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Abstract Pharmacodynamic modeling of pulsatile

endogenous compounds (e.g. growth hormone [GH]) is

currently limited to the identification of a low number of

pulses. Commonly used pharmacodynamic models are not

able to capture the complexity of pulsatile secretion and

therefore non-compartmental analyses are performed to

extract summary statistics (mean, AUC, Cmax). The aim of

this study was to develop a new quantification method that

deals with highly variable pulsatile data by using a

deconvolution-analysis-informed population pharmacody-

namic modeling approach. Pulse frequency and pulse times

were obtained by deconvolution analysis of 24 h GH pro-

files. The estimated pulse times then informed a non-linear

mixed effects population pharmacodynamic model in

NONMEM V7.3. The population parameter estimates were

used to perform simulations that show agonistic and

antagonistic drug effects on the secretion of GH. Addi-

tionally, a clinical trial simulation shows the application of

this method in the quantification of a hypothetical drug

effect that inhibits GH secretion. The GH profiles were

modeled using a turnover compartment in which the

baseline secretion, kout, pulse secretion width, amount at

time point 0 and pulse amplitude were estimated as pop-

ulation parameters. Population parameters were estimated

with low relative standard errors (ranging from 2 to 5%).

Total body water (%) was identified as a covariate for pulse

amplitude, baseline secretion and the pulse secretion width

following a power relationship. Simulations visualized

multiple gradients of a hypothetical drug that influenced

the endogenous secretion of GH. The established model

was able to fit and quantify the highly variable individual

24 h GH profiles over time. This pharmacodynamic model

can be used to quantify drug effects that target other

endogenous pulsatile compounds.

Keywords Population PK/PD modeling � Growth
hormone � Deconvolution analysis � Pulsatile secretion

Introduction

Many drugs exhibit wanted and/or unwanted effects on the

secretion of endogenous pituitary hormones such as growth

hormone (GH), prolactin or luteinizing hormone (LH).

These hormones are secreted in ‘bursts’ or pulses and,

particularly in the case of GH, vary in amplitude, time of

secretion and may be influenced by circadian rhythmicity

and sleep [1–4]. When studying drug effects on the

secretion of GH, a non-compartmental analysis on the

plasma concentration–time profile is commonly performed.

This results in mean and maximum plasma GH concen-

trations over a specified time interval or the area under the

plasma GH concentration–time curve (AUC) to be used for

comparison between groups [5–7]. Importantly, by reduc-

ing the complex concentration–time profile of GH to
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summary statistics, the use of time as a continuous variable

is lost. Therefore, the analysis results are highly dependent

on the timeframe of observations and sampling interval,

e.g. the endogenous GH AUC of 0–12 h can yield different

results than the AUC of 12–24 h within the same indi-

vidual due to the secretion of variable pulses. This con-

tributes to high variability in these summary statistics.

Furthermore, the commonly used single GH measurement

or multiple-point mean [8, 9] does not capture the total

secretion profile of an individual and thereby limits the

correct quantification of a possible drug effect over time.

More advanced analysis methods, such as deconvolution

analysis, have been developed to extract more information

from a pulsatile profile [10, 11]. With deconvolution

analysis, the observed concentrations are treated as the

product of secretion and elimination processes. The

underlying pulsatile secretion processes are estimated as

Gaussian shaped events. The time points of these events are

optimized to fit the data via multiple in- and exclusion

steps [3, 10, 12]. Deconvolution analysis provides infor-

mation on the regularity, the frequency, the amplitude,

baseline secretion and the secretion width of pulses on an

individual level [12, 13]. Even though this increases the

amount of information that is retrieved from pulsatile GH

concentration–time profiles, time cannot be used as a

continuous variable in the reported tables. Thus, decon-

volution results are still dependent on the study design, and

it therefore has limited utility in comparing results between

studies where different dosing regimens or study designs

are used.

