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REVIEW

Therapeutic targeting and patient selection for cancers with homologous
recombination defects
Francien Talens, Mathilde Jalving, Jourik A. Gietema and Marcel A. Van Vugt

Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands

ABSTRACT
Introduction: DNA double-strand breaks (DSBs) are toxic DNA lesions that can be repaired by non-
homologous end-joining (NHEJ) or homologous recombination (HR). Mutations in HR genes elicit a
predisposition to cancer; yet, they also result in increased sensitivity to certain DNA damaging agents
and poly (ADP-ribose) polymerase (PARP) inhibitors. To optimally implement PARP inhibitor treatment,
it is important that patients with HR-deficient tumors are adequately selected.
Areas covered: Herein, the authors describe the HR pathway mechanistically and review the treatment
of HR-deficient cancers, with a specific focus on PARP inhibition for BRCA1/2-mutated breast and
ovarian cancer. In addition, mechanisms of acquired PARP inhibitor resistance are discussed.
Furthermore, combination therapies with PARP inhibitors are reviewed, in the context of both HR-
deficient and HR-proficient tumors and methods for proper patient selection are also discussed.
Expert opinion: Currently, only patients with germline or somatic BRCA1/2 mutations are eligible for
PARP inhibitor treatment and only a proportion of patients respond. Patients with HR-deficient tumors
caused by other (epi)genetic events may also benefit from PARP inhibitor treatment. Ideally, selection of
eligible patients for PARP inhibitor treatment include a functional HR read-out, in which cancer cells are
interrogated for their ability to perform HR repair and maintain replication fork stability.
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1. Introduction

DNA continuously encounters multiple different DNA lesions
from endogenous sources (e.g. radical species as byproducts
from cellular metabolism) as well as exogenous sources (e.g.
ultraviolet radiation and pharmaceutical agents). To preserve
genomic stability, cells are equipped with a tightly regulated
signaling network that detects and repairs DNA lesions, col-
lectively called the ‘DNA damage response’ (DDR) [1]. To facil-
itate DNA repair, the DDR activates cell cycle checkpoints to
arrest ongoing cell cycle progression. Furthermore, if the num-
ber of DNA lesions exceeds the amount that can be managed
by the DDR, cells will be cleared from the proliferative com-
partment by programmed cell death through apoptosis or
induction of senescence.

The response to DNA damage is not a linear pathway, and its
activation does not lead to fixed phenotypic outcomes. Rather,
the DDR consists of multiple parallel pathways which display
extensive feedback and cross talk. DDR signaling has widespread
influence on cellular homeostasis, as underscored by the obser-
vation that the upstream DDR kinases ATM and ATR phosphor-
ylate >700 substrates in various pathways in response to DNA
damage [2]. Conversely, DDR pathways receive input frommulti-
ple cellular cues, including pro-survival and pro-death signals,
which ultimately influence cell fate decisions to promote cell
survival or cell death in response to DNA damage.

Genetic defects in DNA repair pathway components or cell
cycle checkpoints are associated with a range of clinical

phenotypes, including neurodegeneration and cancer predis-
position [1]. These observations illustrate the relevance and
complexity of genome maintenance pathways. Interestingly,
research over the last decades has demonstrated that cancer-
associated DNA repair defects not only lie at the basis of
tumor development but also give rise to vulnerabilities that
can be exploited therapeutically.

1.1. Induction of DNA double-strand breaks

DNA double-strand breaks (DSBs) are potentially highly toxic
DNA lesions. DSBs can arise as a consequence of multiple
mechanisms. First, DSBs are induced under physiological cir-
cumstances during maturation of B- and T-cells during V(D)J
recombination, the mechanism that randomly assembles DNA
segments to generate diversity in immunoglobulins and T-cell
receptors [3]. Specifically, RAG-1 and RAG-2 introduce DSBs
that are randomly joined together to shuffle genomic areas
and create sequence variation [4]. Second, DSBs arise non-
physiologically. Most aberrant DSBs appear to be associated
with replication. These breaks can result from unrepaired DNA
single-strand breaks (SSBs) that are converted into DSBs dur-
ing replication. Alternatively, nucleotide depletion, interstrand
DNA cross-links, or collisions between the replication and
transcription machinery may stall replication forks, which as
a result thereof can collapse and lead to single-ended DSBs
[5]. Notably, many anticancer therapeutics, including plati-
num-containing agents and topoisomerase inhibitors, exert
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their cytostatic effects through interfering with DNA replica-
tion and thus cause DSBs. Of note, other anticancer treatments
(e.g. irradiation or chemotherapeutic agents such as bleomy-
cin) also cause DSBs in nonreplicating cells, by directly assault-
ing DNA.

1.2. Repair of DNA DSBs

Repair of DSBs is governed by two fundamentally different
pathways: non-homologous end-joining (NHEJ) and homolo-
gous recombination (HR). DSBs are repaired by either of these
pathways, and the choice between these types of DSB repair
depends largely on the cell cycle phase, although additional
factors such as chromatin context appear to play a role [6].

1.2.1. Non-homologous end-joining
Classical NHEJ is a very efficient DNA repair pathway that acts
throughout the cell cycle and directly ligates DNA ends [7].
NHEJ is present in both eukaryotes and prokaryotes and
operates through a largely conserved pathway [8]. In mam-
malian cells, most DSBs are repaired by NHEJ, since this repair
type is active throughout interphase. An important charac-
teristic of NHEJ is that it can ligate breaks with different
chemical ends. In the process of NHEJ, DSBs are recognized
and bound by Ku70–Ku80 heterodimers, which activate the
DNA–PKcs kinase (Figure 1(a), right panel). Subsequently, the
XRCC4:DNA ligase-IV complex is recruited, together with
nucleases and polymerases, to complete DNA-end joining
[9]. NHEJ works in a sequence-independent fashion and,
since DNA ends may have been damaged and require pro-
cessing prior to ligation, NHEJ is error-prone and can induce
mutations [10]. In contrast to classical NHEJ, alternative NHEJ
(alt-NHEJ) involves different players and creates deletions at
the repair junction [11].

1.2.2. Homologous recombination
In contrast to NHEJ, HR uses a DNA template to repair DSBs,
for which the sister chromatid is usually employed. The use of
a template makes HR conservative when it comes to DNA
sequence and remarkably error-free when compared to NHEJ
[12]. Of note, single-strand annealing, an independent DNA
repair pathway, also requires extensive homology but results

in annealing of homologous single-strand DNA ends, which
induces deletions [13]. The requirement of a template restricts
HR to S and G2 phases of the cell cycle when DNA replication
has occurred (Figure 1(b)) [14]. Although a genome-wide tem-
plate for HR becomes available upon DNA replication, only a
subset of DSBs is actually repaired by HR in S/G2. The mechan-
isms that underlie the usage of HR versus NHEJ in S/G2 cells
remain largely unclear, although chromatin composition
appears to influence the choice of repair type [6]. In contrast,
repair of replication fork-associated DSBs is completely depen-
dent on HR, since these DSBs are single-ended and therefore
require template-mediated resolution.

