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This paper studies correction for chance for association measures for continuous variables. The set of linear transformations of
Pearson’s product-moment correlation is used as the domain of the correction for chance function. Examples of measures in this
set are Tucker’s congruence coefficient, Jobson’s coeflicient, and Pearson’s correlation. An equivalence relation on the set of linear
transformations is defined. The fixed points of the correction for chance function are characterized. It is shown that each linear
transformation is mapped to the fixed point in its equivalence class.

1. Introduction

In various subfields of statistics, association measures are
commonly used to express the strength of a relationship
between two variables in a number. Individual measures
are used for summarizing parts of a research study, while
matrices of association measures can be used as input for
multivariate data analysis techniques like regression analysis
and component analysis [1, 2]. In this paper, we study
measures that quantify the association between two con-
tinuous variables. Examples of these measures are Tucker’s
congruence coefficient, Jobsons coeflicient, and Pearsons
product-moment correlation. The latter coeflicient is com-
monly used as a measure of the linear dependence between
two continuous variables.

Pearson’s correlation is a measure that has multiple
interesting interpretations [3]. For example, the squared cor-
relation may be interpreted as the percentage of variance that
the two variables have in common. However, for many other
association measures, only the extreme values have a clear
interpretation. Many association measures have maximum
value unity, indicating perfect association. However, a zero
value is usually attained in different situations. For example,
Pearson’s correlation and Jobson’s coefficient have zero value
under statistical independence, while Tucker’s congruence
coefficient has zero value if the inner product of the two
variables equals zero.

It may be desirable that an association measure has
zero value if two variables are statistically independent [4-
6]. If a measure does not have zero value under statistical
independence, a standard approach in the literature is to
correct it for association due to chance [7-9]. After correction
for chance, a measure A has a form

_A-E(A)

c(A) = 1—E(A)

)

where E(A) is the value of measure A under chance and 1
in the denominator of (1) is the maximum value of A. In
this paper, we only consider measures with maximum value
unity. Furthermore, we assume that E(A) < 1 to avoid the
indeterminate case E(A) = 1. Transformation (1) sets the
value of a measure at zero under independence, while leaving
the maximum value at unity.

Transformation (1) has been almost exclusively studied
in relation to association measures for binary variables.
Measures for binary variables are also called coeflicients for
2x2 tables. Several authors showed that certain 2x2 measures
become equivalent after correction (1). For example, Fleiss
[8], Zegers [6], Albatineh et al. [7], and Warrens [9] showed
that measures by Dice, Hamann, and Rand become Cohen’s
kappa after correction for chance. Furthermore, Warrens [10]
characterized all 2 x 2 measures that are transformed into
weighted kappa [10, 11] by formula (1).



The abovementioned results provide new interpretations
of various chance-corrected measures. Furthermore, if dif-
ferent measures coincide after correction for chance, the
task of choosing the best chance-corrected measure for the
data-analytic task at hand becomes easier, since there are
less measures to choose from. Moreover, Warrens [9, 10, 12]
studied transformation (1) as a mathematical function. These
latter studies revealed how different association measures
from the literature are related and also provided new ways to
interpret chance-corrected measures.

In this paper, we study correction for chance for associ-
ation measures for continuous variables. Several results for
2 x 2 measures are generalized to the more complex case
of continuous variables. Furthermore, various new results
illustrate how certain measures are related and provide new
ways for interpreting them. For example, we show that Pear-
sons correlation may be interpreted as a chance-corrected
measure, which is a new result.

The paper is organized as follows. In Section 2, we
introduce the notation and definitions of the association
measures, and we specify the domain of the correction for
chance function. In Section 3, we briefly discuss statistical
inference based on measures in this domain. In Section 4, we
define the correction for chance function and present some
of its properties. Some of the results presented in this section
generalize properties presented in Warrens [9] for measures
for 2 x 2 tables. In Section 5, we consider several families
of association measures that belong to the same equivalence
classes. In Section 6, we characterize the fixed points of the
function c in (1). Finally, Section 7 contains a discussion.

2. A Set of Association Measures

Since many association measures in the literature have been
proposed as sample statistics [13, 14], we will study the
measures here as sample statistics. For certain measures, the
population equivalents can be obtained by replacing sample
variances and covariances by their corresponding population
parameters, degenerate cases excluded.

