14) holds for t = t0 + 1 and then by
induction holds for any t ≥ t0. �

In fact, a much stronger statement than Proposition 1 can
be made, which shows the invariant state/set is also globally
attractive.

Theorem 2: For a given unbiased population with the
benchmark kp, if the population is clean-cut, then there exists
some time τ such that

x(t) = x∗ ∀t ≥ τ ; (21)

otherwise, there exists some time τ and two infinite time
sequences {ti−}∞i=1 and {ti+}∞i=1 such that

x(t) ∈ {x∗−, x∗+} ∀t ≥ τ, (22)

and

x(ti−) = x∗−, x(ti+) = x∗+ i = 1, 2, . . . .

The theorem implies that after finite time the population
reaches a state where every SDi, i = 1, . . . , kp − 1, agent
cooperates, and every SDi, i = kp + 1, . . . , l, agent and
every PD agent defects. In other words, all the agents that
have a higher (resp. lower) temper than that of the bench-
mark agents, become cooperators (resp. defectors) after a
sufficiently long, but finite, time. Moreover, if the population
is clean-cut, all SDkp agents defect. Otherwise, if further
x∗− = x∗+ or equivalently bn∗SDkp c = dn∗SDkp e, we have that

n∗SDkp −
∑kp−1
j=1 nSDj of the SDkp agents cooperate, and the



rest defect; else in case x∗− 6= x∗+, the number of SDkp agents
who cooperate fluctuates between bn∗SDkp c−

∑kp−1
j=1 nSDj and

dn∗SDkp e −
∑kp−1
j=1 nSDj .

To prove Theorem 2, we make use of a Lyapunov-like
function h(x) defined for populations with kp ≥ 2. Let
α(x) = 0 if nCSD1

6= nSD1 ; otherwise, let α(x) return the
largest index of those SD agents such that

nCSDj (t) = nSDj ∀j ∈ {1, . . . , α(x)}, (23)

α(x) ≤ kp − 2. (24)

Then h(x) is defined to be

h(x)
∆
=

α(x)+1∑
i=1

nCSDi .

Obviously, h(x) is lower bounded by zero and upper bounded
by
∑kp−1
j=1 nSDj . One main step in proving Theorem 2 is to

show that h’s upper bound is tight and along the system’s
trajectory x(t), h reaches and stays at its maximum after
finite time, after which all SD1, SD2, . . . , SDkp−1 agents
always cooperate. Then by using a similar function g(x),
we can prove all SDkp+1, SDkp+2, . . . , SDl agents always
defect after finite time, and the strategies of the SDkp players
depends on whether the inequality

∑kp−1
j=1 nSDj ≥ n∗SDkp

holds. Although along x(t), h does not always increase, its
lower bound can be tightened up as time grows. To be more
specific, we will construct an infinite set B of time instants
tb, such that for any tb ∈ B, it holds that h(t) ≥ h(tb) for all
t ≥ tb; more precisely

B = {tb}
∆
=

{
t ≥ tPD |nC(t) =

kp−1∑
j=1

nSDj if clean-cut

or nC(t) ∈ {bn∗SDkp c, dn
∗
SDkp

e} otherwise
}
.

Then at tb, the number of cooperators in a clean-cut population
is x∗, and that in a ruffled population is x∗− or x∗+. Now we
show by the following two lemmas that such a constructed B
is not only non-empty but infinite.

Lemma 4: In a clean-cut population, if at some time T >
tPD,

nC(T ) <

kp−1∑
j=1

nSDj , (25)

then there exists a finite time T ′ > T such that

nC(T ′) =

kp−1∑
j=1

nSDj . (26)

In a ruffled population, if at some time T > tPD,

nC(T ) < bn∗SDkp c, (27)

then there exists some finite time T ′ such that

nC(T ′) ∈
{
bn∗SDkp c, dn

∗
SDkp

e
}
. (28)

Proof: For the clean-cut population, we first prove by
contradiction that there exists some finite time T̄ > T such
that

nC(T̄ ) ≥
kp−1∑
j=1

nSDj . (29)

Assume the contrary, that is

nC(t) <

kp−1∑
j=1

nSDj ∀t > T. (30)

Then from (10), for all t > T we have that

nC(t) < n∗SDkp−1

(5)
=⇒ nC(t) < n∗SDi ∀i < kp.