HR is a complex pathway and involves many components
(Figure 1(a), middle panel). DSBs are recognized by the MRN
complex, which consists of MRE11, RAD50, and NBS1. The
MRN complex tethers DNA ends and promotes activation
and recruitment of ATM to sites of DSBs. Reciprocally, ATM
phosphorylates and activates all members of the MRN com-
plex [15,16]. A critical step in the commitment to repair DSB
through HR is the formation of ssDNA overhangs at the sites
of DNA ends. This process, called DNA-end resection, is
initiated by the MRN complex in conjunction with CtIP and
BRCA1 [17] (Figure 1(a)). MRE11, as part of the MRN complex,
has endonuclease activity and can initiate DNA-end resection
in 5ʹ to 3ʹ direction and starts ∼200–300 nucleotides away
from the DSB site [18]. In doing so, the MRN complex creates
relatively short ssDNA overhang at DSB sites, which function
as an entry site for the EXO1 and DNA2 helicase/exonuclease
enzymes that generate extensive ssDNA stretches [19,20].
Following end resection, the ssDNA is coated with replication
protein A (RPA) protein complexes to stabilize ssDNA struc-
tures. In parallel, BRCA2 is recruited in a BRCA1- and PALB2-
dependent fashion to ultimately recruit RAD51 to the ssDNA
overhangs. RAD51 replaces RPA and forms nucleoprotein fila-
ments on the ssDNA, which will invade the homolog sister
chromatid to search for sequence homology and initiate
strand exchange [21]. Multiple additional factors are involved
in controlling HR. For instance, five paralogs of RAD51 exist
(i.e. RAD51B, RAD51C, RAD51D, XRCC2, and XRCC3) that
appear to support HR. All RAD51 paralogs are essential
genes, as deletion of these genes in mice results in embryonic
lethality [22]. The recruitment of RAD51 to DSBs is dependent
on RAD51 paralogs as well as on RAD52, deficiency of which
aggravates the phenotype of BRCA1, BRCA2, or PALB2 deletion
[23]. In this context, the RAD51C paralog appears to play the
most prominent role. Mechanistically, it was shown to delay
progression of the cell cycle during DNA damage by promot-
ing CHK2 phosphorylation during initiation of DDR signaling
[24]. Conversely, the HR component RAD54, a protein of the
SWI2/SNF2 complex, has ATPase activity which requires the
presence of dsDNA [25]. RAD54 interacts with RAD51 to stabi-
lize RAD51 filaments and is involved in strand invasion and,
eventually, formation of Holliday junctions [26].

As described above, the loading of RAD51 onto ssDNA is a
key step in completing DSB repair by HR. It has been shown
that TOPBP1, in conjunction with PLK1, is required for phos-
phorylation and loading of RAD51. In line with these findings,
an siRNA screen identified TOPBP1 as being synthetically
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lethal with olaparib, which was explained by impaired RAD51
foci formation upon TOPBP1 depletion [27].

Cells that are deficient in HR, for example, due to loss of
BRCA1/2, are dependent on alternative pathways to repair
DSBs. This includes classical or alternative NHEJ. Indeed,
error-prone NHEJ was shown to generate increased genomic
instability when HR is defective [28]. The alt-NHEJ pathway
requires DNA polymerase θ (Polθ), which prevents RAD51
loading onto ssDNA [29]. When compared to other NHEJ
polymerases, Polθ was shown to preferably bind a 5ʹ-terminal
phosphate and use the opposite overhang to anneal DNA
strands and therefore produces highly mutagenic DNA junc-
tions [30].

1.3. Balancing between HR and NHEJ

DNA-end resection is a point-of-no-return and marks the ulti-
mate decision to repair DSBs through HR (Figure 1(a)). This
switch is governed in large part by cell cycle-dependent phos-
phorylation of CtIP by cyclin-dependent kinases (CDKs), which

promotes endonuclease activity of MRE11 within the MRN
complex to initiate DNA-end resection [17,31]. CtIP is predo-
minantly recruited to DSBs during S and G2, in complex with
BRCA1 [32]. Since the activity of CDKs increases when DNA
recombination commences, this mechanism ensures restric-
tion of DNA end-resection to cell cycle phases where template
DNA is available. The switch between HR and NHEJ is also
regulated by additional mechanisms. Specifically, DNA-end
resection is negatively regulated by 53BP1 and RIF1, which
are both substrates of ATM. RIF1 binds to 53BP1 and ulti-
mately promotes NHEJ [33]. 53BP1 interferes with BRCA1 func-
tion and thereby prevents DNA-end resection whereas,
conversely, BRCA1 promotes dephosphorylation of 53BP1 to
stimulate DNA-end resection [34]. In the recent years, multiple
other factors have been identified that regulate DNA-end
resection and thereby control HR initiation and poly (ADP-
ribose) polymerase (PARP) inhibitor sensitivity. For example,
REV7 is recruited to sites of DSBs in a 53BP1-dependent fash-
ion and blocks DNA-end resection [35,36]. Also, the DNA heli-
case HELB and the demethylase JMJD1C affect chromatin

Figure 1. a) Schematic representation of double-strand break repair and protection of stalled replication forks. Left panel: For repair of DSBs by NHEJ,
breaks are recognized and bound by Ku70-Ku80 heterodimers which activate DNA-PKcs. XRCC4, DNA ligase-IV and polymerases (µ/λ) are recruited to complete DNA-
end joining. Middle panel: During HR repair, DSBs are recognized by the MRN complex, which initiates DNA-end resection in conjunction with CtIP and BRCA1.
EXO1 and DNA2 generate extensive ssDNA stretches, which are coated with RPA. In a PALB2-dependent fashion, BRCA2 is recruited, which loads RAD51 onto the
ssDNA to invade the sister chromatid and to find sequence homology. Right panel: In response to stalled replication forks, BRCA1, BRCA2, FANCD2 and RAD51
protect nascent DNA for MRE11-dependent degradation. b) Cell cycle-dependent switch between HR and NHEJ. HR only occurs in S and G2 phases of the cell
cycle. The switch between HR and NHEJ depends on the activity of S-phase CDKs, which phosphorylate CtIP to activate the MRN complex and stimulate DNA-end
resection. DNA-end resection is negatively regulated by 53BP1 and RIF1, which thereby promote NHEJ. Other cell cycle kinases also control HR, including Plk1 and
CK2 which control RAD51 recruitment.
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responses to DNA breaks and ensuing DNA-end resection and
thereby control RAD51 recruitment to sites of DNA breaks
[37,38]. Finally, 53BP1 recruitment was shown to be regulated
by ring finger protein 168 (RNF168), an altered abundance of
which induced toxic NHEJ, genomic instability, and differential
sensitivity towards PARP inhibitors [39]. Exactly how the
opposing effects of CtIP/BRCA1 and 53BP1/RIF1/REV7/HELB/
JMJD1C operate at the molecular level remains incompletely
clear. It has been shown, however, that the repositioning of
53BP1 and end-resection activity depend on ubiquitin ligase
activity of BRCA1 together with BARD1 and the subsequent
chromatin remodeling by SMARCAD1 [40].

Also other cell cycle regulators have been shown to impact
on DSB repair. For example, RAD51 is phosphorylated by polo-
like kinase-1 (Plk1) and casein kinase-2 (CK2), which is followed
by binding to the MRN component NBS1, which facilitate
recruitment to DNA breaks [41]. Although not all molecular
mechanisms have been elucidated and novel regulators will
likely be identified, it is becoming increasingly clear that the
switch between HR and NHEJ not only requires CDK activity
but involves multiple stimulatory and inhibitory factors of
DNA-end resection and homology search.

