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Aleman, Aart H Schene, Robert A Schoevers, Henricus G Ruhé, Associations
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Abstract 
 

Remitted patients with major depressive disorder (rMDD) often report more fluctuations in mood 

as residual symptomatology. It is unclear how this affective instability is associated with 

information processing related to the default mode (DMS), salience/reward (SRS) and fronto-

parietal (FPS) subnetworks in rMDD patients at high risk of recurrence (rrMDD). Sixty-two 

unipolar, drug-free rrMDD patients (≥2 MDD-episodes) and 41 HC (HC) were recruited. We 

used Experience Sampling Methodology (ESM) to monitor mood/cognitions (10 times a day for 

6 days) and calculated affective instability using the mean adjusted absolute successive 

difference. Subsequently, we collected resting-state functional Magnetic Resonance Imaging data 

and performed graph theory to obtain network metrics of integration within (local efficiency) the 

DMS, SRS and FPS, and between (participation coefficient) these subnetworks and others. In 

rrMDD patients compared to HC, we found that affective instability was increased in most 

negative mood/cognition variables and that the DMS had less connections with other 

subnetworks. Furthermore, we found that rrMDD patients, who showed more instability in 

feeling down and irritated, had less connections between the SRS and other subnetworks and 

higher local efficiency coefficients in the FPS, respectively. In conclusion, rrMDD patients, 

compared to HC, are less stable in their negative mood and these dynamics are related to 

differences in information processing within and between specific functional subnetworks. These 

results are a first step to gain a better understanding of how mood fluctuations in real-life are 

represented in the brain and provide insights in the vulnerability profile of MDD. 
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Introduction 

Generally, major depressive disorder (MDD) has an intermittent course in which remission 

and recovery are often followed by relapse and recurrence, respectively (Steinert et al, 2014). The 

most important predictors of relapse/recurrence are the number of previous episodes and the 

presence of residual symptomatology after recovery from MDD (Hardeveld et al, 2010). To gain 

insight in vulnerability for MDD, it is important to investigate residual symptomatology (Fava 

and Visani, 2008) and its associated neurobiological correlates (De Raedt and Koster, 2010; 

Marchetti et al, 2012) in remitted patients with recurrent MDD as they are at high risk for another 

episode. 

Residual symptoms, often reported by rMDD patients, are alterations in mood (aan het Rot et 

al, 2012; Fava and Visani, 2008). These can be monitored on a daily basis using the experience 

sampling method (ESM). In ESM, individuals fill out short self-report questionnaires on affect, 

physical status and context several times a day (Trull et al, 2008). Prior ESM studies showed that 

rMDD patients report on average higher negative mood and lower positive mood compared to 

healthy controls (HC) (Knowles et al, 2007; van Winkel et al, 2015). Furthermore, rMDD 

patients showed higher reactivity in mood to daily (Husky et al, 2009; O'Hara et al, 2014) and 

social (van Winkel et al, 2015) stressors compared to HC. These latter results may point to more 

affective instability (higher variability and lower temporal dependency in mood ratings; Trull et 

al, 2008) in rMDD patients, since reactivity of negative affect to negative external events has 

been positively related to instability of negative affect (Thompson et al, 2012). An indication for 

the latter in rMDD patients has been observed by Thompson et al. (2011), who showed increased 

affective instability in these patients compared to individuals without a lifetime history of MDD 

using the borderline personality disorder module of the Personality Disorder Interview-IV (PDI-
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IV; Widiger et al, 1995). Furthermore, a recent meta-analysis has shown an association between 

lower psychological well-being and higher affective instability (specifically negative emotions) 

in MDD patients (Houben et al, 2015). In the current study, using ESM, we investigated whether 

high affective instability is characteristic of remitted recurrent MDD (rrMDD) patients, who are 

at high risk of relapse/recurrence. 

