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Abstract: 

Nanovesicles (~100 nm) are ubiquitous in cell biology and an important vector for drug delivery. 

Mechanical properties of vesicles are known to influence cellular uptake, but the mechanism by 

which deformation dynamics affect internalization is poorly understood. This is partly due to the 

fact that experimental studies of the mechanics of such vesicles remain challenging, particularly 

at the nanometer scale where appropriate theoretical models have also been lacking. Here, we 

probe the mechanical properties of nanoscale liposomes using atomic force microscopy (AFM) 

indentation. The mechanical response of the nanovesicles shows initial linear behavior and 

subsequent flattening corresponding to inward tether formation. We derive a quantitative model, 

including the competing effects of internal pressure and membrane bending, that corresponds 

well to these experimental observations. Our results are consistent with a bending modulus of the 

lipid bilayer of ~14kbT. Surprisingly, we find that vesicle stiffness is pressure dominated for 

adherent vesicles under physiological conditions. Our experimental method and quantitative 

theory represents a robust approach to study the mechanics of nanoscale vesicles, which are 

abundant in biology, as well as being of interest for the rational design of liposomal vectors for 

drug delivery.  
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Small unilamellar vesicles (SUVs: ~0.1 µm) perform multiple vital roles in biology. Prime 

examples of SUVs in cell biology include synaptic vesicles,
1
 viral envelopes,

2
 and extracellular 

vesicles for cell-to-cell communication.
3
 In addition, synthetic liposomes of this size are 

currently used as nanocarriers for drug delivery and developments for further applications 

continue.
4,5

 Mechanical properties of natural and synthetic vesicles and nanoparticles are 

reported to influence their uptake by cells,
6–11

 a phenomenon that is also supported by theoretical 

models.
12,13

 Moreover, the mechanical stability of vesicles is a key limitation of their application 

for drug delivery.
4
 Consequently, multiple approaches have been developed to stabilize them.

14,15
 

Therefore, understanding the underlying mechanics of such vesicles is crucial for both 

understanding biological function and developing effective drug delivery strategies. 

Although SUVs are an important class of vesicles, measurement of their mechanical properties is 

still challenging. The vast majority of previous studies of the mechanical properties of vesicles 

have been performed on giant unilamellar vesicles (GUVs: ~10 µm).  The techniques used for 

studying GUVs, e.g., micropipette aspiration and optical imaging of shape fluctuations
16,17

 are 

developed for these large vesicles and are less suitable for SUVs.
16,17

 Instead, for mechanical 

studies of small vesicles, nanoscale indentations using atomic force microscopy (AFM) have 

been employed.
18–22

 However, from these experiments no consistent picture has emerged 

regarding the underlying mechanical properties. This is partly due to the fact that these 

nanoindentation studies of SUVs, in contrast to studies of GUVs,
16,17

 have generally been 

interpreted using elasticity models with finite shear moduli, which are inappropriate for fluid 

bilayers that lack a shear modulus. Moreover, the potential influence of pressure has not been 

considered.  
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Here, we present an AFM-based approach to quantify the mechanical properties of small fluid 

vesicles as well as a model that captures their mechanical response. We performed imaging and 

nanoindentation measurements on single SUVs of 30 – 100 nm radius. For accurate 

measurements of vesicle size and shape we introduced corrections for tip dilation and 

deformation caused by imaging forces. The mechanical properties were investigated by 

performing nanoindentations with various AFM tip sizes. In parallel, we developed a model to 

describe nanoindentation of vesicles, which takes the fluidity of the membrane into account. We 

then quantitatively compared various aspects of the model with the experimental data, ultimately 

allowing us to estimate the contributions of bending and pressure to the vesicle stiffness. With 

the combination of AFM experiments and development of a theoretical model we both deepen 

the understanding of the mechanics of SUVs and we lay out a framework for more accurate 

measurements of mechanical properties of SUVs. 

Results  

Size and shape measurement of nanovesicles 

First, we imaged vesicles to determine their geometry (Fig. 1a). Vesicles of complex lipid 

mixture, obtained by extrusion through 200 nm filters, were attached to a 0.001% poly-l-lysine 

coated surface in PBS. Upon adhesion, we observed spreading of the initially spherical vesicles 

(Fig. 1b). The expected resultant shape of an adherent vesicle is a spherical cap,
23

 allowing 

determination of the radius of curvature of vesicles (Rc) by subtracting the tip radius (Fig. S1). 

