
 

 

 University of Groningen

Evolutionary games played by multi-agent system with different memory capacity
Zhang, Jianlei; Zhang, Chunyan

Published in:
European Physical Journal B

DOI:
10.1140/epjb/e2015-60101-y

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2015

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Zhang, J., & Zhang, C. (2015). Evolutionary games played by multi-agent system with different memory
capacity. European Physical Journal B, 88(6), [136]. DOI: 10.1140/epjb/e2015-60101-y

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 11-02-2018

http://dx.doi.org/10.1140/epjb/e2015-60101-y
https://www.rug.nl/research/portal/en/publications/evolutionary-games-played-by-multiagent-system-with-different-memory-capacity(04202a65-2c1b-443e-b175-0634d389f924).html


Eur. Phys. J. B (2015) 88: 136
DOI: 10.1140/epjb/e2015-60101-y

Regular Article

THE EUROPEAN
PHYSICAL JOURNAL B

Evolutionary games played by multi-agent system
with different memory capacity

Jianlei Zhang1,2,3 and Chunyan Zhang1,a

1 Department of Automation, College of Computer and Control Engineering, Nankai University, Tianjin 300071, P.R. China
2 Network Analysis and Control Group, Engineering and Technology Institute Groningen, University of Groningen,

9747 AG Groningen, The Netherlands
3 Theoretical Biology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen,

The Netherlands

Received 8 February 2015 / Received in final form 25 April 2015
Published online 1st June 2015 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2015

Abstract. The evolution of cooperation is still an enigma. Resolution of cooperative dilemma is a hot
topic as a perplexing interdisciplinary project, and has captured wide attention of researchers from many
disciplines as a multidisciplinary field. Our main concern is the design of a networked evolutionary game
model in which players show difference in memory capability. The idea of different memory capacities has its
origin on the pervasive individual heterogeneity of real agents in nature. It is concluded that this proposed
multiple memory capacity stimulates cooperation in lattice-structured populations. The networking effect is
also investigated via a scale free network which is associated with the heterogeneous populations structure.
Interestingly, results suggest that the effectiveness of a heterogeneous network at fostering cooperation is
reduced in the presence of individual memory here. A thorough inquiry in the coevolutionary dynamics of
individual memory and spatial structure in evolutionary games is planned for the immediate future.

1 Introduction

Why and how cooperation among selfish and rational
agents can persist in the presence of cheating and the
cruel rule of ‘survival of the fittest’ driven by natural se-
lection, remains a puzzling, fascinating and broad-ranging
unsolved question in evolutionary biology [1–6]. Moreover,
this interdisciplinary topic has also drawn plenty of atten-
tion, interest and research across disciplines, e.g., social
sciences, behavioral sciences, psychology, physics, com-
puter science, engineering and so on. Explaining the coop-
eration evolution is not only an issue of central importance
to evolutionary biology but also one of the hot interdis-
ciplinary topics so far, since cooperation is commonplace
throughout all levels of the natural world and cooperative
behaviors lie at the basis of human societies.

Last few decades have witnessed plenty of studies to
be carried out in order to get an idea of what the driving
forces behind cooperative behaviors of selfish individuals
are. Social dilemma games, such as the Prisoner’s dilemma
game (PDG), have provided paramount insights into the
emergence of cooperation among selfish individuals [7,8].
The PDG has become the paradigm for the evolution of
cooperation among egoists. Two players should simulta-
neously and independently select one of the two decisions:
cooperation or defection, and play accordingly with each
other. It is regarded as the classical model of how and
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when concern for the future can lead to cooperation even
if all selfish individuals care only their own benefits. The
dilemma game promises a defector the highest payoff if
encountering a cooperator. Meanwhile, the exploited co-
operator is worse than a defector playing with another
defector. In line with the principles of Darwin’s natural
selection, defection will be the dominating strategy of the
population.