Moreover, neuroimaging studies have demonstrated alterations in neural correlates related to 

emotion processing in MDD patients (Groenewold et al, 2013). A recently adopted perspective, 

wherein the brain is viewed as a complex network supporting the integration and segregation of 

information processing, has provided further insights in the large-scale abnormalities in 

topological network organization in these patients (Gong and He, 2015). Using graph theory, the 

brain is defined as a graph consisting of nodes (i.e. brain regions, voxels) and edges (i.e. 

connections between nodes) on which global/local (e.g. efficiency) and nodal (e.g. degree) 

metrics can be calculated (Rubinov and Sporns, 2010). To date, two white-matter structural 

connectomic studies have been performed in rMDD patients, showing alterations in metrics 

calculated on nodes that are part of the default mode (DMS; self-reflection), salience (SS; 

negative attention bias/reward) and fronto-parietal (FPS; cognitive control) subnetwork (Bai et al, 

2012; Qin et al, 2015). Alterations in these subnetworks have been related to symptoms in 

(r)MDD patients (Hamilton et al, 2013; Jacobs et al, 2014; Mulders et al, 2015). Studies on the 

functional network organization have not yet been performed in rMDD. However, this would 

allow researchers to investigate whether disturbances in the integration and segregation of 

information processing in abovementioned subnetworks - as observed in MDD patients (Gong 

and He, 2015) – are characteristic of rrMDD patients, who are at high risk of relapse/recurrence. 

An interesting property of resting-state functional magnetic resonance imaging (rs-fMRI) 

data, on which graph theory is performed, is that it exhibits experience-dependent changes over 
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time (Sporns, 2012). During rest, the connectome seems to rehearse mental states via 

spontaneous neural activity by reactivating genetically and experientially modified pathways 

(Sporns, 2012). Hence, it is of specific interest to combine rs-fMRI with ESM, which has not yet 

been done. This would allow us to investigate whether alterations in affective instability are 

associated with alterations in connectivity within (i.e. segregation of information processing) and 

between (i.e. integration of information processing) specific functional subnetworks. In the 

current study, we hypothesized to find, in rrMDD patients compared to HC, i) increased affective 

instability in mood/cognition variables, specifically variables related to negative affect, ii) 

alterations in network metrics capturing connectivity within (i.e. local efficiency) the DMS, SS 

and FPS, and between (i.e. participation coefficient) these subnetworks and others (Servaas et al, 

2015), iii) increased affective instability in mood/cognition variables to be associated with 

alterations in abovementioned network metrics. 
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Materials and methods 
 

Participants 

This study was part of a larger project on the vulnerability for new episodes in recurrent 

MDD (see Mocking et al. (2016) for the project description). Inclusion criteria for rrMDD 

patients (n=62) were: 1) ≥2 MDD episodes according to the Structured Clinical Interview for 

DSM-IV Disorders (SCID), 2) current state of stable remission, defined as i) a score of ≤7 on the 

17-item Hamilton Depression Rating Scale (HDRS) for ≥8 weeks and ii) no current depressive 

episode according to the SCID, 3) age between 35-65 years (to include a homogeneous age group 

and preclude conversion to bipolar disorder due to later experience of (hypo)manic episodes), 4) 

Dutch or English proficiency. Exclusion criteria for rrMDD patients were: 1) current diagnosis of 

alcohol/drug dependence, psychotic or bipolar disorder, a predominant anxiety disorder or severe 

personality disorder according to the SCID, 2) MRI incompatible implants or tattoos, 3) 

claustrophobia, 4) electroconvulsive therapy within 2 months prior to scanning, 5) history of 

seizure or head injury, 6) neurological disorder, 7) current severe physical illness, 8) use of 

psychoactive drugs/medication <4 weeks before assessments. Incidental benzodiazepine use was 

allowed, but had to be terminated >2 days (≥5 half-lives) before assessments. HC (n=41) were 

included when i) they (according to the SCID) or their first degree relatives did not have a 

lifetime diagnosis of psychiatric disorders and ii) they met inclusion criteria 3 and 4 and did not 

meet exclusion criteria 2, 3 and 5-8. The samples were matched for sex, age, educational level, 

socio-economic status, ethnicity and handedness. Participants were recruited from previous 

studies and primary and secondary mental health care institutes and through advertisements in 

online and house-to-house papers and posters in public places. Written informed consent was 
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obtained and the study was approved by the Medical Ethical Committee of the Academic 

Medical Center. 

