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Abstract

It has been demonstrated that hepatic apparent diffusion coefficients (ADC) are decreasing in
patients with a Fontan circulation. It remains however unclear whether this is a true decrease
of molecular diffusion, or rather reflects decreased microperfusion due to decreased portal
blood flow. The purpose of this study was therefore to differentiate diffusion and microperfu-
sion using intravoxel incoherent motion (IVIM) modeled diffusion-weighted imaging (DWI) for
different liver segments in patients with a Fontan circulation, compare to a control group, and
relate with liver function, chronic hepatic congestion and hepatic disease. For that purpose, liv-
ers of 59 consecutively included patients with Fontan circulation (29 men; mean-age, 19.1
years) were examined (Oct 2012—Dec 2013) with 1.5T MRI and DWI (b = 0,50,100,250,500,
750,1500,1750 s/mm®). IVIM (Dgjow, Diast, frast) @and ADC were calculated for eight liver seg-
ments, compared to a control group (19 volunteers; 10 men; mean-age, 32.9 years), and
correlated to follow-up duration, clinical variables, and laboratory measurements associated
with liver function. The results demonstrated that microperfusion was reduced (p<0.001) in
Fontan livers compared to controls with —38.1% for Ds,et and —32.6% for fi.s. Molecular diffu-
sion (Dgow) Was similar between patients and controls, while ADC was significantly lower
(—14.3%) in patients (p<0.001). ADC decreased significantly with follow-up duration after Fon-
tan operation (r =—0.657). Dgow Showed significant inverse correlations (r =—0.591) with fol-
low-up duration whereas Dy,¢; and fioe; did not. From these results it was concluded that the
decreasing ADC values in Fontan livers compared with controls reflect decreases in hepatic
microperfusion rather than any change in molecular diffusion. However, with the time elapsed
since the Fontan operation molecular diffusion and ADC decreased while microperfusion
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remained stable. This indicates that after Fontan operation initial blood flow effects on the liver
are followed by intracellular changes preceding the formation of fibrosis and cirrhosis.

Introduction

Diffusion-weighted imaging (DWI) has been successfully applied in the assessment of diffuse
liver diseases such as cirrhosis, fibrosis and steatosis [1-6]. Cirrhotic livers had significantly
lower apparent diffusion coefficients (ADC) than normal livers [2,3,6] and negative correlations
between fibroses stages and ADC values were demonstrated [1,4,5]. The ADC is obtained by
calculating a mono-exponential fit from multiple (al least two) diffusion-weighted images,
thereby integrating molecular diffusion and microperfusion effects in one quantitative parame-
ter [7,8]. The concept of the ADC however has been derived from the more complex intravoxel
incoherent motion (IVIM) model, which separates molecular diffusion and microperfusion
effects by fitting a bi-exponential model to multiple DW images [8]. It has been suggested that
the ADC reduction observed in cirrhotic livers could be linked to decreased microperfusion val-
ues and may be related to reduced perfusion [2].

A category of patients with altered hepatic perfusion are patients with a Fontan circulation.
Fontan et al. described a palliative operation in which the right atrium (and in newer techniques
the caval veins) is directly connected to the pulmonary arteries [9,10]. Additional detail about
the Fontan operation is provided in S1 Appendix. In the absence of a subpulmonary ventricle,
this operation induces increased central venous pressure, decreased preload and increased after-
load of the ventricle [11]. In the Netherlands, yearly around 1200 newborns are born with a con-
genital heart disease and around 4-5% of these patients have a complex congenital heart
disease, known as the univentricular heart, and can be subject for a Fontan operation [12-14].
Over four decades, the short term survival after the Fontan operation improved significantly,
resulting in an increasing cohort of Fontan patients who reach adolescence and adulthood [15].
Consequently, long-term complications of the Fontan circulation are more commonly seen.