However, soft samples, such as these vesicles, can be affected by forces applied during AFM 

imaging. To determine the extent of this effect we imaged many 100 nm extruded vesicles at 

various force set points and noticed that their apparent height and especially width were 

underestimated already at low imaging forces (Fig. 1c). To avoid underestimation of the height 
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of vesicles we can use the zero force contact point from indentations (HFDC), which shows that 

vesicles are 11 ±1 nm (standard error of the mean (s.e.m.), number of measurements, each of 

which obtained on a separate vesicle (N) = 46) higher than the apparent height obtained from 

images for 200 nm vesicles (Fig. S1).  We used a subsequent correction for the radius of 

curvature, which is based on geometric arguments (Fig. S1) and the experimental data in figure 

1c, to obtain the vesicle geometry and size. This analysis showed that the adhered liposomes 

adopt approximately hemispherical shapes (HFDC/Rc ≈ 1) (Fig. 1d). Furthermore, these 

measurements allow calculation of the original vesicle radius before adhesion (R0), assuming 

surface area conservation (Fig. 1e). We repeated these measurements for 100 nm extruded 

vesicles and sonicated vesicles, showing that the obtained sizes distributions correspond well 

with size distributions acquired with dynamic light scattering (DLS).  

Nanoindentations reveal strong tip size dependent behavior 

Next, starting with 200 nm extruded vesicles, we performed nanoindentations by moving the 

AFM tip to the center of a vesicle and indenting it multiple times using a preset force, creating 

force distance curves (FDCs).
24

 A typical FDCs is shown in figure 2a. Before such an 

indentation we always checked that we were working with a clean tip (Fig. S2). As previously 

observed,
18,19

 vesicles can withstand large deformations without permanent damage. This 

robustness is inferred from the lack of change in contact point after multiple indentations (Fig. 

2a) and confirmed by imaging afterwards (Fig. S3). Typically, we first performed a small 

indentation till 500 pN. The overlap between indentation and retraction suggests that the initial 

behavior is fully elastic (Fig. 2a). In subsequent indentations, we deformed the vesicle until a 

sudden increase in stiffness (at ~65 nm indentation in fig. 2a), after which we observed two 

discontinuities, likely corresponding to the two lipid bilayers being pushed together and 
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penetrated (Fig. 2a). The occurrence of only two bilayer penetrations suggests that the vesicles 

are unilamellar (see Fig. S4).  

Previously, both linear and strong superlinear force-distance relationships were reported in 

vesicle indentation studies.
18–20,22

 We reasoned that the origin of this difference could be caused 

by differences in AFM tip size. To test this hypothesis, we used an approach based on AFM tip 

wear on high roughness surfaces.
25

 Such wear leads to increased tip size, while the tip maintains 

its spherical apex, identical tip material and cantilever properties (Fig. 2b, insets and Fig. S5). 

The tip radius (Rt) was estimated using blind tip reconstruction. Next, tips with different radii (Rt 

= 18, 29 and 43 nm) were used to indent multiple vesicles (Fig. 2a,b) and create average FDCs 

using a single FDC per vesicle (Fig. S6). When we used the larger tips, we noticed a strong 

superlinear response (Fig. 2b,c). The initial part of the average FDCs made with the various tips 

overlaps, but larger tips result in an early (0.05 – 0.1 Rc) stiffening. The initial response for larger 

tips is approximately linear and the stiffening leads to an exponent of ~2, which is also observed 

in individual FDCs (Fig. 2d). Interestingly, previous observations of linear behavior were made 

with smaller tips (Rt ≈ 15 nm)
19

 than observations of superlinear behavior (Rt ≈ 30 nm)
18,20

 and 

with our current results we have a clear explanation for these differences. 

High vesicle stiffness is inconsistent with bending alone 

A single FDC per vesicle from the data gathered with sharp tips was used to measure the 

effective stiffness K of vesicles in the regime of linear response (0.02 – 0.1 Rc), resulting in a 

value of 0.015 ± 0.001 N/m (s.e.m., N = 46) for 200 nm extruded vesicles (Fig. S7). 

Measurements with extruded 100 nm vesicles (K = 0.021 ± 0.001 N/m (s.e.m., N = 84)) and 

sonicated vesicles (K = 0.032 ± 0.002 N/m (s.e.m., N = 42)) had similar stiffness. To gain insight 
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in the factors contributing to the vesicle stiffness, we proceeded to describe the mechanical 

behavior in terms of intrinsic membrane properties, i.e. a bending modulus κ and stretch 

modulus σ.
16,17,26,27

 Since the applied force is perpendicular to the bilayer plane, the contribution 

of stretching is expected to be negligible. In case of bending energy alone, the vesicle effective 

stiffness, with units of energy per length squared, should be of order κ/R
2
, where κ is the 

membrane bending modulus (typically 10 – 50 kbT for a fluid bilayer).
28,29

 For vesicles much 

larger than the membrane thickness, the relevant length scale R should be the vesicle radius of 

curvature Rc. For the typical radii in our experiments (Rc ~100 nm), the stiffness is expected to be 

of order ~10
-5

 N/m. This strongly suggests that bilayer bending alone cannot account for the 3-

orders of magnitude higher stiffness observed experimentally. Therefore, the obtained stiffness is 

likely dominated by an osmotic pressure difference over the membrane (∆Π). Vesicles adhered 

to the surface are deformed and the lipid bilayer is only able to stretch a few percent.
30