In drug development, population approach non-linear

mixed effects (NLME) models are often used to study the

pharmacokinetics and pharmacodynamics (PK/PD) of

drugs over time. For example, direct effect, turnover or

pool models are commonly used to describe endogenous

pituitary hormone secretion over time [14–16]. However,

such pharmacodynamic models cannot account for a highly

variable pulsatile secretion. In the literature, the imple-

mentation of pulsatile functions in NLME models has been

limited to compounds with a low number of pulses (me-

latonin [17], LH [2], ACTH [18]). When a higher number

of pulses is observed, the numerical complexity of the

model increases and the model stability decreases when the

pulse location, duration and amplitude of multiple pulses

need to be estimated.

The aim of this study is to develop a new method to

quantify and model pulsatile data for the development of a

pharmacodynamic model that is able to quantify highly

variable pulsatile secretion patterns over time by combin-

ing deconvolution analysis techniques and NLME model-

ing. Deconvolution analysis was previously performed on

data from a clinical study where GH concentrations were

sampled every 10 min over a 24 h period in normal weight,

upper body obese (UBO) women with large visceral fat

areas and lower body obese (LBO) women with small

visceral fat areas, before and after weight loss [19]. This

resulted in the identification of reduced GH secretion in

UBO subjects and no significant difference in GH half-life

or volume of distribution. This densely sampled and highly

variable dataset was used for the model development of

this study. The deconvolution method used in the study of

Pijl et al. [19] has been improved and applied in a new

software package, AutoDecon, which was implemented in

this study [3]. Furthermore, GH concentration–time pro-

files after the administration of hypothetical drugs that have

antagonistic or agonistic properties were simulated. As a

proof of concept of the application of this method on the

quantification of a drug effect, a simulated drug effect was

re-estimated using data from a clinical trial simulation.

Methods

Study design

Data were obtained from a clinical study which has been

reported previously [19]. In short, 16 women (8 UBO and 8

LBO subjects) followed a weight loss diet to study GH

kinetics, before and after weight loss, compared to normal

weight control subjects (N = 8). Blood samples for GH

analysis were taken at 10 min intervals for 24 h, resulting

in a maximum of 144 samples per individual per occasion.

The lower limit of quantification (LLOQ) for the GH

immunofluorometric assay was 0.03 mU/L.

Deconvolution analysis

Individual deconvolution analysis of the 24 h GH con-

centration time profiles was performed in AutoDecon [3].

This software provides a ‘‘nonsubjective, standardized, and

completely automated algorithm’’ [3] for the analysis of

pulsatile profiles. During data assembly, the expected

measurement times with 10 min intervals were used, as this

program requires regularly spaced time input. Separate data

files were created for each individual in which the mean

GH observation of the duplicate measurement, the standard

error of the mean and the number of analysis replicates for

each time point were included. The previously reported

coefficient of variation of the observations over the con-

centration range was used to calculate the standard error of

the mean for each observation [10, 19]. For AutoDecon to

function, initial estimates of the secretion width and an

initial half-life of GH (5 and 15 min, respectively) were

used as input. These parameters were optimized for each

individual during the deconvolution analysis. The
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convolution integral that is implemented in AutoDecon is

depicted in Eq. 1 [3].

C tð Þ ¼ r
t

0

Sn sð ÞE t � sð Þdsþ C 0ð ÞEðtÞ ð1Þ

where C(t) is the GH concentration over time, consisting of

the integral of all secretion events (Sn(s)), plus the con-

centration at time point zero (C(0)). The elimination

function (E) can follow a 1- or 2-compartment disposition

for GH, determined in AutoDecon.

Deconvolution analysis resulted in the estimation of an

individual’s pulse frequency, pulse times, secretion width,

baseline secretion, pulse amplitude and half-life. After

deconvolution analysis, statistical comparison of the results

between the LBO and UBO groups compared to normal

weight control subjects was done using an independent

2-group t test.

Model development

For each individual, the pulse frequency and the individual

pulse times, retrieved from the deconvolution analysis,

were included in the dataset for NLME modeling (NON-

MEM V7.3 [20]). The random effects structure was

incorporated in the model by a ln-normal transformation of

the random effects (g) on the population parameters [21].

