

 University of Groningen

Support Vector Components Analysis
van der Ree, Michiel; Roerdink, Johannes; Phillips, Christophe; Garraux, Gaetan; Salmon,
Eric; Wiering, Marco
Published in:
European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Final author's version (accepted by publisher, after peer review)

Publication date:
2017

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
van der Ree, M., Roerdink, J., Phillips, C., Garraux, G., Salmon, E., & Wiering, M. (2017). Support Vector
Components Analysis. In European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning: ESANN ESANN.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 11-02-2018

https://www.rug.nl/research/portal/en/publications/support-vector-components-analysis(0046e6e5-3501-4280-a895-50675656680f).html

Support Vector Components Analysis

Michiel H. van der Ree1, Jos B.T.M. Roerdink2, Christophe Phillips3,
Gaëtan Garraux3, Eric Salmon3 and Marco A. Wiering4

1- Semiotic Labs B.V.
Science Park 402, Amsterdam - The Netherlands

2- Johann Bernoulli Institute for Mathematics and Computer Science
University of Groningen, Nijenborgh 9, Groningen - The Netherlands

3- Cyclotron Research Centre
University of Liège, Allée du Six Aôut 8 B30, Liège - Belgium

4- Institute of Artificial Intelligence and Cognitive Engineering
University of Groningen, Nijenborgh 9, Groningen - The Netherlands

Abstract. In this paper we propose a novel method for learning a
distance metric in the process of training Support Vector Machines (SVMs)
with the radial basis function kernel. A transformation matrix is adapted
in such a way that the SVM dual objective of a classification problem
is optimized. By using a wide transformation matrix the method can
effectively be used as a means of supervised dimensionality reduction. We
compare our method with other algorithms on a toy dataset and on PET-
scans of patients with various Parkinsonisms, finding that our method
either outperforms or performs on par with the other algorithms.

1 Introduction

The Support Vector Machine [1] is one of the most popular algorithms for solving
both regression and classification problems in machine learning. The algorithm
is robust and offers an excellent generalization performance, making it very well
suited for small datasets with many features. One of the drawbacks of SVMs
not using a linear kernel is that the algorithm is a black box : The model can’t be
inspected to see what features of the data are decisive for the eventual prediction.
In addition, when using the radial basis function (RBF) kernel, SVMs are very
sensitive to a proper scaling of the input data.

The method proposed in this paper aims to tackle both aforementioned prob-
lems. By learning a quadratic distance metric during SVM training the model
becomes less sensitive to the scaling of data. By forcing the distance metric to
be of rank 2 or 3, we can visualize a lower dimensional representation of the
input data and make the relations learned by the SVM more intelligible.

Outline Section 2 will introduce the support vector components analysis (SVCA)
algorithm. Next, we illustrate how the proposed algorithm can be used as a
means of supervised dimensionality reduction (SDR). Section 4 will cover the

setup and results of experiments conducted with the SVCA and other SDR al-
gorithms. A conclusion is presented in Section 5.

2 Support Vector Components Analysis

We have a labeled dataset consisting of P real-valued input vectors x1, . . . ,xP

in RN and corresponding class labels c1, . . . , cP . A matrix T ∈ RM×N defines
a linear map from RN to RM by mapping x to Tx. We try to optimize T
such that when the transformation is applied to the dataset, class differences
are emphasized in the transformed space. Our algorithm tries to maximize the
margins of one-versus-rest Support Vector Machines in the transformed space.
Prior to explaining our approach in more detail, we review the objective used in
support vector classification.

2.1 Support Vector Classification

In binary soft margin linear support vector classification, training consists of
solving the following constrained optimization problem:

min
w,ξ,b

1

2
||w||2 + C

∑
i

ξi (1)

subject to constraints yi(w·xi+b) ≥ 1−ξi and ξi ≥ 0. Here, w is a weight vector,
b is a bias value, (xi, yi) is a training sample and its associated label in {−1, 1},
ξi is a so-called “slack variable” that measures the degree of constraint violation
xi and C is a constant determining the trade-off between margin maximization
and error minimization.

Introduction of Lagrange multipliers α and solving for the coordinates of a
saddle point allow us to reformulate the primal objective and its constraints as:

max
α
Q(α) =

∑
i

αi −
1

2

∑
i,j

αiαjyiyj(xi · xj) (2)

subject to constraints 0 ≤ αi ≤ C and
∑

i αiyi = 0. Once the α maximizing (2)
is found, the linear support vector classifier determines its output using:

f(x) = sgn

(∑
i

αi(xi · x) + b

)
. (3)

Since both the dual objective (2) and the model output (3) only depend on inner
products between patterns, the model can be made non-linear by using a kernel
function K(xi,x). such as polynomial functions and the radial basis function.