Since widespread cooperation is crucial for the pros-
perity of society and is frequently encountered in real-
life situations, various mechanisms or solutions aimed at
finding under what conditions the cooperation emerges
in various games. Prominent examples include repeated
interactions [9], direct reciprocity [10,11], indirect reci-
procity [12–14], reputation [15], group selection [16],
punishment [17–19], teaching ability [20,21], aging [22],
emotion [23], population growth [24], phenotypic similar-
ity [25]. Recent years have also witnessed a booming in-
terest in structured population [26–31], and also a large
literature has extended the evolutionary games in com-
plex networks from the regular grids to other real-world
networks [32,33], and even mobility of players embedded
in networks [34,35]. In these studies, interacting strategic
agents play games in a specified network, and only closest
neighbors interact with one another.

Usually, in the formulation of the cooperative dilemma
games only the results generated in the last round are
taken into account in deciding the next choice. Studies re-
ferring to memory propose that historic memory can be

http://www.epj.org
http://dx.doi.org/10.1140/epjb/e2015-60101-y


Page 2 of 6 Eur. Phys. J. B (2015) 88: 136

implemented by featuring players by a summary of their
previous winnings and choices. Various models [36–43],
where the effects of full or discounted memory are as-
sessed, have suggested that memory can influence the
emergence of cooperation for self-interested agents under
suitable conditions.

For instance, the study performed in reference [36] sug-
gests that working memory constrains human cooperation
in the PDG, by asking players to play the games either
continuously or interrupted after each round by a sec-
ondary memory task that constrained the players’ work-
ing memory capacity. Authors in reference [37] assume
that whether a player opts for cooperation or defection in
the next round depends on the history of the game and
thus on the memory size of the player. Their results sug-
gest that increasing the memory size helps to establish
cooperation because traitors can be detected more eas-
ily. This is reflected by the vanishing number of traitors
present at the end of the simulation runs for longer mem-
ories. The literature of [38] introduces a memory-based
agent model and investigates the PDG in a heterogeneous
Newman-Watts small-world network based on a Genetic
Algorithm, focusing on the heterogeneity’s role in enhanc-
ing the emergence of cooperative behaviors. Moreover,
the effects of full and partial memories are assessed in
a spatial version of the PDG in reference [39]. They get
the conclusion that memory notably stimulates coopera-
tion in the PDG played in ordered lattices, but fails to
boost cooperation as the wiring network becomes highly
disordered. Further, in the work of reference [42] about
the memory-based snowdrift game in networks, the as-
sumption is that by comparing the virtual payoff (by self-
questioning) with the actual payoff, each player can get
her optimal strategy corresponding to the highest payoff
and then record it into her memory. In reference [43], the
authors assume that individuals’ performance is evaluated
in terms of the accumulative payoffs in their memories.
Their reach the conclusion that if individuals behave as
their successful neighbors, then cooperation can be signif-
icantly promoted.

However, there are substantive aspects that are not
tackled or require deep study along this line, such as the
individual heterogeneity on memory capacity. Few prior
work has investigated whether merging both memory and
individual heterogeneity exhibits positive synergies that
lead to increase cooperation even further. A common phe-
nomenon in nature and society is: real agents are not ho-
mogeneous but differ in many aspects. This is particulary
true in the context of human cooperation where human
decision making is probably shaped by a multitude of indi-
vidual factors. Normally, it is speculated that the memory
capability in decision making may be one of the potential
factors to affect the behavior of agents. It seems that no
combination of memory and individual heterogeneity is
implemented in a host of solutions to cooperative dilemma
problem in the evolutionary games thus far.

Not only endowing players with a summary of their
previous payoffs and strategies, here we also harbor the
idea that agents differ in memory capability regarding the

historical information of games. For further explanation,
we divide the population into four types of agents based on
their memory strength: (1) players with unlimited mem-
ory. This type of players can collect and remember all
the strategy information in previous game rounds that
have occurred; (2) players with not strong memory: only
half of all the past iterations are remembered; (3) play-
ers with weak memory: only the game information in last
iteration is available and (4) players without memory. No-
tably, memoryless players can only update their strategies
according to the updating rule based on payoffs, which is
also available for other types of players.

In our work, the memory is employed in a way that
players will cooperate in next game round, with a proba-
bility valued as the fraction of cooperators in their neigh-
borhood in history based on their memory capacity. It
is to be stressed that, this assumption of four types is
not enough to approximate human reality with high com-
plexity. However, the implied meaning of this work is
to broaden the spectrum of studies referring to memory,
through designing a framework involving individual het-
erogeneity and memory simultaneously in this study.