1.4. Replication fork stability

Independent of their role in repair of DSBs, HR proteins such
as BRCA2 and RAD51 paralogs are involved in the protection
of stalled replication forks, thereby preventing chromosomal
instability (Figure 1(a), right panel). BRCA2, as well as BRCA1
and FANCD2, prevents degradation of nascent DNA at stalled
replication forks by stabilizing RAD51 filaments. This pathway
is independent of the role of BRCA1/2 in loading RAD51 onto
ssDNA during HR [42,43]. In line with these findings, Somyajit
et al. showed that complexes of RAD51 paralogs bind to
nascent DNA at stalled replication forks to prevent the forma-
tion of DSBs by protecting forks against MRE11 activity [44].
The capacity to stabilize stalled replication forks appears very
relevant in the context of PARP inhibition. Specifically, trap-
ping of PARP enzymes onto DNA was shown to stall replica-
tion forks [45], and PARP trapping lies at the basis of PARP
inhibitor-induced cytotoxicity [46]. Conversely, the degree to
which cells can maintain replication fork stability was reported
to determine PARP inhibitor sensitivity [47].

2. HR-deficient cancers

Defects in DNA maintenance pathways, including DNA DSB
repair, are a hallmark of cancer [48]. Specifically, defective
genome maintenance is coined an enabling feature of carci-
nogenesis, as it allows the accumulation of genetic errors. The
subsequent genomic instability then facilitates the acquisition
of tumor-promoting features. Defective DSB repair was also
shown to result in mutations or chromosomal aberrations
underlying carcinogenesis. Extensive research in the 1990s
resulted in the identification of two breast cancer susceptibil-
ity genes, BRCA1 [49,50] and BRCA2 [51,52], of which hetero-
zygous germline mutations result in an increased lifetime risk
of developing breast and/or ovarian cancer. Besides the roles
of BRCA1 and BRCA2 in HR described above, they exert

additional functions related to DNA repair and cell cycle con-
trol to maintain genome stability [21].

2.1. HR gene mutations

Germline BRCA1/2 mutations are predominantly linked to the
development of breast and ovarian cancer, but they are also
associated with an elevated risk for other cancer types, includ-
ing pancreatic, prostate, and endometrial cancer [53–55].
Tumor onset in BRCA1/2 mutation carriers invariably involves
loss of the remaining wild-type (wt) allele through somatic
inactivation or loss-of-heterozygosity (LOH) and results in
tumor cells that are HR defective [56]. Besides mutation, epi-
genetic silencing of HR genes has also been shown to under-
pin defective HR in tumors. Specifically, the BRCA1 promoter is
frequently hypermethylated in breast and ovarian cancer
[57,58].

Importantly, not only germline BRCA1/2 mutations underlie
HR deficiency in tumors, but somatic BRCA1/2 mutations have
also been described [59]. Also, mutations in other HR genes,
such as PALB2 [60,61], RAD51 paralogs [62], or ATM [63], pre-
dispose to cancer development and may result in HR-defective
tumors. In a cohort of patients with uterine serous carcinoma,
different germline HR genes were found to be mutated [64].
Furthermore, HR genes were shown to be mutated in lung,
breast, intestinal, and skin cancer [65]. Also, mutations in the
cell cycle checkpoint gene CHEK2 were identified in breast
cancer patients without a BRCA1/2 mutation (5.1%) when
compared to healthy controls (1.1%) [66,67]. CHK2 is involved
in BRCA1 phosphorylation upon DNA damage and has been
implicated in controlling HR [68,69]. Whether the impact of
the commonly occurring CHEK2 1100delC variant is strong
enough to impact on HR repair and has therapeutic conse-
quences needs to be established.

2.2. BRCA1/2 mutations in breast and ovarian cancer

Mutations in BRCA1 result in a ~65% lifetime risk for breast
cancer development by the age of 70 years and a ~30–40%
lifetime risk for ovarian cancer. For BRCA2 mutation carriers,
the lifetime risk for breast cancer is around 50% at age 70 and
~10–15% for ovarian cancer [70–72]. The risk of cancer devel-
opment depends on multiple factors, including the exact posi-
tion of the mutation for both genes. Furthermore, somatic
mutations in other genes such as TP53 [73] or PTEN [74]
were suggested to influence BRCA1/2-related carcinogenesis.

Most breast cancers caused by BRCA1 mutations are ‘triple-
negative’ breast cancers (TNBCs), which entails that they do
not overexpress the estrogen receptor (ER), progesterone
receptor, or the human epidermal growth factor receptor-2.
TNBCs are characterized by aggressive growth and very lim-
ited targeted treatment options. In contrast, BRCA2-mutant
breast cancers are mainly low-grade ER+ luminal tumors,
which grow more slowly, and inhibition of signaling through
the ER is one of the treatment options [75,76].

Ovarian tumors arising in BRCA1/2 mutation carriers are
mainly high-grade serous carcinomas (HGSOCs) [77]. Notably,
when RNA expression profiles were examined, high levels of
similarity were observed between BRCA1/2-related and non-
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BRCA1/2-related HGSOC, indicating that this subgroup is char-
acterized by a high degree of genomic instability [75].
Importantly, these observations suggest that inactivation of
DNA repair is a common feature of serous ovarian cancer
tumorigenesis. Indeed, genomic analysis by The Cancer
Genome Atlas suggests that around half of HGSOCs are HR
deficient, based on mutations in BRCA1/2 or mutations in
other HR genes such as RAD51, ATM, CHEK2, PALB2, and
MRE11 [78].

2.3. Tumorigenesis and HR deficiency

BRCA1/2 genes have a tumor-suppressive function; heterozy-
gous germline mutations in BRCA1 or BRCA2 predispose to
cancer, in which cancer cells have lost the remaining wt allele
and are fully HR defective. In apparent contradiction with this
notion, HR deficiency caused by homozygous genetic inactiva-
tion of Brca1 [79,80], Brca2 [81,82], or Rad51 [82,83] causes
early embryonic lethality in vivo, showing that HR is required
for cell survival and development. The requirement for BRCA1
and BRCA2 extends beyond development since Brca1 or Brca2
knock-out mouse embryonic fibroblasts and blastocysts also
display compromised viability in vitro [80,84]. Apparently,
tumor cells that arise due to defective HR have developed
mechanisms to cope with increased genomic instability. How
these tumor cells survive and proliferate in the absence of HR
is incompletely understood and was coined the ‘BRCA para-
dox’ [85].