ESM 

Participants received an ESM palmtop before the scanning session (median=13 days; 

interquartile range=14 days) and were asked to fill out a short self-report questionnaire on affect, 

physical status and context ten times a day for six days. Beeps fell randomly in ten 90-minute 

time blocks between 7:30-22:30h. Participants were instructed to complete the questionnaire 

within 15 minutes. For the current study, we selected all variables related to mood and cognition 

(see Mocking et al. (2016) for the complete ESM protocol, including –among others- items on 

company and daily events), including four positive mood items (enthusiastic, cheerful, relaxed, 

satisfied), seven negative mood items (agitated, anxious, down, irritated, lonely, guilty, restless), 

two positive cognition items (empowered, selflike) and four negative cognition items (ashamed, 

self-doubt, suspicious, worry) (see S1, Table S1 for the content of the variables). Items were rated 

on a 7-point Likert scale ranging from 1 = ‘not at all’ to 7 = ‘very’. Ninety-seven participants 

completed the ESM protocol (57 rrMDD patients; 40 HC). Next, we cleaned the data (see S2 for 

details on the cleaning steps) and removed 903 observations from a total of 4466 observations, 

thereby excluding 28 participants (14 rrMDD patients; 14 HC; see S3 for differences in sample 

characteristics between included and excluded participants per group). This left a total of 3563 

observations and 69 participants (43 rrMDD patients; 26 HC) for ESM analyses. Subsequently, 

we checked whether variables contained substantial variation based on the visual inspection of 

boxplots. Three variables did not show substantial variation across participants: mood item 

‘anxious’, mood item ‘guilty’ and cognition item ‘suspicious’ (S4, Figure S1) and were excluded 

from further analyses. In order to capture affective instability, we calculated the Mean Adjusted 
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Absolute Successive Difference (MAASD) per ESM variable and subject (Jahng et al, 2008, see 

S5 and S6, Table S2 for details on the method). Differences in MAASD between the rrMDD and 

HC group were calculated using an independent samples Mann-Whitney U test. Results with 

Bonferroni-corrected p-values of ≤0.004 (0.05/14 variables) were considered significant. 

Image preprocessing 

For details on the image acquisition parameters, preprocessing and postprocessing steps and 

scrubbing, see S8-10. After image processing, 13 participants (9 rrMDD patients; 4 HC) were 

excluded because of anatomical abnormalities (n=5), excessive scrubbing (viz. removal of ≥1/3 

of the volumes) (n=6) or preprocessing failures (n=2). This left a total of 90 participants (53 

rrMDD patients; 37 HC) for fMRI analyses. 

Graph theory 

Network construction 

As previously described in (Servaas et al, 2015), nodes were built by creating a sphere of 5 

mm radius around 270 coordinates (Power et al, 2011), including bilateral amygdala, 

hippocampus and caudate. The coordinates for these latter regions were determined using the 

Harvard-Oxford Subcortical Structural Atlas (80% probability). No overlap was observed 

between the additional ROIs and the ROIs of Power et al. (2011). Next, a whole-brain group 

mask was built based on the EPI images to locate the parts of the brain, which are free from 

susceptibility artifacts in all participants. Subsequently, the overlap was calculated voxel-wise 

between all nodes and the group mask. When a node overlapped <50% with the group mask, it 

was excluded from further analysis. This was the case for 45 nodes. Next, we constructed a 

connectivity matrix per participant by extracting the regional mean time series for each of the 
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remaining 225 nodes and calculated Pearson correlations between all pairs. Furthermore, to 

prevent biases due to shared non-biological signal between adjacent nodes, correlations were set 

to zero when the distance was less than 20 mm between the centers of two nodes (Power et al, 

2011). In addition, correlations on the diagonal of the connectivity matrix and negative 

correlations were set to zero as well.  

 

Thresholding and decomposition 

 We applied a range of proportional thresholds to each correlation matrix per participant to 

separate relevant from irrelevant edges. The threshold values ranged from 1%-30% in increments 

of 1%. Network measures were calculated on weighted graphs across the selected range of 

threshold values. Subnetworks were derived from the whole-brain graph by applying the 

algorithm of Blondel et al. (2008) and the modularity fine-tuning algorithm of Sun et al. (2009). 

For this procedure, we selected a single optimal threshold by using the method of Geerligs et al. 

(2015). The optimal threshold in the current study was 1.35%. In total, six subnetworks were 

derived with a maximum number of within-group edges and a minimum number of between-

group edges (Rubinov and Sporns, 2010). These included the affective, DMS, FPS, 

somatosensory-motor, salience/reward (SRS) and visual subnetworks (S11, Figure S4). For the 

analysis, we focused on the DMS, FPS and SRS (Figure 1). The reason that we limited the results 

to these three subnetworks, as indicated in the introduction, was that they have most consistently 

been related to depression (Hamilton et al, 2013; Mulders et al, 2015). Furthermore, we sought to 

limit the number of tests in the statistical analyses. 