The remainder of this paper is structured as follows.
Section 2 is devoted to the description of the model in
ample detail. In Section 3 the main results are presented,
while in the last section we summarize the results and
outline possible real-life implications of our findings.

2 Model

Two frequently-used two-agent two-strategy games: the
Prisoner’s dilemma game (PDG) and the Snowdrift game
(SDG), are adopted here. They are both simultaneous
two-player games where each player independently and
simultaneously decides whether to cooperate or defect. At
each point in time, an agent adopts only one of the two
strategies. Mutual cooperators each gain the reward R,
mutual defectors incur the punishment P ; defectors score
the temptation T against cooperators, who score S in such
an encounter. For the PDG, payoff matrix should meet
the condition of T > R > P > S and the additional con-
straint 2R > T + S for repeated interactions. In line with
the Darwin’s natural selection rule, defection will be the
dominating strategy in the population. Relaxing the in-
evitability of a social downfall resulted by the PDG is the
SDG where T > R > S > P .

The following payoff matrices are used to determine
the payoffs for the involved strategists. In particular, the
payoff obtained by a player using strategy i in an inter-
action with a player using strategy j is denoted by mij ,
where M = (mij) is the 2 × 2 payoff matrix characteriz-
ing the game. Herein, the mentioned payoff matrices of a
PDG and a SDG that summarize the feasible payoffs are
provided by

M
PDG

=
(

b − c −c
b 0

)
, M

SDG
=

(
b − c

2 b − c
b 0

)
(1)

where b and c (b > c) indicate the benefits and costs of
cooperation, respectively. And we normalize the cost of
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cooperation c to 1. The payoff matrices thus only con-
tain one free parameter b, but conserve the essence of the
employed game.

As stated, the main purpose of this paper is to provide
a model that examines individual differences in memory
capacity. Unfortunately, the state space increases with the
memory size of the players, where theoretical analysis is
likely out of reach to the resulted complex scenario. Thus,
due to the complexity of the system, our current investi-
gations are limited and only based on extensive numerical
simulations.

Then, we situate the investigated population on a
graph where agents occupy nodes and edges represent
game connections, i.e. the other agents with whom an
agent can interact. The population of size N thus situates
at the nodes of the underlying network, and each individ-
ual connects with all the closest neighbors to whom it is
linked. And, two quintessential network, i.e. a Lattice net-
work and a Barabási-Albert (BA) scale-free network [32],
are employed as paradigmatic examples to explore the po-
tential effects of heterogeneity in the number of edges on
evolution dynamics. Throughout the interaction phase,
each agent adopts which strategy (C or D) to perform
during each game round, then plays the game with her
neighbors-the chosen strategy being the same with all of
them-and collects the final payoff. Choosing independent
strategies with different neighbors may be more realistic in
the presence of individual heterogeneity, and may be more
interesting. However, considering the larger difficulty of
realizing this assumption and the only research focus on
memory capacity here, we thus only consider the case of
taking same strategy with all neighbors in this work. Be-
sides, the payoff for each player depends only on the out-
come of the previous round, and thus remains unaffected
by the memory capacity.

Afterwards, synchronous strategy updating follows. As
stated, the memory capability of each agent is a crucial
observable of the system. Whether a player opts for co-
operation or defection in the next round depends on (but
not fully) the history of the game and thus on the memory
size of the player. A player with memory can keep track
of all the strategies adopted by her neighbors in previous
game rounds within her memory capability. It is plausi-
ble that a strong memory capacity likes a search engine
with formidable power, helping individuals to remember
history effectively. Players will cooperate in next game
round, with a probability equivalent to the fraction of co-
operators in her neighborhood in history based on their
memory. However, taking into account history information
is optional, and not indispensable, in the decision making
process performed by players. The reason is that the infor-
mation stored in memory as an external resource, can also
be ignored or not used under some decision-making situ-
ations. For example, players incline to obey the strategy
updating rule (described in the following) for the renewal
of strategies.