The enhanced rate of genomic aberrations induced by HR
deficiency allows the accumulation of multiple secondary
mutations, which support the survival of HR-deficient cells.
Indeed, loss of HR leads to DNA damage accumulation and
instigates a DDR, including transcriptional activation of p53
[86], suggesting that the p53 signaling axis may preclude
survival of HR-deficient cells. The observation that tumorigen-
esis in a Brca1 conditional mouse model was significantly
accelerated by introducing a Tp53+/- mutation underscores
the important role of p53 in BRCA1/2-associated tumors [87].
Furthermore, a conditional mouse model with a CK14-driven
Cre-mediated somatic loss of Brca1 and Tp53 resulted in a high
incidence of mammary tumors that resemble human basal-like
BRCA1 breast cancer [88]. These data are in line with the
human situation, in which TP53 is mutated in ~66% of
BRCA1/2-related breast tumors [89]. Combined, these observa-
tions explain the early embryonic death upon BRCA1/2 loss
and show that HR-deficient cells cannot survive without a
concomitant mutation in other genes, such as TP53.
Interestingly, co-mutation of Tp53 only partially rescued the
viability of cell cultures and mice lacking Brca1/2 [90]. This
suggests that other factors exist that promote BRCA1/2-related
tumorigenesis and lead to survival of BRCA1/2-deficient tumor
cells.

3. Therapeutic targeting of HR-deficient cancers

HR deficiency drives tumorigenesis but simultaneously pro-
vides an Achilles’ heel that can be exploited therapeutically.
The absence of HR components is often correlated with
improved therapeutic outcome [1]. HR-deficient tumors are

generally more sensitive to DNA damage that requires HR for
repair, including platinum-induced DNA replication lesions.

3.1. Cross-linking agents and effectiveness

Different compounds can induce inter- or intra-strand cross-
links (ICLs) which interfere with DNA replication. These drugs,
including platinum-containing cytostatics, are widely used in
various treatment settings for numerous cancer types includ-
ing ovarian cancer. ICLs prevent separation of the DNA strands
during replication and transcription and thus lead to stalled
replication forks and stalled transcription [91]. Besides tem-
plate-based repair of DSBs, HR is also involved in the protec-
tion and restart of stalled replication forks and repair of ICLs
(Figure 1(a), right panel). This latter process is initiated by
components of the Fanconi anemia (FA) pathway, which con-
sists of multiple FA genes [92]. Significant overlap exists
between the components that function in HR and the FA
pathways, including BRCA2 (FANCD1) [93] and BRCA1 (FANC-
S) [94]. Germline mutations in FA genes lead to the FA syn-
drome, a very rare inherited disease. These patients are often
diagnosed with cancer at an early age due to increased chro-
mosomal instability [95]. Of note, and in line with the repair
function of FA genes, this syndrome is characterized by
increased sensitivity to ICLs.

In epithelial ovarian carcinoma, both somatic and germline
mutations in BRCA1 and BRCA2 are positively correlated with
response to platinum-based treatment. A total of 14.9% of
patients with a BRCA1/2 mutation had progressive disease
within 6 months after primary treatment with platinum-
based chemotherapy compared to 31.7% of patients with
BRCA1/2 wt tumors [96]. In addition, BRCA1/2 deficiency
(either through mutation or loss of expression) is associated
with improved progression-free survival (PFS) after platinum-
based chemotherapy in serous ovarian cancer [97]. Regardless
of mutational status, decreased expression of BRCA1 was also
positively correlated with response to cisplatin plus paclitaxel
treatment [98]. The increased response to chemotherapy in
BRCA1/2-deficient ovarian cancers may underlie the fact that
patients with germline BRCA1/2-mutated tumors have a better
outcome in general (improved response rates and overall
survival) [99].

Whereas standard treatment of HGSOC is based on surgery
and primary platinum-based chemotherapy, TNBCs in the past
years were not consistently treated with platinum-based che-
motherapy. A significant proportion of TNBCs are HR deficient,
e.g. through BRCA1/2 mutations, and BRCA1/2-associated
breast tumors have common characteristics with TNBCs in
general [100]. Rottenberg et al. have shown that spontaneous
mammary mouse tumors induced by combined Brca1 and
Tp53 inactivation resembled human BRCA1-associated breast
cancer in humans [101]. These Brca1−/−; Tp53−/− mouse tumors
responded very well to cisplatin therapy and did not acquire
resistance after five relapses, even though tumors were not
completely eradicated [101]. In a study with 190 TNBC
patients, both the BRCA1/2 (16%) and the non-BRCA1/2-
mutant tumors responded well to a neo-adjuvant combination
therapy of carboplatin and docetaxel with pathologic
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complete responses in 59% and 56% of the cases, respec-
tively [102].

Low BRCA1 mRNA expression was found to be associated
with increased cisplatin sensitivity in patients with TNBC [103].
Finally, stage III breast cancer patients with a tumor of which
the genomic pattern resembled BRCA1/2-mutated breast can-
cers and were thus classified as BRCA-like showed improved
overall survival after high-dose platinum-containing chemother-
apy (cyclophosphamide–thiotepa–carboplatin) compared to
conventional 5-fluorouracil–epirubicin–cyclophosphamide
(FE90C) therapy in a randomized controlled trial [104]. These
combined results have resulted in platinum-containing agents
being increasingly included in standard chemotherapy regi-
mens of TNBCs.

3.2. PARP inhibition

Based on the principle of synthetic lethality, new molecularly
targeted therapeutic strategies have been developed for HR-
deficient tumors, which interfere with remaining DNA repair
pathways in the tumor [105,106]. PARP is an enzyme involved
in base-excision repair (BER) which is used to repair SSBs [107].
The first PARP inhibitor was developed in 1980 and was
initially used to sensitize tumors to chemotherapy [108]. In
2005, two seminal studies showed that BRCA1/2-mutated
tumor cells were extremely sensitive to PARP inhibition, in
contrast to BRCA1/2 heterozygote or wt cells due to synthetic
lethality [109,110]. The developed small-molecule PARP inhi-
bitors (KU0058684 and KU0058948) formed the basis for the
first FDA-approved PARP inhibitor olaparib (AZD-2281, trade
name: Lynparza, AstraZeneca Rubraca, Clovis Oncology Zejula,
Tesaro) [111,112]. Very recently, two other PARP inhibitors
were FDA approved, namely rucaparib (AG-014699, trade

name: Rubraca) and niraparib (MK-4827, trade name: Zejula)
[113] (Figure 2).

3.2.1. Mechanisms of PARP inhibitor-induced cell death in
HR-deficient tumor cells
Inhibition of the PARP enzyme results in insufficient repair and
ensuring accumulation of SSBs, which are converted into DSBs
during replication. Normal cells in BRCA1/2 mutation carriers
still have a remaining BRCA1/2 allele and are therefore HR
proficient. These cells can effectively repair DSBs and are
only marginally affected by PARP inhibition. In contrast,
tumor cells in which the remaining BRCA1/2 allele is lost are
HR deficient and unable to effectively repair the DSBs induced
by PARP inhibition and will ultimately undergo cell death. For
this reason, the tumor specificity of PARP inhibitors is favor-
able when compared to traditional chemotherapeutic agents
which target all dividing cells. Nevertheless, adverse side
effects of PARP inhibition have been reported [114,115].

Recently, additional mechanisms of PARP inhibitor-induced
cell death have been described. Besides interfering with SSB
repair through inhibition of BER, PARP inhibitors can also trap
the PARP enzyme onto the DNA to form protein:DNA com-
plexes. These complexes behave like DNA inter-strand cross-
links that interfere with DNA replication and require repair by
the Fanconi pathway and HR machinery [46,116]. Again, for
this mechanism to effectively induce cell death, lack of HR is
required.

