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Abstract 

Using Bayesian posterior model probabilities and data pertaining to 3659 Brazilian Minimum 

Comparable Areas (MCA) over the period 1970-2010, two theoretical settings of population 

growth dynamics resulting in two spatial econometric specifications in combination with a 

wide range of potential neighborhood matrices are tested against each other. The best 

performing combination counts five determinants producing significant long-term spatial 

spillover effects. Ignoring these spillovers, as many previous population growth studies have 

done, is shown to underestimate their impact and thus the effectiveness of policy measures 

acting on these determinants. 
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INTRODUCTION  

Brazilian urbanization represents a highly significant, robust social phenomenon; the 

percentage of people living in urban centers in Brazil increased from 55.9% in 1970 to 84.4% 

in 2010 (IBGE, 2011). This process resulted largely from improved economic and social 

prospects in cities (DA MATA et al., 2007; HENDERSON, 1988; YAP, 1976). Despite these 

studies, relatively little is known about how these specific factors condition population growth 

of Brazilian Cities. HENDERSON (1988) shows that the population growth of Brazilian cities 

between 1960 and 1970 related positively to initial increases in levels of education. 

Reviewing growth between 1970 and 2000, DA MATA et al. (2007) reveal that favorable 

supply and demand conditions, including market potential variables, better schooling, and 

limited opportunities in the agricultural sector, favored the growth of Brazilian cities. 

However, these studies are limited in two aspects. First, by considering only a subset of 

Brazilian cities, they provide no complete picture of the conditions of growth. Second, they 

do not account for spatial dependence, i.e., their theoretical and empirical treatments consider 

cities as independent entities. 

Extending the analysis of urban population growth in Brazil to include all of its areas 

is fundamental for understanding the dynamics of the process. Population growth in one area 

implies population decline in another area. Overall, urban areas may growth at the expense of 

rural areas. By considering both urban and rural areas and both population growth and 

decline, more information might be obtained about the impact of certain determinants. DA 
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MATA et al. (2007), the most comprehensive study about growth of Brazilian cities, focus on 

municipalities with more than 75,000 inhabitants, or only about 75% of Brazil’s urban 

population. Furthermore, it does not consider urban dynamics after 2000, a period of price 

stability, as well as income convergence, among the Brazilian states (SILVEIRA NETO and 

AZZONI, 2012). Substantial increases in the production of commodities and agricultural goods 

during this period had positive impacts on opportunities available in towns further distant 

from large urban centers. 

Spatial dependence is known to particularly severe for small spatial units, such as 

municipalities (BOARNET et al., 2005). In analyzing income dynamics at different levels of 

spatial aggregation, RESENDE (2013) confirms the importance of spatial dependence for 

Brazilian minimum comparable areas (MCA). 1  Indeed, in the context of Brazilian urban 

dynamics, institutional factors, local well-being characteristics, and technological spillovers 

tend to make municipal population growth dependent on the population dynamics of 

neighboring municipalities. The small size of municipalities also implies that local factors 

affecting well-being, such as crime and pollution, tend to affect population dynamics of 

neighboring cities. SCORZAFAVE and SOARES (2009), for example, find strong spatial 

dependence of pecuniary crimes among the municipalities in the state of São Paulo. 

Furthermore, spatial technological spillovers (ERTUR and KOCH, 2007) may be more 

prevalent among small, neighboring urban centers than among large ones. In their recent 

study of Brazilian micro-region income dynamics, LIMA and SILVEIRA NETO (2015) provide 

robust evidence of spatial spillovers of both physical and human capital. 

Because it is asserted that all of these factors might induce spatial dependence on the 

population growth dynamics of Brazilian cities and its determinants, this article seeks to 

model spatial dependence among spatial units explicitly. The central objective is to present 

the population growth dynamics of Brazilian MCAs and thereby assess the determinants of 
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the population growth of these units between 1970 and 2010, as well as examine the existence 

and magnitude of spatial interaction and spatial spillover effects associated with these 

determinants. To model the population growth dynamics of Brazilian cities, an economic–

theoretical model is constructed that includes spatial interaction effects, and then its reduced-

form solution is estimated taking the form of a dynamic spatial panel model with controls for 

spatial and time-specific effects. Accordingly, the magnitude and significance levels of spatial 

spillover effects can be determined, as a result which any support for these effects is not 

simply an artifact of ignoring time-specific effects that areas have in common.  

This paper’s investigation is motivated by first presenting a spatial extension of the 

city population growth model developed by GLAESER et al. (1995). This extension accounts 

for spatial interaction effects among productivity and city amenities and is shown to imply an 

empirical specification for population growth dynamics that consists of spatial interaction 

effects in the dependent and independent variables. Next, the econometric methodology 

underlying the empirical investigation is presented, as well as the definition of spatial 

spillover effects. After detailing the data, the results of the empirical analysis are presented 

and discussed, including a robustness check distinguishing metropolitan and non-metropolitan 

municipalities. Finally, the main findings and draw conclusions are summarized.  

 

SPATIAL EXTENSION OF GLAESER’S POPULATION GROWTH MODEL 

The theoretical framework of population growth across Brazil builds on previous work by 

GLAESER et al. (1995), which is taken as point of departure, and by BRUECKNER (2003) and 

ERTUR and KOCH (2007), which are used to extend the model. In the urban growth model 

developed by GLAESER et al. (1995),2 cities are treated as independent economies that share 

common pools of labor and capital and differ in their level of productivity (Ait) and quality of 

life (Qit), whose growth rates depend on factors such as crime, housing prices, and traffic 
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congestion. The total output of an economy is the product of the productivity level and a 

Cobb-Douglas production function that depends on population size and the population growth 

rate. The first-order condition with respect to population in its role as labor determines the 

wage rate. The level of utility of a resident or of a potential migrant to this economy is the 

product of this wage rate and the quality of life, a measure which is assumed to decrease with 

population size. The reduced form result of combining these two functional forms of 

production and consumption is a population growth regression containing several factors that 

determine productivity growth and quality of life, among which the aforementioned factors, 

and population growth lagged in time. 

An objection to this theoretical framework is that it ignores spatial interaction effects 

among economies, especially between a locality and its surroundings. To address this 

problem, these spatial interaction effects are modeled explicitly. Suppose the total output of 

an economy is given by 

 

γβγβ −−= 1
iitititit ZKPAY ,             (1) 

 

where Pit represents the population size in economy i at time t in their role of workers, Kit 

denotes traded capital, and iZ  is fixed non-traded capital. Then, the first extension includes 

productivity interaction effects among economies. ERTUR and KOCH (2007) argue that 

knowledge accumulated in one economy depends on knowledge accumulated in other 

economies, though with diminished intensity due to frictions caused by socio-economic and 

institutional dissimilarities, which in turn can be captured by geographical distance or border 

effects. More formally, 
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∏=
≠

N

ij

ijw
jtitit aaA ρ

,             (2) 

 

where the productivity level of an economy Ait depends on urban differences in the 

productivity of labor related to social, technological, and political sources in the own 

economy (i) ait, as well as those in neighboring economies (j≠i) ajt; N is the number of 

economies. The parameter ρ reflects the degree of interdependence among economies, with 0 

< ρ < 1. Although this parameter is assumed to be identical for all economies, the impact of 

the interaction effects on economy i depends on its relative location, reflecting the effect of 

being located closer to or further away from other economies. This relative location can be 

represented by the exogenous term wij, which is assumed to be non-negative, non-stochastic, 

and finite, establishing an N × N neighborhood matrix W in which 10 ≤≤ ijw  and 0=ijw  if i = 

j. Substituting (2) into (1) represents total output of an economy, whose first-order conditions 

for capital and labor, that is, capital income (normalized price = 1) and the wage rate (denoted 

itS ) are equal to their marginal products, yield the following labor demand equation, after the 

optimal solution for capital is substituted in the condition for labor: 
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iit

N

ij

w
jtitit ZPaaS ij .          (3) 

 

As this labor demand equation shows, higher wages reflect higher productivity and fewer 

population in their role of workers. 

 Population in their role of consumers have Cobb-Douglas utility functions for tradable 

goods and housing, denoted by Cit and Hit, respectively. It is assumed that utility is due to the 

(dis)amenities of the local economy Θit; they might interfere negatively or positively with a 
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resident’s utility, and they can be either natural (e.g., climate, beaches, vegetation) or 

generated by humans (e.g., violence, entertainment, traffic, pollution). Formally,  

 

itititit HCU Θ= − αα1 ,             (4) 

 

where α  is a constant. The price of tradable goods is normalized to 1; the housing price is 

pHit. Consumers maximize their utility, subject to a budget constraint, 

 

ititHitit SHpC =+ ,             (5) 

 

by choosing Cit and Hit. 