Significant inter-individual variability (IIV) on population

parameters was included in the model following a forward

inclusion method (p\ 0.05). The residual error distribu-

tion (e) was drawn using an additive, proportional or

combined (additive and proportional) residual error struc-

ture using parameters from a normal distribution. Various

types of variance–covariance matrices were tested for the

correlation between the random effects when identified by

Pearson correlation plots. Due to high IIV and intra-indi-

vidual variability in the height of the pulses (pulse ampli-

tude) within a 24 h concentration–time profile, each pulse

was estimated as a different occasion (BOV) which

enabled the estimation of GH pulses of different heights

within one individual. The amplitude of a pulse was

modeled according to Eq. 2.

Amplituden ¼ hpopulation � e gþjnð Þ ð2Þ

where Amplituden is the amplitude of pulse n, hpopulation is
the population amplitude parameter, g is the random effects

distribution of the IIV and jn is the BOV, the intra-indi-

vidual variability, for pulse n.

Two equations (Eqs. 3, 4) were tested to fit a pulsatile

event in the NLME model. Equation 3 is adapted from the

documentation of AutoDecon [3], Eq. 4 is adapted from a

previous publication that models a single Gaussian shaped

pulse in NONMEM [2].

SnðtÞ ¼ eln Amplitudenð Þ�1
2
� t�PulseTimen

SecretionSDð Þ2 ð3Þ

SnðtÞ ¼
Amplituden

t�PulseTimen
SecretionSD

� �exponentþ1
ð4Þ

where Sn(t) is the secretion over time for pulse n, Ampli-

tuden is the amplitude of pulse n, PulseTimen is the time

which corresponds with the maximum secretion time for

pulse n (retrieved from deconvolution analysis), and Se-

cretionSD corresponds with the width of the pulses. In

Eq. 3, the exponential transformation limits the Sn(t) to

positive values only. In Eq. 4, the exponents 2 and 4 were

evaluated during model development.

Covariates

The following covariates were explored: weight, height,

age, lean body mass (LBM), total body water (TBW), total

body fat, percentage fat mass, percentage LBM and per-

centage TBW. All weight related covariates were calcu-

lated using Bioelectrical Impedance Analysis (Bodystat

1500, Bodystat Ltd., Isle of Man, UK). Covariate rela-

tionships were explored using visual exploration of the

Pearson correlation plots and their correlation coefficients.

When a correlation coefficient was 0.5 or higher, covariate

relationships were formally tested for significance in the

structural model using linear, power and exponential rela-

tionships. Circadian rhythmicity was explored as a

covariate on the Amplitude parameter using a cosine

function with a 24 h acrophase or as a day/night effect.

Covariates were included using a forward inclusion method

(p\ 0.05) combined with backward elimination

(p\ 0.01) and centered around their mean values.

Model evaluation

Models were evaluated on basis of objective function value

(OFV, which approximates -2*Log Likelihood), goodness

of fit (GOF) plots and numerical evaluation [22]. Model

hypothesis testing was done under the assumption that the

difference in OFV is v2-distributed with the degrees of

freedom determined by the number of additional parame-

ters in the more complex model. A drop in OFV of more

than 3.84 points (p = 0.05) resulted in accepting the model

with one additional degree of freedom. For backward

elimination of a covariate, an increase of less than 6.6

points in OFV (p = 0.01) was needed for exclusion. Model

comparison implementing Eqs. 3 and 4 was done using the

Bayesian information criterion (BIC) due to changes in the

structural model. GOF plots consisted of population- and

individual model predictions versus observations, condi-

tional weighted residuals with interaction (CWRESI)
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versus clock time and population predictions. Numerical

evaluation was based on the relative standard error (RSE)

for population parameters, normalized prediction distribu-

tion error (NPDE) analysis, coefficient of variation for

random effects (CV%) and the condition number [22, 23].

Simulation

Multiple simulations with the developed model were per-

formed to visualize the effect of hypothetical drugs on the

GH concentration–time profile targeting GH secretion. For

these simulations, the parameter estimates of the developed

model were used to simulate a typical individual with a

pulse interval of 1.57 h (estimated mean pulse interval).