Inspired by the above fact, we employ a parameter δ
(where 0 ≤ δ ≤ 1) as the probability of memory informa-
tion will be recurred to help the focal agents make deci-

sion for next game round. The choice of δ thus simulates
the weight of memory, storing the strategy information al-
ready occurred in previous rounds, in strategy updating.
As δ increases, the effects of memory gradually increase,
and players have less chance to follow the appointed strat-
egy updating rule (provide in the following). Thus, the
limit case δ = 1 corresponds to completely rely on the in-
formation stored by memory, whereas smaller values of δ
reduce the effects of memory; the choice of δ = 0 cor-
responds to the ahistoric model where agents act like a
memoryless one and update their strategy in line with the
given update rule.

As described, the population consists of four types of
players: (1) players with unlimited memory. They can co-
operate with a probability equated with the fraction of
cooperators in their neighborhood in history, or abide by
the given strategy update rules in deciding next move; (2)
players with not strong memory. Only strategy informa-
tion in half of all the past iterations is recorded; (3) players
with weak memory. Players can only remember each oppo-
nent’s last action and (4) players without memory. Since
no game information is recorded, memoryless players can
only renovate their strategies based on the payoffs gained
in last game round, through randomly selecting a game
partner. This is regarded as a common framework of strat-
egy updating rule, and the details of the adopted strategy
updating rule in this study are mentioned as follows.

Thus, a player using strategy x and receiving payoff π
x

in last interaction randomly chooses another player from
her neighbors; if that player happens to have employed
the alternative strategy y and accumulated payoff πy , then
the focal agent will adopt y with a probability u

x→y
that

reflects the payoff difference π
y
− π

x
. This probability is

given by the following function

u
x→y

=
πy − πx

R
, (2)

where R ensures the proper normalization and is given by
the maximum possible difference between πx and πy at
any given instance of the game.

3 Simulation results and discussion

In this section the displayed results rely on simulations
carried out for constant populations size N = 2500
and fixed average degree k̄ = 4. The initial strategies
(C and D) of the population are randomly distributed.
At the start of simulation there is a random distribu-
tion of the four types of agents with different memories.
The simulation results are obtained by averaging over the
last 1000 generations of the entire 104 generations. More-
over, each data point averages over 100 realizations of both
the networks and the initial conditions. The dynamics of
a system is investigated as follows by simulation while the
using probability of memory δ and the temptation to de-
fect b vary.

We begin the report of our numerical results by plot-
ting the final fraction of cooperators in the population
when the system evolves to the steady state. Figure 1
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Fig. 1. The simulation results of average cooperation level of
the whole population situating in Lattice networks, as a func-
tion of b and δ. The employed parameters are set by N = 2500
and k̄ = 4. The color bar encodes the average cooperation
level of the population. The population is composed by the four
types of agents: (1) players with unlimited memory; (2) players
with not strong memory. Only strategy information in half of
all the past iterations is recorded; (3) players with weak mem-
ory. Players can only remember each opponent’s last action
and (4) players without memory.

summarizes the results of cooperation levels in Lattice
networks with average degree k̄ = 4. Evolutionary results
for PDG (left plot) on Lattice graphs follow a trend that:
for small b, larger probability of using memory in decid-
ing next action, can almost better foster the survival and
maintenance of cooperators. However, for large b, an in-
teresting point here is that, the variation of δ in proper
range can best promote the domination of cooperation. It
is evident that, cooperators survive at b > 15 when δ = 0,
while this number first increases (e.g., see δ = 0.025) in-
dicating that cooperators get suppressed by the proposed
memory mechanism. And then the related b decreases to
below 15 and approaches 10 finally, which yield exclusive
dominance of cooperators even in highly unfavorable con-
ditions (lower b herein).

The non-monotonic trend of cooperation levels with
increasing b and δ indicate that the influence of
differentiated memory capacity on evolutionary dynam-
ics is complicated since many factors may be involved si-
multaneously. It is supposed that each node (except the
memoryless ones) becomes aware of the opposite player’s
strategy behavior by this memory mechanism. When us-
ing memory to adjust their behavior, players will choose
cooperation in next game round, with a probability valued
as the fraction of cooperators in their neighborhood in his-
tory based on their memory. In this sense, the information
provided by this mechanism is that this proposed mem-
ory shows some similarity with the strategy like ‘TIT FOR
TAT’ (TFT) [44]. And the dominant strategy between the
two strategies in the population will spread more easily
by the aid of memory mechanism than the minority one.
Meanwhile, the strategy updating rule which almost co-
exists simultaneously with the memory mechanism will
foster the evolution of strategy with higher payoffs. Con-
sidering the above, the amount of cooperation levels in the
steady state is dependent on the combined effect of the two
strategy updating ways in this work. In the strict cooper-
ative dilemma of PDG, it is not easy to gain a straight-