The second extension includes amenity interaction effects across economies. Some 

(dis)amenities may (dis)benefit people living in other economies (BRUECKNER, 2003). In 

mathematical terms, 

 









∏=Θ
≠

N

ij

ijw
jtitit
ηθθ ,             (6) 

 

where the overall amenities of an economy Θit depend on local amenities θit and those in 

neighboring economies θjt, and the impact of the latter decreases with geographical distance. 

The parameter η measures the degree of interdependence among economies, with 0 < η < 1. 

According to GLAESER et al. (1995), many potential (dis)amenities can be reflected by the 

level of population and the population growth rate; the greater the size of a city, the lower the 

quality of life. The costs of migration rise with the number of immigrants, and if the 

population size increases rapidly, expansions in public goods, infrastructure, and housing 
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might not be able to keep pace. Therefore, residents of quickly growing cities suffer in terms 

of quality of life, yielding the utility function 
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PPHCU iϕ ,          (7) 

 

where 0>ϕ  and 0>τ . In addition, total city demand for housing is given by 

 

Hit

it
itit p

SPH α
= .             (8) 

 

According to GLAESER and GOTTLIEB (2009), the spatial equilibrium condition is a primary 

theoretical tool for urban economists, as exemplified in pioneering work by MILLS (1967), 

ROSEN (1979), and ROBACK (1982) on population changes within a country. This condition 

states that utility equalizes across space, provided that labor is mobile; higher wages in urban 

areas get offset by negative urban attributes, such as higher prices and negative amenities. If 

the common utility level at a particular point in time is denoted by tV , application of the 

spatial equilibrium condition produces the following results when substituting the demand 

equation for housing derived in (8) into (7), such that it yields the indirect utility function in 

(9), equal to tV : 
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Following GLAESER (2008), housing floor space is produced competitively, either by 
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land (L) or by height (h). If the supply of land at a particular location is fixed, or comes 

available only gradually, the prices of land (pL) and housing (pH) are endogenous, as a result 

of which the cost of producing hL units of structure on top of L units of land is given by 

Lhc δ
0 , where 1>δ . The developer then maximizes profits,  

 

LpLhchLp LHit −−= δp 0 .         (10) 

 

Differentiating this profit function with respect to height (h) and solving the resulting first-

order condition, yields ( ) 1
1

0 −= δδcph H , which implies that total housing supply is given by 

 

( ) LcpLh Hit 1
1

0 −= δδ .          (11) 

 

By comparing housing demand in (8) with housing supply in (11), the housing price equation 

is obtained: 

 

( )δδ
δ

δα 1

0

1

c
L

SPp itit
Hit

−







= .         (12) 

 

Labor demand in (3), indirect utility in (9), and housing prices in (12) then form a 

system, with three unknown variables (Pit, Sit, and pHit). Solving this system for the population 

Pit yields 
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where DN and ψ are detailed in appendix A. According to GLAESER and GOTTLIEB (2009), 

the spatial equilibrium condition means that in a dynamic model, only lifetime utility levels 

get equalized across space. However, as long as housing prices or rents can change quickly, or 

to a reasonable extent within the observation periods being considered— which is 10 years for 

the present study3—a price adjustment is enough to maintain the spatial equilibrium. Then the 

change in utility between times t and t+1 is the same across space, 
tV

tV 1+ , and (13) can be 

rewritten as 
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   (14) 

 

Following GLAESER et al. (1995), Xit is assumed to be a vector of city characteristics at time t 

that determine both the growth of city-specific productivity denoted by a and city-specific 

amenity growth denoted by θ: 
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Combining (14) and (15) yields the dynamic spatial population growth equation: 
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which contains spatial interaction effects among both the explanatory variables and the error 

terms. In spatial econometrics literature, such a model specification is known as the spatial 

Durbin error model (SDEM; see LESAGE and PACE, 2009). Since the right-hand side of this 

model also contains the dependent variable, lagged one period, it also could be labeled a 

dynamic SDEM model.  

 The utility function specified in (8) assumes that its function value for potential 

migrants declines with both the level and the growth rate of the population. However, just as 

knowledge and amenities in one economy interact with knowledge and amenities in others, so 

might the level and growth rate of population depend on these values in neighboring 

economies. If residents of quickly growing cities suffer in terms of quality of life, they might 

move to neighboring areas. Therefore, assuming individual utility correlates negatively with 

the level of population (population size) and the population growth rate of neighbors, the 

utility function may take the more complicated form  
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where 0>ν  and 0>σ . Solving the system for the population Pit with this alternative 

specification of the utility function, applying the same steps set out above, yields a population 
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growth equation whose right-hand side also includes the terms 
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In addition to spatial interaction effects among the explanatory variables and the error terms, 

this extended model specification contains spatial interaction effects for the dependent 

variable. In the spatial econometrics literature, such a specification is known as a general 

nesting spatial (GNS) model (ELHORST, 2014a), and when accounting for the dependent 

variable lagged one period, as a dynamic GNS model. 

 Apart from dynamic effects in both space and time, the population growth rate 

depends on factors determining its productivity and amenities and that of its neighbors. Three 

productivity and two amenity-related variables that will be introduced later turn out to 

produce significant spatial interaction effects, demonstrating the relevance of this theoretical 

extension. However, the econometric strategy used in this paper to discriminate between the 

spatial population growth equations in (16) and (18) and technical issues that arise when 

estimating the parameters of the model using panel data will be presented first. 

 

ECONOMETRIC METHODOLOGY 

The econometric counterpart of the dynamic spatial GNS model, which is the final equation 

implied by the theoretical model presented in the previous section, reads, in vector form, as  

 

Yt = τYt-1+δWYt+ηWYt-1+Xtβ+WXtθ+μ+λtιN+vt,    vt=λWvt+εt,    (19) 

 

where Yt denotes an N × 1 vector that consists of one observation of the dependent variable 
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for every economy (i = 1, ..., N) in the sample at time t (t = 1, ..., T), which for this study is the 

population growth rate, log(Pit+1/Pit); and Xt is an N × K matrix of exogenous or 

predetermined explanatory variables, observed at the start of each observation period and 

associated to the determinants of local productivity and amenities. Table 1 provides a detailed 

description between the theoretical and econometric model equations. Although it was tried to 

maintain consistent symbols, the limited supply of Greek letters mandated that many of the 

parameters in the econometric model relied on a different interpretation than those used in the 

theoretical model. A vector or matrix with subscript t–1 in (19) denotes its time lagged value, 

whereas a vector or matrix premultiplied by W denotes the spatially lagged value. The N × N 

matrix W is a non-negative matrix of known constants that describe the spatial arrangement 

of the economies in the sample, as introduced in the previous section. The parameters τ, δ, and 

η are the response parameters of, respectively, the dependent variable lagged in time Yt-1, the 

dependent variable lagged in space WYt, and the dependent variable lagged in both space and 

time WYt-1. The symbols β and θ represent K × 1 vectors of the response parameters of the 

exogenous explanatory variables. The error term specification consists of different 

components: the vector vt that is assumed to be spatially correlated with autocorrelation 

coefficient λ; the N × 1 vector εt = (ε1t, …, εNt)T that consists of i.i.d. disturbance terms, which 

have zero mean and finite variance σ2; the N × 1 vector μ = (μ1, …, μN)T that contains spatial 

specific effects µi and is meant to control for all spatial-specific, time-invariant variables 

whose omission could bias the estimates in a typical cross-sectional study; and the time-

specific effects λt (t = 1, …, T), where ιN is a N × 1 vector of ones, meant to control for all 

time-specific, unit-invariant variables whose omission could bias the estimates in a typical 

time-series study.  
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<< Table 1 around here >> 

 

Spatial- and time period–specific effects can be treated as fixed or random effects. A 

random effects model would make sense if a limited number of MCAs were being drawn 

randomly from Brazil, but in that case the elements of the neighborhood matrix could not be 

defined, and the impact of spatial interaction effects could not be estimated consistently. Only 

when neighboring units are part of the sample is it possible to measure the impact of 

neighboring units. Therefore, this study is distinct from urban studies that seek to explain 

economic growth in cities, such as those by GLAESER et al. (1995) and DA MATA et al. 

(2007). To cover the whole country and model the interactions, both urban and rural regions 

are included, whereas previous studies ignore the potential interaction effects with 

surroundings and treat cities as independent entities.  