 Hence, 

the internal volume of vesicles shrinks and the concentration of membrane impermeable solutes 

in the lumen goes up, causing an osmotic pressure difference over the membrane. This osmotic 

pressure in turn will make the vesicle resist indentation and thus increase the stiffness. 

Development of an indentation model for fluid lipid bilayers  

With clean data in place and knowing the potential role of pressure, we set out to generate a 

quantitative model. Prior nanoindentation experiments of vesicles have been interpreted using 

the thin elastic shell model.
18,19

 Elastic shell theory, however, does not account for membrane 

fluidity, as it assumes a finite in-plane shear modulus. Therefore, we introduce a model based on 

the Canham-Helfrich theory for fluid bilayer membranes.
27,31,32

 This theory has been widely used 

for description and characterization of membranes in a variety of experimental studies, mostly at 

the micrometer scale.
16,17

 In our model, we use symmetric bilayers with a bending modulus κ. 
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We model a nanoindentation experiment as compression between two tips, which we do for two 

reasons. On the one hand, one may expect that deformation occurs mostly near the tip, in which 

case the deformation of one hemisphere in the symmetric case can be used to approximate the 

deformation of a hemispherical adherent vesicle. On the other hand, any attempt to model the 

adhesion more directly, would require knowledge of the adhesion strength, which we lack.  

Following Seifert et al.,
32

 we characterize the (assumed axisymmetric) vesicle by a coordinate S, 

where 10 S S≤ ≤ , and angle ( )Sψ , as well as Cartesian coordinates   

 
0

( ) cos ( ) d ,
S

x S S Sψ ′ ′= ∫   (1) 

 and a similar expression for ( )z S  with cos ψ replaced by sin ψ. The origin is chosen to be the 

“South Pole” (Fig. 3a). We impose the following conditions for a closed membrane: ( )0 0ψ = , 

( )1 Sψ π=  and ( ) ( )10 0x x S= = . In these terms, the free energy associated with bending is  

 
1

2

0
0

sin
2 d ,

2

S x
F c S

x

ψ
πκ ψ

  = + −     
∫ &   (2) 

where c0 is the spontaneous curvature. We use zero spontaneous curvature and note that our 

results are insensitive to a spontaneous curvature on the order of the vesicle radius (Fig. S8). 

Since the applied force is perpendicular to the bilayer plane, the contribution of stretching is 

expected to be negligible, and we assume the membrane to be laterally incompressible. We 

impose this constraint by the condition of constant area: 

 
12

0
4 2 d .

S

cR x Sπ π= ∫  (3) 
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Since this constraint reduces to a choice of S1 for a given geometric shape defined by ψ, we 

choose to simply define ψ to be a function of [ ]1/  0,1S Sσ =  ò  (Supporting Text). Using this 

approach, e.g., for symmetric vesicle shapes, we define ( )ψ σ  as a sum over various shape 

modes:  

 ( )
1

( ) sin .
maxn

n

n

a nψ σ πσ πσ
=

= +∑   (4) 

We choose to use only the first six shape modes (n = 6) (Supporting Text, Fig. S9). 

To model an applied indentation force acting at the “North Pole”, we add an additional term to 

the energy F of the form f z(S1). This approach corresponds to symmetric, point-like tips 

indenting the vesicles from both poles if only even shape modes an are allowed to be non-zero. 

We implemented symmetric parabolic tips of curvature Rt by the addition of a potential  

 ( )2

0 d max 0, tU A R x z− −∫   (5) 

to the energy, again, provided that only even modes an are allowed. There, the strength U0 of the 

potential is simply chosen to be large enough to enforce that 2 / 2tz R x>− , which can only affect 

the lower hemisphere.  However, due to the use of only even modes an, this condition is also 

imposed on the upper hemisphere. 