Hence, from Lemma 1 and the persistent activation assump-
tion, we know that there exists a finite time τ , before which
all of the SDi, i < kp, agents, have updated at least once to
fix their strategies to cooperation. Then

x(τ) =
(
nSD1

, . . . , nSDkp−1
, nCSDkp (τ), . . . , nCSDl(τ), 0

)
,

where the zero component follows from Lemma 2, implying

nC(τ) =

l∑
j=1

nSDi(τ) ≥
kp−1∑
j=1

nSDi ,

which contradicts (30). So (29) must be true.
Further, since nC takes integer values and changes at most

by one each time, the transition of nC from (25) to (29) implies
the existence of T ′ to make nC become

∑kp−1
j=1 nSDj at T ′,

and thus (26) is proved.
For the ruffled population, similarly, we first prove by

contradiction the existence of a finite time T̄ > T such that

nC(T̄ ) ≥ bn∗SDkp c. (31)

Assume the contrary, that is

nC(t) < bn∗SDkp c ∀t > T. (32)

From bn∗SDkp c ≤ n
∗
SDkp

, it follows that for all t > T ,

nC(t) < n∗SDkp
(5)
=⇒ nC(t) < n∗SDi ∀i ≤ kp.

Then from Lemma 1, the persistent activation assumption and
Lemma 2, there is a finite time τ > T such that

x(τ) =
(
nSD1

, . . . , nSDkp , n
C
SDkp+1

(τ), . . . , nCSDl(τ), 0
)
.

Then because of the definition of kp,

nC(τ) =

l∑
j=1

nCSDi(τ) ≥
kp∑
j=1

nSDi ≥ n∗SDkp ≥ bn
∗
SDkp

c,

which contradicts (32). So (31) is true and thus the transition
of nC from (27) to (31) implies (28).

Lemma 5: In a clean-cut population, if at T > tPD,

nC(T ) >

kp−1∑
j=1

nSDj , (33)



then there exists a finite time T ′ > T such that

nC(T ′) =

kp−1∑
j=1

nSDj . (34)

In a ruffled population, if at T > tPD,

nC(t) > dn∗SDkp e, (35)

then there exists a finite time T ′ such that

nC(T ′) ∈
{
bn∗SDkp c, dn

∗
SDkp

e
}
. (36)

This lemma can be proven by contradiction following the anal-
ogous steps as those in the proof for Lemma 4. Since Lemma
4 covers the situation for t > tPD, nC(t) <

∑kp−1
j=1 nSDj ,

Lemma 5 for the situation nC(t) greater than the sum, and
the situation nC equals the sum corresponds to t ∈ B, we
have shown that for any t > tPD, either t ∈ B or there is a
finite t′ > t satisfying t′ ∈ B. So we have actually proven the
following.

Lemma 6: The set B is infinite.
After knowing B has infinite time instants in it, we show

the nondecreasing property of h(x) along x(t) at t ∈ B.
Lemma 7: If tb ∈ B, then

h(t) ≥ h(tb) ∀t ≥ tb. (37)

We need the following two lemmas in the proof.
Lemma 8: For all tb ∈ B, it holds that

nC(tb) < n∗SDkp−1
. (38)

Proof: See Subsection C in the Appendix.
Lemma 9: If tb ∈ B, then

nC(t) < n∗SDα(tb)+1
∀t ≥ tb. (39)

Proof: See Subsection D in the Appendix.
Proof of Lemma 7: We prove by contradiction. Assume on

the contrary that (37) can be violated at some time t1 ≥ tb+1.
Hence, for some i = 1, . . . , nSDα(tb)+1

, an SDi agent has
changed her choice from C to D at t1. So from Lemma 1,

nC(t1 − 1) > n∗SDi . (40)

On the other hand, it follows from (5) that n∗SDi ≥ n
∗
SDα(tb)+1

.

Hence, (40) implies

nC(t1 − 1) > n∗SDα(tb)+1
,

which contradicts Lemma 9 since t1 − 1 ≥ tb. �
Lemma 7 has shown how the lower bound of h is tightened

up as time grows. In the following two lemmas, we show
that h indeed reaches its maximum. First, we observe that the
following statement follows directly from Lemma 9.

Lemma 10: For a fixed tb ∈ B, consider the first time after
tb that an SDα(tb)+1 agent, whose strategy was sD at tb, is
activated. Then this agent updates her strategy to sC , and does
not change it afterwards.