 Direct interpretation of the coefficients in the dynamic GNS model is difficult, 

because they do not represent true partial derivatives (LESAGE and PACE, 2009). ELHORST 

(2012) shows that the matrix of (true) partial derivatives of the expected value of the 

dependent variable with respect to the kth independent variable for i = 1, …, N in year 𝑡𝑡 for the 

long term is given by the N by N matrix 
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whose average diagonal element can be used as a summary indicator for the direct effect, and 

average row sum of off-diagonal elements as a summary indicator of the spillover effect. 

These summary indicators reflect the impact on the dependent variable that result from a 

change in the kth regressor xk respectively in the own economy and in other economies.  
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 One problem with the dynamic GNS model is that its parameters are not identified, as 

acknowledged by ANSELIN et al. (2008) and ELHORST (2014a). The interaction effects among 

the dependent variable and the error terms cannot be distinguished formally, as long as the 

interaction effects among the explanatory variables are also included. Therefore, one of the 

two spatial interaction effects should be excluded. If the spatial interaction effects for the 

dependent variable are excluded (δ = η = 0), the dynamic SDEM specification results, 

consistent with the utility function specified in (7), while the spatial multiplier matrix [(1 – τ)I 

– (δ + η)W]-1 in (20) reduces to 1/(1 – τ)I. If the spatial interaction effects among the error 

terms is left aside (λ = 0), a dynamic spatial Durbin model (SDM) results. This model 

specification is consistent with the utility function specified in (17). Although the 

specification does not account for interaction effects among the error terms, which reduces the 

efficiency of the parameter estimates, it does not affect the consistency of the parameter 

estimates. Furthermore, it also does not influence the direct or spillover effects derived from 

(20). 

Another important difference between the SDEM and SDM specifications is that the 

spillover effects in the first model are local, whereas in the second model, they are global in 

nature. Local spillovers occur at other locations only if they according to W are connected to 

each other, whereas global spillovers gets transmitted to all other locations even if the two 

locations are unconnected according to W. This requires that δ≠0. 

To choose between SDM and SDEM, and thus respectively between a global or local 

spillover model and the utility functions specified in (7) or (17), as well as to choose between 

different potential specifications of the neighborhood matrix W, a Bayesian comparison 

approach is applied. This approach determines the Bayesian posterior model probabilities of 

the SDM and SDEM specifications given a particular neighborhood matrix, as well as the 

Bayesian posterior model probabilities of different neighborhood matrices given a particular 
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model specification. These probabilities are based on the log marginal likelihood of a model 

obtained by integrating out all parameters of the model over the entire parameter space on 

which they are defined. If the log marginal likelihood value of one model or of one W is 

higher than that of another model or another W, the Bayesian posterior model probability is 

also higher. It should be stressed that the model parameters are not estimated and so cannot be 

reported when applying the Bayesian comparison approach. Whereas the popular likelihood 

ratio, Wald and/or Lagrange multiplier statistics compare the performance of one model 

against another model based on specific parameter estimates within the parameter space, the 

Bayesian approach compares the performance of one model against another model, in this 

case SDM against SDEM, on their entire parameter space. This is the main strength of this 

approach. Inferences drawn on the log marginal likelihood function values for the SDM and 

SDEM model are further justified because they have the same set of explanatory variables, Xt 

and WXt, and are based on the same uniform prior for δ and λ. This prior takes the form 

p(δ)=p(λ)=1/D, where D=1/ωmax-1/ωmin and ωmax and ωmin represent respectively the largest 

and the smallest (negative) eigenvalue of the neighborhood matrix W. This prior requires no 

subjective information on the part of the practitioner as it relies on the parameter space 

(1/ωmin, 1/ωmax) on which δ and λ are defined, where ωmax=1 if W is row-normalized. Full 

details regarding the choice of model can be found in LESAGE (2014) and regarding the 

choice of W in LESAGE and PACE (2009, Chs. 5 and 6). Depending on the outcomes of the 

Bayesian comparison approach, either the SDM or the SDEM specification is estimated, using 

maximum likelihood (ML).  

  

DATA IMPLEMENTATION 

Data are taken from the Brazilian Demographic Census for the years 1970, 1980, 1991, 2000, 

and 2010, as conducted by the Brazilian Institute of Geography and Statistics (IBGE), 
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complemented by data collected by the Brazilian Institute for Applied Economic Research 

(IPEA). 

 The municipality constitutes the lowest administrative level in Brazil for which 

economic and demographic data are available. During 1970–2000, the number of 

municipalities increased from 3,952 to 5,565. Such ongoing changes in the number, area, and 

borders of municipalities mean that a consistent comparison over time is possible only if the 

municipalities are aggregated into broader geographical areas, or MCAs. Using the 

aggregation of municipalities developed by IPEA (REIS et al., 2010), a spatial panel is 

obtained of 3,659 MCAs during 1970–2010 (see also DA MATA et al., 2007). A geographical 

delineation of these MCAs is taken up in appendix B. 

The dependent variable Yit is measured by the rate of population growth in one 

particular MCA over a decade (t – 1, t), where i runs from 1 to 3,659, t spans from 1980 to 

2010, in correspondence with (19), and the number 1 represents a decade. This population 

growth rate depends on the population growth rate in the previous decade; when the dynamic 

spatial Durbin model is used, it also depends on the population growth rate in neighboring 

units in contemporaneous and previous decades. Based on the theoretical model and data 

availability, the influences of 13 explanatory variables associated with local productivity and 

amenities are considered. This selection reflects mainly the recent review by DURANTON and 

PUGA (2013) and previous studies by GLAESER et al. (1995), DA MATA et al. (2007), 

GLAESER (2008), and CHI and VOSS (2011). Table 2 provides a systematic overview of the 

explanatory variables and their data sources.  

 

<< Table 2 about here >> 

 

In particular, DURANTON and PUGA (2013) discuss key theories from urban growth 
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research and their implications in terms of population, surface area, and income per person. 

They provide empirical evidence of the main drivers of city growth, drawn primarily from the 

Unites States and other developed countries. Although Brazil is an emerging economy, and 

population growth in both urban and rural areas are considered to be able to model spatial 

interaction effects, the explanations put forward in their overview remain helpful for selecting 

explanatory variables for the present study. However, the variables selected must be revised 

for the different context. For example, whereas DURANTON and PUGA (2013) observe a 

tendency to measure human capital by the share of university graduates, this article focuses 

on the share of people aged 25 years and over who are literate, a measure that is more 

meaningful in Brazil and that increased from 48% in 1970 to 82% in 2010. The contributions 

of GLAESER et al. (1995) and GLAESER (2008) are integrated to this, considering that their 

work provided the theoretical basis for the spatial extension in the previous sections. DA 

MATA et al. (2007) is valued for its empirical focus on population growth in Brazil, though it 

includes only 123 Brazilian agglomerations and does not span the whole country. Both 

GLAESER et al. and DA MATA et al. ignore spatial interaction effects, such as those between 

an agglomeration and its surroundings or between a city and its suburbs within an 

agglomeration. Finally, CHI and VOSS (2011) is relied on, because it estimates a dynamic 

spatial panel data model, though without providing a theoretical motivation for this model 

specification. More detailed motivations behind each variable and their expected signs are 

provided in appendix C. 

 

EMPIRICAL ANALYSIS 

The estimation results of the parameters of (19) are in Table 3. The first column reports the 

estimation results of a standard linear panel data model, extended to include spatial and time-

period fixed effects, but without any spatial interaction effects. The second column reports the 



 
 
 

19 

results when including spatial interaction effects for the model that came out as the best 

performing one from the Bayesian comparison approach. However, this article first discusses 

the results in the first column and this comparison approach and then turns to the results in the 

second column. 

 

<< Table 3 around here >> 

 

SPATIAL DEPENDENCE 

To investigate the (null) hypothesis that the spatial fixed effects are jointly insignificant, a 

likelihood ratio (LR) test is performed. The results (8674.34, with 3658 degrees of freedom 

[df], p < 0.01) reject this hypothesis. Similarly, the hypothesis that the time-period fixed 

effects are jointly insignificant can be rejected (789.06, 3 df, p < 0.01). These results justify 

the extension of the model with spatial and time period fixed effects. Appendix E reports the 

correlation coefficients for the explanatory variables, which indicate that multicollinearity is 

not a problem. 