Finally, a pressure difference is included. It is necessary to account for two distinct contributions, 

the luminal osmotic pressure intΠ and the external osmotic pressures extΠ , where the former 

increases with decreasing volume  

 
1 2

0
sin d

S

V x Sπ ψ= ∫   (6) 
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during indentation, while the latter is constant. Given a net pressure difference int ext∆Π Π Π= −

, the change in free energy is given by d ∆  dF VΠ= − . We assume a dilute solution (ideal gas) 

form for the internal pressure 

 
(0) (0)

int
int ,

V

V

Π
Π =   (7) 

where (0) refers to prior to indentation.  

To solve for the vesicle shape, we minimize the full energy, including bending, pressure, and tip 

shape, for a given force f, subject to the various constraints, including the area constraint. This 

yields the various shape amplitudes an, as well as the length S1. From these, we obtain the height 

z(S1) and indentation, as functions of the applied force f. Solving the shape for various forces 

then allowed construction of theoretical FDCs (Fig. 3b). By working in reduced coordinates �� 

and �̂, it becomes natural to express energies in units of 2πκ, lengths in units of πRc, forces in 

units of 12 cRκ − , stiffness in units of 22 cRκ −  and pressure in units of 3π cRκ − . In this model of a 

symmetric vesicle, the mechanical response depends only on a single unknown, the bending 

modulus, along with ∆Π and the AFM tip radius, which can both be determined separately.  

Experimental observations agree well with the model for fluid lipid bilayers  

The indentation response (Fig. 3b) based on our model exhibits three regimes: I) an 

approximately linear (exponent α ≈ 1.05) increase of force with indentation that corresponds to 

the flattening of the apex of the vesicle. The stiffness K for small indentations (<0.1 Rc) is 

~28κRc
-2

 (typically ~10
-4

 N/m) for an unpressurized vesicle, indeed much lower than the 

experimentally observed stiffness in this regime (typically ~10
-2

 N/m) (Fig. S8). II) A flattening 
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of the FDC that is consistent with the onset of formation of an inward membrane tether at 0.35 – 

0.40 Rc. The onset of this appears to be only weakly dependent on ∆Π (Fig. S8). For a point 

force or very sharp tip, tether formation would result in a force plateau. Extended inward tether 

formation has been recently observed with GUVs
33

. Moreover, this is in agreement with recent 

MD-simulations showing flattening of the FDC at similar indentations
9
. III) Finally, the finite 

size of the AFM tip prevents tether extension and leads to a tip dominated stiffening (α ≈ 2) (Fig. 

3b). Corresponding shapes to the three regimes are shown as insets in figure 3b. A larger tip 

results in an earlier onset of the stiffening (Fig. 3b) and an extended deformation zone of the 

vesicle (Fig. S10). However, at low pressures no tether forms and, instead, deformation occurs 

on longer length scales, which results in the tip size dependence becoming apparent only at 

deeper indentations (Fig. S8). Hence, the experimental observation of tip dependence for small 

indentations (Fig. 2d) suggests that the vesicles are strongly pressurized. Furthermore, softening 

of experimental FDCs occurs at similar indentation as in the model at 0.31 ± 0.03 Rc (s.e.m., N = 

26) (Fig. 3c). Together, this shows that the model accurately describes the experimental results 

and that vesicles in our experiments are likely strongly pressurized. 

Bending modulus and pressure estimation  

Finally, to understand the mechanical response of our vesicles, we need to take pressurization 

into account. Osmotic pressurization occurs when a vesicle is deformed on the surface in our 

experiments. However, it is probably a biologically relevant effect, since other interactions, such 

as adherence of vesicles to a cell surface, likely result in similar pressurization. Experimentally, 

we estimate the pressure from outward membrane tethers formed during retraction of the AFM 

tip (Fig. 4a, Fig. S11). It is well known that the tether force corresponds to t 2 2F π σκ= , where 

σ is the tension in the membrane.
34,35

 The tension is likely mostly due to the pressure difference 
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over the membrane and hence we can use the Young-LaPlace equation ( 1

c∆ 2 RΠ σ −= ) to obtain 

a direct relationship between tether force and osmotic pressure over the membrane, with the 

bending modulus as the only unknown: ( ) 1
2 2

t c∆ 4F RΠ π κ
−

= . Normalized pressure 3 1

c∆ RΠ κ −  

can then be expressed as ( ) ( )2 2

c t 2R F πκ
−

. Hence, we can now plot our experimental data using 

normalized units with κ as the only unknown.   