Suppose we have scores of 1 objects (subjects, individuals)
on two variables x and y. An individual score is denoted by
x; fori € {1,2,...,n}. Let the summation Y be short for Y- .
The mean score of x is given by

1
—_1 § 5
x=- le (2)
the unbiased sample variance is given by
1 2
= 2% 3)

and the mean squared value of x is given by
2_1y 2
t,=—) x;. 4
SRR @

The sample statistics for y are defined analogously. The
unbiased sample covariance of x and y is given by

1 — _
Sxy:n_IZ(xi_x)(yi_y)' (5)
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Association measures can be defined as functions from the
set of pairs of variables of length 7 into the real numbers. The
set

D ={(xy) | x5y €R} (6)

will be used as the domain. For many measures from the
literature, the codomain is either the interval [0, 1] or the
interval [-1,1]. An association measure is defined as a
function A : D — R, and the set of all such measures is
denoted by K = {A : D — R}. A measure that belongs to K
is Pearson’s correlation coefficient given by

Sxy _ 2 Xy —nxy
58, (n=1)s,s,

r(x,y) = 7)

Pearson’s correlation is a commonly used measure of linear
dependence between two variables.

In the following, we are interested in a particular subset
of K. Kendall and Stuart [15, p. 492] discuss the permutation
distribution of r. The exact distribution of 7 can be obtained
by considering all n! permutations of the scores on x,
while keeping the scores on y fixed. Under permutation
of the scores on x, only Y x;y; is a random variable. For
each permutation, we may calculate ) x;y;. The expectation
E(} x;y;) can then be defined as the average of all the values
of ¥ x;y;. Kendall and Stuart [15, p. 492] show that

E (Z xiyi) =nxy. (8)

Since only Y x;y; is a random variable under permutation,
we can write 7 as a linear transformation of ) x;y;; that is,
A+ p Y x;y;, where

_ -nxy
(n-1)s,s,’
)
B 1
“= (n- l)sxsy

are functions that are not affected by permutation of the
scores on x or y. More generally, we may consider the set
L c K given by

L={A:D—>R|A=A+pu) xy, A<1}.  (10)

The elements of L are linear transformations of )’ x;y;, and
A = Ax,y) and p = u(x, y) are functions that remain
unchanged under permutations of the scores on x or y.
Furthermore, 1 is the maximum value of the measures in L.
Since Pearson’s correlation r belongs to L, the set is nonempty.
Examples of other association measures that belong to L are
presented in Section 5.

Instead of considering L, we may also consider the set
M c K given by

M={A:D—R|A=A+pur, A<1}. (1)

Measures in M are linear transformations of 7,and A and prare
functions that are unaffected by permutations of the scores on
x or y. Lemma 1 shows that L and M are equivalent.
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Lemmal. L = M.
Proof. Consider (7). We can write )’ x;y; as A + ur, where

A=nxy,
(12)
pu=Mn- l)sxsy.

Hence, ) x;y; € M and it follows that L ¢ M. Furthermore,
we can write r as A + p ), x;y;, where A and p are presented in
(9). Hence, r € Land it followsthat M c L. Thus,L = M. [

Lemma 1 shows that linearity in ) x;y; is equivalent to
linearity in r. The proof of Lemma 1 illustrates that any
element of L can be used as a generator of L. For example, we
have L = (r). The set L is used as the domain of the correction
for chance formula in the next section. A similar family of
linear transformations has been considered in [5, 7, 9, 10, 16].

3. Statistical Inference

In this paper, we mainly present various algebraic and analytic
properties of the broad family of association measures in (10)
and (11). In this section, we briefly discuss statistical inference
based on members of this family. In the framework presented
here, variables are considered random if they are not invariant
under permutation [14, 17]. Therefore, the quantity Y x;y; is
the only random variable in (10). A straightforward approach
to performing hypothesis tests or constructing confidence
intervals for a member of the family in (10) could be based
on a permutation test with respect to the quantity ) x;y;.
Furthermore, confidence intervals for a member of the family
in (10) may be obtained using the bootstrap.

It should be noted that the assumption that variables are
random only if they are not invariant under permutation is
unusual for Pearson’s correlation coefficient. As pointed out
by a reviewer, with Pearson’s correlation, it is common to
assume that x and y follow a bivariate normal distribution. In
this case, the quantities X, y, s, s,, t,, and ¢, are all random
variables.

4, Correction for Chance

Equation (1) presents the formula of a measure A after
correction for chance. For measures in L, the correction for
chance function is defined as

c:L— L,
_A-E@®) (13)
1-E(A)’

Lemma 2 shows that, for measures in L, formula (13) becomes
formula (14).

Lemma2. Let A € Lwith A=A+ u) x;y; One has

(n-1)s,,

Ty

(14)

Proof. Using identity (8), we have for measures in L the
identity

E(A) =E()L+‘u2xiyi) =)t+‘uE(Zx,-yi)

= A+ unxy.

(15)

Using identity (15) in formula (13) and dividing all terms in
the result by y, we obtain

LX)y~ nxy
(1-A)/u-nxy’
or, equivalently, formula (14). O

c(A)= (16)

Formula (14) shows that elements of L coincide after

correction for chance if they have the same ratio
1—/\. (17)
U

This property of elements in L will be used repeatedly in the
following. A similar property was found in [7] for validation
indices in cluster analysis. Furthermore, for association mea-
sures for 2 x 2 tables, a similar property was found in [9].