The half-life of the hypothetical drug was fixed to 6 h to

simulate a short-term effect which can still be observed in a

24 h period. The drug effect was implemented using an

Emax relationship driven by the amount of the hypothetical

drug where the maximum effect was reached immediately

after bolus dose administration (10 mg). The effect of the

drug on the pulsatile secretion was modeled using Eqs. 5

and 6.

Effect tð Þ ¼ Emax � AðtÞc

EA
c
50 þ AðtÞc ð5Þ

Sn tð Þ ¼ eln Amplitudenð Þ�1
2
�ðt�PulseTimen

SecretionSD
Þ2 � ð1þ EffectðtÞÞ ð6Þ

where Emax varied between -1 and 10 to simulate inhibi-

tory and stimulatory effects and was 0 for simulations of

the typical individual. A(t) is the amount of the hypothet-

ical drug remaining in the body. For simulations of the

inhibitory drug effect, the Emax was equal to -1, -0.75 and

0. For simulations of the stimulatory drug effect, the Emax

was equal to 0, 2, 5 and 10. EA50 was fixed to 2 mg with c
equal to 5 to simulate a relatively fast offset of the drug

effect within 18 h after dosing. Covariate relationships

were simulated at their mean values.

A new clinical trial was simulated to investigate whether

the applied drug effects could be correctly re-estimated

using the developed method proposed in this study. Sim-

ulations were performed including the identified IIV and

residual error structure of the developed model. Pulses

were simulated at regular time intervals. Additionally, a

CV% of 10% was added on the EA50. A total of 5 cohorts

of 8 subjects were simulated (placebo, 2.5, 5, 7.5 and

10 mg) with an Emax of -0.9 (inhibiting the GH secretion

by 90%) and an EA50 of 3 mg with c equal to 5. The

parameters estimated in the deconvolution-analysis-in-

formed population model were fixed to their corresponding

values. The re-estimated drug effect parameters were then

compared to the simulated ‘true’ model values to judge the

ability to correctly recover the drug effect given this true

model.

Software

All data transformations, statistical tests on the deconvo-

lution results, visualizations and NPDE analysis were

performed using R (V3.2.2) [24] in conjunction with R

Studio (V0.99.887) [25]. AutoDecon (V20090124) [3] was

used for the deconvolution analysis of individual 24 h GH

profiles. NLME modeling was performed in NONMEM

V7.3 [20]. The BIC was calculated using Pirana (V2.9.0)

[26], no changes to the default BIC calculations were

made.

Results

A total of 2 subjects (1 from the LBO and 1 from the UBO

group) did not complete the occasion after weight loss. For

these individuals, only data from the visit before weight

loss were included in model development. Data below the

LLOQ (n = 52,\1%) were excluded from this analysis. A

total of 5377 GH observations were used for model

development. Figure 1 visualizes the GH concentration–

time profiles during the 24 h observation period for three

individuals. High intra- and inter-individual variability can

be observed in the pulse amplitude and the time of GH

secretion.

Deconvolution

Table 1 shows the summary of the deconvolution analysis

results for each group, before and after weight loss. A

1-compartment elimination function was identified as the

best fit for GH disposition. The secretion width of the

pulses was found to be significantly lower in LBO subjects

before weight loss and in all UBO subjects compared to

normal weight subjects. The UBO subjects before weight

loss showed a reduction in the baseline secretion compared

to normal weight subjects. No significant differences in the

pulse frequency, half-life, amplitude or pulse interval were

identified between normal weight and obese subjects.

Model development

The GH observations were best described using a turnover

compartment, as depicted in Fig. 2. The baseline secretion

was modeled as a steady-state condition, using a continu-

ous zero-order input (kin) in the central compartment and

first-order elimination (kout) that describes the elimination

of GH from the body. The kin was estimated as Baseline �
kout so that the Baseline parameter is estimated as mU/L.