 

Calculation of network measures and statistical analysis 
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Network measures were calculated on weighted graphs using functions implemented in the 

Brain Connectivity Toolbox (Rubinov and Sporns, 2010). Averaged across nodes, we calculated 

local efficiency and the participation coefficient per subnetwork. Local efficiency is calculated as 

the average inverse shortest path length between the neighbors of a specific node and the 

participation coefficient is calculated as the ratio of intra- versus intermodular connections per 

node (for an explanation of these measures, see Rubinov and Sporns (2010); the selection of 

these measures was based on Power et al. (2011), wherein the authors investigated the 

compartmentalization (i.e. segregation) and diversity (i.e. integration) of relationships of 

subnetworks by using local efficiency and the participation coefficient, and we applied this 

method in the following previous papers Geerligs et al. (2015); Servaas et al. (2015, 2016) to 

specifically investigate information processing within and between subnetworks; for a graphical 

explanation of the measures see S12, Figure S5). In other words, local efficiency is a measure of 

integration among the neighbors of a node. High local efficiency means that a node is part of a 

highly connected environment. Low local efficiency means that the node is part of a sparsely 

connected environment. The participation coefficient measures the extent to which a node 

connects to other nodes that are part of a different subnetwork. High participation coefficients 

mean that a node is mostly connected to nodes of a variety of other subnetworks. Low 

participation coefficients mean that a node is mostly connected to nodes of the same subnetwork 

(Power et al, 2011). Across the selected range of threshold values, we calculated i) mean 

differences between the rrMDD and HC group per network measure for the DMS, FPS and SRS, 

ii) Pearson correlations between the MAASD of ESM variables, that showed significant group 

differences, and network measures for the DMS, FPS and SRS in the rrMDD group only (n=39). 

The latter was not calculated in the HC group, since the MAASD of the ESM variables did not 

show substantial variation (S13, Figure S6). In order to obtain summarized scalars that are 
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independent of single threshold selection, we applied the area under the curve (AUC) and 

threshold-free cluster enhancement (TFCE; Smith and Nichols, 2009) method across threshold 

values per network measure. The AUC gives an overall measure of significance across threshold 

values, while the TFCE method gives a measure of significance per threshold value (corrected for 

the number of threshold values). Next, non-parametric permutation testing was applied on the 

AUC and TFCE per network measure to assess whether results could have occurred by chance. 

To this end, group membership/MAASD values was/were permuted randomly and both 

difference measures were recalculated. This procedure was repeated 5000 times and a two-tailed 

test of the null hypothesis (p<0.05) was performed. 

  

©    2017 Macmillan Publishers Limited. All rights reserved.



 

14 

 

Results 
 

Sample characteristics 

No significant differences were observed between rrMDD patients and HC, except for 

residual symptomatology as measured by the HDRS (rrMDD patients>HC, Table 1). When 

differences were recalculated for the selected samples used in the ESM and fMRI analyses, no 

significant differences were observed between rrMDD patients and HC, except for employment 

status in the fMRI sample (employment status: rrMDD patients<HC; χ
2

(2,N=90) = 6.13, p=0.047) 

and residual symptomatology in both samples (residual symptomatology: rrMDD patients>HC; 

ESM: U=312.00, p=0.002; fMRI: U=540.00, p<0.0001). 

 

Main effect of group on affective instability (MAASD) 

The MAASD of the negative mood/cognition variables agitate, down, irritate, restless and 

worry showed significant differences between rrMDD patients and HC (rrMDD patients>HC, 

Figure 2 and Table 2). No significant differences in MAASD were observed between the two 

groups for positive mood/cognition variables and the other negative mood/cognition variables. 

Although the focus of the current study is on affective instability, it is notable that significant 

differences were found for the median of the positive mood/cognition variables enthusiastic, 

cheerful, relaxed, satisfied and empowered (rrMDD patients<HC, see S14, Table S3) 

 

Results on network measures 

Main effect of group 

We found that the participation coefficient was decreased in the DMS in rrMDD patients 

compared to HC. No significant group differences were observed for local efficiency or the 
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participation coefficient calculated for the SRS and FPS (Table 3).  