Then we prove that h reaches its maximum.
Lemma 11: There exists some time th, at which h reaches

and after which remains at its maximum, i.e., h(t) =∑kp−1
j=1 nSDj for all t ≥ th.

Proof: If there exists tb ∈ B such that h(tb) =∑kp−1
j=1 nSDj , then from Lemma 7, h(t) ≥

∑kp−1
j=1 nSDj

for all t ≥ tb, and thus the result holds straightforwardly.
Otherwise, the only other possibility is that for each tb ∈ B,
h(tb) <

∑kp−1
j=1 nSDj . We will show below that this, however,

will never happen. In this case, for every tb ∈ B, there exists
an SDα(tb)+1 agent whose strategy is sD at tb. On the other
hand, due to the persistent activation assumption, every such
agent will become activated at some finite future time, and in
view of Lemma 11, will update her choice to C and will not
change it afterwards. This cannot be true since B is infinite
according to Lemma 6, but the number of SDα(tb)+1 agents
are finite. So the contradiction completes the proof.

For the same reason of defining h, in order to show that all
of the SDkp+1, . . . , SDl agents eventually become defectors,
we define another Lyapunov-like function γ(x) defined for
populations with kp ≤ l − 1. Let γ(x) = 0 if nCSDl 6= 0;
otherwise, let γ(x) return the smallest index j of those SDj

agents such that

nCSDj (t) = 0 ∀j ∈ {γ(t), . . . , l},
γ(t) ≥ kp + 2.

Clearly g has a minimum of 0 and indeed similar to the
property of h, one can show that g eventually reaches its
minimum.

Lemma 12: There exists some time tg at which g reaches
and remains at its minimum, i.e., g(t) = 0 for all t ≥ th.

Now we are ready to prove the main result.
Proof of Theorem 2. If kp ≥ 2, then in view of Lemma 11

and according to the definition of h, there exists some time th
such that

nCSDj (t) = nSDj ∀t ≥ th, ∀j ∈ {1 . . . , kp − 1}. (41)

On the other hand, if kp ≤ l − 1, then in view of Lemma 12
and according to the definition of g, there exists some time tg
such that

nCSDj (t) = 0 ∀t ≥ tg, ∀j ∈ {kp + 1, . . . , l}. (42)

Let tm = max{th, tg}. From (41) and (42), it follows

x(t) =
(
nSD1

, . . . , nSDkp−1
, nCSDkp (t), 0, . . . , 0

)
∀t ≥ tm.

(43)
Clearly (43) also holds if kp = 1 or kp = l, implying that it
holds in general for any unbiased population. Now Consider
tb ∈ B, tb ≥ tm. If the population is clean-cut, then by the
definition of B,

nC(tb) =

kp−1∑
j=1

nSDj
(43)
==⇒ nCSDkp (tb) = nC(tb)−

kp−1∑
j=1

nSDj = 0.

Hence, x(tb) = x∗, and in view of Lemma 1, x(t) = x∗ for
all t ≥ tb. On the other hand, if the population is ruffled, then

nC(tb) ∈
{
bn∗SDkp c, dn

∗
SDkp

e
}

(43) : nCSDkp (tb) = nC(tb)−
kp−1∑
j=1

nSDj

⇒
nCSDkp (tb) ∈

{
bn∗SDkp c −

∑kp−1
j=1 nSDj , dn∗SDkp e −

∑kp−1
j=1 nSDj

}
.



Hence, x(tb) ∈ {x∗−, x∗+}, and in view of Lemma 1, x(t) ∈
{x∗−, x∗+} for all t ≥ tb. Therefore, (21) and (22) are proven
by taking τ = tb.

To construct the two infinite subsequences, if x∗− = x∗+, the
result is trivial. Otherwise, let τi > τ be the ith time after
t = τ that an SDkp agent is activated. The time sequence
{τi} is infinite since the agents are activated persistently. From
(22), x(τi) ∈

{
x∗−, x

∗
+

}
. Without loss of generality assume

x(τ1) = x∗−. From the definition of x∗−,

nC(τ1) =

kp−1∑
j=1

nSDj + nCSDkp (τ1) = bn∗SDkp c. (44)