The pulsatile secretion is the sum of the secretion of all

pulses at a certain time point (Eq. 7) where npulses is the
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pulse frequency of an individual. The differential equation

of the central GH compartment is presented in Eq. 8.

S tð Þ ¼ S1 tð Þ þ S2 tð Þ þ . . .þ Snpulses tð Þ ð7Þ

dðGHÞ
dt

¼ kin þ SðtÞ � kout � GH ð8Þ

A large proportion of the subjects showed GH concen-

trations above baseline at the start of the measurement

period (e.g. Figure 1, black line) due to the secretion of an

endogenous pulse of GH prior to the start of the observa-

tion period. To account for these initial concentrations, the

central compartment was initialized at an initial concen-

tration (A_0). The estimation of BOV between the GH

profiles before and after weight loss within one individual

resulted in numerical difficulties due to the large number of

random effects (54?) on the amplitude parameter to be

estimated. Therefore, the two occasions of one individual

were stratified using unique subject identifiers. Thereby

reducing the number of random effects within one indi-

vidual but losing the ability to identify intra-individual

variability between occasions before and after weight loss.

IIV was identified on, in order of inclusion, Baseline

(DOFV = -3702), A_0 (DOFV = -1611), kout (DOFV =

-642.0), SecretionSD (DOFV = -419) and Amplitude

(DOFV = -29). A 2 9 2 omega block was included after

covariate analysis to account for variance–covariance

correlation between the Baseline and Amplitude. A pro-

portional residual error structure was best fit for purpose.

The model fit was significantly better when using Eq. 3

(BIC = -3521.957) compared to the use of Eq. 4, where

exponent = 4 (BIC = -2772.223) or exponent = 2

(BIC = -1619.14).

Fig. 1 Observed growth hormone concentrations of three individuals over time of day

Fig. 2 Structural model including a zero-order baseline (kin) and

pulsatile secretion input (Sn(t)) with a first-order elimination rate (kout)

Table 1 Deconvolution analysis results reported as mean (sd), estimated by AutoDecon

Parameter Normal weight (n = 8) LBO UBO

Before WL (n = 8) After WL (n = 7) Before WL (n = 8) After WL (n = 7)

Pulse frequencya 15 (4) 17.8 (4.8) 17.4 (5.4) 14.6 (3.4) 16.4 (5.4)

Half-life (h) 0.245 (0.065) 0.233 (0.032) 0.26 (0.033) 0.235 (0.033) 0.247 (0.042)

Secretion width (h) 0.55 (0.118) 0.37 (0.168)* 0.44 (0.115) 0.37 (0.063)* 0.43 (0.086)*

Baseline secretion (mU/L/h) 0.666 (0.402) 0.636 (0.666) 0.738 (0.276) 0.288 (0.216)* 0.516 (0.372)

Amplitude 0.456 (0.234) 0.389 (0.227) 0.432 (0.132) 0.264 (0.202) 0.526 (0.337)

Pulse interval (h) 1.63 (0.49) 1.42 (0.54) 1.38 (0.38) 1.60 (0.42) 1.83 (1.45)

WL weight loss; LBO lower body obese; UBO upper body obese
a Total number of pulses in the 24 h period. * p\ 0.05 between normal weight and LBO/UBO group
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Covariate analysis

The estimation of a 24 h cosine function or a day/night

effect on Amplitude did not result in the improvement of

the OFV, indicating that no circadian rhythmicity could be

identified on this data. Inspection of the correlation plots of

the x2 distribution identified covariate relationships

between the distribution of Baseline, Amplitude and Se-

cretionSD with the TBW (%), as shown in Fig. 3. The

TBW (%) also showed a high degree of correlation

between the weight of a subject in which heavier subjects

had a lower percentage total body water. A power covariate

relationship showed to be superior over other tested rela-

tionships. The inclusion of this covariate relationship on

the Baseline, Amplitude and SecretionSD parameters

resulted in a significant decrease (DOFV = -48) in OFV.