 

Association between affective instability and network measures in rrMDD patients 

For MAASDmood down, a significant negative correlation was found with the participation 

coefficient in the SRS. For MAASDmood irritate, a significant positive correlation was found with 

local efficiency in the FPS (S15, Figure S7 and S8). No significant correlations were observed for 

the mood variables agitate and restless, and the cognition variable worry (Table 4). 

Reanalyzing the data using binary graphs led to the same conclusions (S16, Table S4 and 

S17, Table S5). Furthermore, bootstrapping performed on the correlation slopes showed that the 

associations between affective instability and networks measures are fairly stable (S18, Figure S9 

and S10). Moreover, a factor analysis on the MAASD data was performed to investigate the 

association between composite scores of the ESM data (instability in negative and positive affect) 

and network measures in rrMDD patients (see S19, Table S6 and S7 and Figure S11). No 

significant associations were found, only a trend significant positive correlation between local 

efficiency in the DSM and Factor 1 Instability in negative affect (p=0.080). 
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Discussion 
 

We investigated associations between affective instability and connectomics in functional 

subnetworks in rrMDD patients. For the ESM analysis, we found increased affective instability in 

most negative mood/cognition variables in rrMDD patients compared to HC. For the graph 

analysis, we found that the DMS has less connections with other subnetworks in rrMDD patients 

compared to HC. For the ESM-fMRI analysis, we observed highly specific associations between 

affective instability and network measures. rrMDD patients, who showed more instability in 

feeling down, had less connections between the SRS and other subnetworks. Furthermore, 

rrMDD patients, who showed more instability in feeling irritated, had higher local efficiency 

coefficients in the FPS. 

 

Affective instability 

We found that rrMDD patients, compared to HC, were temporally less stable in worrying 

and feeling down, agitated, irritated and restless. Our findings are in line with ESM research 

showing i) increased reactivity in negative affect to social stress (van Winkel et al, 2015) and 

stressful events (Husky et al, 2009), and ii) increased negative affect on stressful days (O'Hara et 

al, 2014) in rMDD patients compared to HC. The current study is the first ESM study in rrMDD 

patients, since patients in abovementioned studies did not suffer from multiple episodes or this 

was unspecified. Although a positive relationship has been found between reactivity of negative 

affect to negative external events and instability in negative affect in ESM studies, caution is 

warranted because i) reactivity does not fully explain the level of instability, ii) we only focused 

on mood in the current study, leaving out daily events and iii) results with regard to reactivity in 

MDD in naturalistic settings have been inconsistent (Thompson et al, 2012). However, a recent 
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meta-analysis has shown an association between lower psychological well-being and increased 

affective instability in MDD patients (Houben et al., 2015). The fact that we found increased 

affective instability in rrMDD patients may indicate that this represents a trait effect rather than a 

state effect. Though, more research in rrMDD patients is needed to confirm the latter proposition.  

The experience of positive affect was as temporally stable in rrMDD patients as in HC, but 

was overall lower in rrMDD patients. In line with this, Knowles et al. (2007) did not find 

differences in the degree of fluctuations in positive affect between rMDD patients and HC, 

though neither for negative affect. Furthermore, van Winkel et al. (2015) did not find significant 

differences in reactivity in positive affect to various stressors between rMDD patients and HC, 

however O'Hara et al. (2014) found lower positive affect on stressful days between these two 

groups. It is also in line with research in MDD wherein no differences in instability of positive 

affect were found in patients compared to HC, only lower levels of positive affect (Peeters et al, 

2006; Thompson et al, 2012). Notably, different methods were used in abovementioned studies, 

which should be kept in mind when interpreting their findings. O'Hara et al. (2014) and van 

Winkel et al. (2015) used multilevel models to predict mood state/reactivity from the group x 

stress interaction. Knowles et al. (2007) used within-participant standard deviations. Notably, the 

MAASD is a more comprehensive measure to capture fluctuations in affect than the standard 

deviation, since temporal dependency (besides variability) is taken into account. This may 

explain the null findings in the study of Knowles et al. (2007).  