Next, we obtained theoretical FDCs for various pressures (in units of 3

cRκ −
) and determined their 

stiffness (in units of 2

cRκ −
) numerically (Table S1). Interpolation then allowed us to derive a 

general relationship, which is independent of κ, between the normalized pressure 3 1

c∆ RΠ κ −  and 

normalized stiffness 2 1

c  KR κ − of a vesicle (Fig. 4b). Two regimes are visible in the resulting 

curve: the response is bending dominated when 3

c∆  ~ 10 RΠ κ −<  and pressure dominated for 

larger values of ∆Π. The experimental data of the sonicated, and 100 nm and 200 nm extruded 

vesicles, when plotted in these units, collapse for any value of κ, demonstrating the general 

nature of the model (Fig. S12). Moreover, fitting the experimental data to the theoretical curve 

yields a bending modulus of κ = 14 ± 1kbT (s.e.m. obtained by bootstrap) (Fig. 4b). This is a 

typical value of kappa for fluid lipid bilayers.
28,29

 Finally, having this estimate for κ allows the 

evaluation of the pressure difference ∆Π, which is remarkably high at ~0.15 MPa (Fig. 4c, Fig. 

S11).      

 

 

Discussion 
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Most recent nanoindentation studies of SUVs using AFM have been interpreted using shell 

elasticity models.
18–20

 Such models, however, are for shells with finite shear moduli. It is well 

known, e.g., from studies with GUVs,
16,17

 that biological membranes have finite bending and 

stretching moduli but they usually have a vanishing shear modulus.
27,31

 Importantly, for a 

spherical geometry, indentation is not possible without in-plane shear, which would increase 

shell elastic energy. Thus, previously used shell elasticity models with finite shear modulus are 

likely not suitable for fluid vesicles such as those studied here. Indeed, multiple aspects of the 

mechanical behavior observed in our experiments cannot be captured by predictions from such 

shell elasticity models. For example, we observed strong tip size dependence of the mechanical 

response, which is not expected in shell theory.
36

 Also, onset of flattening of the FDC using the 

appropriate dimensions for a SUV in these theories is predicted to occur much earlier (~0.05 

Rc)
19

 than observed in our experiments (~0.3 Rc). The theory presented here, which takes the 

fluidity of the lipid bilayer into account, does describe these aspects accurately.  

We used our model to understand the mechanical behavior and estimate the bending modulus of 

30 - 200 nm vesicles with membranes of complex lipid mixture. The predicted mechanical 

behavior and bending modulus estimates remain to be validated for different membrane 

compositions. However, it is expected that our approach and model will be broadly applicable 

for other artificial and natural vesicles in the same size range, as long as the membrane is fluid. 

Moreover, the mechanical behavior identified here, such as the inflection at 0.35 – 0.40 Rc and 

the strong tip size dependence, could potentially be useful to test the fluidity of the membrane of 

nanovesicles, since their occurrence is not expected for membranes with finite shear moduli.
19,36

   

In this study, we also showed that variation in tip size can have a dramatic effect on observed 

mechanical behavior probed by nanoindentation. To establish the role of tip size we applied a 
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recently introduced method for broadening tip size without compromising the spherical apex of 

the tip.
25

 Additionally, this method does not affect tip chemical properties or cantilever 

properties. The difference in mechanical response we observed here can be explained by the 

physical obstruction of lipid tether elongation by the tip leading to a stiffening of the response, 

which occurs earlier for broader tips. This difference might also explain the large variation in 

previously reported results of SUV mechanics.
18–22

 Hence, the approach taken in this study might 

both help in understanding the mechanical behavior and generating more reproducible AFM 

results for all kinds of nanoparticles.  

AFM has recently gained popularity for performing size measurements on both natural and 

artificial vesicles.
37–39

 Here, we made several steps in image data analysis that could help in 

making such size measurements more accurate. Firstly, we used a tip correction for spherical cap 

shaped vesicles. Tip radius is rarely negligible compared to the radius of SUVs and hence 

correcting for tip size is essential. A benefit of this correction is that no upfront assumption of 

degree of vesicle spreading is required. Secondly, to calculate the original spherical radius of the 

vesicle from the deformed shape on the surface one typically assumes that the vesicle volume is 

conserved.
40

 In our study we used the assumption that the surface area is conserved, since the 

contents of the vesicle might leak, but the membrane is barely able to stretch.
30

 Indeed, we show 

that vesicles have likely leaked part of their contents (Fig. S11). Finally, we show that small 

normal imaging forces (~100 pN) can already strongly deform SUVs, even in absence of lateral 

forces. These forces affect the obtained height, but affect the FWHM or radius measurements to 

an even higher extent. Exerting high imaging forces will therefore lead to underestimation of the 

vesicle size. We used a correction based on combination of imaging and indentation. This 

approach makes size measurements more time intensive, but these results show that for vesicle 
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size measurements normal forces should at least be minimized. These analysis steps can be 

broadly applied for accurate measurements of vesicle size and shape.   