The function c in (13) is a map from L to L if L is closed
under ¢. Lemma 3 shows that this is the case.

Lemma 3. L is closed under c.

Proof. Let A € Lwith A = A+ u ) x;y;. The formula for c(A)
is presented in (16). We can write c(A) as A" +u" Y x;y;, where

. -nxy
(1-1)/u—nxy’
(18)
- 1
BTN u-nxy
Hence, c(A) € L. O

Let A € L,leta,b € R withb # 0, and consider the
linear transformation B = a + bA. Since we require that all
association measures have maximum value 1, we have the
restrictiona+b = 1. Hence, B = 1 — b+ bA is also an element
in L. Lemma 4 shows that A and B coincide after correction
for chance. A proof of Lemma 4 for the special case of 2 x 2
measures can be found in Warrens [9].

Lemma4. Let A€ L, letb € R, and consider B=1—b + bA.
One has c(A) = c¢(B).

Proof. Since A € L, there exist A and y such that A = A +
puY x;v;. Hence, B=1-b+b(A+ u ) x;y;) and we can write
Bas A" +u" Y x;y;, where

A =1-b+bA,
* 19)
U =bu.
Using these quantities, ratio (17) is equal to
1-A" 1- 1-
AT _bd-MN) A. (20)

*

u by u



Since ratio (17) is identical for A and B, it follows that c(A) =
c(B). O

Suppose we have several association measures that coin-
cide after correction for chance. Lemma 5 shows that the
arithmetic mean of the association measures becomes iden-
tical to the measures after correction for chance. A proof of
Lemma 5 for the special case of 2 x 2 measures can be found
in Warrens [9].

Lemma 5. Let A, € Lwith Ay, = A, + pp ), x;y; for € €

{1,2,...,m} such that
1-A 1-1 1-1
— Tl 2= m. (21)
“ %) Um

The arithmetic mean B =m™" Y. A, coincides with A, after
correction for chance.

Proof. We can write Bas A* + u* ) x;y;, where

1 m
A= =N,
nt
(22)
Y
==Y u,.
ma
Using these quantities, ratio (17) is equal to
1-A° _ m— Y1 A _ Yoo te (1= Ap) J1p) 23)
u Yoo e Yoo e

The right-hand side of this equation shows that (1-A")/u" is
a weighted average of (1 - A,)/u, using weights y,. Since (1 -
Ae)/pe are all identical, (1 - A*)/u” is identical to (1 - A,)/p,.
Hence, ¢(A,) = ¢(B). O

5. Equivalence Classes

Ratio (17) divides the association measures in L into equiva-
lence classes with respect to function ¢ in (14). We have the
following definition. Two measures A, B € L are said to be
equivalent with respect to (14), denoted by A ~ B, if they have
the same ratio (17). It can be shown that ~ is an equivalence
relation on L; that is, ~ is reflexive, symmetric, and transitive.

The equivalence relation ~ divides the elements of L
into equivalence classes, one class for each value of (17). We
consider some examples. Let v = v(x, y) be a function that
remains unchanged under permutations of the scores on x or
¥, and consider the family

2 XY+
(t2 +1t2) vy (24)
n(t; +15

If v = 0, (24) is identical to the coefficient of identity [6, 14,
17]. If v = —2nx y, (24) is identical to Jobson’s coefficient [18],

B Xy —nxy
(xy) = (n/2) (2 +82) - nxy’ @)

Journal of Probability and Statistics

which is identical to the chance-corrected identity coefficient
[6,17]. We can write (24) as A + p ) x;y;, where

v
A —m————,
n (ti + ti) +v
26
) 5 (26)
n (tfc + ti) +v
Using A and p in (26), ratio (17) is equal to
2, 2
I—A:n(tx"'ty)' (27)

U 2

Hence, all special cases of (24), regardless of the specification
of v, belong to the equivalence class that is characterized by
ratio (27). Furthermore, all special cases of (24) coincide after
correction for chance.

Next, consider the family

LX)ty (28)
ntt, +v

If v = 0, (28) is identical to Tucker’s congruence coeflicient
[14, 19], also called the coefficient of proportionality [6, 14].
If v = -nxy, (28) is identical to the chance-corrected
proportionality coefficient [6, 17]. We can write (28) as A +

Uy x;¥; where

B v
- ntt, + v
29
o (29)
w= ntt, +v'
Using A and p in (29), ratio (17) is equal to
1-A
—— =ntt,. (30)
U

Hence, all special cases of (28) belong to the equivalence class
that is characterized by ratio (30). Furthermore, all special
cases of (28) coincide after correction for chance.