Fig. 2. The simulation results of average cooperation level of
the whole population embedded in BASF networks, in depen-
dence on b and δ. All results are obtained by setting N = 2500
and k̄ = 4. The population is composed by the four types of
agents: (1) players with unlimited memory; (2) players with
not strong memory. Only strategy information in half of all
the past iterations is recorded; (3) players with weak memory.
Players can only remember each opponent’s last action and
(4) players without memory.

forward conclusion about the role of memory played in
influencing the evolutionary fate. However, when the co-
operation dilemma turns milder (SDG in the following),
the results seem to transfer more explicit intuitive under-
standing: keeping memory of past is positive and partly
relying on memory in decision making is already enough.

Then we shift our attention to the results in the case
of SDG when other parameters are unaltered with that in
PDG. It is obvious that the red region for a majority of pa-
rameter choices the system corresponds to a full C state.
In the regions where full cooperation state is reached, al-
most all selfish players adopt cooperation when the system
evolves to a steady state. In this situation, cooperative be-
haviors survive and prevail in a selfish population even if
the temptation to defect is large (i.e. low b). Cooperators
get dominance in SDG in the Lattice network when pa-
rameters fulfill the conditions of b = 3 at δ = 0, while
this number decreases to b = 1.5 or so when δ > 0.3, as
shown in Figure 1. Compared with the result when δ = 0,
δ > 0 reflects the monotonous and positive role played by
the memory capacity in solving the perplexing puzzles of
cooperation in snowdrift games. Different with the case of
PDG, the monotonic trends occur here in the framework
of SDG.

Since BASF networks provide a more realistic model
of the individual interaction features discovered in many
nature or social networks. Herein the evolution dynamics
are also performed in this most-often used heterogeneous
network to check the influences of population structures.
Figure 2 manifests examples of the behavior of the average
cooperation level in a system evolving in BASF networks
with the average degree k̄ = 4. Plenty of the research
have stated that heterogeneous networks can better in-
spire cooperation than homogeneous ones even in strongly
defection-prone environments. However, this phenomenon
does not occur in our study. Memory drives the system
to a low cooperation level state, even in mild cooperation
situations denoted by relatively large b, as suggested in
Figure 2.
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Different with outcomes in the Lattice network, larger
adoption probability of memory significantly inhibits the
evolution fate of cooperators. We have checked that, in-
creasing δ leads the system to lower cooperation levels,
and smaller red regions signifying domination of coopera-
tion narrow when players make their strategy decision ac-
cording to the history information. The speed and range of
this shrinkage is closely associated with the parameter δ
and the employed games. Thus, Figure 2 evidences the
nonnegligible dependence of our results on the overall
population structure. Previous studies have emphasized
that spatially constrained populations can sustain sizeable
levels of cooperation of players located in heterogeneous
networks. The highly heterogeneous state of population
structure is crucial for the fortified facilitative effect on
cooperation, since it incubates cluster of cooperators in
a BASF network. Thus, clusters uphold and inspire the
spreading of cooperative strategy around the large-degree
nodes, according to the strategy update rules based on
payoffs. Conversely, defectors sitting on large-degree nodes
are incapable of reaping lasting benefits from cluster-
ing, simply because they become exceedingly weak if all
the neighbors of the defecting cluster become defectors
themselves.

However, once history information acts as the deter-
mining factor in strategy updating, the spreading of strat-
egy (especially the cooperation) adopted by large-degree
nodes will potentially be blocked off. Lower faction of co-
operators induces the cooperators located at large-degree
nodes inevitably change their strategy from cooperation
to defection. Under this situation, the constructive influ-
ences of heterogeneous interaction numbers on promoting
cooperation decrease or even disappear, and the propa-
gation of defection is hard to avoid. Thereby, the clear
indication from the observed results presented in Figure 2
is a strong correlation between the population structure
and cooperation enhancement.