To test whether the non-spatial model with spatial and time period fixed effects should 

be extended with spatial interaction effects for the dependent variable (SAR specification) or 

for the error terms (SEM specification), LM tests are used, applied to a first-order, binary, 

contiguity neighborhood matrix that is row-normalized to ensure row sums equal to 1. These 

LM tests follow a chi-squared distribution with one degree of freedom and reach a critical 

value of 3.84 at 5% significance or 2.71 at 10% significance. In classic LM tests, the 

hypotheses of both no spatially lagged dependent variable and no spatially autocorrelated 

error term must be rejected. With robust tests, the hypothesis of no spatially lagged dependent 

variable can be rejected. Conversely, the hypothesis of no spatially autocorrelated error term 

cannot be rejected, at 10% significance. These test results suggest extending the non-spatial 
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model with a spatially lagged dependent variable. However, if the robust LM tests reject a 

non-spatial model, in favor of the spatial lag or spatial error models, one must carefully 

endorse one of these models. LESAGE and PACE (2009) and ELHORST (2014b) also 

recommend considering the spatial Durbin model and testing whether it can be simplified to 

the spatial lag or spatial error model. This study takes a broader view and applies the 

Bayesian approach. First, the Bayesian posterior model probabilities of the SDM and SDEM 

specifications are calculated, as well as the simpler SAR and SEM specifications, to identify 

which model specification best describes the data. Second, this analysis is repeated for several 

specifications of the neighborhood matrix, to find the specification of W that best describes 

the data. In total, 11 matrices are considered: p-order binary contiguity matrices for p = 1–3, 

an inverse distance matrix, and q-nearest neighbors matrices for q = 5–10 and 20.  

The results in Table 4 show that the SAR and SEM models are always outperformed 

by either the SDM or SDEM specifications. Therefore, spatially lagged explanatory variables 

(WX) are important and should be included in the model. The worst performing spatial 

neighborhood matrix in terms of the log marginal likelihood value is the inverse distance 

matrix, which corroborates the point that decomposing market potential variables into their 

underlying components and considering the spatially lagged values of these components 

creates a much greater degree of empirical flexibility (Appendix D). If the neighborhood 

matrix is specified as a first-order binary contiguity matrix or as a 5-nearest neighbors matrix, 

the Bayesian posterior model probabilities point to the SDM specification. The average 

number of neighbors in the sample amounts to 4.98, so these two neighborhood matrices are 

not substantially different. Conversely, if higher-order binary contiguity matrices or nearest 

neighbors matrices with more neighbors are adopted, the Bayesian posterior model 

probabilities provide further evidence in favor of the SDEM specification. However, by also 

considering the log-marginal values of the different specifications of the neighborhood 
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matrix, it is to be noted that the first-order binary contiguity matrix and the SDM specification 

achieve the best performance of all 44 combinations, in line with the initial robust LM test 

statistics for the non-spatial panel data model, which pointed to a spatial lag rather than a 

spatial error model. In turn, it has been decided to estimate the dynamic SDM specification 

using the bias-corrected ML estimator developed by LEE and YU (2010).4 The estimation 

results are in the second column of Table 3. The results then serve to test H0: θ = 0 and η = 0 

and H0: θ + δβ = 0 and η + δτ = 0. That is, it is tested whether the dynamic spatial Durbin 

might be simplified to a dynamic spatial lag model or dynamic spatial error model. Both tests 

follow a chi-squared distribution with K + 1 degrees of freedom (number of spatially lagged 

explanatory variables and the spatially lagged dependent variable) and take the form of a 

Wald test, because the simplified models have not been estimated. The results reject both 

hypotheses, but again, a spatial econometric model extended to include a spatially lagged 

dependent variable is more likely than its counterpart with a spatially autocorrelated error 

term. Overall, the empirical results point to the utility function specified in (17), which posits 

that the utility of individuals correlates negatively with the level of population (population 

size) and the population growth rate of their neighbors, and to the global spillover model, 

which posits that δ ≠ 0.  

 

<< Table 4 around here >> 

 

DETERMINANTS OF BRAZILIAN POPULATION DYNAMICS 

The results reported in second column of Table 3 show that six of the thirteen spatially lagged 

explanatory variables in the dynamic SDM specification appear statistically significant at the 

5% level. The coefficients of the spatially lagged dependent variable at time t and t–1, WYt 

and WYt-1, are also significant. A necessary and sufficient condition for stationarity, τ + δ + η 
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= 0.0755 + 0.3439 + 0.0681 = 0.4875 < 1, is satisfied.  

Table 5, columns (I)-(III), reports long-term estimates of the direct, spillover and total 

effects, derived from the parameter estimates using (20).5 To draw inferences regarding the 

statistical significance of these effects, the variation of 100 simulated parameter combinations 

is used, drawn from the variance-covariance matrix implied by the ML estimates. The number 

of explanatory variables with significant (5%) spillover effects is three and with weakly 

significant (10%) spillover effects is two; this count is less than the number of significant 

spatial interaction effects because they depend on more than just one parameter—that is, five 

parameters in the long term (Equation 20).  

 

<< Table 5 around here >> 

 

First of all, the long-term, direct, spillover, and total effect estimates of the growth rate 

represent significant convergence and deconcentration effects. The direct effect amounts 

to -0.918, and the total effect is -0.781; they are both significant. That is, the greater the 

population growth in the MCA in the previous decade, the smaller it will be in the next 

decade, and vice versa. This finding points to convergence. The spillover effect of 0.137 is 

also significant, which indicates that population growth can be stimulated if population 

growth in neighboring MCAs has been greater in the previous decade. This movement or 

deconcentration of people to neighboring areas, perhaps to escape the bustle of the city, 

represents a convergence effect. However, as a feedback effect of this behavior, the city starts 

growing again, such that the total convergence effect diminishes. This rationale helps explain 

the reduction of the convergence effect from -0.918 to -0.781. 

 Regarding the influence of factors associated to local productivity, first note that if the 

literacy rate increases by one percentage point, the population growth rate in the area 
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increases by 0.083 percentage points, and in neighboring areas by 0.143 percentage points. 

The last effect points to spatial spillover effects and is weakly significant (10%). The first 

finding, the positive relationship between educational attainment and population growth, 

matches GLAESER and SAIZ’s (2004) and DA MATA et al.’s (2007) arguments that economies 

with better educated people are productivity-enhancing and more adaptable to technological 

change. The second finding, the positive relationship between educational attainment and 

population growth in neighboring units, aligns with the theoretical proposition introduced in 

(2), namely, that knowledge accumulated in one economy depends on knowledge 

accumulated in others.  

Just as the literacy rate, most variables associated with local productivity have the 

expected signs, although not all of them do produce significant spillover effects. As expected 

and in contrast to CHI and VOSS (2011), the share of employment in agriculture has a negative 

effect of 0.247 percentage points on population growth in the long term, due to the reduction 

in economic opportunities, especially for women. A greater share of employment in 

manufacturing relative to services and GDP per capita instead have positive, significant 

effects. These two results are consistent with the idea that the growth of productivity is higher 

in municipalities with bigger markets and with stronger presence of manufacturing activities. 

Rural GDP per capita also has a positive and significant direct effect on population growth, 

such that municipalities that offer income opportunities remain attractive. However, neither of 

these three variables have positive spillover effects on their environment. DA MATA et al. 

(2007) note that their rural variables perform poorly, due to limited variation and 

multicollinearity, but by decomposing the market potential variables, this article avoids such 

problems.  

In contrast to rural GDP per capita, the direct effect of the rural population is negative 

and significant. A one percentage point increase of the rural population has an adverse effect 
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on population growth, equal to 0.043 percentage points. The spillover effect amounts 

to -0.021 and is statistically significant; this implies that rural municipalities surrounded by 

other rural municipalities tend to grow one and a half times slower than rural municipalities 

close to urban areas. These negative effects are probably explained by the strong correlation 

between this variable and the absence or insufficiency of local provision of basic household 

infrastructure in Brazilian municipalities with high rural population, making these localities 

less attractive. 

 The birth rate not only produces a significant direct effect, but also a significant 

spillover effect that, in terms of magnitude, is greater than the direct effect. If the birth rate 

increases by 1 child for every 1,000 inhabitants in a given area, the population growth rate in 

that area itself increases by 0.018 percentage points in the long term, and 0.027 percentage 

points in its surroundings. This latter figure represents the cumulative effect over all 

neighbors; considering the finding that the average number of neighbors is 4.98, the average 

spillover effect per neighbor is likely around 0.005. The significant direct and spillover effects 

of the birth rate confirm the hypotheses that the population grows faster if it is relatively 

immobile and that due to deconcentration this growth partly spreads out to neighboring areas. 

The impact of the mean age of the population is positive and significant. If this mean age 

increases by one year, the population growth rate increases by 0.01 percentage points. During 

the observation period, the mean age increased, from 23 in 1970 to 32 in 2010, and this 

finding corroborates the view that economic opportunities grow when the number of working-

age adults increases, relative to the dependent population. Finally, consistent with GLAESER 

et al.’s (1995) idea that potential migrants do not move to areas with high unemployment 

rates, a positive direct effect is obtained of the percentage of economically active population 

that is occupied on population growth of Brazilian municipalities. 