These studies also explain the observations that PARP inhi-
bitors are most effective when PARP itself is abundantly pre-
sent and that chemical PARP inhibition is more effective than
removing PARP genetically [45]. Many different PARP inhibi-
tors have been described, all of which inactivate the PARP
enzyme catalytically to a high degree (Figure 2). However,
these inhibitors differ in their capability to trap PARP onto

Figure 2. Overview of PARP inhibitors in clinical development. For each PARP inhibitor, various characteristics are indicated, including trade name, status in
clinical development, chemical structure, dissociation constant (Ki) reflecting PARP1 catalytic inhibition, and capacity to trap PARP onto DNA.
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DNA (Figure 2). Notably, the cytotoxicity of the different PARP
inhibitors is related to their trapping potential [117]. Currently,
the PARP inhibitor with highest trapping activity used in clin-
ical studies is talazoparib (BMN-673), and this agent also has
the highest single agent toxicity. The PARP trapping ability of
talazoparib is a 100-fold higher than that of olaparib [116,118].

Of note, PARP1 was also shown to interact with NHEJ
components. Specifically, PARP1 can bind to the NHEJ proteins
Ku70/80 and DNA–PKcs and competes with Ku80 for repair of
DSBs through an alternative NHEJ pathway [119,120]. In line
with these observations, Patel et al. demonstrated that PARP
inhibition leads to phosphorylation of DNA–PK substrates,
thereby enhancing NHEJ activity in BRCA2-deficient cells
[121]. In the same study, inhibition of NHEJ through knock-
down of Ku80 could increase the cell survival of BRCA2-defi-
cient cells to PARP inhibition, suggesting that NHEJ repair of
PARP inhibitor-induced DNA lesions contributes to the toxicity
of PARP inhibitors. In line with this notion, inhibition of DNA–
PK decreased the sensitivity of ATM- and BRCA1-deficient
cancer cells to PARP inhibition [121].

3.2.2. PARP inhibition in the clinic
In a phase I trial, only BRCA1/2 mutation carriers (n = 22) with
different tumor types, including ovarian, breast, and prostate
cancer, showed antitumor activity in response to olaparib
monotherapy (63%) compared to non-mutation carriers
[112]. In the same study, adverse effects of olaparib mono-
therapy were observed that were mainly categorized as grade
1 or 2 and were, in general, less severe than those of classical
chemotherapy. The observed presence of grade 3 adverse
effects, such as myelosuppression and anemia, might be
explained by long cancer history or pretreatment with che-
motherapy regimens and be manageable by dose reduction or
treatment interruption [122].

A phase II trial included HGSOC patients who had received
two or more platinum-based chemotherapy regimens and had
a platinum-sensitive relapse [123]. Patients were randomly
assigned to olaparib monotherapy (n = 136) or placebo
(n = 129), and PFS was significantly longer in the olaparib-
treated group (median: 8.4 months) compared to patients
treated with placebo (median: 4.8 months) [123]. Most clinical
trials with olaparib concern combination therapies with che-
motherapeutic agents. For instance, in a randomized phase II
trial, it was shown that olaparib combined with carboplatin
and paclitaxel followed by olaparib monotherapy improves
PFS in recurrent, platinum-sensitive HGSOC patients (median:
12.2 versus 9.6 months in chemotherapy alone), especially in
patients with BRCA1/2 mutation (hazard ratio (HR): 0.21) [124].
Maintenance monotherapy with olaparib significantly pro-
longed PFS versus placebo in patients with platinum-sensitive
recurrent serous ovarian cancer, especially in patients with a
BRCA1/2 mutation [125]. Maintenance olaparib monotherapy
in patients with BRCA1/2-mutated breast, ovarian, or fallopian
tube tumors (n = 21) after combination chemotherapy with
carboplatin and paclitaxel was well tolerated [126] and has
been approved by the European Medicines Agency (EMA) for
this indication. In advanced, heavily pretreated, platinum-resis-
tant ovarian cancer patients (n = 193), of whom 80% had

germline BRCA1/2 mutations, olaparib monotherapy resulted
in an objective response rate of 34% [127], and this trial
resulted in the FDA approval in this setting. Furthermore, in
a multicenter phase II trial, heavily pretreated patients with a
germline BRCA1/2 mutation (n = 298) were treated with ola-
parib monotherapy. This resulted in stable disease up to
8 weeks in 42% of the patients and an overall tumor response
rate of 31.1% [122]. Although olaparib showed responses as
monotherapy, especially in BRCA1/2-mutant tumors, various
studies have suggested that combination therapies are
required to improve response rates [128], likely at the cost of
increased toxicity. In this context, numerous studies are
ongoing.

3.2.3. Increasing the sensitivity for PARP inhibition
PARP inhibition is selectively cytotoxic in HR-deficient tumors.
An approach to extend PARP eligibility to other HR-proficient
tumors is to therapeutically induce temporary defects in HR.
For instance, it was shown that HR is suppressed in multiple
cancer cell lines under hypoxic conditions through downregu-
lation of RAD51 [129]. In addition, inhibition of vascular
endothelial growth factor receptor 3 (VEGFR3) resulted in
decreased expression of BRCA1 and BRCA2 in ovarian cancer
cells [130]. These data suggest that inhibiting angiogenesis
can be used to enforce HR deficiency and improve responses
to PARP inhibition. Indeed, when olaparib was combined with
cediranib, a drug that targets the VEGFRs, improved PFS was
observed in patients with platinum-sensitive recurrent ovarian,
fallopian tube, or peritoneal tumors [131]. Adverse effects of
this combination therapy, however, were also increased when
compared to olaparib treatment alone. Nevertheless, these
adverse effects do not prevent current ongoing clinical trials.

Another family of enzymes involved in maintaining HR are
phosphoinositide 3-kinases (PI3Ks), which are activated upon
receptor signaling and have distinct functions in signal trans-
duction pathways [132]. The isoform PI3Kβ is found to be
important for DSB sensing as it regulates recruitment of
NBS1, a subunit of the MRN complex, to sites of DNA breaks
[133]. In line with these observations, Juvekar et al. showed
that the PI3K and mitogen-activated protein kinase pathway
were activated in a Brca1-mutated breast cancer mouse
model, as judged by increased AKT and ERK phosphorylation
[134]. Conversely, PI3K class I inhibition using BKM-120 led to
increased DNA damage and in combination with olaparib
delayed in vivo tumor growth [134]. Subsequently, PI3K inhibi-
tion in patients with BKM120 resulted in increased DNA
damage in tumors, decreased levels of BRCA1 and BRCA2,
and increased sensitivity of TNBCs to olaparib, even in tumors
without a BRCA1/2 mutation [135]. This combination may be
valuable in other tumor types, as it also showed synergistic
effects in human prostate cancer cell lines and in Pten/Tp53-
mutaded mouse prostate tumors [136]. Currently, an ongoing
clinical trial combines BKM-120 with olaparib in TNBC and
HGSOC patients (NCT01623349).