Finally, our results show that liposomes are strongly stiffened by increased internal osmotic 

pressure due to deformation by surface adhesion. This finding is important for experimental 

measurements of vesicle mechanical properties because ignoring the effect of pressure on vesicle 

stiffness might lead to overestimation of the bending modulus of vesicles. This phenomenon is 

probably also important for vesicle behavior such as vesicle uptake by cells. During cellular 

uptake similar vesicle deformations to those in our experiments are likely to occur, in that case 

due to adhesion to the cell.
12,41

 Strong vesicle deformation is believed to impede full uptake.
12,13

 

However, pressurization due to deformation would stiffen the vesicle during spreading, which in 

turn would restrain further deformation and could hence facilitate cellular uptake. Recently, it 

was suggested that stiffness of nanoparticles can potentially be leveraged to establish specific 

drug delivery functions, such as cellular uptake.
11,12

 For this purpose, it is critical to understand 

which factors determine the particle stiffness. Therefore, our observation that pressure can 

strongly affect the mechanical response of SUVs is of immediate interest for the rational design 

of vesicles for drug delivery. 

 

Conclusions 

To summarize, we have presented a thorough AFM nanoindentation based approach for 

quantification of the mechanics of fluid nanovesicles. In parallel we developed a theoretical 

model for vesicle indentation, which takes into account the fluidity of the membrane. The 

experimental data and model agree well and are consistent with a bending modulus of 14 kbT. 
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Moreover, we have shown the importance of pressure for the mechanics of deformed vesicles 

under physiological conditions. Our approach will help in the fundamental understanding of the 

mechanical response of fluid nanovesicles as well as extracting more reliable parameters from 

experimental data. Therefore, this is an important advance for future nanomechanical studies of 

natural vesicles, as well as engineered nanocarriers used for drug delivery. 

 

Methods 

Liposome preparation. EggPC (P2772) and Cholesterol (C8667) were ordered from Sigma. 

Brain PS (840032C) was ordered from Avanti Polar lipids. Egg PE and Egg SM were ordered 

from Lipoid. To make unilamellar liposomes a protocol was adapted from Li et al.
18

. In short: 

lipid powder was dissolved at 20 mg/mL in a 9:1 chloroform to methanol solution in a round 

bottom flask. Molar ratio of mixed lipids was 15% Egg PC, 17 % Egg PE, 8% Brain PS, 15% 

Egg SM and 45% cholesterol. This complex lipid mixture is designed to mimic the lipid 

concentrations in the red blood cell
42

 and similarly vesicles excreted by red blood cells.
43

 For 

figure 1c a slightly different composition was used with 4% Brain PS and otherwise similar 

ratios. The solvent was dried in a rotary evaporator (Buchi), first for 30 minutes at 400 mBar, 

and subsequently at least another 30 minutes at 100 mBar. Dried lipids were resuspended in PBS 

at 0.075 mg/ml final concentration. After vortexing and sonicating (1 min each), liposomes were 

frozen at -80 
0
C and thawed at 37 

0
C during 5 cycles. Finally, liposomes were extruded 30 times 

back and forth through two layers of 100 nm or 200 nm filters. In the case of sonicated vesicles, 

liposomes were sonicated for 15 minutes instead. 
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AFM experiments. Vesicles were adhered to poly-L-lysine coated glass slides in PBS. Slides 

were first cleaned in a 96% ethanol, 3% HCl solution for 10 minutes. Afterwards they were 

coated for 1 hour in a 0.001% poly-L-lysine (Sigma) solution and dried overnight at 37
0
 C. They 

were stored at 7 
0
C for maximum 1 month. A 50 µL drop of vesicle solution was incubated on 

the glass slide. Vesicles were imaged in PeakForce Tapping
TM

 mode on a Bruker Bioscope 

catalyst setup. All AFM measurements were performed in fluid (PBS). Force set point during 

imaging was 100 pN, unless stated otherwise. Nanoindentations were performed by first 

recording an image of a single particle, then indenting with forces of subsequently 0.5 nN, 2 nN 

and 5 nN at 250 nms
-1 

and typically making a final image after indentation to check for 

movement of the vesicle. Importantly, both before and after the vesicle indentation, the tip was 

checked for adherent lipid bilayers by pushing on the glass surface until a force of 5 nN (Fig. 

S2), or 10 nN in the case of blunt tips. Silicon nitride tips with a nominal tip radius of 15 nm on a 

0.1 N/m cantilever were used (Olympus; OMCL-RC800PSA). Individual cantilevers were 

calibrated using thermal tuning.  