As for the variables associated to local amenities, note that all variables, when 
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statically significant, have the expected signs, and some of them with important spillover 

effects. Specifically, the direct effect of population density is negative and significant, 

corroborating the hypothesis that densely populated cities deter prospective migrants with 

their poor living conditions. To some extent this negative effect may also be related with a 

kind of convergence in population size across cities. Interestingly, this adverse effect also 

spills over to neighboring MCAs. The spillover effect is negative and significant and, in terms 

of magnitude, almost as substantial as the direct effect. If population density in a city 

increases by one percentage point, the population growth rate falls by 0.145 percentage points 

in the long term in the city, and by 0.141 in its surroundings. Even stronger results are 

uncovered related to homicide rates. The direct effect is insignificant, but the spillover effect 

is negative and weakly significant (10%), such that city surroundings pay the price for this 

disamenity. The negative relationships of both population density and the homicide rate with 

population growth in surroundings corroborates the theoretical proposition from (7) that 

disamenities in one economy harm individuals and deter prospective migrants in neighboring 

economies. 

 The proportion of people with access to public water has a positive effect and 

significant effect on population growth, but the proportion of people with access to public 

sewer does not. This variable partly reflects the price of urban space: If the supply of housing 

with access to public sewer is relatively inelastic, the prices of this type of housing might 

increase so much that prospective migrants would be discouraged, and the population growth 

rate would decrease again. Research by FGV (2010) suggests that sanitation enables 

construction with higher added value and appreciation in the value of existing buildings. 

 The significant spillover effects obtained for some variables make it interesting to 

compare the long-term total effects reported in Table 5, derived from the dynamic SDM 

specification, against those from the non-spatial model reported in the first column of Table 3. 
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The long-term total effect of the latter model can be obtained by calculating β/(1 – τ), where β 

is the coefficient estimate of a particular explanatory variable and τ is the coefficient estimate 

of the dependent variable (population growth rate), lagged one decade. The results of these 

comparisons are presented in Table 5, column (IV). The long-term total effect of the rural 

population amounts to, according to the spatial model, -0.064 and, according to the non-

spatial model, -0.0433/(1 – (-0.0271) = -0.0422. Therefore, the effect in the non-spatial model 

is underestimated by 34.1%. For the other variables that produce significant spatial spillover 

effects, 57.5% is found for population density, 61.9% for the birth rate, 41.4% for the literacy 

rate, and 58.3% for the homicide rate. The degree of underestimation averages 27% across all 

explanatory variables, thus a non-spatial modeling approach, as the previous ones applied to 

Brazilian cities’ population dynamics, evidently does not reflect the full impact of policy 

measures that act on these variables. 

The above findings about the population dynamics of Brazilian cities are consistent 

with stylized facts about the historical pattern of occupation across Brazilian’s physical space. 

The observed convergence effect of city growth during 1970-2010 is consistent with the 

initial growth of cities located in the eastern part of the country, mainly the South and 

Southeast, where the biggest cities are located, and the more recent population increase in 

cities located in the Midwest and North. The initial expansion of cities, mainly in the 

Southeast, is related to the pattern of Brazilian economic growth that started with a high 

concentration of economic activities in mainly manufacturing. During the most recent 

decades, the economic opportunities for exporting agricultural products and commodities 

extracted from the economic exploration of the Cerrado area increased the attractiveness of 

the Midwest and North, composed of small and medium sized cities. At the same time, urban 

problems associated with congestion and the lack of infrastructure services reduced the 

attractiveness of big cities of the Southeast. The analysis in this article also disclosed the main 
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determinants explaining these movements. A better educated workforce, a higher share of 

employment in manufacturing relative to services, a higher urban or rural GDP per capita are 

traditional factors having a positive effect on population growth in Brazilian cities, since they 

improve labor productivity. In fact, these factors are also associated with the historical 

regional disparities of income during the sample period (AZZONI, 2001) and are all consistent 

with the general patterns of the population exodus from the Northeastern cities, the poorest 

region of the country, and the immigration to the cities located in the Southeast during most 

of 1970-2010. This process was strengthened by the spillover effects caused by a better 

educated workforce, the fact that knowledge accumulated in one city may also benefit 

neighboring cities, a result that up to now has not been documented in the literature. 

Similarly, the negative effects on the growth of cities’ populations due to growing population 

density and homicide rates, not only in the cities themselves but due to spillover effects also 

in their surroundings, are entirely consistent with the negative impacts on well-being arising 

from the congestion of public spaces, deficient urban infrastructures (which, for example, 

explain the very high commuting time of Brazilian urban centers) and the increased urban 

violence experienced by Brazilian cities during the last decades (MOURA and SILVEIRA 

NETO, 2015). 

 Finally, although the theoretical model does not explicitly consider any kind of urban 

hierarchy conditioning the influence of the variables on urban dynamic, a heterogeneous 

version of (19) is estimated, so as to consider potentially different influences of the variables 

for metropolitan versus non-metropolitan cities. The idea is to explore structural differences 

in population growth dynamics across cities that belong to and do not belong to a 

metropolitan region. The biggest municipalities in Brazil generally present a broader set of 

services (including federal government activities), specific kinds of manufacturing activities 

(with different degree of returns to scale), and higher levels of human capital and are located 
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in metropolitan regions. The approach, thus, explores the possibility of different direct and 

spillover effects associated with the proximity to these big Brazilian cities.6 The results are 

reported and discussed in Appendix F.  

 

CONCLUSION 

This article proposes an economic-theoretical model for city population growth, derive an 

explicit econometric spatial model from it, and estimate the effects of variables associated 

with the population growth of Brazilian cities during the period 1970-2010. This application 

represents an important extension of previous studies, since it includes both urban and rural 

economies to cover the whole country and accounts for spatial interaction effects among these 

economies. 

 Consistent with the proposed model, the parameter estimates of the variables 

associated with local productivity and city amenities generate a plausible model structure, i.e., 

they take the theoretically expected signs, with only one exception. In addition, population 

dynamics of Brazilian MCAs are substantively affected by their location, i.e., they are 

evidently associated to productivity and amenities of their neighbors. Furthermore, these 

results are consistent with both the historical pattern of occupation across Brazilian’s physical 

space, where the spatial dynamic of population is strongly linked to economic opportunities, 

and the more recent movements of lower growth of Brazilian’s big cities due to congestion of 

public services and lack of infrastructure. 

More specifically, among the set of factors associated to local productivity, the results 

obtained indicate that the population growth of the Brazilian MCAs are positively affected by 

the level of human capital (literacy rate), the level of GDP per capita, and by the 

manufacturing/services employment shares ratio. Furthermore, in the case of human capital, 

there are spillovers arising from neighboring MCAs that also positively affect the population 
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growth of the Brazilian MCAs. Regarding the set of variables associated with local amenities, 

the evidence indicates that population growth of Brazilian cities is positively affected by the 

level of public water provision and negatively by the share of employment in agriculture. 

There are also spillover effects related to some amenities: demographic density and homicide 

rates of neighboring MCAs negatively affect the population growth of Brazilian MCAs.  

  To investigate the extent to which the spatial extension of the population growth 

model makes a difference, the number of explanatory variables is counted causing significant 

spatial interaction effects. Of the 13 determinants of population growth, 5 produce significant 

spillover effects in the long term: rural population size, population density, the birth rate, the 

literacy rate, and the homicide rate. A change of one unit in one of these variables 

significantly affects population growth in other units, a phenomenon that has been ignored in 

most previous studies of population growth. By comparing the results with the evidence 

obtained from a non-spatial panel, it is demonstrated that a non-spatial approach for Brazil 

substantively underestimates the long-term total effects of the explanatory variables: 

underestimation averages 27% across all explanatory variables. Regarding the last four 

determinants, it is found that the magnitude of the cumulative effect across all neighbors is as 

great as the magnitude of the impact on the city itself.  

 In order to explore heterogeneities of the results associated with belonging to 

metropolitan areas, that includes the biggest cities of the country, additional results are 

generated for non-metropolitan and metropolitan MCAs. While for non-metropolitan MCAs 

these results are similar to the ones previously obtained, for the set of metropolitan MCAs 

positive and significant spillover effects are found associated with the variable GDP per 

capita, but not for the human capital variable (literacy rate). These results are consistent, 

respectively, with both the better road infrastructure and stronger returns to scale in the 

economic activities in these MCAs and with the higher and more homogenous levels of 
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schooling in these localities. 