One of the implications of the Fontan circulation is liver disease resulting in fibrosis and cir-
rhosis [16-19]. A significant positive correlation has been found between the follow-up duration
(number of days since the Fontan operation) and the degree of hepatic fibrosis [20]. This hepatic
damage in the context of a Fontan circulation is presumably caused by the elevated venous pres-
sure and limited cardiac output that causes decreased portal flow [14]. The hepatic artery com-
pensates the diminished portal flow by increased hepatic arterial flow, which is termed the hepatic
arterial buffer response. The distribution of the microperfusion is likely to vary among the differ-
ent liver segments due to the alternative distribution of the hepatic flow in Fontan patients.

In a recent report we showed that mean hepatic ADCs are decreased in Fontan patients
[21]. It remained unclear whether this is a true decrease of molecular diffusion, or rather
reflects decreased microperfusion due to decreased portal blood flow. Therefore, the aim of
our current analysis is to differentiate diffusion and microperfusion using IVIM modeled
DWI for different liver segments in patients with a Fontan circulation, compare the results to a
control group, and explore the relationship with follow-up duration, liver function, chronic
hepatic congestion and hepatic disease.

Materials and methods
Ethics statement

The protocol and consent procedure of the study was approved by the Medical Ethics Review
Board of the University Medical Center Groningen, and written informed consent was
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obtained for each patient. For children and minors written informed consent was obtained
from the parents or and/or their legally authorized representative. All participants written con-
sent forms with date and signature were archived and the study was conducted in accordance
with the ICH-GCP declaration of Helsinki.

Study population

Between January 2012 and October 2013, consecutive patients with a functionally univentricu-
lar heart treated with a Fontan operation (further referred to as Fontan patients) were sched-
uled for cardiac MRI including diffusion-weighted imaging (DWTI) of the liver [21]. Inclusion
criteria were: age 10 years or older. This resulted in 59 patients, 32 children and 27 adults (29
men; mean-age, 19.1 years; age-range, 9.6-44.7 years). All 59 patients have been previously
reported [21]. This prior article dealt with the association between the ADC and functional
liver parameters; whereas in this manuscript we apply IVIM modeling to explain the previ-
ously observed decreased ADC in Fontan livers by measuring the microperfusion and molecu-
lar diffusion in each of eight liver segments.

Clinical variables were available and included body mass index (BMI), cardiac index, ejec-
tion fraction, end-diastolic volume (EDV), laboratory measurements (AST, ALT, y-GT, Fac-
torVIII, AST/ALTratio, bilirubin, albumin, PT), MELDXI (model for end-stage liverdisease
excluding INR), Fib-4 (Fibrosis-4 score) and vena cava inferior (VCI) diameter and were
obtained using previously described standardized methods [21].

In addition, a control group of 19 volunteers was included in this study: 10 men and 9
women (mean-age, 32.9 years; age-range, 20-62 years) [22]. All volunteers had no relevant
medical history.

MR protocols

Diffusion-weighted imaging (DWI) of the liver was acquired by Magnetic Resonance Imaging
(MRI), using a commercially available 1.5 T scanner (Magnetom Aera, Siemens Medical Solu-
tions, Erlangen, Germany). A 32 element spine matrix coil in combination with a 4 element
body matrix was used as the receiver, and the body coil as transmitter. The protocol included a
routine localizer where after 9 series (b = 0, 50, 100, 250, 500, 750, 1000, 1500, 1750 s/mm?) of
DWTI were acquired using a spin echo based echo-planar imaging (EPI) sequence using the fol-
lowing parameters: TR 5900-9600 ms; TE 90 ms; slice-thickness 5 mm; slice gap 10 mm; FOV
242x300 mm?; matrix 116x144; bandwidth 1335 Hz/pixel; averages 4 and parallel acquisition
technique GRAPPA with acceleration factor 2. PACE respiratory triggering was enabled and
spectral adiabatic inversion recovery (SPAIR) was used for fat suppression to avoid artifacts
from subcutaneous fat. In total, between 14 and 16 transverse slices were acquired to cover the
whole liver within an acquisition time of 2.5 minutes.

DWI analysis

The control group was acquired using 7 b-values (b = 0, 50, 100, 250, 500, 750, 1000 s/mm?);
therefore only these 7 b-values were used in the comparison between Fontan patients and con-
trols, whereas the remaining acquired DWI series (b = 1500 and 1750 s/mm?) were included
in all other analyses.