It can be easily verified that x(t) does not change within
[τ1, τ2− 1]. Hence, nC(τ2− 1) = nC(τ1). On the other hand,
x∗− 6= x∗+ yields bn∗SDkp c < n∗SDkp < dn∗SDkp e. Hence,
because of (44), nC(τ2 − 1) < n∗SDkp , which in view of
Lemma 1 implies that the active SDkp agent at τ2 switches her
choice from D to C. Hence, nCSDkp (τ2) = nCSDkp (τ1) + 1 =

dn∗SDkp e−
∑kp−1
j=1 nSDj . Therefore, x(τ2) = x∗+. Similarly, it

can be shown that x(τ3) = x∗−. In general, by induction

x(τ2r+1) = x∗−, x(τ2r+2) = x∗+ ∀r = 0, 1, 2, . . . .

Taking {ti−}∞i=1 = {τ2r+1}∞r=0 and {ti+}∞i=1 = {τ2r}∞r=0, we
arrive at the conclusion. �

Remark 1: Theorem 2 also holds when condition (5) is
relaxed to the following

n∗SDi > n∗SDi+1
∀i ∈ {1, . . . , l − 1};

however, then the agents must be activated pairwise persis-
tently, that is for any pair of agents i and j and each time
t, there exists some finite time t′ > t such that i and j are
activated consecutively at t′ and t′+ 1, respectively. Although
stronger than the persistent activation assumption, the pairwise
persistent activation assumption is satisfied almost surely in
most stochastic settings as well, particularly when agents are
activated independently, e.g., according to Poisson clocks.

The following result can be derived directly from Theorems
1 and 2, and specifies the number of long-run cooperators.

Corollary 1: For a population with p ∈ Pn, there exists
some time τ such that for all t ≥ τ , if the population is
biased, nC(t) =

∑l
i=1 nSDi ; otherwise, if it is clean-cut,

nC(t) =
∑kp−1

i=1
nSDi ;

and if it is ruffled,

nC(t) ∈
{
bn∗SDkp c, dn

∗
SDkp

e
}
,

with two infinite time sequences {ti−}∞i=1 and {ti+}∞i=1 satis-
fying for i = 1, 2, . . .,

nC(ti−) = bn∗SDkp c, nC(ti+) = dn∗SDkp e.

Corollary 1 and Lemma 8 can be used the derive lower and
upper bounds for the number of long-run cooperators.

Corollary 2: For an unbiased population with benchmark
kp, there exists some time τ such that for all t ≥ τ ,

n∗SDkp ≤ nC(t) < n∗SDkp−1
.

After having presented the mathematical analysis of the
long-run behavior of the decision-making dynamics, in the
next section, we look into how the number of long-run
cooperators changes when the cooperation tendencies of some
SD players are manipulated.

IV. THE LEVEL-OFF PHENOMENON

For heterogeneous populations, important research ques-
tions arise that do not show up for homogeneous populations.
In particular, we are interested in knowing whether increasing
some individuals’ tendencies to cooperate results in the rise
of the cooperation level of the whole population. Mainly
through simulations, we have provided a negative answer to
this question in [28]. In this paper, we give more thorough
theoretical analysis showing that the total number of cooper-
ators in the long run, denoted by nfC , may initially increase
as the tendencies of a portion of individuals increases, but
levels off as the portion grows until the size of the portion
passes a threshold, after which the number of cooperators
may continue to grow. We call this particular relationship
between the number of long-run cooperators and the portion
of manipulated population the level-off phenomenon. Let us
first illustrate this phenomenon by an example.

Example 1: Consider the decision-making dynamics formu-
lated in Sec. II for a population of 100 agents with six different
types, namely n = 100 and l = 5. Set the tempers to be

(n∗SD1
, n∗SD2

, n∗SD3
, n∗SD4

, n∗SD5
) = (75, 60, 50, 40, 15),

and the type-vector

p = (7, 0, 3, 20, 60, 10).

For r = 0, 1, . . . 60 agents of the SD5 type, we change
them to SD2 agents. We plot nfC against r in Figure 1.
Clearly, as the number of SD2 agents increases, the number
of long-run cooperators nfC first increases as r grows from
0 to 10, levels off for 10 ≤ r ≤ 30, increases again for
30 ≤ r ≤ 40, and experiences two more level-offs afterwards.
So increasing r does not necessarily increase the number of
long-run cooperators.