Backward elimination did not result in the removal of a

covariate in this model. The previously observed covariate

correlations between the random effects were reduced to a

random scatter around 0 after inclusion of the covariate,

indicating that part of the identified variability could be

explained by the included covariate. The correlation plots

of TBW(%) with the x2 distribution of Baseline, Amplitude

and SecretionSD after inclusion of the covariate relation-

ship in the structural model, can be found in online

resource I.

Model evaluation

For visualization purposes, individual model fits over time,

for one individual per group, are depicted in Fig. 4. The

model predictions clearly show the adequate model fit of

the highly variable individual GH profiles in these indi-

viduals over a 24 h period. The individual tendency of all

data is well described, with observations close to line of

unity (individual observations vs. individual model pre-

dictions, Fig. 5). The individual observations vs. popula-

tion model predictions show a broad scatter around the line

of unity indicating an appropriate structural model com-

bined with high variability between and within individuals.

The CWRESI are normally distributed over the entire

range of population predictions and the majority of the

observations lie within the [-2,2] interval. Outliers iden-

tified in the CWRESI plots are resulting from mispredic-

tions of pulse times by the deconvolution analysis. The

highest CWRESI point results from the deconvolution

Fig. 3 Correlation plots of individual x2 estimates (solid colored circles) of a Amplitude, b Baseline, c SecretionSD and d weight (kg) versus the

total body water (%). Blue normal weight subjects; green lower body obese subjects; red upper body obese subjects (Color figure online)
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analysis not being able to fit a pulse at the last time points

where no information on the downward profile of the

concentration is available. The parameter estimates of the

final model are reported in Table 2. The population

parameters show low RSEs (ranging from 2 to 5%), indi-

cating high accuracy in the estimation of the population

parameters. The CV% was moderate ranging from 26.9 to

70.8% for most population parameters. High CV% was

identified for the A_0 and the j on Amplitude with a CV%

of 521 and 302% respectively. The high CV% for these

parameters originates from the differences in initial con-

centration (the possible occurrence of a pulse before the

start of the observation period) and the high variability in

pulse amplitudes between the separate pulses within one

individual. The condition number of the final model was

11.3, indicating no ill conditioning [23]. NPDE analysis

results can be found in online resource II. The NONMEM

code of the final deconvolution-analysis-informed

population model (FOCE?I, ADVAN = 13, TOL = 6,

SIGL = 6, NSIG = 3) can be found in online resource III.

Simulation

The simulated GH concentration–time profiles are depicted

in Fig. 6 and stratified on stimulatory (Fig. 6a) and inhi-

bitory (Fig. 6b) drug effects. The hypothetical drug was

administered after 6 h, indicated by the vertical dashed

black line. Simulations of the typical individual (black line,

09/0% effect) correspond with observed GH concentra-

tions in terms of pulse amplitude, pulse width and baseline

GH secretion for an individual with the mean TBW(%) of

44.7%. Stimulating the GH secretion showed a clear

increase in the GH concentrations which decreased back to

normal as can be seen by the color gradient. Inhibition of

the GH secretion by 100% reduced the GH concentration

back to baseline for the first hours after dosing. Thereafter,

Fig. 4 GH observations (mU/L) versus individual GH predictions of three individuals: a normal weight, b lower body obese and c upper body
obese subject on a semi-logarithmic scale. Black open dots: observations, solid colored line: individual model predictions (Color figure online)
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Table 2 Parameter estimates

for the deconvolution-analysis-

informed population model

Parameter Unit Estimate [RSE%] (CV%) Shrinkage (%)

H Amplitude mU/L/44.7% TBW 7.86 [3.25] –

H kout /h 2.78 [3.46] –

H SecretionSD h/44.7% TBW 0.182 [3.14] –

H Baseline mU/L/44.7% TBW 0.185 [4.52] –

H A_0 mU/L 1.05 [5.03] –

H Exponent Amplitude – 3.4 [2.1] –

H Exponent SecretionSD – 2.32 [3.15] –

H Exponent Baseline – 4.29 [4.29] –

x2 AmplitudeIIV – 0.22 (49.7) 12.8

x2 AmplitudeBOV-n – 2.32 (302) –

x2 kout – 0.0699 (26.9) 2.02

x2 SecretionSD – 0.0715 (27.2) 0.12

x2 Baseline – 0.406 (70.8) \0.01

x2 A_0 – 3.34 (521) 0.18

r2 proportional residual error – 0.106 5.61

RSE% relative standard error; CV% coefficient of variation; TBW total body water

Fig. 5 Goodness of fit plots for the deconvolution-analysis-informed

population model. a Population GH model predictions versus

observations b Individual GH model predictions versus observations

c CWRESI versus population predictions d CWRESI versus time of

day. Blue normal weight subjects; green lower body obese subjects;