Several possible explanations have been proposed in the literature for increased affective 

instability in MDD patients, which may also play a role in r(r)MDD patients, including 

interpersonal impairment, difficulties in emotion regulation and increased cognitive reactivity 

(O'Hara et al, 2014; Thompson et al, 2011, 2012). Furthermore, decreased positive affect may 

weaken personal resources and adaptive coping, since positive affect acts as a resilience factor 
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(O'Hara et al, 2014). It would be of particular interest to investigate whether affective instability 

in negative affect predicts recurrence in MDD in future research. If this is the case, stabilizing 

negative affective responses to stress and increasing positive affect may represent clinical 

objectives to prevent relapse and guide decision-making for the implementation of recurrence 

preventive strategies.  

 

Connectomics 

We found that the DMS has less connections with other subnetworks in rrMDD patients 

compared to HC, possibly leading to a more isolated position of this subnetwork within the 

network organization. The DMS has been reported to be more active during conditions of rest 

and is postulated to subserve functions, such as autobiographical memory, self-reflection, 

introspection and emotion regulation (Buckner et al, 2008). Furthermore, numerous studies have 

shown the involvement of the DMS in rumination; an important feature in depressive states and 

an established risk factor for recurrence of MDD (Hamilton et al, 2011; Marchetti et al, 2012). 

Markedly, a theoretical model of the underlying neural mechanisms of rrMDD was constructed 

based on the DMS, postulating that most of its dysregulations observed in the acute phase are still 

present during remission (Marchetti et al, 2012). Specifically, it is proposed that ineffective 

switching between the DMS and task positive subnetwork - involved in external 

attention/cognition - increases the risk for recurrence (Marchetti et al, 2012). Thus far, 

connectomic studies in MDD have primarily been focused on within-subnetwork integration and 

showed increased regional connectivity in the DMS in patients compared to HC (Gong and He, 

2015). In our sample of rrMDD patients, we did not find increased local efficiency in the DMS, 

only in relation to MAASDmood down (positive, p=0.053). Furthermore, we did not find significant 
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differences in the network metrics for the SRS and FPS. It is possible that, during remission, 

these measures are normalized or influence mood and behavior in a more complex way. Future 

research should address which brain areas have altered connectivity with the DMS, and whether 

recurrence can be prevented by normalizing these abnormalities. For instance, a study, in which 

transcranial magnetic stimulation (TMS) is used, showed a reduction of depression-related 

hyperconnectivity in the DMS and an induction of anticorrelated connectivity between the DMS 

and FPS after five weeks of treatment (Liston et al, 2014).  

 

Affective instability and connectomics 

First, we found that rrMDD patients, who showed more instability in feeling down, had less 

connections between the SRS and other subnetworks. In the current study, the SRS consisted 

mainly of brain regions that are part of the striatum. Previous research has shown reduced 

striatum activation during reward processing in MDD patients compared to HC (Pizzagalli et al, 

2009; Smoski et al, 2009), which has also been found in recovered MDD patients (McCabe et al, 

2009). Furthermore, computational models of reinforcement learning have shown impairments in 

MDD involving –among others- the striatum (Chen et al, 2015). Moreover, altered fronto-striatal 

connectivity has been found in response to monetary gains and losses in unmedicated MDD 

patients compared to HC (Admon et al, 2015b). The authors interpreted these results as an 

impairment in the positive and negative feedback circuit, leading to altered saliency of positive 

and negative events (Admon et al, 2015b). In rrMDD patients compared to HC, the same authors 

found increased connectivity between the striatum and amygdala/hippocampus in response to 

mild stressors (Admon et al, 2015a). Thus, the results of the current study suggest that altered 
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integration between the SRS and other subnetworks is possibly associated with dysfunctions in 

depression-related processes, such as reward and stress. 

Second, we found that rrMDD patients, who showed more instability in feeling irritated, had 

higher local efficiency coefficients in the FPS. Irritability has been shown to be prevalent in 

MDD and longitudinal studies in non-clinical samples have shown that irritability-related traits 

predict depressive and anxious psychopathology later in life (Leibenluft and Stoddard, 2013). 

Leibenluft (2011) proposed in her neurobiological model that ineffective frontal inhibition of 

emotional systems leads to feelings of irritation and frustration, when goals cannot be attained. In 

line with this, the FPS has been found to be involved in functions related to cognitive control 

(Laird et al, 2011). Indeed, two studies, that induced irritability by recalling autobiographical 

experiences, found increased prefrontal activation during irritability scripts compared to neutral 

scripts in HC (Cerqueira et al, 2010, 2014). These findings suggest that our result of higher local 

efficiency in the FPS may act as a compensatory mechanism to cognitively control (fluctuating) 

feelings of irritation and frustration. Notably, it would be interesting to investigate whether 

abovementioned ESM-fMRI findings are specific to rrMDD patients or can also be found in HCs 

when, for example, they are under more stress due to negative life events or score higher on 

personality traits such as neuroticism, and show more affective instability. 