We remark that the tempers in Example 1 are chosen to
be integers to avoid the outcome that the total number of
cooperators fluctuates between two consecutive numbers in
the long run. This simplifies the plot in Figure 1 and the
presentation of its corresponding mathematical results, which
motivates us to focus on integer tempers in what follows.
When the tempers are allowed to be real numbers, the total
number of cooperators in the long run may fluctuate between
two consecutive integers at some values of nSD2

in Figure 1;
however, the overall shape of the curve remains unchanged.

To explain such level-off phenomena mathematically, we
first observe from Figure 1 that every plateau in the curve
takes the value of one of the integer-valued tempers n∗SDb , b ∈
{1, . . . , l}. We formulate this observation more rigorously in
the following proposition.

Proposition 2: For b ∈ {1, . . . , l}, assume n∗SDb is an
integer. Then nfC = n∗SDb , if and only if

∑b−1
s=1 ps ≤ n∗SDb ≤∑b

s=1 ps.
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Fig. 1. For Example 1, the number of long-run cooperators nf
C against the

number of SD5 agents r, whose types have changed to SD2.

Proof: (sufficiency) Since

b−1∑
s=1

ps ≤ n∗SDb
(5)
< n∗SDb−1

b∑
s=1

ps ≥ n∗SDb


⇒ kp = b,

it follows from Corollary 1 and
∑b−1
s=1 ps ≤ n∗SDb that

nfC(p) = n∗SDb .
(necessity) Let nfC(p) = n∗SDb . First n∗SDb ≤

∑b
s=1 ps is

proven by contradiction. Assume the contrary, i.e., n∗SDb >∑b
s=1 ps, then kp ≥ b+1. Consider the situation when the pop-

ulation is clean-cut, i.e.,
∑kp−1
s=1 ps ≥ n∗SDkp . Then Corollary 1

implies nfC(p) =
∑kp−1
s=1 ps. On the other hand, by the defini-

tion of kp,
∑kp−1
s=1 ps < n∗SDkp−1

. Hence, nfC(p) < n∗SDkp−1
.

So in view of (5), nfC(p) < n∗SDb , which is impossible.
Therefore, the population is ruffled, i.e.,

∑kp−1
s=1 ps < n∗SDkp .

Hence, in view of Corollary 1, nfC(p) = n∗SDb = n∗SDkp , but

this is in contradiction with kp ≥ b+ 1. So n∗SDb ≤
∑b
s=1 ps

must be true.
Now

∑b−1
s=1 ps ≤ n∗SDb is proven by contradiction. Assume

the contrary, i.e.,
∑b−1
s=1 ps > n∗SDb . If

∑b−1
s=1 ps < n∗SDb−1

,
then kp = b, and in view of Corollary 1, nfC(p) =

∑b−1
s=1 ps >

n∗SDb , which is impossible. Hence,
∑b−1
s=1 ps ≥ n∗SDb−1

,
yielding kp ≤ b−1. On the other hand, in view of Corollary 2,
nfC(p) ≥ n∗SDkp , which according to (5) and kp ≤ b−1 results

in nfC(p) > n∗SDb , a contradiction. Hence,
∑b−1
s=1 ps ≤ n∗SDb .

The proposition shows the existence of a range of type-
vectors that will lead to n∗SDb cooperators in the population in
the long run. The following theorem takes advantage of this
result, and determines precisely those changes in the types of
the agents in order to achieve and maintain n∗SDb cooperators
in the long run. For a type-vector p, denote by pri→j , i, j ∈

{1, . . . , l}, the new type-vector after the type of r ≥ 0 agents
changes from SDi to SDj . When all the tempers n∗SDb are
integers, from Corollary 1, we know that nfC(p) always exists
for any p ∈ Pn.

Theorem 3 (sustainable cooperation levels): For a given
population with p ∈ Pn, assume all the tempers n∗SDb are
integers and assume there exists some b ∈ {1, . . . , l} such
that nfC(p) = n∗SDb . Then

1) nfC(pri→j) > nfC(p), if and only if i ≥ b, j ≤ b− 1 and
r > n∗SDb −

∑b−1
s=1 ps,

2) nfC(pri→j) < nfC(p), if and only if i ≤ b, j ≥ b+ 1 and
r >

∑b
s=1 ps − n∗SDb ,

3) nfC(pri→j) = nfC(p), otherwise.