Drawing of regions-of-interest (ROIs) and the analysis were performed off-line using
monoexponential (ADC) and biexponential fitting procedures in a programmable graphical
and calculus environment (Matlab, The Mathworks, Natick, MA, USA). Circular ROIs of 21.5
mm? were drawn in 8 different segments of the liver (segment II, III, IVa, IVb, V, VI, VII,
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VIII) according to the Couinaud-Bismuth classification [23,24]. Extra care was taken to avoid
major blood vessels in the ROIs.

In the biexponential analyses, the diffusion-weighted signal intensities S were fitted using
the parameters prescribed by the IVIM model [8,25]:

S
S_ :ffast : exp<_b . Dfast) +j;low : exp<_b : Dslow) (1)
0

where Sj is the maximum signal intensity, D,y is the fast component representing microperfu-
sion, fr is the fraction of microperfusion, Dy, is the slow component representing molecular
diffusion and £y, is the fraction of molecular diffusion (fgow = 1—fps). Eq 1 was fitted by the
Nelder-Mead simplex direct search method with bound constraints, which performs a con-
strained non-linear minimization of the sum of the squared residuals [26,27]. The initial guess
D0, Was estimated by calculating the slope of the asymptote by monoexponential fitting of
the slow signal component between b = 500 and 1000 s/mm?, and Dy, was bound between
0.2 and 5 x D%, x 107> mm?/s. The intercept of the asymptote with the y-axis at S, resulted
in an initial guess 40 and f, was bound between 0 and 1. The slope of the signal between

b =0and b = 50 s/mm? was used to guess the initial value of the fast signal component (D),
and Dy, was bound between D, (microperfusion can never be slower than molecular diffu-
sion) and 100 x 107> mm?/s. The ADC was obtained by using a clinically accepted method: a
mono-exponential fit of all b-values was performed.

Statistics

Statistical analyses were performed using SPSS (SPSS 20, Chicago, IL, USA). All data were
tested for normality using Shapiro-Wilk tests. IVIM parameters and ADC averaged over all
liver segments were compared between Fontan patients and controls by independent samples
t-tests. Subsequently, IVIM and ADC were compared per liver segment between Fontan
patients and controls by independent samples t-tests. One-way ANOVA tests were used to
compare IVIM parameters and ADC between the eight liver segments.

Correlations between DWT (Dgjow» Dfast> frast and ADC) and clinical laboratory measure-
ments and follow-up duration were calculated using a linear (Y = a-X + b) model using Pear-
son’s correlation coefficient for normally distributed variables and Spearman’s rank
correlation coefficient for non-normally distributed variables.

Normally distributed data were shown as means with standard deviations. Non-normally
distributed data were shown as medians with interquartile range. For all statistical tests
P < 0.05 was considered to indicate a statistically significant difference.

Results

IVIM-DWI, ADC, AST, ALT, y-GT, FactorVIII, AST/ALTratio, EDV, EF and Cardiac index were
normally distributed (p > 0.071). Microperfusion parameters (Dy, and f;,) averaged over all
segments were significantly lower in Fontan patients compared to controls. Dg,q was 23.2 x 10~
mm?/s in the liver of Fontan patients, and 37.5 x 10> mm?/s in controls (p<0.001, —38.1%). Fg,q;
was 23.6% in Fontan patients, and 35.0% in controls (p<0.001, —32.6%). Dy, was similar in
patients and controls ranging between 0.95 x 10> mm?*/s and 1.00 x 10> mm?*/s (p = 0.171). The
ADC was significantly lower (p<0.001, —14.3%) in Fontan patients (1.08 x 10> mm®/s) compared
to the controls (1.26 x 107> mm?/s).

Also on a segmental level, the microperfusion parameters were significantly decreased for
the majority of liver segments of Fontan patients compared to controls (Table 1). The molecular
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Table 1. Microperfusion data (using 7 b-values) per segment.