Next, consider the family

Xy, —nxy+v
LX) —nxXy+y 1)
n-1) SySy +V
If v = 0, (31) is identical to Pearson’s correlation in (7). We
can write (31) as A + 4 Y. x;y;, where

-nxy+v

(n—1)s,s, + v’

(32)
B 1
“= (n=1)s.s, +v

Using A and p in (32), ratio (17) is equal to

1-A
T =(n-1)s.s,+nxy. (33)
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Hence, all special cases of (31) belong to the equivalence class
that is characterized by ratio (33). Furthermore, all special
cases of (31) coincide after correction for chance.

The examples in (24), (28), and (31) illustrate that many
measures from the literature belong to the set L. Furthermore,
the examples show that the equivalence classes have infinitely
many elements. Since multiple measures coincide after cor-
rection for chance, the function ¢ in (14) is not injective.
Since c¢ is not injective, it is not invertible. Furthermore, for
A, B € L, we have, in general, c(A + B) # ¢(A) + c¢(B). Thus, in
general, ¢ is not a linear map. Lemmas 4 and 5 show that c is
a linear map if the domain of ¢ is restricted to an equivalence
class for a specific value of ratio (17). All association measures
in this equivalence class and their linear combinations are
mapped onto a measure of the form (14). In the next section,
we characterize these so-called fixed points.

6. Fixed Points

A measure A € L is called a fixed point of ¢ if c(A) = A holds.
Using A* and p* in (18), we have

1-M"
[/l*

ﬂ. (34)
¢

Hence, c(c(A)) = c(A). In other words, the function c is
idempotent. An idempotent function has at least one fixed
point. Suppose A € L is not a fixed point and let ¢c(A) = B.
Since c is idempotent, we have ¢(B) = c¢(c(A)) = c(A) = B.
Hence, elements of L that are not fixed points are mapped to

fixed points.
In the remainder of this section, we characterize the fixed
points of c. Let v = v(x, y) be a function that remains

unchanged under permutations of the scores on x or y, and
consider the set F C L given by

Sxy
F=~{AEL|A=—, forsomev#O}. (35)
y

The elements in F are association measures of the form s, /v,
where s, is the sample covariance of variables x and y.
Lemma 6 shows that F is the set of fixed points of c.

Lemma 6. The set F C L is the set of fixed points of c.

Proof. (=) Let A € F. Then,

_ Y Xy —nxy

A==, 36
n-1)» (36)
for some v # 0. Using
P
n-1)»
(37)
1

CEY

in (16), we obtain

Y XY —nxy

c(4) = (n-1)»

(38)

Hence, ¢(A) = A, and it follows that A is a fixed point.
(=) Let A € Lwith A = A+ u) x;y; be a fixed point.
Then, A = c(A), or equivalently

LX) —nxy

T Njp-nsy

A+P’inyi =

Equating Y x;y;-parts and “not”-) x;y,-parts on both sides
of the equality, we obtain the identities

a -nxy
S (-N)/u-nxy’
1 (40)
HE AN -nxy

Using the identity (n — 1)y = (1 — A)/u — nxy, we can write
Aas

LX) —nxy Sy
A=A+‘I/lzxiyi=W=7. (4].)

Hence, A € F. This completes the proof. O

Since points that are not fixed points of ¢ are mapped to
fixed points, we have ¢(L) = F; that is, the images of ¢ are
the fixed points in L. It follows from Lemma 6 that Pearson’s
correlation r in (7) and Jobson’s coeflicient e in (25) are two
fixed points of c. All measures that belong to the equivalence
class characterized by ratio (33) are mapped to Pearson’s
correlation. All measures that belong to the equivalence class
characterized by ratio (27) are mapped to Jobson’s coefficient.

7. Discussion

In this paper, we studied correction for chance as a mathe-
matical function in the context of association measures for
continuous variables. The function is not injective and in
general not a linear map. All association measures that are
not fixed points of the function are mapped to fixed points.
Notable fixed points are Jobson’s coefficient and Pearson’s
correlation. Both coeflicients are fixed points of distinct
equivalence classes of association measures. Characteristics
of association measures in both classes were presented.

The results show that both Jobson’s coefficient and Pear-
son’s correlation may be interpreted as chance-corrected
measures. For Pearson’s correlation, this interpretation is
new. Thirteen other ways to look at Pearson’s correlation are
discussed in Rodgers and Nicewander [3]. What is also new is
that there are infinitely many measures that become Jobson’s
coeflicient and infinitely many coefficients that coincide with
Pearsons correlation after correction for chance. A data-
analytic choice between Jobson’s coefficient and Pearson’s
correlation could be based on the metric scales discussed in
Zegers [6,17].
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