To investigate thoroughly the mechanism responsible
for the emergence of cooperation in Figures 1 and 2, as
comparisons we resort here to the evolutionary results
when only three kinds of memory capacity are employed
in the population: (1) players with unlimited memory; (2)
players with not strong memory: only half of all the past
iterations are remembered and (3) players without mem-
ory. All the other model rules (e.g., the employed net-
work, the strategy updating rule, the simulation process)
are kept the same with the four-type-agent model consid-
ered above, and results are summarized by Figure 3. The
results transfer a clear information: the main conclusions
stated above robustly and qualitatively remain the same
within this three-type-agent model.

While as discussed in previous paragraphs, the sup-
pressed cooperation levels in scale-free networks may be
closely related with the memory rule here. Previous work
has argued that, the feasibility of the C-strategy to spread
increases with the degree of the node where the C is lo-
cated. In scale-free structured populations, the majority
of agents own few interactions, whereas a few are highly
linked individuals. Therefore, most of the largely linked

(a)

(b)

Fig. 3. (a) Fraction of cooperators in the population located in
Lattice networks. (b) Fraction of cooperators in the population
located in BASF networks. All results are obtained by setting
N = 2500 and k̄ = 4. The population is composed by the
three types of agents: (1) players with unlimited memory; (2)
players with not strong memory. Only strategy information in
half of all the past iterations is recorded and (3) players without
memory.

individuals (say hubs) interact with low-degree agents,
which provide favorable conditions for a C located on
a hub to spread to other nodes. However, the evolution-
ary fate of the large-degree Cs changes in our study here
where using memory indicates imitating the most-often
used strategy in history. More precisely, players will coop-
erate in next game round, with a probability equivalent
to the fraction of cooperators in their neighborhood in
history based on their memory capacity. In this case, the
large-degree C in scale-free networks can not effectively
spread her strategy to the neighbors when memory plays
significant role in decision making. Incredible though it
may seem at first glance, the gained results give us clear
understanding about the role of large-degree nodes in fa-
cilitating cooperation.

4 Conclusion

The archetypical tensions that generate social dilemmas
exist in many important issues of real social society:
resource depletion, pollution, and climate change. This
work, inspired by social reality, aims at seeking and es-
tablishing an evolutionary framework capable of modeling
individual heterogeneity in terms of memory capacity.
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Following this, the game is held among a population
consisted with four types of agents in terms of their mem-
ory strength: (1) players with unlimited memory, who can
collect and remember all the strategy information in pre-
vious game rounds that have occurred; (2) players with
not strong memory, who can only remember the informa-
tion from half of all the past iterations; (3) players with
weak memory, who can only store the game information
in last iteration and (4) players without memory, who can
only update their strategies according to the given updat-
ing rule, which is also available for other types of players.
There may be multiple ways of exploiting the information
stored in memory, here the memory is implemented in a
way that players will cooperate (or defect) in next game
round, with a probability equivalent to the fraction of co-
operators (or defectors) in their neighborhood in history
based on their memory capacity.

Besides, we compare our results in two typical net-
works, drawing conclusions as to the relevance of the
proposed dynamics to the population structure. Results
suggest that the heterogeneous memory capacity pro-
posed here boosts cooperation in the context of Prisoner’s
dilemma game and Snowdrift game when the Lattice net-
work is employed. Intriguingly, in the scale-free graphs
used to model heterogeneous populations, the diversity of
memory capability leads to a reduced cooperative level
of population, compared with the outcomes generated in
the memoryless population. Therefore, our understand-
ing can be enhanced by the investigations of how memory
and population structure affect the evolutionary dynamics
taking place among its nodes.

Our work may provide some novel hints to resolve the
cooperative dilemma and foster the evolution of coopera-
tion through pouring attention to individual memory ca-
pacity. It is planned to study in a near future the effect
that more types of memory sizes of the player popula-
tion has on the evolutionary fate. Further, the evolution
and variation of memory capacity which serves as a fixed
character in the present study when game proceeds will be
necessary. We believe that the above mentioned subjects
are worth studying, at least as a promising extension of
the current model.
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