From the perspective of government policies directed to stimulate cities’ population 

growth, the results not only suggest important determinants to focus on, but also the ones that 

tend to be more effective. Specifically, in addition to implement policies favoring highly 

productive economic activities, such as manufacturing, and policies to improve well-being 

through better housing infrastructure, the government must mainly act on determinants that 

generate both direct and spatial spillover effects. Thus, localities that would hope to stimulate 

growth should better educate their population, offer good child-care facilities, reduce crime, 

and coordinate housing construction with neighboring localities, to spread the population over 

a larger area. Due to resources limitations, most Brazilian cities acting on these determinants, 

for example, to improve education and to reduce crime, need the co-participation of federal or 

state governments. Another reason why this is essential is because the benefits of stimulating 

population growth partly accrue to neighboring muncipalities. Ignoring this implies the risk of 

not only directing resources to less effective policy measures, but also of promoting 

unnecessary competition among municipalities with potential unwanted consequences for the 

finance of cities.  
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Table 1. Relationship between econometric and theoretical model equations 
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Table 2. Description, type and data source of explanatory variables 
Explanatory variables Description Data source 
Dependent variable   
population growth rate Population growth rate IPEADATA 
Productivity-related variables (a), see equations (2) and (15a) 
literacy rate Percentage of population (age>25) that is literate Census/IBGE 
ln GDP per capita Natural log of GDP per capita (prices of 2010) IPEADATA 
ln rural GDP per capita Natural log of rural GDP per capita (prices of 2010) IPEADATA 
ln rural population Natural log of share of population living in rural areas IPEADATA 

Agriculture Percentage of people working in agriculture, livestock, hunting and related 
services (age>10) Census/IBGE 

manufacture/service Relationship between the number of employees in manufacturing and the 
service sector Census/IBGE 

workforce occupied Workforce occupied (employment rate) IPEADATA 
birth rate (Mean of number of children born alive and still living)*(1000/Pop) Census/IBGE 
mean age Mean age Census/IBGE 
Amenity-related variables (θ), see equations (6) and (15b) 
ln density Natural log of people per squared kilometres IPEADATA 
homicide rate (Number of homicides)*(100000/Pop) IPEADATA 
water company Share of households supplied by water company Census/IBGE 
sewer company  Share of households supplied by sewer company Census/IBGE 
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Table 3. Population Growth: Non-Spatial and Dynamic Spatial Models  
  OLS + 

Time- and 
Spatial-
Specific 

Fixed 
Effects 

 
 
 
 

Dynamic SDM + Fixed 
Effects (bias correction)  

Explanatory Variables  Coeff T Coeff t Spatial  t 
Dependent variable lagged in space and/or time 
WYt (δ)     0.3439 ** 
Yt-1 (τ, τ and η) -0.0271 ** 0.0755 ** 0.0681 ** 
Productivity-related variables (a), see equations (2) and (15a) 
literacy rate 0.1361 ** 0.0681 ** 0.0395  
ln GDP per capita 0.0513 ** 0.0527 ** -0.0248 ** 
ln rural GDP per capita 0.0088 ** 0.0135 ** -0.0095 ** 
ln rural population -0.0433 ** -0.0391 ** 0.0068  
Agriculture -0.2612 ** -0.2315 ** 0.1063 ** 
manufacturing/service 0.0045 ** 0.0021 ** 0.0016  
workforce occupied  0.4911 ** 0.3535 ** -0.0681  
birth rate 0.0172 ** 0.0150 ** 0.0072 ** 
mean age 0.0135 ** 0.0089 ** -0.0020  
Amenity-related variables (θ), see equations (6) and (15b) 
ln density -0.1248 ** -0.1256 ** -0.0221 ** 
homicide rate -0.0030 ** 0.0006  -0.0042 * 
water company 0.0081  0.0274  -0.0255  
sewer company  -0.0123  -0.0365 ** -0.0058  
Regression diagnostics       
No. Obs. 10977  10977    
R-squared 0.711  0.743    
Log Likelihood 4144.11  5580.37    
Spatial lag, OLS model:    
LM 909.32 ** Spatial lag, SDM model: 
LM(robust) 114.89 ** Wald  54.39 ** 
Spatial error, OLS model:    
LM 796.34 ** Spatial error, SDM model: 
LM(robust) 1.91  Wald  134.23 ** 
Joint significance       
LR(spatial fe=0) 8674.60 **     
LR(time fe=0) 789.06 **         
** Significant at 1%. *Significant at 5%.  
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Table 4. Comparison of Model Specifications and Neighborhood Matrices 
W Matrix Statistics SAR SDM SEM SDEM 

Binary Contiguity log marginal 3566.85 3616.03 3548.42 3611.80 
model probabilities 0.0000 0.9855 0.0000 0.0145 

First and Second Order log marginal 3562.21 3574.79 3558.60 3579.41 
model probabilities 0.0000 0.0097 0.0000 0.9903 

First, Second and Third Order log marginal 3527.98 3528.75 3535.86 3536.28 
model probabilities 0.0001 0.0003 0.3974 0.6022 

Inverse distance log marginal 3368.78 3444.87 3363.32 3455.44 
model probabilities 0.0000 0.0000 0.0000 1.0000 

5 nearest neighbors log marginal 3539.69 3601.04 3521.72 3597.88 
model probabilities 0.0000 0.9594 0.0000 0.0406 

6 nearest neighbors log marginal 3551.02 3613.06 3539.41 3613.60 
model probabilities 0.0000 0.3676 0.0000 0.6324 

7 nearest neighbors log marginal 3548.94 3606.39 3537.52 3606.54 
model probabilities 0.0000 0.4622 0.0000 0.5378 

8 nearest neighbors log marginal 3551.30 3607.94 3541.97 3610.07 
model probabilities 0.0000 0.1054 0.0000 0.8946 

9 nearest neighbors log marginal 3561.30 3610.94 3553.84 3613.93 
model probabilities 0.0000 0.0474 0.0000 0.9526 

10 nearest neighbors log marginal 3560.11 3607.68 3556.60 3609.52 
model probabilities 0.0000 0.1373 0.0000 0.8627 

20 nearest neighbors log marginal 3526.87 3552.07 3534.30 3552.99 
model probabilities 0.0000 0.2853 0.0000 0.7147 

Source: Own calculations, based on LESAGE (2014) 
 



Table 5. Long-term Direct and Spillover Effects of Homogenous Dynamic Spatial Model 

Explanatory Variables Long-Term Effects 

Underestimation of 
Long-Term Effect in 

Non-Spatial Model (%) 
Direct 

(I) 
Spillover 

(II) 
Total 
(III) 

 
(IV) 

lagged population growth rate -0.918 0.137 -0.781 - 
 (-113.15) (7.03) (40.17)  
literacy rate 0.083 0.143 0.226 41.4 
 (2.38) (1.73) (2.48)  
ln of GDP per capita 0.057 -0.001 0.055 9.2 
 (12.65) (-0.11) (3.96)  
ln of rural GDP per capita 0.014 -0.008 0.006 -42.8 
 (5.61) (-1.14) (0.89)  
ln rural population -0.043 -0.021 -0.064 34.1 
 (-13.99) (-1.97) (-5.55)  
Agriculture -0.247 0.004 -0.242 -5.1 
 (-8.09) (0.06) (-2.97)  
manufacturing/services 0.003 0.004 0.007 37.4 
 (2.24) (1.06) (1.63)  
workforce occupied  0.394 0.167 0.561 14.8 
 (10.35) (1.51) (4.47)  
birth rate 0.018 0.027 0.044 61.9 
 (9.52) (3.37) (5.48)  
mean age 0.010 0.004 0.013 -1.1 
 (7.14) (1.16) (4.53)  
ln density -0.145 -0.141 -0.286 57.5 
 (-22.47) (-6.72) (-12.91)  
homicide rate 0.000 -0.007 -0.007 58.3 
 (0.36) (-1.80) (-1.57)  
water company 0.028 -0.028 0.001 0.0 
 (1.93) (-0.72) (0.02)  
sewer company  -0.040 -0.043 -0.082 85.4 
  (-2.71) (-1.40) (-2.56)  
Note: t-values in parentheses. 



APPENDIX 
 
Appendix A: Detailed expressions of ψ and DN in (13) 
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Appendix B: A map of Minimum Comparable Areas (1970–2010) in Brazil 

Source: Geographical delineation by the authors. 
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Appendix C: Motivation separate explanatory variables 
 
For the set of variables associated with local productivity, the following variables are 
considered: a measurement of local human capital, measures of market potential and 
agglomeration gains, and characteristics of local productive structure. The positive influence 
of human capital on urban dynamics for U.S. cities is well documented (GLAESER et al. 1995; 
GLAESER and SAIZ, 2004; SHAPIRO, 2006; GLAESER, 2008); as for Brazilian cities, DA 
MATA et al. (2007) also found a positive association between human capital and population 
growth. This kind of association is commonly interpreted as the effect of local skills on 
productivity growth through knowledge or information spillovers (LUCAS, 1988; BLACK and 
HENDERSON, 1999). As stated in the main text, this study focuses specifically on the share of 
people aged 25 years and over who are literate. 