Drast (x107° mm?/s) Ftast (%)
Seg. Controls Patients A% P Controls Patients A% P
1] 21.5+8.8 27.0+14.1 +25.6 0.051 58.6 +12.1 32.6+12.2 -79.8 <0.001*
1 37.7+22.2 246+89 -53.3 0.021* 37.9+11.0 24.9+9.8 -52.2 <0.001*
IVa 31.2+17.9 23.8+9.5 -30.5 0.095 39.4+16.9 25.1+10.4 -57.0 0.002*
IVb 46.3+16.9 22.9+8.8 -202 <0.001* 35.1+9.5 21.2+7.9 -65.6 <0.001*
\ 37.5+13.2 22.2+8.0 -68.9 <0.001* 29.3+6.9 20.4+8.3 -43.6 <0.001*
\ 45.1 +23.7 22.4+8.1 -201 0.001* 27.6+£9.2 21.3+7.9 -29.6 0.012*
Vil 42.9+25.1 21.4+8.9 -200 0.002* 271+7.1 21.7+6.4 -24.9 0.007*
Vil 37.8+15.2 22.0+8.6 -71.8 <0.001* 24.9+9.7 22.2+7.0 -12.2 0.293
P 0.045* 0.001* <0.001* <0.001*

Differences among the segments were tested using one-way ANOVA tests. Differences of DWI data between patients and controls were assessed by
independent t-tests. the microperfusion parameters were significantly decreased for the majority of liver segments of Fontan patients compared to controls.
Data are mean + standard deviations.

* P-value indicates significant difference.

doi:10.1371/journal.pone.0173149.t001

diffusion was significantly lower in half of the segments (III, IVb, VI and VII) compared to con-
trols (Table 2). The ADC was significantly lower in almost all segments (except segment V).

Concerning the homogeneity of IVIM values among the segments, it was observed that for
Fontan patients the microperfusion parameters differed significantly throughout the liver
(p < 0.045). This was also true for the ADC (p<0.001). The molecular diffusion however was
similar among the segments (p = 0.208).

The DWI data averaged over all segments were correlated to the clinical laboratory mea-
surements (Table 3). The median follow-up time was 11.2 years (min: 2.5 years; max: 33.6
years). The ADC showed a significant negative linear relationship with the follow-up duration
after Fontan operation with a correlation coefficient r = —0.657 (Fig 1), with the highest corre-
lations found in segments IT and VIII (Table 4). Also the molecular diffusion showed a signifi-
cant negative linear relationship (r = —0.591) with the follow-up duration (Fig 2), with the

Table 2. Diffusion data (using 7 b-values) per segment.

ADC (x107° mm?/s) Dsiow (¥1072 mm?/s)

Seg. Controls Patients A% P Controls Patients A% P

1] 1.42+0.29 1.15+0.28 -23.5 <0.001* 0.79+0.40 0.95+0.36 +16.8 0.123
1 1.38+0.15 1.10+0.15 -25.5 <0.001* 1.12+0.21 0.96+0.19 -16.7 0.009*
IVa 1.40+0.24 1.12+0.16 -25.0 <0.001* 1.05+0.38 0.97 +0.23 -8.2 0.422
IVb 1.32+0.15 1.09+0.11 -21.1 <0.001* 1.12+0.14 0.98+0.14 -14.3 0.001*
\ 1.09+0.18 1.05+0.12 -3.8 0.391 0.92+0.21 0.96+0.17 +4.2 0.482
Vi 1.18+0.08 1.06 £0.15 -11.3 <0.001* 1.02+£0.09 0.95+0.17 -7.4 0.021*
VI 1.21+0.10 1.06+0.14 -14.2 <0.001* 1.05+£0.13 0.93+0.18 -12.9 0.005*
Vil 1.09+0.16 1.00+0.15 -9.0 0.024* 0.94+0.21 0.88+0.20 -6.8 0.213
P <0.001* <0.001* 0.001* 0.208

Differences among the segments were tested using one-way ANOVA tests. Differences of DWI data between patients and controls were assessed by
independent samples t-tests. The molecular diffusion was significantly lower in half of the segments compared to controls. The ADC of Fontan patients was
significantly lower in almost all segments compared to controls (except segment V). Data are mean + standard deviations.