To prevent first or recurrent depressive episodes, the idea has been coined to strengthen 

network connectivity underlying resilience (a.o. DMN: ↓, SRS: ↑, FPN: ↑, DMN-FPN 

anticorrelations: ↑) through interventions such as mindfulness, psychotherapy and TMS. The 

results of our study are in line with pursuing these suggestions, but the effect of such 

interventions on connectomic measures/connectivity still needs to be demonstrated. With regard 

to TMS, multiple biomarkers have been identified that predict clinical outcome after repetitive 

TMS (rTMS), but there is still substantial heterogeneity in the biomarker type and effect. 
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Furthermore, studies are limited that investigate whether rTMS induces (lasting) plasticity 

changes in subnetworks. Though promising, more research on the clinical applicability of 

functional connectivity in depression is needed to clarify these matters (see Fischer et al, 2016 for 

a recent review). 

 

Limitations 

The results from the ESM-fMRI analysis should be considered exploratory, because of the 

number of statistical tests that were performed. We tried to alleviate the multiple comparison 

problem by calculating the AUC and a mean of the nodal network measures per subnetwork. To 

provide insight in the reliability of the results, we performed permutation testing and 

bootstrapping (S18). Notably, it is difficult to adequately correct for multiple comparisons in 

graph analyses, since network measures are not independent from each other. Multivariate 

methods would be an option, but results from these types of analysis are more difficult to 

interpret (Simpson et al, 2013). For abovementioned reasons, our results are in need of 

replication. 

 

Conclusion 

The aim of the current study was to investigate associations between affective instability and 

connectomics in functional subnetworks in rrMDD patients. We found that rrMDD patients, 

compared to HC, are less stable in their negative affect and that these dynamics are related to the 

way information is processed within and between specific functional subnetworks. The findings 

provide i) real-life validity to connectomics using ESM and ii) a neurobiological correlate 

associated with affective instability using connectomics. The findings may facilitate a better 
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understanding of how fluctuations in real-life mood are represented in the brain of rrMDD 

patients, providing insights in the vulnerability profile of MDD. 
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Figure legends 

Figure 1 Module decomposition. Nodes could be partitioned in six functional subnetworks with a 

maximum number of within-group edges and a minimum number of between-group edges. In the 

current study, we focused on the default mode subnetwork (DMS, purple), fronto-parietal 

subnetwork (FPS, red) and the salience/reward subnetwork (SRS, blue). Nodes are pasted on a 

surface template of the human brain using  BrainNet Viewer (Xia et al, 2013). In the panels, 

different views are shown: A. left lateral, B. right lateral, C. left medial, D. right medial. 

Figure 2 Boxplots of the MAASD for each ESM variable per group. 
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Table 1 Sample characteristics 

    Between-group statistics 

  rrMDD  

(n = 62) 
HC  

(n = 41) 
χ2 T U p 

Female N 43 28 0.01   0.91 

Age Years; mean (SD) 53.7 (7.9) 51.8 (8.1)  1.17  0.25 

Education Levels
1 0/0/0/4/21/23/14 0/0/0/1/16/17/7 1.49   0.69 

IQ Mean (SD) 108 (8.5) 106 (9.9)   878.5 0.14 

Living 

situation 
Levels

2 26/0/18/14/2/0/2 10/0/16/11/4/0/0 6.23   0.18 

Employment 

status 
Levels

3 24/23/15/0 21/16/4/0 3.70   0.16 

Handedness Levels
4 4/50/4 2/33/4 0.44   0.80 

Age of onset Years; mean (SD) 27.18 (11.18)
5 -    - 

Episodes Mean (SD) 8.02 (11.7)
 5 -    - 

HDRS Mean (SD) 

Range 
2.81(2.36) 

0-9 
1.02(1.42) 