 According to DURANTON and PUGA (2013), the availability of road infrastructure is 
another important component, and agglomeration effects drive city growth. DA MATA et al. 
(2007) argue that city growth depends on demand and supply factors, which they summarize 
as the incomes a city can pay out and the incomes people demand to live in a city, 
respectively. To measure these factors, they use market potential variables, which depend 
partly on road transport networks. The demand market potential of a spatial unit in turn is 
defined as the product of per capita income and population size, divided by transport costs, 
summed over all spatial units in the sample. To describe the supply side, they consider two 
gravity measures for each spatial unit: the sum of per capita rural income divided by transport 
costs over all other spatial units in the sample, and the sum of the rural population divided by 
transport costs over all other spatial units in the sample. Both constitute market potential 
measures, in that they measure the potential population supply to a city from nearby rural 
areas. 
 From a spatial econometric view, market potential variables can be interpreted as 
spatially lagged explanatory variables or exogenous interaction effects, because they measure 
the impact of X variables in one spatial unit on the dependent variable in another spatial unit. 
However, disadvantages of using market potential variables are that a certain neighborhood 
matrix structure is imposed on these X variables, without testing the structure first, and that 
their direct and spillover effects suffer from inflexibility. A detailed explanation is provided in 
appendix D, showing that more empirical flexibility is introduced when decomposing market 
potential variables into their underlying components. Only then the direct and spillover effects 
can vary with different explanatory variables that determine the market potential, while the 
specification of W can be tested for and thus to what extent MCAs likely interact. Just as in 
DA MATA et al. (2007), it is assumed that the population growth rate depends on GDP per 
capita, rural GDP per capita, rural population size, and their spatially lagged values, but as 
separate variables, so that agglomeration effects can be tested for. 

This article also includes other demand and supply factors that can affect productivity 
and city growth: the industry mix and the size of the workforce. GLAESER et al. (1995) 
control for the share of employment in manufacturing and find that it has an adverse effect on 
population growth. DA MATA et al. (2007) control for the ratio between the share of 
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employment in manufacturing to that of services, to account for local adjustments relative to 
changes in national output composition, and find a positive effect. CHI and VOSS (2011) 
include the share of employment in agriculture, though they removed this variable from the 
model when it emerged as insignificant. Yet this study still considers the share of employment 
in agriculture, because of its focus on population growth in Brazil, with its vast agricultural 
areas; especially at the beginning of the observation period, the number of women in the labor 
force was relatively high, mostly as unpaid and low productivity workers on family farms 
who combined their agricultural work with childcare. When income levels started to rise, such 
as through the expansion of the manufacturing sector and the introduction of new 
technologies, women’s labor force participation rates tended to fall (GOLDIN 1995; MAMMEN 
and PAXSON, 2000). Men moved into new blue-collar jobs that increased family-level 
income, such that unearned income effects reduced women’s participation. In addition, a high 
share of employment in agriculture means relatively less employment in urban occupations, 
which may affect local agglomeration gains from diversification (GLAESER et al., 1995). In 
summary, it is expected that the share of employment in agriculture has a negative effect on 
population growth, due to the implied low productivity and the reduction in economic 
opportunities, especially for women, and to its potentially reduced gains from diversification. 
Similar to DA MATA et al. (2007), this study also considers the ratio between the share of 
employment in manufacturing and that of services as a potential factor affecting local 
productivity dynamics. 

GLAESER et al. (1995) also control for unemployment, because potential migrants do 
not move to areas with high unemployment rates. They find an adverse effect on U.S. 
population growth after 1970; this study thus uses the percentage of the economically active 
population that is occupied as an additional supply side factor. This variable offers an 
opposite of the unemployment rate. 

Although GDP per capita measures often appear in empirical growth studies, they 
ignore a critical dimension of population dynamics, namely, populations' evolving age 
structure. Each age group in a population behaves differently, and the distribution across age 
groups changes over time, so economic opportunities can be boosted or slow down 
temporarily. Whereas prime-age adults supply labor and savings, the young require education, 
and the aged need health care and retirement income. Economic opportunities then should 
increase when the number of working-age adults is large, relative to the dependent 
population, but decrease when a population rapidly ages. By translating an economic model 
formulated as GDP per capita growth into a comparable model of GDP per worker, which 
largely determines demand and supply conditions in a city and its surroundings, different 
studies have shown that demographic variables might be important (BLOOM and 
WILLIAMSON, 1998; CHOUDHRY and ELHORST, 2010; KELLEY and SCHMIDT, 2005). Such 
variables include the mean age of the population and the birth rate. If the population of a 
particular region is relatively immobile, differences in population growth across areas within 
that region likely are due mainly to differences in fertility (GLAESER et al., 1995), which is an 
important reason to consider the birth rate. 
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From the theoretical model, the other influence on city growth arises from factors 
associated with local amenities that affect individuals’ welfare. Here local characteristics are 
considerd that are directly associated to local quality of life and city infrastructure. In fact, 
two of the key drivers of city growth that DURANTON and PUGA (2013) identify are 
infrastructure and housing supply. The first follows from the monocentric city model; the 
second determines how cities react to positive or negative shocks. If the supply of houses is 
limited by geographical constraints or land-use regulations, a positive shock leads to higher 
housing prices. If the supply of houses is elastic, housing prices might increase to some 
extent, but the local inhabitants and incoming migrants react by choosing to live in smaller 
dwellings. Important infrastructural components of the housing supply in Brazil are the 
proportions of people with access to public water or public sewers; insufficient supply may 
cause higher prices and deter potential migrants. These two variables also appear in CHI and 
VOSS’s (2011) study, whereas GLAESER et al. (1995) consider expenditures on sanitation. 
These variables increased from, respectively, 14% and 5% in 1970 to 71% and 37% in 2010. 
In addition, population density can control for the second factor. Many cities could take in 
more people, though at the expense of the quality of the living conditions, which might deter 
prospective migrants. Because it takes time to build public goods, infrastructure, or housing, 
the residents of quickly growing cities may suffer more in terms of their quality of life. 

Brazilian cities are also characterized by very high levels of urban violence, a factor 
that directly affects urban life quality (SCORZAFAVE and SOARES, 2009; MENEZES et al., 
2013). DA MATA et al. (2007) explicitly mention local crime and violence, measured by the 
homicide rate or number of homicides per one million inhabitants and this variable exerts a 
negative and significant effect on population growth in their study. DURANTON and PUGA 
(2013) also highlight the importance of (dis)amenities for urban growth. So, the homicide rate 
is included in the present study as well. 
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Appendix D: Non-Flexibility of market potential variables 
 
To demonstrate the non-flexibility of market potential variables, consider the non-dynamic 
spatial panel data model with τ = η = 0 in (19), in which the population growth rate Y = 
log(Pt+1/Pt) is explained by rural GDP per capita (rGDPc) in the own spatial unit and those 
observed in neighboring units: 
 

RrGDPcWrGDPcYWY +++=+ )*ln()ln(lnln 1 tttt θβδ ,      (D.1) 

 
where R is a rest term containing the other explanatory variables, the fixed effects, and the 
error term. Logs of all variables are taken, similar to DA MATA et al. (2007). Because (D.1) 
is in vector form, W*rGDPc offers another expression for market potential, provided that W 
is specified as an inverse distance matrix. Both variables take log forms, so the matrix of 
partial derivatives of the expected value of the dependent variable with respect to rGDPcit for 
i = 1, …, N in year t is given by 
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where S is an N × N matrix whose elements are defined by 𝑠𝑠𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑖𝑖𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺𝑗𝑗 (⁄ 𝑤𝑤𝑖𝑖1𝐺𝐺𝐺𝐺𝐺𝐺1 + ⋯+
𝑤𝑤𝑖𝑖𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺𝑁𝑁). Because sij measures the rural GDP per capita of one MCA relative to all other 
MCAs, the rows of S always sum to unity, independent of the relative location of a particular 
MCA—that is, whether it is located on the periphery or in the core of Brazil. In other words, 
irrespective of how W is specified, the structure of the partial derivatives in (D.2) is exactly 
the same as in (20), provided that τ = η = 0, because the rows of both S and W sum to unity. 
In contrast, by replacing ln(W*rGDPc) with W*ln(rGDPc) and decomposing the composite 
variables, such as market potential, into their underlying components (which leads to partial 
derivatives similar to those in (20)), more empirical flexibility is introduced, including the 
opportunity to test how W should be specified and thus to what extent MCAs likely interact. 
Furthermore, the magnitudes of the direct and spillover effect estimates can vary with 
different explanatory variables that determine the market potential.  
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Appendix E: Correlation Coefficients Among the Explanatory Variables 
ln rural population 1.00                         