* P-value indicates significant difference.

doi:10.1371/journal.pone.0173149.1002
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Table 3. Correlations between DWI parameters and clinical variables.

Laboratory measurements
ASTt
ALTt
gamma GTt
Bilirubinf
Albumint
PTt
Factor VIIIT
Liver disease scores
MELDXI$
AST-ALT ratiot
Fib-4%
Cardiac function
EDVY
EFt
Cardiac-indext
VClI diameter f
Follow-up duration

1 Pearson’s correlation coefficient.
1 Spearman’s rank correlation coefficient.
* P-value indicates significant difference.

doi:10.1371/journal.pone.0173149.1003

ADC I:)slow Dfasl Ffasl
+0.199 +0.275%* +0.250 -0.132
-0.173 -0.188 +0.045 +0.218
-0.450* -0.424* -0.047 +0.199
-0.258 -0.275 +0.198 +0.301*
+0.127 +0.100 +0.238 +0.110
-0.143 -0.180 -0.321* -0.033
+0.046 -0.003 -0.058 +0.005
-0.259 -0.271 +0.266 +0.402*

+0.330* +0.405* +0.203 -0.317*
-0.344* -0.322* -0.020 +0.324*
+0.153 +0.093 +0.031 +0.131
+0.043 +0.076 +0.070 -0.106
+0.270* +0.266* +0.220 +0.005

-0.222 -0.211 0.034 0.180

-0.657* -0.591* -0.158 +0.401*

highest correlations found in segments V and VIII. The microperfusion was stable over time
and did not correlate with the follow-up duration (r = —0.158). The fraction of microperfusion
on the other hand showed a significant positive linear relationship (r = +0.401) with the fol-
low-up duration (Fig 2), with the highest correlations in segments V and VIII.

The FIB-4 score showed weak though significant relationships, negative with molecular dif-
fusion (r =—0.322) and positive with the fraction of microperfusion (r = +0.324). Some other
clinical laboratory parameters also showed significant correlations with IVIM-DWI parame-
ters, most notably gamma GT with ADC and Dy, (r = —0.450 and r = —0.424, respectively;
Table 3).

Discussion

This study demonstrates that decreased hepatic ADC measurements of Fontan patients can be
explained by significantly lower microperfusion in the Fontan liver rather than by decreased
diffusion. It was observed that the molecular diffusion (Dg,,,) was similar between Fontan
patients and controls, while the microperfusion parameters (Dy, and fr,g) and ADC were sig-
nificantly lower in the Fontan liver.

A previously formulated hypothesis relating hypoperfusion of the liver to the reduced ADC
in Fontan patients is thus substantiated [21]. However, the currently and previously [21]
reported strong negative dependency of the hepatic ADC on the follow-up duration after the
Fontan operation, reflects changes of the molecular diffusion with time rather than further
changes in microperfusion. This indicates that initial blood vessel effects leading to decreases
in microperfusion and hepatic congestion, are followed by true cellular changes leading to
fibrosis and cirrhosis.
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Fig 1. Correlation between follow-up duration and apparent diffusion coefficient (ADC). The mean hepatic ADC for each patient (n = 59) is plotted
against the number of years since the Fontan operation (follow-up duration). The ADC showed a significant negative linear relationship with the follow-up

duration (r =—0.657).
doi:10.1371/journal.pone.0173149.g001

The evidence in the current study that hypoperfusion of the liver in Fontan patients causes
the reduced ADC values as compared with controls, confirms the high degree of sensitivity to
microperfusion of the mono-exponential model which was already shown decades ago by Le
Bihan et al. in DWI of the brain [8]. When the DWI sequence contains b-values in the micro-
perfusion range (b < 100 s/mm”), and the microperfusion is diminished, the ADC measure-
ments will decrease [22].