Another class of kinases that is essential for HR are CDKs.
HR is strictly cell cycle regulated, which is governed by S and
G2 CDKs, as explained above. In line with this notion,
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inhibition of CDK1 activity was shown to impair HR and to
sensitize otherwise HR-proficient tumor cell lines for PARP
inhibition [137]. Furthermore, inhibition of multiple CDKs
simultaneously using dinaciclib could overcome PARPi resis-
tance in BRCA1/2-mutated TNBC cell lines and xenograft mod-
els by blocking the restored HR function [138]. Dinaciclib is
currently being assessed in combination with the PARP inhi-
bitor veliparib in solid tumors (NCT01434316). Surprisingly,
also a G1/S cyclin–CDK complex was found to be involved in
HR regulation. Specifically, cyclin D, the non-catalytic partner
of CDK4 and CDK6, appeared essential for HR, and this finding
may open up additional possibilities to potentiate PARP inhi-
bitor sensitivity [139].

Finally, DNA repair through HR is inactivated in response to
hyperthermia. The inhibition of HR shifts repair of DSBs to
error-prone NHEJ and thereby sensitizes tumor cells to DNA
damaging agents [140]. Upon transient hyperthermia to 42.5°
C, it was shown that BRCA2 is degraded in a proteasome-
dependent fashion. Loss of BRCA2 lasts for several hours and
functionally impairs HR. Consequently, tumor cells become
sensitive to cisplatin, doxorubicin as well as PARP inhibitors
in vitro and in vivo [141]. This concept is currently being tested
in a range of clinical trials, including a trial in head and neck
cancer patients, testing the effects of hyperthermia on
responses to the PARP inhibitor olaparib (Dutch Trial registry:
NTR5842).

3.2.4. Resistance to PARP inhibitors
As with many molecularly targeted agents, resistance to PARP
inhibitors is a clinical problem. Currently, different mechan-
isms underlying resistance to PARP inhibitor treatment have
been described (Figure 3).

Secondary mutations or translocations may arise within the
mutated BRCA1 or BRCA2 gene, restoring the reading frame of
the affected gene. This was firstly described in breast and
pancreatic cell lines in which secondary BRCA2 mutations
restored the BRCA2 reading frame and resulted in cisplatin
and PARP inhibitor resistance [142]. The same research group
reported that secondary mutations of BRCA1 also occur in
platinum-resistant ovarian cancer with a BRCA1 mutation
[143]. In germline BRCA1/2-mutated ovarian cancer patients,
secondary somatic mutations that restore BRCA1/2 were cor-
related with resistance to platinum-based chemotherapy
[144]. A mechanistically unrelated resistance mechanism was
described for BRCA1-hypermethylated breast patient-derived
xenograft (PDX) tumors, in which BRCA1 expression was
restored through rearrangement of the BRCA1 locus, resulting
in expression of BRCA1 from a different promoter [145]. The
loss of BRCA1 promoter methylation has already been
described in chemotherapy-resistant ovarian cancer
patients [146].

The function of HR can also be restored by mutations in
other genes. An important finding by Cao and coworkers

Figure 3. PARP inhibitor resistance mechanisms. Various mechanisms for PARP inhibitor resistance are described. Secondary intragenic mutations (BRCA1/2),
secondary mutations in other genes in BRCA1-mutant cancer cells or promotor translocations in BRCA1 may restore HR function. Secondary mutations in other genes
may restore protection of stalled replication forks caused by BRCA2 inactivation.

572 F. TALENS ET AL.



described that loss of 53BP1 prevented the senescence and
cell death induced by BRCA1 deficiency, both in vitro and in
vivo [147]. 53BP1 was originally identified as an activator of
p53 in the DDRs [148] and was later shown to promote NHEJ
[149]. Notably, 53BP1 inactivation partially restored HR in
mouse embryonic stem cells with a conditional Brca1 knock-
out [150]. Through this mechanism, loss of 53BP1 reversed the
sensitivity of BRCA1-deficient cells to PARP inhibition
[150,151]. Although these experiments were executed in
mouse models, loss of 53BP1 may be a resistance mechanism
to PARP inhibition in patients with BRCA1-mutant tumors
[152]. Indeed, altered expression of 53BP1 is commonly
observed in BRCA1-mutated breast cancers.

Comparable observations were done for other NHEJ-pro-
moting genes Rif1 and REV7 (also called Mad2L2). Mutation of
these genes also rescued HR defects, promoted the cellular
viability, and reversed PARP inhibitor sensitivity in BRCA1-
deficient cells [36,153]. Additionally, it was shown that ubiqui-
tylation and recruitment to DSBs of BRCA1, but not 53BP1, are
regulated by the demethylase JMJD1C. Knockdown of JMJD1C
resulted in increased RPA phosphorylation and accelerated
formation of RAD51 foci upon irradiation. In BRCA1-depleted
cells, knockdown of JMJD1C resulted in decreased sensitivity
to PARP inhibition by olaparib and restored RAD51 foci for-
mation [37]. Furthermore, reduced expression of JMJD1C was
found in a subset of invasive human breast cancers (26%),
which suggests that JMJD1C is another player in PARP inhibi-
tor resistance similar to 53BP1 and its cofactors.

Most of the above-described mechanisms reversed PARP
inhibitor sensitivity and HR in BRCA1-mutant cancers, but not
in BRCA2-mutant cancers. This probably reflects the upstream
function of BRCA1 within the HR pathway, at the level of
DNA-end resection initiation. BRCA2, by contrast, functions in
RAD51 recruitment beyond the step of DNA-end resection.

Recently, loss of PTIP (also known as PAX-interacting protein
1, encoded by the PAXIP1 gene) was described to rescue the
lethality of Brca2-mutated embryonic mouse stem cells and
caused PARP inhibitor resistance. However, PTIP inactivation
did not restore HR, but rather lead to protection of replica-
tion forks through prevention of MRE11 recruitment to
stalled replication forks [47]. These data suggest that besides
HR functionality, replication fork protection is critically
involved in sensitivity to PARP inhibitors in BRCA2-deficient
cancers.

As the cytotoxicity of PARP inhibition is dependent on the
presence of its target PARP-1, it is suggested that decreased
levels or activity of PARP-1 may interfere with PARP inhibitor
response. The levels of PARP-1 were decreased in PARP inhi-
bitor-resistant cell lines and increased activity of PARP-1 (as
measured by PARylation) correlated to PARP inhibitor sensitiv-
ity [154,155]. Small nucleotide polymorphisms (SNPs) in the
PARP1 gene may alter its function and activity and thereby
influence the response to PARP inhibition [156].

4. Patient selection for PARP inhibitor treatment

Currently, only serous ovarian cancer patients with proven
germline or somatic BRCA1/2 mutations are eligible for treat-
ment with olaparib or rucaparib (Figure 4). In 2006, it was
already suggested that PARP inhibition might be effective
not only in tumors with BRCA1/2 mutations but also in tumors
with loss of other HR components and in tumors beyond
breast and ovarian cancer [157]. Very recently, niraparib has
also been approved by the FDA for treatment of recurrent
fallopian tube or primary peritoneal cancer. Below, various
techniques are described that can be used to facilitate patient
selection for PARP inhibitor treatment.