red upper body obese subjects. Black diagonal line indicates line of

unity. Grey dashed horizontal lines indicate the [22,2] interval (Color

figure online)
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the GH secretion returned back to a pulsatile profile. The

inhibition of GH secretion by 75% showed reduced GH

concentrations but did not completely counter the pulsatile

secretion of GH in this scenario. The drug effect over time

is depicted in online resource IV.

The simulated clinical trial resulted in a total of 5800

observations which were then fitted to the true simulated

model structure (including the drug effect) and to a reduced

model structure (excluding the drug effect). Modeling the

GH secretion while excluding a drug effect resulted in an

OFV of -1871 points. The inclusion of an Emax relation-

ship for the drug effect resulted in a significant drop in

OFV (DOFV = -234). The re-estimated model parame-

ters are presented in Table 3 and are near identical to the

parameter values used for simulation of the clinical trial

data. The low RSE indicates high accuracy in the re-esti-

mation of the drug effect parameters given the true simu-

lated model. High shrinkage (51%) was observed on the

random effects of the EA50. The NONMEM model codes

used for simulation and re-estimation, including the GOF

plots for the re-estimated model, are provided in online

resource V.

Discussion

The developed method, using NLME modeling with

NONMEM, has proven to adequately describe variable

endogenous pulsatile GH concentration–time profiles in

women. This resulted in the identification of three

Table 3 Parameter estimates of

the simulated and the re-

estimated model

Parameter Simulated Re-estimated parameter estimates

[RSE%] (CV%)

Shrinkage (%)

H Emax -0.9 -0.929 [1.6] –

H EA50 3 3.16 [7.4] –

H c 5 5.04 [21] –

x2 EA50 0.01 0.0363 (19.2) 51

r2 proportional residual error 0.106 0.105 5.08

RSE% relative standard error; CV% coefficient of variation

Fig. 6 Simulated growth hormone profiles after administration of an

agonistic (a) or antagonistic (b) hypothetical drug. Dashed black

vertical line is the time of drug administration. Color gradient shows

the drug effect over time returning back to normal (black solid line)

(Color figure online)
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covariate relationships and the quantification of BOV and

IIV on the amplitude of pulses. In addition, simulations

have been performed to show hypothetical drug effects on

GH concentration–time profiles. The correct re-estimation

of the drug effect in the simulated clinical trial data shows

the applicability of this method in the analysis of variable

pulsatile data.

The RSEs of the population parameters were low

(\10%), indicating stable predictions of population

parameters. The CV% on A_0 and Amplitude were high,

which is in agreement with the observed high variability in

the observed concentration at time point 0 and between the

amplitude of pulses within an individual, respectively. The

high GH concentrations at the first measurement indicate

that sampling should be performed at several pre-dose time

points to be able to quantify GH pulses that may have

occurred before dose administration. The population half-

life of GH was estimated as 15 min (ln(2)/kout) in this

population and can be compared with the half-life reported

in literature [27–29]. No circadian rhythmicity was iden-

tified in this population. This could be due to potential

differences between men and women in regards to noc-

turnal GH secretion [30].

The study of Pijl et al. [19] resulted in the identification

of a stratification between the GH secretion in UBO

compared to LBO and normal weight subjects. The

deconvolution analysis performed in this study did also

result in the identification of a lower baseline secretion in

UBO subjects before weight loss. No changes in the pulse

amplitude were identified between groups. In this study,

significant continuous covariate relationships have been

identified in which the total body water was the best

covariate explaining the IIV for Baseline, Amplitude and

SecretionSD. Furthermore, the possibility to follow the GH

concentration over time in a NLME model increased the

information that is retrieved from these dense sampled

observations.