With a bi-exponential IVIM model, the cellular diffusion component can be distinguished
from the microperfusion component. This improves our understanding of the underlying
pathophysiology of liver disease in the Fontan circulation by providing important additional
information on the association between hepatic hypoperfusion and hepatic congestion and
subsequent cellular changes leading to decreases in molecular diffusion, with the formation of
liver fibrosis and cirrhosis in clinical practice.
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Table 4. Follow-up duration and DWI parameters correlated per segment.

Segment

1]

1
IVa
IVb

\

\

VIl
VI

ADC Dslow Dfasl Ffasl
-0.632* -0.307* +0.002 -0.167
-0.447*% -0.397* +0.067 +0.239
-0.555% -0.453* -0.216 +0.212
-0.367* -0.258 +0.013 +0.221
-0.562* -0.556* -0.120 +0.440*
-0.494* -0.488* -0.123 +0.269*
-0.328* -0.367* -0.207 +0.203
-0.612* -0.567* -0.154 +0.371*

Data are Spearman’s rank correlation coefficients.

* P-value indicates significant difference.

doi:10.1371/journal.pone.0173149.t004

It was observed that the ADC values and molecular diffusion decreased with the follow-up
duration after Fontan operation, whereas the microperfusion was stable over time. In other
words, structural liver disease (i.e. liver fibrosis or cirrhosis) seems to be preceded by reduced cel-
lular diffusion, not present at first but developing progressively in time after Fontan operation.

The relationship between heart failure and liver dysfunction was first described in detail by
Sherlock in 1951 [28]. Hepatic complications of heart failure comprise a spectrum of com-
bined cardiac and hepatic disorders [Naschirtz2000]. It is considered that both hepatic conges-
tion and low perfusion of the liver are the causative mechanisms of liver complications [29,30].
Both conditions can occur simultaneously, however there are no studies describing any causal-
ity between hepatic hypoperfusion and increasing degrees of hepatic congestion.

There are several other relations however demonstrated up to now. Katzkin et al. showed
that the number of patients with fibrosis is related to the duration of hepatic congestion [Katz-
kin1939]. A number of other studies demonstrated that diminished liver perfusion causes
increasing degrees of fibrosis and cirrhosis [31-34]. Also decreasing ADCs have been demon-
strated with each fibrosis stage, confirmed by histopathology [1,4,5]. So these studies suggest
that hepatic congestion and hypoperfusion of the liver both lead to fibrosis and cirrhosis.

The patients in the current showed abnormal values associated with hepatic congestion
(elevated y-GT or alkaline phosphatase) [21]. Both chronic venous congestion and hepatic
hypoperfusion due to restricted cardiac output is therefore suggested as potential mechanism
leading to structural liver damage in Fontan patients. Considering that the hepatic perfusion
in this study did not correlate with the follow-up time since the Fontan operation, this suggests
that the hepatic hypoperfusion and congestion are chronic and stable over time.

All patients had some derangement of laboratory liver measurements; potentially labora-
tory disturbance is not only associated with advanced liver disease, but also influenced by
chronic liver damage, due to congestion and hypoperfusion. Increased gamma GT, a sign of
congestive hepatopathy, was related to Dy, and unrelated to the microperfusion. This gives
further confirmation that Dy, is related to liver fibrosis and cirrhosis, and suggests that in the
liver these processes might develop faster in context of more liver congestion (as in the first
case report by Lemmer in 1983) [35].

Previous histological studies have demonstrated, on a microscopic level, that in patients with
chronic hepatic congestion, the poorly arterially supplied hepatocytes in the centrilobular zone
show atrophy [36,37]. In patients with a Fontan circulation, atrophy of centrilobular hepatocytes
seems related to the degree of right sided pressure and to the time after Fontan operation [20,37].
Likewise, on a macroscopic level, the arterial blood supply is not homogenously distributed over
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Fig 2. Correlation between follow-up duration and IVIM-DWI. For each patient (n = 59) the mean hepatic
molecular diffusion (Dgow) and fraction of microperfusion (ft,st) are plotted against the number of years since
the Fontan operation (follow-up duration). The molecular diffusion (top) showed a significant negative linear
relationship (r = —0.591) with the follow-up duration. The fraction of microperfusion (bottom) showed a
significant positive linear relationship (r = +0.401) with the follow-up duration.