AFM image analysis. Both images and force curves were processed using home-built 

MATLAB software. Size and shape were analyzed from line profiles through the maximum of 

the vesicle along the slow scanning axis. Circular arcs were fit to the part of the vesicle above 

half of the maximum height to obtain the radius of curvature. For calculation of R0 a minimum 

radius of the contact curvature of 5 nm was assumed, since a sharper contact angle is 

unphysical.
23

 For the data in figure 1c vesicles with a minimum height and width of respectively 

20 and 40 nm were used. 

AFM FDC analysis. Cantilever response was measured on the sample surface and fitted 

linearly. The resulting fit was subtracted from the measured response when indenting vesicles to 
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obtain FDCs. Contact point was determined by using a change point algorithm
44

, and 

occasionally manually adjusted. Before fitting, FDCs were smoothed (moving average with 

window length of ~10 points). All parameters (stiffness, inflection point, tether force) were 

determined using a single FDC per vesicle. This was typically the 2
nd

 FDC on each vesicle, since 

the first was made until a low force and did always go to deep enough indentations to determine 

e.g. the inflection point. Overlap between first and second indentations was very high (Fig. 2a,b). 

Stiffness of the liposomes was found by fitting a straight line in the interval between 0.02 – 0.1 

Rc. This interval was chosen to have one consistent measure, in which the vesicles (including 

sonicated vesicles) showed no onset of superlinear behavior and no discontinuities. To find the 

inflection point, FDCs were smoothed further (moving average with window length of ~40 

points and Savitzky-Golay-filter with window length ~20 point). Then, the derivative was taken 

numerically and the location of the maximum was obtained. For finding the tether force a home-

built step-fitting algorithm based on the change point algorithm was used, which divides the 

curve into segments with slope 0. Only adhesion events extending beyond the contact point were 

included. For the fit in figure 4b, an interpolating function through 13 calculated theoretical 

value pairs (Table S1) was created in Mathematica. The sum of the squared log Euclidian 

distance between the resulting curve and experimental values 

( ) ( )2 2
2 2 2 2 2 1

1

min[log 4 / log / ]
i i i

n

t c j i c j
j

i

F R x K R yκπ κ− − −

=
∑ , where xj and yj are theoretical values 

pairs for normalized pressure and normalized stiffness, was then minimized by adjusting κ as 

single parameter. Error bars were estimated by 500 bootstrapping repetitions, for which 154 

experimental value combinations were randomly drawn and fitted.   

Page 18 of 31

ACS Paragon Plus Environment

ACS Nano

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Blind Tip estimation. Measurements were performed in contact mode on UNCD Aqua 100 

surfaces (Advanced Diamond Technologies, Inc.). Blind tip estimation was performed with 

software from the AFM manufacturer (NanoScope Analaysis). Images were flattened and low 

pass filtered. Tip estimation was performed using spike rejection (sigma mult 7) and 

discontinuity rejection (sigma mult 3), which exclude points and lines, respectively, based on a 

maximum difference in height compared to directly neighboring pixels. End radius (Rt) was 

estimated by fitting a spherical cap to the resultant tip image from 15 nm below the apex. 

Dynamic light scattering. DLS measurements were recorded using the Zetasizer Nano S 

(Malvern Instruments Ltd.). Size measurements are based on intensity. 
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Figure 1. Vesicle size and shape. a, Topographic images of 200 nm extruded vesicles imaged at 

~100 pN. Dashed lines correspond to the line profiles in b with the same colors. b, Line profiles 

through the maximum of 2 vesicles along the slow scanning axes, fitted circular arcs and 

estimated vesicle shapes after tip deconvolution under assumption that vesicles form spherical 

caps. c, Height, FWHM and radius of curvature determined from images of 100 nm extruded 

vesicles imaged at various forces. Error bars representing the s.e.m. are present, but are mostly 

smaller than the marker.  For each imaging force >180 particles were analyzed. Linear fits with 

slope -0.020 (-0.003 – -0.036) (Height), -0.056 (-0.069 – -0.045) (FWHM) and -0.053 (-0.063 – -

0.042) (Rc) show that apparent FWHM and Rc decrease faster than the height with increasing 

imaging force (ranges mark 68% confidence intervals). d, Shape of 200 nm extruded vesicles as 

characterized by Height/Rc (N = 46). Inset shows example shapes corresponding to various 

ratios. e, Spherical radius of the vesicles determined by AFM (histogram and Gaussian fits). R0 = 

87 ±14 nm (standard deviation (st.d.), N = 46), R0 = 59 ±16 nm (st.d., N = 87) and R0 = 31 ±11 

nm (st.d., N = 21) for extruded 200 nm, extruded 100 nm and sonicated vesicles, respectively. 