0-5 
  686 <0.001 

 
HC: healthy controls; HDRS: Hamilton Depression Rating Scale; rrMDD: remitted recurrent major 

depressive disorder; SD=standard deviation. 
1
Level of educational attainment (Verhage, 1964). Levels 

range from 1 to 7 (1 = primary school not finished, 7 = pre-university/university degree); 
2
Living situation: 

alone/living with parents/cohabiting/cohabiting with children/single living with children/other/unknown; 
3
Employment status: low/middle/high/never worked; 

4 
Handedness: left/right/ambidexter; 

5
One missing 

value. χ2
: chi-square test statistic; p: p-value; U: Mann-Whitney U non-parametric test statistic; T: 

independent-samples T test statistic. 
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Table 2 Main effect of group on affective instability (MAASD) 

ESM variable Between-group statistics 

U z p 

Positive mood 

enthusiastic 472 -1.31 0.189 

cheerful 486 -1.14 0.253 

relaxed 449 -1.59 0.111 

satisfied 511 -0.83 0.402 

Negative mood 

agitate 343.5 -2.88 0.004* 

down 346.5 -2.84 0.004* 

irritate 314 -3.23 0.001* 

lonely 351 -2.80 0.005 

restless 333.5 -3.00 0.003* 

Positive cognition 

empowered 505 -0.91 0.362 

self-like 510 -0.85 0.395 

Negative cognition 

ashamed 490 -1.11 0.266 

self-doubt 413.5 -2.03 0.043 

worry 329 -3.06 0.002* 

 

ESM: experience sampling methodology; MAASD: mean adjusted absolute successive difference; p: p-

value; U: Mann-Whitney U non-parametric test statistic; z: z-score. The total sample size for the ESM 

analyses was n=69 (rrMDD patients: n=43; HC: n=26). 

* p-value≤(0.05/14=)0.004 
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Table 3 Main effect of group on network measures 

Subnetwork Weighted Direction 

AUC 

(p-value) 
TFCE 

(threshold values) 
 

Local efficiency 

DMS 0.145 -  

FPS 0.363 -  

SRS 0.205 -  

Participation coefficient 

DMS 0.026** 0.2-0.30** rrMDD<HC 

FPS 0.587 -  

SRS 0.142 -  

 
AUC: area under the curve; DMS: default mode subnetwork; FPS: frontal-parietal subnetwork; HC: 

healthy controls; rrMDD: remitted recurrent major depressive disorder; SRS: salience/reward 

subnetwork; TFCE: threshold-free cluster enhancement. The total sample size for the fMRI analyses was 

n=90 (rrMDD patients: n=53; HC: n=37). 

** p-value<0.05, * p-value <0.10 
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Table 4 Correlation between affective instability and network measures in rrMDD patients 

Subnetwork Weighted Direction 

AUC 

(p-value) 
TFCE 

(threshold values) 
 

Mood agitate 

Local efficiency 

DMS 0.110 0.01-0.03** Positive 

FPS 0.199 0.01** Positive 

SRS 0.714   

Participation coefficient 

DMS 0.166 -  

FPS 0.267 -  

SRS 0.678 -  

Mood down 

Local efficiency 

DMS 0.053* 0.01-0.06, 0.09-0.11** Positive 

FPS 0.393 -  

SRS 0.754 -  

Participation coefficient 

DMS 0.161 -  

FPS 0.371 -  

SRS 0.025** 0.02-0.30** Negative 

Mood irritate 

Local efficiency 

DMS 0.250 -  

FPS 0.031** 0.01-0.30** Positive 

SRS 0.169 -  

Participation coefficient 

DMS 0.237 -  

FPS 0.066* 0.23-0.30** Negative 

SRS 0.796 -  

Mood restless 

Local efficiency 

DMS 0.792 -  
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FPS 0.805 -  

SRS 0.444 -  

Participation coefficient 

DMS 0.937 -  

FPS 0.389 -  

SRS 0.599 -  

Cognition worry 

Local efficiency    

DMS 0.767 -  

FPS 0.191 -  

SRS 0.087* 0.06, 0.08-0.13** Negative 

Participation coefficient    

DMS 0.949 -  

FPS 0.477 -  

SRS 0.151 -  

 
AUC: area under the curve; DMS: default mode subnetwork; FPS: frontal-parietal subnetwork; rrMDD: 

remitted recurrent major depressive disorder; SRS: salience/reward subnetwork; TFCE: threshold-free 

cluster enhancement. The total sample size for the ESM-fMRI analyses was n=39 rrMDD patients. 

** p-value<0.05, * p-value <0.10 
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