Proof: Using Proposition 2, it can be shown that
nfC(pri→j) = nfC(p), if and only if one of the following holds

1) i = j,
2) i ≥ b+ 1 and j ≥ b,
3) i ≥ b+ 1, j ≤ b− 1 and r ≤ n∗SDb −

∑b−1
s=1 ps,

4) i = b, j ≤ b− 1 and r ≤ n∗SDb −
∑b−1
s=1,

5) i = b, j ≥ b+ 1 and r ≤
∑b
s=1−n∗SDb ,

6) i ≤ b− 1 and j ≤ b,
7) i ≤ b− 1, j ≥ b+ 1 and r ≤

∑b
s=1 ps − n∗SDb .

Hence, in order to have nfC(pri→j) greater than (resp. less than)
nfC(p), all of the above cases must be violated. This results
in either i ≥ b, j ≤ b − 1 and r > n∗SDb −

∑b−1
s=1 ps or

i ≤ b, j ≥ b+ 1 and r >
∑b
s=1 ps − n∗SDb . It can be verified

that only in the first case, nfC(pri→j) becomes greater than
nfC(p), and only in the second case, nfC(pri→j) becomes less
than nfC(p). Hence, in any other case, nfC(pri→j) = nfC(p),
which completes the proof.

Theorem 3 confirms the existence of cooperation levels that
are robust against changes in the cooperation tendencies of
the agents. Namely, unless one of the first two cases in the
theorem takes place, the number of long-run cooperators is
robust against the changes in types of the population. Note
that this robustness is against both increasing and decreasing
cooperation tendencies.

Another usage of Theorem 3 is to determine quantitatively
the widths of the plateaus for curves like Figure 1. In Example
1, since i ≥ b and j ≤ b − 1, Case 1) of Theorem 3 implies
that increasing the type of r SD5 agents to SD2, does not
increase the total number of cooperators if and only if r ≤
n∗SD4

−
∑3
s=1 ps = 40− 20 = 20. Therefore, the width of the

first plateau is 20.
The following proposition discusses what happens when the

number of cooperators is not equal to any temper n∗SDb .
Proposition 3: Given a population with p ∈ Pn, if the

number of long-run cooperators is some constant between
two consecutive tempers of the agents, n∗SDb and n∗SDb−1

,
b ∈ {2, . . . , l}, where n∗SDb−1

is an integer, then changing
an SDi agent to SDj where j < b ≤ i, increases the number
of long-run cooperators, i.e.,

n∗SDb < nfC(p) < n∗SDb−1
⇒ nfC(p1

i→j) > nfC(p), j < b ≤ i.



Proof: From Corollary 1, the condition n∗SDb < nfC(p) <

n∗SDb−1
implies nfC(p) =

∑kp−1
s=1 ps ≥ n∗SDkp . Then, since∑kp−1

s=1 ps < n∗SDkp−1, it holds that kp = b. Let p̂ = p1
i→j .

Clearly
∑b−1
s=1 p̂s =

∑kp−1
s=1 p̂s =

∑kp−1
s=1 ps + 1. Hence,

n∗SDb <

b−1∑
s=1

p̂s ≤ n∗SDb−1
.

If
∑b−1
s=1 p̂s < n∗SDb−1

, then kp̂ = b and the population is
clean-cut. So in view of Corollary 1, nfC(p̂) =

∑b−1
s=1 p̂s =∑kp−1

s=1 ps + 1 = nfC(p) + 1. If on the other hand,
∑b−1
s=1 p̂s =

n∗SDb−1
, then it can be shown that kp̂ = b − 1. Hence, from

Corollary 2 and since n∗SDb−1
is an integer, we have that

nfC(p̂) = n∗SDb−1
> nfC(p).

As shown in the proof of Proposition 3, the condition
n∗SDb < nfC(p) < n∗SDb−1

implies kp = b and
∑kp−1
s=1 ps ≥

n∗SDkp . Hence, from Theorem 2, the condition j < b ≤ i in
Proposition 3 implies that a defector changes to a cooperator.
On the other hand, in view of Theorem 3, the above proposi-
tion implies that sustainable cooperation levels only maintain
at the tempers of the agents. Therefore, Proposition 3 together
with Theorem 3 provide a complete characterization of the
level-off phenomena.