Square markers and errorbars correspond to vesicle radii obtained with DLS: R0 = 94 ±20 nm 

(st.d.), R0 = 75 ±25 nm (st.d.) and R0 = 39 ±4 nm (st.d.). 
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Figure 2. Force indentation behavior of vesicles. a, Typical indentation curves obtained on an 

extruded 200 nm vesicle with a sharp tip (Rt ≈ 18 nm). Various colors represent subsequent 

indentations. Upper right panel shows the FDC made with the lowest setpoint, highlighting the 

overlap between approach (black) and retract (grey). Lower right panel shows a zoom on the 

dashed box in the main panel, highlighting the bilayer penetration events in the blue curve. b, 

FDC made with a 43 nm tip. FDC shows a strong non-linear response and subsequent 

discontinuity (Fig. S4). Insets shows images of a sharp tip (Rt ≈ 18 nm) and a blunt tip (Rt ≈ 43 

nm) reconstructed using blind tip reconstruction. Black arrows indicate 50 nm in x,y and z 

direction. c, Average FDCs, constructed from a single FDC per vesicle (each normalized to 

vesicle radius), for all sharp tips combined, and for individual blunt tips. Legend states tip radius 

and number of vesicles measured for each condition. Errorbars represent 68% confidence 

intervals of the estimated mean determined by bootstrapping (1000 repetitions). d, Same data as 

c, but plotted on logarithmic scale. Force curves show an initial linear regime and subsequent 

onset of superlinear behavior. Inset shows individual FDCs made with the 43 nm tip.   
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Figure 3. Theoretical force indentation response based on Canham-Helfrich theory. a, 

Parametrization of the model. An undeformed (solid black sphere) and deformed shape (dashed 

line) are shown. Z is the axis of symmetry. S is the length of the arc, which is zero at the “South 

Pole” and maximum at S1. The angle ψ(S) is the angle between the contour and the x-axis at 

point S. b, Theoretical indentation curve for reduced pressure (∆ΠRc
3κ-1

) 1800, for a parabolic 

tip with Rt = 0.1 Rc (solid line). In regime I (blue background), the apex of the vesicle flattens 

and the force response curve is slightly superlinear. In regime II (green) the response softens and 

a tether is formed. In regime III the response stiffens due to increased contact area between 

vesicle and tip. Dashed and dotted line show indentation curves with Rt = 0.25 Rc respectively Rt 

= 0.5 Rc. At the top shapes belonging to the 3 different regimes (indentations 0.2, 0.55 and 0.87 

Rc from left to right) are visualized (arrows indicate axes in x,y and z-direction). Lower right 

inset shows same curves on logarithmic scale (units same as main panel). c, Inflection point 

determination. Upper panel shows a typical force distance curve illustrating the experimental 

determination of the inflection point for a 200 nm vesicle. FDC with ~1000 points (in grey); 

smoothed FDC (in black); numerical derivative of FDC (blue line). Peak of derivative 

corresponds to the inflection point. Lower panel shows histogram with the localization of 

inflection point for 200 nm vesicles. 26 out of 34 FDCs (~76%) that do not show discontinuities 

before 0.3 Rc were used. Red arrow indicates predicted theoretical value.   
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Figure 4. Bending modulus and pressure estimation. a, Tether force measurements. Left panel 

shows a typical tether formed during a FDC (approach in grey, retrace in black). Blue lines 

indicate two fitted regimes; the difference is the tether force. Right panel shows histogram of 

tether forces measured in the retrace of 200 nm extruded vesicles (N = 46). b, Dimensionless 

pressure versus dimensionless stiffness. In red the theoretically predicted curve. Markers show 

experimental data for 3 preparations of vesicles (200 nm, N = 42, 100 nm, N = 76; sonicated, N 

= 36). Bending modulus was used as single fitting parameter. c, Pressure ( ) 1
2 2∆ 4t cF RΠ π κ

−
=  

estimated for the 3 combined samples. Median lies at 0.15 ± 0.02 MPa (68% confidence interval 

obtained by bootstrap).  
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Figure 1. Vesicle size and shape.  
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Figure 2. Force indentation behavior of vesicles.  
Fig. 2  
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Figure 3. Theoretical force indentation response based on Canham-Helfrich theory.  
Fig. 3  
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Figure 4. Bending modulus and pressure estimation.  

Fig. 4  
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