During model development, it was required to stratify

the two occasions, before and after weight loss, of one

individual with unique identifiers to prevent numerical

instability of the model. This resulted in the loss of esti-

mation of the intra-individual variability between these

separate occasions. Due to the high variability in the GH

profiles that were observed between the occasions before

and after weight loss, the long duration between the

occasions (up to 6 months) and the nature of this paper to

establish a new quantification method using NLME mod-

eling, this stratification was deemed appropriate.

The Gaussian shaped events that are fitted in deconvo-

lution analysis have the advantage to be applicable on a

wide range of pulsatile compounds [31, 32]. However, this

generalization inherently brings the disadvantage that no

mechanistic information of the biological regulation of the

compound is incorporated in the structural model. Espe-

cially when multiple components are involved in the reg-

ulation of the secretion, e.g. stimulation by growth

hormone releasing hormone and inhibition by somatostatin

in the case of GH, more mechanistic insights can be ben-

eficial in explaining the variability between individuals and

possible extrapolation to disease states.

Compared to previously used non-compartmental anal-

ysis, the current analysis enables the quantification of a

drug effect targeting GH secretion over time in which an

Emax or other PK/PD relationships can be determined using

NLME in NONMEM. The correct estimation of the PK/PD

relationship parameters on a pulsatile compound will be

mainly dependent on 3 components: (1) the frequency of

sampling, which is critical for compounds with a short half-

life [11], (2) the duration of the observation period should

preferably include the on- and offset of the drug effect and

(3) the expected variability in response should be taken into

account when choosing the study sample size.

The method proposed in this study can be applied to

analyze or simulate different pulsatile profiles. From the

analysis step, information can be obtained on the pulsatile

behavior (pulse frequency, width and amplitude) in a

population and on the PK/PD relationship. From a clinical

perspective, this provides more insight in the relationship

between the pulsatile secretion of a compound and the

effect that a drug has over time compared to differences in

the AUC or Cmax when comparing placebo with treated

individuals. The provided simulations in this study visu-

alize what effect hypothetical drugs can have on a pulsatile

profile. This was simulated for drugs having agonistic or

antagonistic properties. After administration of an agonistic

compound with an Emax of 10, the maximum GH concen-

tration reached was *50 mU/L. These simulations are

physiologically plausible since the simulated concentration

are in agreement with data from acromegalic patients in

which GH concentrations are in the same range [33]. The

provided antagonistic simulations suggest a reduction to

baseline after fully blocking the pulsatile secretion

(Emax = -1). These antagonistic drug simulations

(Fig. 6b) correspond with the clinical response as shown

after treatment with Ocreotide, a somatostatin analogue,

which can completely block the endogenous pulsatile

secretion of GH for 5 h after dosing [7]. Blocking the pulse

amplitude by 75% lowers the pulsatile GH secretion but

did not fully block the pulsatile profile. The pulse interval

can be changed in the model code to simulate a different

pulse frequency, including variability on the pulse interval.

Simulations incorporating the established Emax and/or EC50

values of a known drug on GH secretion can then be used

to support dose selection or to investigate novel dosing

regimens for the studied drug. The observation period of a

study can be expanded if simulations show that the full
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effect is reached at a later stage than expected (e.g. indirect

response or delayed release formulation of the drug) or that

a fast offset of the drug effect suggests the need for more

selective monitoring for multiple hours at an early stage

compared to a full 24 h period.

Instead of using ‘simple’ summary statistics (mean,

AUC, Cmax) for complex and variable pulsatile profiles, it

is now possible to quantify and model a pulsatile profile

over time and to identify what effect a potential drug has

on the secretion. This two-step deconvolution-analysis-in-

formed population pharmacodynamic model enables the

possibility to analyze highly variable pulsatile profiles with

a NLME PK/PD model in NONMEM.
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