V. CONCLUDING REMARKS

We have studied a finite heterogeneous population of
decision-making agents under the myopic best-response up-
date rule. We have shown that based on the type of the
population, the total number of cooperators in the long run
either becomes fixed or fluctuates between two consecutive
integers. The fluctuation is caused by a number of agents
with a non-integer temper who switch between cooperation
and defection. This is because when each such agent is
playing cooperation and is activated to update her choice, she
counts herself as one of the existing cooperators in the whole
population. If instead, every agent excludes herself from the
total number of cooperators when updating her choice and
only focuses on the number of cooperators in the rest of the
population, then there will be no fluctuation, and the state of
the system x(t) will always converge to an equilibrium [42].

Our results on the Lyapunov-like function h(x) confine the
asymptotic and more importantly transition behavior of the
dynamics. According to the results, the agents may switch their
strategies repeatedly for a while, but there are time instants
after which some of the most cooperative agents, i.e., those
with the highest tempers, will fix their choices to cooperation
and some of the least cooperative agents will fix their choices
to defection. The number of agents with fix choices increases
over time, although not necessarily monotonically. Hence,
eventually all agents with tempers higher (lower) than that
of the benchmark agents will cooperate (defect), resulting
in the unique set of final states, regardless of the activation
sequence of the agents. The findings, therefore, generalize
those on homogeneous populations of snowdrift-game-playing
individuals where a number equal to the temper of the in-
dividuals cooperate, and the rest defect in the long run (or

they fluctuate between cooperation and defection if the temper
is non-integer). It is of great interest to investigate whether
such benchmark types of individuals also appear in structured
populations.

We have used the convergence results to mathematically ex-
plain the level-off phenomenon, and have shown the existence
of sustainable levels of cooperation where increasing the ratio
of the less- or more-cooperative agents does not necessarily
change the number of cooperators in the long run. This sheds
light on how certain cooperation levels can be maintained in
a population of selfish individuals. It can also explain why
sometimes increasing the tendencies of some individuals in
social groups does not lead to a higher level of cooperation.
Moreover, the result indicates that if one wants to control
the cooperation level of such populations by influencing the
types of the agents, different choices of manipulated agents
might lead to different outcomes. We are now working on
formulating such control problems more formally and look
for ultimately optimal control solutions by means of providing
incentives to the individuals.

APPENDIX

A. Proof of Lemma 1

The update rule (2) dictates that agent i chooses the strategy
that provides her the highest payoff against the population.
Hence, according to the definition of ui, agent i chooses the
strategy corresponding to the bigger entry of AisC(t):

AisC(t) =

[
RinC(t) + Si(n− nC(t))
TinC(t) + Pi(n− nC(t))

]
. (45)

If agent i is a PD agent, from (3) it follows that Ti > Ri >
Pi > Si. So the second entry is always bigger, leading to (6).
On the other hand, if agent i is an SDj agent, using (45) to
rewrite (2) gives

si(t+1) =


sC (Ri + Pi − Ti − Si)nC(t) > n(Pi − Si)
si(t) (Ri + Pi − Ti − Si)nC(t) = n(Pi − Si)
sD (Ri + Pi − Ti − Si)nC(t) < n(Pi − Si)

.

From (3) we know that for an SDj agent, it holds that

Ti > Ri

Si > Pi

}
⇒

{
Ri − Ti + Pi − Si < 0

Pi − Si < 0
.

So

si(t+ 1) =


sC nC(t) < n Si−Pi

Ti−Ri+Si−Pi
si(t) nC(t) = n Si−Pi

Ti−Ri+Si−Pi
sD nC(t) > n Si−Pi

Ti−Ri+Si−Pi

,

which is the same as (7) because of (4).

B. Proof of Lemma 3

First we prove (11). At x∗, the number of cooperators in
the population satisfies

nC(t0) =

kp−1∑
j=1

nSDj ≥ n∗SDkp ≥ bn
∗
SDkp

c. (46)



Similarly, at both x∗− and x∗+, it holds that

nC(t0) ≥
kp−1∑
j=1

nSDj + (bn∗SDkp c −
kp−1∑
j=1

nSDj ) = bn∗SDkp c.

So at x∗, x∗− and x∗+, it is true that nC(t0) ≥ bn∗SDkp c, which
in view of (5) implies that

nC(t0) > n∗SDi ∀i > kp.

So from Lemma 1 we know that if an SDi, i > kp, agent is
active at t0, her strategy at t0 + 1 remains to defect, which
proves (11).