Figure 4. Patient selection for PARP inhibitor treatment. Currently, patients are selected for PARP inhibitor treatment based on BRCA1/2 mutation analysis.
Additional techniques such as genomic scar analysis (e.g. array-CGH or DNA sequencing-based) or a functional HR read-out are being developed and could be
included to better select patients with HR-deficient tumors. The advantages (PROS) and disadvantages (CONS) of each method are indicated.
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4.1. Mutation analysis

BRCA1/2 mutational status and BRCA1 promoter methylation
analysis of tumors will identify patients, likely to benefit from
PARP inhibition. However, mutations in other HR genes might
also result in HR deficiency and thus PARP inhibitor sensitivity,
although these mutations are less frequently observed.
Extending the panel of genes for mutational analysis might
increase the selection of HR-deficient tumors, but for each of
these genes, variants of unknown significance (VUS) occur
which challenge clinical decision-making. In a study by
Easton et al., 1433 VUS alleles in BRCA1 and BRCA2 were
classified, of which the majority appeared to be of no signifi-
cance in relation to cancer development [144]. It was sug-
gested that family history should play an important role in
decision-making and prediction of cancer risk in patients with
VUS alleles [158]. Systemic approaches and combining big
data sets is required to optimally classify the thousands of
VUS alleles in BRCA1/2 and other HR genes to predict if
these mutations predispose to cancer. In parallel, experimental
models have been developed in which VUS alleles can be
tested for functionality [159]. Members of the global
Evidence-based Network for the Interpretation of Germline
Mutant Alleles (ENIGMA) consortium collaborate to better
implement information on VUS alleles into clinical decision-
making [160].

Furthermore, secondary mutations either within the mutant
BRCA1/2 alleles or in secondary genes that restore HR function
have been described and may underlie resistance to platinum-
based chemotherapy and PARP inhibitors [161]. Profiling all
these genes for mutations will make genetic screening
increasingly complex.

4.2. Genomic scar analysis

Different approaches have been developed to discriminate
between HR-proficient and HR-deficient tumors based on the
landscape of the genomic tumor aberrations, referred to as a
‘genomic scar’ (Figure 4).

To detect breast cancer tumors without BRCA1/2 mutations,
but with a similar phenotype, a classifier was developed based
on tumor profiles with array-comparative genomic hybridiza-
tion (CGH) using a set of BRCA1-mutated breast tumors as well
as control breast tumors [162]. In a group of 48 patients from
families with hereditary breast and ovarian cancer, two tumors
with a ‘BRCA1-like’ array-CGH profile but without BRCA1/2
germline mutation were detected. Furthermore, this classifier
predicted response to genotoxic agents with improved out-
come of ‘BRCA1-like’ tumors (based on the array-CGH profile)
to platinum-based chemotherapy in stage III breast cancer
patients [163]. Of note, this technique might not only be
useful for prediction but also to give insight into the signifi-
cance of certain VUS alleles and identify compensatory geno-
mic alterations that facilitate cellular survival in the absence
of HR.

In a recent study by Davies et al., whole-genome profiling
was applied to 24 breast tumors with a germline BRCA1/2
mutation and results were compared to sporadic breast cancer
samples to develop an algorithm that can differentiate

between these groups [164]. Included parameters were
based on indels, base-substitutions, and rearrangements. In
different additional cohorts of breast, pancreatic, and ovarian
cancer, tumors with a BRCA1/2 deficiency were identified
when the developed algorithm (named ‘HRDetect’) was
applied. These tumors harbored either biallelic germline or
somatic mutations in BRCA1 or BRCA2 or promoter hyper-
methylation of BRCA1 combined with a loss of the second
allele. Importantly, also tumors without genetic alterations in
BRCA1/2 were identified, illustrating that sequence analysis for
BRCA1/2 alone is insufficient to detect all tumors with an HR-
deficient phenotype [164].

Myriad Genetics has developed a homologous recombina-
tion deficiency (HRD) test to identify patients that could ben-
efit from PARP inhibitor treatment (termed ‘MyChoice’ test).
This test includes a genetic and phenotypic analysis of forma-
lin-fixed, paraffin-embedded tumor tissue collected by biopsy
or surgery. Genes associated with HR deficiency are
sequenced, including BRCA1/2 as well as others [165]. As this
analysis cannot identify tumors with epigenetically silenced
HR genes and other yet unknown causes of HR deficiency,
tumor tissue is also analyzed at a phenotypic level for three
features of genomic instability. These characteristics include
large-scale transitions, clustering of LOH, and assessing the
telomeric allelic imbalance rates (reviewed in [166]). The
tumors are assigned a combined HRD score based on these
three characteristics. It has been shown that this phenotypic
HRD score strongly correlates with a BRCA1/2 deficiency in
different types of breast tumors [167]. The combination of
mutational analysis and HRD score gives a better prediction
of HR compared to mutational status alone. Currently, based
on clinical trials, the MyChoice test identifies twice as many
patients that may benefit from PARP inhibitor treatment and
platinum-based chemotherapy compared to selection by
BRCA1/2mutational analyses alone for both breast and ovarian
cancer (NCT01847274) [168]. Included patients without BRCA1/
2 mutations but with high HRD score appear to show a favor-
able response to platinum-based therapy in TNBC [169].
However, not all HR-deficient tumors based on mutational
analysis or genomic scarring will be sensitive to PARP inhibi-
tion. These tumors are highly genomically unstable and may,
therefore, develop secondary mutations that restore HR func-
tion or result in PARP inhibitor resistance as described above.

Genomic scar analysis is performed on tumor specimens
taken prior to treatment. The disadvantage of this approach is
that it provides a historic representation of the genetic aberra-
tions in the tumor, but does not reflect current HR deficiency
as for instance influenced by secondary mutations. Additional
biomarkers or functional assays to determine whether HR is
still defective or possibly restored will, therefore, provide bet-
ter insight.

4.3. Functional HR read-out – RAD51 foci formation

The essential last step in HR repair is RAD51 loading, and its
functionality can be visualized by foci formation analysis [170].
Mechanistically, BRCA2 is required for RAD51 foci formation
upon DSBs induced by ionizing radiation (IR) [171]. As RAD51
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is the effector in HR, lack of BRCA2, but also upstream HR
defects in components such as BRCA1 or PALB2, results in the
absence of RAD51 foci formation. The formation of RAD51 foci
is, therefore, a functional read-out for HR deficiency (Figure 4).

To determine the ability of cells to repair DSBs by HR,
different in vitro or ex vivo models have been used to assess
the formation of irradiation-induced RAD51 foci. In ovarian
cancer cell lines and in PDX models from omental tumors, ex
vivo assessed irradiation-induced RAD51 foci correlated with
response to the PARP inhibitor veliparib (ABT-888) [172]. In
primary cultures of ascites from patients with epithelial ovar-
ian cancer, a correlation was found between the response to
PARP inhibition (AG14699) and decreased RAD51 foci forma-
tion, although in this study RAD51 foci formation was deter-
mined at 24 h after treatment with AG14699, rather than at
short-term interval upon IR [173].