2.2 The SVCA Objective

The basic idea of our algorithm is to learn a projection matrix T such that the
margin between classes in the transformed space is maximized. If we train a one-
versus-rest SVM for each class ` in the transformed space, the primal objective

of each linear binary classification SVM becomes:

min J`(w,ξ) =

[
1

2
||w||2 + C

∑
i

ξi

]
(4)

now subject to constraints y`i (w · Txi + b) ≥ 1 − ξi and ξi ≥ 0, where we use
ξ to denote the vector containing all ξi’s. Correspondingly, the new kernelized
‘dual’ objective is defined as:

min
T

max
α
Q`(α; T) =

∑
i

αi −
1

2

∑
i,j

αiαjy
`
iy

`
jK(Txi,Txj)

 (5)

subject to constraints 0 ≤ αi ≤ C and
∑

i αiy
`
i = 0. Note that the dual objective

needs to minimized w.r.t. T as is also the case in other (multi)-kernel learning
approaches [2].

2.3 Training Procedure

We use the following procedure to find the “support vector components”: First,
we solve the quadratic programming subproblem of finding the α` that maxi-
mizes the expression in (5) for each of the one-versus-rest support vector ma-
chines. Since that expression is equal to the objective being maximized in normal
support vector machine training, we can use tried and tested optimization meth-
ods such as sequential minimal optimization (SMO) [3] to do so.

Then, for the optimized α`’s, we can minimize the sums of all dual-objectives
w.r.t. T using stochastic gradient descent. In stochastic gradient descent, we
minimize

∑
`Q` by minimizing the gradients of single examples. Writing the

expression in (5) as Q` =
∑

i q
`
i with single example terms

q`i = α`
i −

1

2
α`
iy

`
i

∑
j

α`
jy

`
jK(Txi,Txj) (6)

we find the following derivative of q`i w.r.t. T:

∂q`i
∂T

= −1

2
α`
iy

`
i

∑
j

α`
jy

`
j

∂K(Txi,Txj)

∂T
. (7)

We alternate between optimizing all α`’s and T a preset number of times. Alter-
natively, we can use batch gradient descent or batch methods such as resilient
backprop (RPROP, [4]) and adjust T using

∑
` ∂Q`/∂T instead of its single

example based estimate.

3 SVCA as Supervised Dimensionality Reduction

When using a wide matrix T such that M < N , the SVCA algorithm can be
used as a means of supervised dimensionality reduction. SDR can have multiple

(a) (b) (c)

Figure 1: The artificial dataset of concentric rings. Shown are scatter plots in
which both features are relevant to the labels (a), only one feature is relevant
(b) and none of the features are relevant (c).

advantages. When using an RBF kernel all training patterns have to be stored
in memory. With a wide T, the memory cost of saving these patterns is reduced
by a factor M/N . The most interesting application is when we set M to 2 or
3, so we can visualize the low-dimensional representation of the dataset. This
can be useful for exploring relations between and separability of the classes.
Therefore, in this paper we use M = 2 or 3. Similar SDR methods learning
a linear transformation matrix are neighbourhood components analysis (NCA)
[5], local Fisher discriminant analysis (LFDA) [6] and Limited Rank Matrix
Learning Vector Quantization (LiRaM LVQ) [7].

4 Experiments and Results

We report the performance of the SVCA algorithm compared to other SDR
algorithms on two datasets: a toy problem of concentric rings and FDG-PET
scans of patients with various Parkinsonisms. For SVCA, we use the RPROP
algorithm to optimize the transformation matrix and we use an RBF kernel.

4.1 Experiments on Artificial Data

Inspired by the concentric ring data in [5], we create an artificial dataset in the
following way: First, we create patterns x1 . . .xP in R8 by drawing from N (µ,Σ)
where µ = 0 and Σ is the 8 × 8 identity matrix. Then we assign labels based
solely on the distance from the origin in the first two dimensions, i.e.

√
x21 + x22.

This results in classes that take the shape of concentric rings in the class-relevant
subspace. In total, we create 200 patterns belonging to four different classes. In
defining class boundaries, we ensure that each class has about the same number
of patterns. Figure 1 shows the dataset thus generated.

We compare the performance of SVCA with the three other SDR techniques
mentioned in Section 3: NCA, LiRaM LVQ and LFDA. The algorithms are com-
pared on 100 randomly generated datasets. We find that LiRaM LVQ and LFDA
never succeed in finding the underlying structure. For SVCA and NCA, we have

SVCA
incorrect correct

NCA
incorrect e00 = 30 e01 = 20
correct e10 = 6 e11 = 44

Table 1: Contingency table of SVCA and NCA error rates in the concentric ring
experiment.

simply counted the number of times each algorithm finds the ‘right’ projection
by learning a transformation matrix with M = 2, resulting in the contingency
table shown in table 1. Under the null hypothesis that NCA and SVCA have the
same error rate. We computed the number of correctly learned projections, and
used McNemar’s test to obtain a p-value of 0.011. SVCA therefore significantly
outperforms NCA and the other algorithms in this experiment.