doi:10.1371/journal.pone.0173149.9002
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the various liver segments. It has been reported that the ratio of the arterial liver perfusion (ALP)
and portal venous perfusion (PVP) varies and is the lowest in segments V to VIII and highest in
segments I to IV [38,39]. When the ALP over-compensates the PVP in Fontan patients, it is
expected that the microperfusion increases in segments I to IV, and diminishes in segments V to
VIIL This is confirmed by our data. This suggests that, in a Fontan circulation, the development
of liver fibrosis or cirrhosis varies between the different liver segments, depending on the degree
of arterial blood supply.

Altogether, this study provides strong evidence that the degree of congestion as reflected in
the hepatic perfusion is generally stable with time after Fontan operation, whereas the subse-
quent hepatocellular diffusion decreases are associated with liver fibrosis/-cirrhosis develop-
ment. With the bi-exponential model, the DWI-MR technique provides the opportunity to
distinguish between these two components. For clinical practice, this provides a major advan-
tage compared to the other non-invasive alternatives for liver biopsy. Potentially, a decrease in
the microperfusion component could indicate an adverse change in the Fontan circulation, for
instance more congestion due to a conduit stenosis or pulmonary vascular remodeling. With a
routine follow-up of the cellular diffusion, the development of liver fibrosis/-cirrhosis can be
safely monitored. We suggest further research to investigate changes in microperfusion and
cellular diffusion longitudinally, and want to highlight that, with progressive liver disease
being apparently inherent to the Fontan circulation, steps have to be taken concerning poten-
tial treatment options for liver disease in Fontan patients. Therefore, future studies should
focus on reversibility of this liver disease, and the effects and timing of potential treatment
options, including heart transplantation, Fontan conversion or a late Fontan takedown.

Limitations

Liver damage in the Fontan circulation presents with disturbed transaminases, coagulation
disorders, and can eventually lead to liver fibrosis-, cirrhosis and even hepatocellular carci-
noma [40-42]. It was assumed that the severity of fibrosis increases with the follow-up dura-
tion after Fontan operation. The stage of liver fibrosis or cirrhosis was however not confirmed
by liver biopsy, thereby limiting the study.

Although the segmental differences in microperfusion strongly point to the reported varia-
tion in the ALP and PVP in Fontan patients, this might also be related to cardiac pulsation arti-
facts in DWI which are known to result in deviating values between right and left liver lobe.
The increase in the ADC in the left lobe is usually explained from the increased cardiac motion
in the left lobe [43-47]. However, it was also demonstrated that the increased ADC in the left
lobe may be caused by extensive microperfusion contamination of the ADC and this does not
affect the molecular diffusion obtained by IVIM [22]. This effect of microperfusion contami-
nation in the left lobe is also supported by the observed tendency of increased Dy, in segment
IT against the trend in all other segments.

The study design might have yielded additional insights if pharmacological approaches
existed to increase hepatic diffusion and/or perfusion. This would allow to investigate the cau-
sality between the hepatic congestion and microperfusion effects, and secondly the fibrosis
grade and hepatic diffusion. Unfortunately we are not aware of any of such pharmacological
approaches. Also, the disturbed hepatic perfusion in Fontan patients finds its main cause in
the reduced cardiac output, which cannot be easily manipulated in terms of study design.

Conclusions

The decreasing hepatic ADCs in patients with a Fontan circulation reflect decreases in hepatic
microperfusion rather than any change in molecular diffusion. However, with the time elapsed
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since the Fontan operation molecular diffusion and ADC decreased while microperfusion

remained stable. This indicates that after Fontan operation initial blood flow effects on the

liver are followed by intracellular changes preceding the formation of fibrosis and cirrhosis.

The current study is the first to show with IVIM-DWTI that, in a Fontan circulation, the

development of liver fibrosis or cirrhosis varies between the different liver segments, poten-
tially depending on the degree of arterial blood supply.
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