It is important to consider that different sources of DSBs,
such as IR versus chemical compounds, may lead to a different
time frame in which RAD51 foci appear. It has been shown
that efficient DNA repair, and thus formation of RAD51 foci, in
response to irradiation is optimal after 2 h [174]. Counting
RAD51 foci at 24 h after treatment may, therefore, lead to an
overestimation of tumors that are HR deficient. Furthermore,
both studies did not discriminate between cells in different
phases of the cell cycle [172,173]. Since HR only occurs in S
and G2 of the cell cycle, RAD51 foci will only appear in a
subset of tumor cells. If RAD51 foci are counted in cells
regardless of the cell cycle phase, it may result in false-nega-
tive results, for instance in tumor samples that contain a high
percentage of non-proliferating cells. The appearance of false
negatives was indeed the case in Mukhopadhyay et al. To
reliably determine HR functionality, a cell cycle or proliferation
markers should be included. Geminin, for instance, is a nuclear
protein that is present during S and G2 phase to coordinate
replication and can, therefore, be used as cell cycle marker
[175]. Taking geminin into account as a cell cycle marker
provides an additional check to determine whether the ex
vivo cultures are still proliferating. Naipal et al. determined
the presence of RAD51 foci upon irradiation in geminin-posi-
tive cells of ex vivo breast cancer tissue samples. In this study,
11% of samples were HR deficient, and defective RAD51 foci
formation correlated with TNBC status [176].

In another study with fresh tumor samples of breast cancer
patients, ex vivo RAD51 foci formation was assessed, and 22%
of tumors were found to be RAD51 deficient and thus HR
defective. Subsequently, biallelic inactivation of different HR
genes was detected by sequencing and could explain almost
90% of the RAD51-foci devoid of tumors [177].

Graeser et al. assessed RAD51 foci formation in biopsies of
patients taken at 24 h after neo-adjuvant chemotherapy.
RAD51 foci were assessed in geminin-positive cells, and HR
deficiency was found in 26% of the tumors, which were again
enriched for TNBC status [178]. Also, low levels of RAD51 foci
correlated with pathologic complete response to anthracy-
cline-based chemotherapy (33%), when compared to tumors
that were HR proficient (3%). Different approaches to counting
RAD51 foci in multiple studies, such as the time point after
irradiation, may explain the variety in percentages of HR-defi-
cient tumors.

5. Conclusion

Repair of DNA DSBs and collapsed replication forks
depends on HR for efficient resolution. Defective HR, such
as caused by cancer-associated mutations in BRCA1, BRCA2,
or related HR genes, leads to genomic instability and facil-
itates tumor progression. Yet, HR defects come with
acquired sensitivity to DNA damaging agents, including
PARP inhibitors. Current patient inclusion is largely based
on BRCA1/2 mutational analysis. However, BRCA1/2 muta-
tional analysis is likely not sufficient to include all HR-
deficient tumors, and conversely, some BRCA1/2 mutant
cancers may be HR proficient, due to secondary mutations.
The restoration of HR underlies one of the mechanisms by
which tumors become resistant to PARP inhibition, espe-
cially in BRCA1-mutant tumors. Restoration of replication
fork stability appears to be another mechanism of PARP
inhibitor resistance, especially in BRCA2-deficient tumors.
Development of functional HR deficiency tests may more
reliably identify patients who may benefit from PARP inhi-
bition. Functional assays in preclinical testing have corre-
lated RAD51 foci formation with clinical parameters and
response to DNA damaging agents [178]. A clinical trial
designed to determine whether ex vivo RAD51 foci forma-
tion can predict responses to PARP inhibition in multiple
tumor types (NCT03044795) is due to commence soon.
Additionally, functional testing at the time of resistance
to PARP inhibitor therapy may aid in yielding a better
understanding of the mechanisms of acquired PARP
resistance.

6. Expert opinion

PARP inhibition in HR-deficient cancers is the prototypical
example of personalized medicine, based on synthetic lethal-
ity. Currently, three PARP inhibitors have been approved by
the FDA, and olaparib has been approved by the EMA for
BRCA1/2-mutated ovarian cancer. Several other PARP inhibi-
tors are in clinical development. Increasingly, it appears that
the ability to trap the PARP enzyme onto DNA is important for
cytotoxic effects, in addition to their ability to catalytically
inhibit PARP.

To optimally implement PARP inhibitors in cancer treat-
ment, selection of the patients with most suitable tumors is
key. Genetic testing for BRCA1/2 mutation remains a powerful
approach, but might miss a significant number of HR-deficient
tumors, harboring BRCA1 promoter hypermethylation or muta-
tions in other HR genes. Identification of such tumors is chal-
lenged by the multitude of genes involved in HR and by our
limited understanding of the contribution of each of these
genes.

Ideally, selection of eligible patients for PARP inhibitor
treatment involves a test that measures downstream conse-
quences of defective HR. Existing tests are based on genomic
platforms such as array-CGH, SNP arrays, or deep sequencing-
based analysis and display genomic ‘scars’ induced by HR
deficiency. Using algorithms, genomic scars can be identified
that resemble those of BRCA1/2-mutant cancers and predict
HR deficiency, regardless of the underlying gene mutation.
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These assays will grow increasingly reliable, with growing
numbers of samples analyzed.

As with other targeted anticancer agents, acquired resis-
tance to PARP inhibitors occurs. Increasingly, the genetic
events that may underlie resistance are uncovered and could
be included in decision-making for PARP inhibitor treatment.
Over the last years, multiple genetic alterations have been
described that can rescue defective HR and thereby render
tumor cells insensitive to PARP inhibitors. Importantly, geno-
mic scars represent historic events and may not reflect current
HR deficiency when such secondary mutations have occurred.

To address this issue, assays are required that functionally
interrogate HR functionality. In this context, fresh tumor samples
can be prepared and analyzed for their ability to induce focus
formation of the HR component RAD51 or related downstream
HR components. Although these assays are technically feasible
and require fresh tumor material, they theoretically would be
able to include all HR-deficient tumors, beyond breast and
ovarian cancer. Most of the tumor tissue in studies that assess
RAD51 foci formation is irradiated as a model to induce DSBs. In
an ideal situation, PARP inhibitors are employed instead of
irradiation, as they instigate the most relevant type of DNA
lesions and activate the relevant DNA repair pathway.
Furthermore, some tumors contain a small portion of actively
proliferating cells. Since RAD51 foci formation can only be func-
tional in proliferating cells, it may turn out to be challenging to
assess sufficient amounts of cycling tumor cells. Finally, different
approaches may need to be tested to keep tumor tissues viable
for the duration of the ex vivo procedure.

Recent insight has also shown that PARP inhibitor sensitiv-
ity is associated with the ability of tumors to stabilize stalled
replication forks, a mechanism that also involves HR compo-
nents. The ideal functional assay to test PARP inhibitor elig-
ibility therefore not only includes RAD51 foci formation but
also involves the ability of cancer cells to maintain replication
fork stability. Various technical hurdles will need to be over-
come to implement such functional assays clinically.

Combined, PARP inhibitors may provide clinical benefit for
various cancers, beyond BRCA1/2-mutant ovarian cancers. To
facilitate patient selection for PARP inhibitors, additional tests
beyond BRCA1/2 mutational analysis should be employed,
ranging from genetic analysis to functional assays in fresh
tumor tissue. In the coming years, accurate ways to select
patients for PARP inhibitor treatment will be assessed in the
context of clinical trials. As more PARP inhibitor resistance
mechanisms are being discovered, it is important to be able
to detect if resistance mechanisms are active in the tumor to
efficiently adapt the treatment with other treatment regimens,
such as immunotherapies.
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