4.2 Experiments on FDG-PET Scans

Here we apply the SDR algorithms to the same set of PET scans as used in
[8]. These scans were obtained in two different locations between 1993 and
2009 and are comprised of 42 Parkinson’s disease patients, 31 multiple system
atrophy patients, 26 progressive supranuclear palsy patients and 21 corticobasal
syndrome patients. Each scan consists of 153,594 voxels. We preprocess the data
using the Scaled Subprofile Modelling routine [9], leaving us with projections
onto principal components. We retain the first n principal components that
explain at least 75% of the variance in the data. This procedure is applied in a
k-fold fashion, so the number of selected components will differ per fold.

We predefine 100 splits of the data. In each split, 10% of the patterns has
been randomly assigned to the test set, the rest of the patterns are used for train-
ing. We report mean test accuracies and their standard deviations in Table 2.
NCA and LFDA do not provide an explicit prediction for new patterns. We
have chosen to assign labels according to the nearest neighbor classification in
the transformed space, where the number of neighbors was determined through
cross-validation. Running paired t-tests on the different fold error rates, we find
no significant differences between the various algorithms. However, we do find
that for M = 3 the performance of the SDR algorithms rival that of an RBF
SVM with parameters (C, γ) optimized through cross-validation. The results for
the SDR algorithms are impressive since unlike these algorithms, the RBF SVM
does not act on data transformed by a matrix with limited rank.

SVCA LRMLVQ NCA LFDA
M = 2 0.58 ± 0.15 0.56 ± 0.13 0.59 ± 0.12 0.61 ± 0.12
M = 3 0.68 ± 0.12 0.67 ± 0.13 0.66 ± 0.12 0.68 ± 0.13

RBF SVM:
0.68 ± 0.13

Table 2: Average test accuracies and standard deviations of the various algo-
rithms on 100 test/train splits on the data from [8].

5 Conclusion

We have presented the novel learning method SVCA that can be used for both
distance metric learning and dimensionality reduction. In our experiment on toy
data, we found that SVCA is most likely to succeed in finding the rings hidden in
the data, only having NCA as a true competitor. In [10], we explore the relation
between NCA and SVCA in more detail and find that NCA can be seen as doing
SVCA with fixed α values. These results suggest that adapting the alpha values
as we do in SVCA helps in finding the latent structure in a noisy dataset.

The results of the experiment on FDG-PET scans do not show any significant
differences between the different SDR methods, so SVCA can only be considered
to perform “on-par” with the other SDR methods in this experiment. In turn,
all SDR algorithms rival the performance of an optimized RBF SVM while still
allowing the relations they discover in the training set to be inspected.

In future work, we will examine the use of non-linear transformation func-
tions. Furthermore, it would be very interesting to integrate the SVCA algorithm
in the multi-layer SVM architecture [11]. Finally, we would like to compare our
method to other kernel or distance-function learning algorithms.

References

[1] V.N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, 1995.

[2] A-D. Pietersma, L.R.B. Schomaker, and M.A. Wiering. Kernel learning in support vector
machines using dual-objective optimization. In Proceedings of the 23rd Belgian-Dutch
Conference on Artificial Intelligence, pages 167–174, 2011.

[3] J. Platt. Sequential minimal optimisation: a fast algorithm for training support vector
machines. Technical Report MSR-TR-98-14, Microsoft Research, 1998.

[4] M. Riedmiller and H. Braun. A direct adaptive method for faster backpropagation learn-
ing: The Rprop algorithm. In Proceedings of the IEEE International Conference on
Neural Networks, pages 586–591, 1993.

[5] J. Goldberger, S. Roweis, G. Hinton, and R. Salakhutdinov. Neighbourhood components
analysis. In Advances in Neural Information Processing Systems 17, pages 513–520. MIT
Press, 2004.

[6] M. Sugiyama. Dimensionality reduction of multimodal labeled data by local Fisher dis-
criminant analysis. Journal of Machine Learning Research, 8:1027–1061, 2007.

[7] K. Bunte, P. Schneider, B. Hammer, F. Schleif, T. Villmann, and M. Biehl. Limited rank
matrix learning, discriminative dimension reduction and visualization. Neural Networks,
26:159–173, 2012.

[8] G. Garraux, C. Phillips, J. Schrouff, A. Kreisler, C. Lemaire, Degueldre C., C. Del-
cour, R. Hustinx, A. Luxen, A. Desée, and E. Salmon. Multiclass classification of FDG
PET scans for the distinction between Parkinson’s disease and atypical parkinsonian syn-
dromes. NeuroImage: Clinical, pages 883–893, 2013.

[9] G.E. Alexander and J.R. Moeller. Application of the scaled subprofile model to functional
imaging in neuropsychiatric disorders: a principal component approach to modeling brain
function in disease. Human Brain Mapping, 2:79–94, 1994.

[10] M.H. van der Ree. Explorations in intelligible classification. Master’s thesis, University
of Groningen, the Netherlands, 2014.

[11] M.A. Wiering and L.R.B. Schomaker. Multi-layer support vector machines. In J.A.K
Suykens, M. Signoretto, and A. Argyriou, editors, Regularization, Optimization, Kernels,
and Support Vector Machines, chapter 20. Chapman and Hall, 2014.