ln density -0.25 1.00            

mean age -0.32 0.13 1.00           

birth rate -0.29 -0.16 -0.05 1.00          

literacy rate -0.30 0.14 0.60 -0.15 1.00         

Agriculture 0.23 -0.32 -0.31 0.21 -0.48 1.00        

manufacturing/service -0.09 0.11 0.14 -0.07 0.20 -0.19 1.00       

workforce occupied 0.09 -0.04 -0.29 0.14 -0.20 0.48 -0.08 1.00      

ln GDP per capita -0.26 0.19 0.40 -0.13 0.76 -0.42 0.19 -0.07 1.00     

ln rural GDP per capita 0.10 -0.44 0.02 0.19 0.05 0.46 -0.07 0.38 0.20 1.00    

homicide rate -0.05 0.17 0.02 -0.13 0.14 -0.25 -0.03 -0.19 0.18 -0.19 1.00   

water company -0.36 0.26 0.56 -0.18 0.65 -0.64 0.11 -0.40 0.55 -0.20 0.18 1.00  

sewer company  -0.30 0.26 0.51 -0.13 0.53 -0.45 0.11 -0.22 0.49 -0.10 0.07 0.64 1.00 
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Appendix F: Metropolitan and non-metropolitan heterogeneities 
 
Following Table 5, Table F1 also reports direct and spillover effects of the variables on 
population growth for non-metropolitan (columns V and VI) and metropolitan (columns VII 
and VIII) municipalities, to explore possible structural difference between them and to 
account for potential non-linearities. In the empirical model, the differentiated effects by 
metropolitan and non-metropolitan conditions are obtained by interacting each variable with a 
dummy for the condition of belonging to a metropolitan area. The results appear to indicate 
important heterogeneities associated with belonging to a metropolitan region. Those that are 
statistically different from their counterparts in the homogenous model are marked grey. 
 Firstly, regarding the influence of variables associated with local productivity, note 
that while the direct and spillover effects for non-metropolitan municipalities are basically 
similar to the ones in the homogenous model, those obtained for metropolitan localities 
present important particularities. Specifically, no statistically significant direct or spillover 
effects are found arising from the human capital variable (literacy rate), a result explained by 
the higher and more homogenous levels of schooling in these localities. Similarly, the direct 
effects arising from the variables rural GDP per capita and the manufacturing/services ratio 
are not statistically significant for MCAs belonging to metropolitan areas. These two results 
are consistent with a minor importance of rural markets and a more productive services sector 
in these areas. Related to this, the spillover effect of rural population is also no longer 
significant, both in metropolitan and non-metropolitan MCAs. This indicates that the 
significant spillover effect previously obtained for the entire set of MCAs is solely explained 
by the difference between non-metropolitan and metropolitan MCAs. Another spillover effect 
no longer significant for metropolitan MCAs is the birth rate. By contrast, only for 
metropolitan MCAs a positive and significant spillover effect is found associated with the 
variable GDP per capita. Apparently, the belonging to a metropolitan area is important for a 
municipality to take advantage from markets in its surroundings. Note that this spillover effect 
is consistent with both the better road infrastructure and stronger returns to scale in the 
economic activities generally present in these MCAs. 

The results for the influence of the amenity-related variables on population growth of 
Brazilian cities in the heterogeneous model are quite different from those in the homogeneous 
model. Differently from previous results, neither the direct nor the spillover effect of the 
homicide rate on population growth is significant, a result valid for both non-metropolitan and 
metropolitan MCAs. Just as for the rural population, this indicates that the weakly significant 
spillover effect previously obtained for the entire sample is solely explained by the difference 
between non-metropolitan and metropolitan MCAs. As for metropolitan MCAs, this study 
also obtains different direct effects for the variables associated with the public availability of 
water and sewer: different from the previous results, the availability of public water now 
presents a negative direct effect on population growth and the availability of public sewer a 
positive one. The latter result is in line with the better conditions present in metropolitan 
regions, where the supply of housing with this service tends to be more elastic to market 
conditions. On the other hand, the negative direct effect of availability of water appears 
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to reflect the difficulty in water provision or the exhaustion in the availability of this resource 
in metropolitan areas. This situation tends to be associated with higher prices of housing in 
these MCAs, making them less attractive.  
  Finally note that the direct and spillover effects of population density, both for non-
metropolitan and metropolitan MCAs, are negative and significant; this once more 
corroborates the hypothesis that densely populated cities deter prospective migrants with their 
more expensive living conditions not only to their own MCAs but also to their surroundings.  
 Overall, the conclusion must be that the results obtained for metropolitan 
municipalities in the heterogeneous model point to some important non-linearities that were 
left undisclosed in the homogenous model. Further research is need to investigate whether this 
also holds when considering more groupings, as well as whether this is related to any kind of 
urban hierarchy. 
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Table F1. Long-term Direct and Spillover Effects of Heterogeneous  
                Dynamic Spatial Model 

Explanatory Variables 

Long-Term Effects 
Non-Metropolitan 

Areas in 
Heterogeneous 

Regression 

Long-Term Effects 
Metropolitan Areas 

in 
Heterogeneous 

Regression 
Direct 

(V) 
Spillover 

(VI) 
Direct 
(VII) 

Spillover 
(VIII) 

lagged population growth rate -0.922 0.123 -0.922 0.123 

 
(-

109.13) (6.28) 
(-

109.13) (6.28) 
literacy rate 0.076 0.127 -0.015 0.024 
 (2.68) (1.65) (-0.12) (0.07) 
ln of GDP per capita 0.050 -0.008 0.079 0.072 
 (11.57) (-0.60) (6.52) (1.65) 
ln of rural GDP per capita 0.019 -0.011 0.001 0.002 
 (6.48) (-1.36) (0.29) (0.17) 
ln rural population -0.061 -0.011 -0.023 -0.015 

 
(-

15.04) (-0.80) (-5.53) (-1.06) 
Agriculture -0.217 0.070 -0.414 -0.323 
 (-8.76) (0.96) (-3.78) (-0.97) 
manufacturing/services 0.003 0.004 0.002 -0.005 
 (2.19) (0.96) (0.37) (-0.42) 
workforce occupied  0.340 0.085 0.361 0.100 
 (8.56) (0.75) (3.29) (0.42) 
birth rate 0.017 0.026 0.094 0.160 
 (9.29) (4.30) (2.17) (1.18) 
mean age 0.009 0.003 0.007 -0.000 
 (6.29) (0.81) (1.66) (-0.02) 
ln density -0.135 -0.138 -0.175 -0.100 

 
(-

20.28) (-6.46) 
(-

14.04) (-2.96) 
homicide rate 0.000 -0.000 -0.000 0.001 
 (0.91) (-0.90) (-0.72) (0.73) 
water company 0.041 -0.006 -0.226 0.170 
 (2.53) (-0.14) (-4.92) (1.25) 
sewer company  -0.043 -0.017 0.022 -0.114 
  (-3.31) (-0.52) (0.64) (-1.13) 
Note: t-values in parentheses. Significance levels of numbers marked  
grey in the heterogeneous model are different from their counterparts  
in the homogenous model. 
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1 A MCA is a municipality or aggregation of municipalities necessary to enable consistent spatial analyses over 

time; more details are provided when discussing the data.  
2 A more sophisticated approach that also includes the housing market is available in GLAESER (2008). 

3 DURANTON and PUGA (2013) cite cyclical behavior and sluggish adjustment as reasons to measure population 

growth over periods of five or ten years. 

4 This bias correction is needed because the dependent variables lagged in time and in both space and time on the 

right-hand side of (19) are correlated with the spatial fixed effects μ, which is the spatial counterpart of the 

Nickell bias, as shown by YU et al. (2008) and LEE and YU (2010) for a dynamic spatial panel data model 

without and with time-period fixed effects, respectively. 

5 Since the analysis is based on data observed over 10-year time intervals, the short-term effects do not 

differ greatly from the long-term effects. For this reason they are not reported, but available upon request. 

6 The numbers of MCAs that belonged to a metropolitan region in Brazil were 115 in 1980, 120 in 1991 and 285 

in 2000. From an universe of 3,659 MCAs, these MCAs were big cities or municipalities influenced by big 

cities. 