Now we prove (12). At x∗,

nC(t0) =

kp−1∑
j=1

nSDj
(10)
< nSDkp−1

,

while at both x∗− and x∗+,

nC(t0) ≤
kp−1∑
j=1

nSDj + (dn∗SDkp e −
kp−1∑
j=1

nSDj ) = dn∗SDkp e

(5)
=⇒ nC(t0) < n∗SDkp−1

.

So at x∗, x∗− and x∗+, nC(t0) < n∗SDkp−1
, which in view of

(5) implies that

nC(t0) < n∗SDi ∀i < kp.

So from Lemma 1 we know that if an SDi, i < kp, agent is
active at t0, her strategy at t0 +1 remains to cooperate, which
proves (12).

C. Proof of Lemma 8

When the population is clean-cut,

nC(tb) =

kp−1∑
j=1

nSDj
(10)
==⇒ nC(tb) < n∗SDkp−1

.

Otherwise,

nC(tb) ∈
{
bn∗SDkp c, dn

∗
SDkp

e
}
⇒ nC(tb) ≤ dn∗SDkp e

(5) : dn∗SDke < n∗SDkp−1

}
⇒

nC(tb) < n∗SDkp−1
.

Hence, (38) holds for all unbiased populations.

D. Proof of Lemma 9

We prove by contradiction. Assume on the contrary that (9)
can be violated. Then let t1 ≥ tb+1 be the first such violation
time. So

nC(t1) ≥ n∗SDα(tb)+1
⇒ nC(t1) ≥ dn∗SDα(tb)+1

e. (47)

However, from Lemma 8 we know that

nC(tb) < n∗SDkp−1
,

and since (24) is in force for all α including α = 0, in view
of (5), we obtain

nC(tb) < n∗SDα(tb)+1
. (48)

By comparing nC(tb) and nC(t1) from (48) and (47) and
knowing that nC changes at most by one per time, we obtain

∃t′ ∈ [tb, t1 − 1] : nC(t′) = dn∗SDα(tb)+1
e − 1. (49)

Let ts be the greatest of all such possible t′. Then in view of
(47),

nC(t) ≥ dn∗SDα(tb)+1
e ∀t ∈ [ts + 1, t1]. (50)

Now we show that if an agent changes her strategy from D
to C within [ts + 1, t1], it must be an SDα(tb)+1 agent. Let tc
denote some time in [ts + 1, t1]. For an SDj , j > α(tb) + 1,
agent, it follows that

(50)⇒ nC(tc − 1) ≥ dn∗SDα(tb)+1
e − 1

j > α(tb) + 1
(5)
=⇒ dn∗SDα(tb)+1

e − 1 ≥ n∗SDj

⇒
nC(tc − 1) ≥ n∗SDj , (51)

which, from Lemma 1, implies that the SDj cannot change
her choice to C at tc. On the other hand, for an agent SDj ,
j < α(tb) + 1, we have

j ≤ α(tb)
(23)
==⇒ nCSDj (tb) = nSDj , (52)

and by the definition of t1, since tc − 1 ≤ t1,

nCSDj (tc − 1) = nCSDj (tb), (53)

which together imply that

nCSDj (tc − 1) = nSDj ∀tc ∈ [ts + 1, t1]. (54)

Therefore, all SDj agents are already cooperators at tc − 1
and hence do not change their choices to C at tc. So only an
SDα(tb)+1 agent can change her choice from D to C within
[ts + 1, t1].

Now if t1 > ts + 1, from Lemma 1, (50) implies that no
SDi agent changes her choice to C during [ts + 2, t1]. Hence,
no agent changes her choice from D to C during [ts + 2, t1].
So

nC(t) ≤ nC(ts + 1) ∀t ∈ [ts + 1, t1]. (55)

On the other hand, (55) also holds if t1 = ts+1, verifying it in
general. Now, (50) and the equality nC(ts) = dn∗SDα(tb)+1

e−1

imply
nC(ts + 1) = dn∗SDα(tb)+1

e. (56)

Then (50), (55) and (56) lead to

nC(t) = dn∗SDα(tb)+1
e ∀t ∈ [ts + 1, t1]. (57)

So
x(ts + 1) = x(t1)

implying that

nC(ts) = nC(t1) ≥ n∗SDα(tb)
+1,

which is a contradiction since ts < t1 and t1 was defined
as the first time after tb at which nC becomes non-less than
n∗SDα(tb)

+1.
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