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Abstract Metabolic function and architecture of mitochondria are intimately linked. More than

60 years ago, cristae were discovered as characteristic elements of mitochondria that harbor the

protein complexes of oxidative phosphorylation, but how cristae are formed, remained an open

question. Here we present experimental results obtained with yeast that support a novel

hypothesis on the existence of two molecular pathways that lead to the generation of lamellar and

tubular cristae. Formation of lamellar cristae depends on the mitochondrial fusion machinery

through a pathway that is required also for homeostasis of mitochondria and mitochondrial DNA.

Tubular cristae are formed via invaginations of the inner boundary membrane by a pathway

independent of the fusion machinery. Dimerization of the F1FO-ATP synthase and the presence of

the MICOS complex are necessary for both pathways. The proposed hypothesis is suggested to

apply also to higher eukaryotes, since the key components are conserved in structure and function

throughout evolution.

DOI: 10.7554/eLife.18853.001

Introduction
Mitochondria have a multitude of functions in the eukaryotic cell. They perform respiration-depen-

dent energy transduction to generate proton-motive force and ATP, and house a large number of

metabolic enzymes. They have their own genetic system but are closely connected with the rest of

the cell by a number of pathways, such as metabolite, protein and lipid transport, protein quality

control, autophagy and apoptosis. Light microscopy has revealed mitochondria as threadlike bodies

that form three-dimensional networks. Mitochondria are dynamic organelles undergoing continual

fission and fusion (Bereiter-Hahn and Vöth, 1994). The dynamics of mitochondria is essential for

their function as well as maintenance, inheritance and integrity of their DNA (mtDNA). Recent

research has revealed the involvement of this organelle in a multitude of human pathological condi-

tions, including neurodegeneration, cardiomyopathies, metabolic diseases and cancer (Chan, 2012;

Costa and Scorrano, 2012; Itoh et al., 2013; Mourier et al., 2014; Nunnari and Suomalainen,

2012; Pickrell and Youle, 2013; Youle and van der Bliek, 2012).
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Mitochondrial ultrastructure, also referred to as the mitochondrial architecture, is intimately linked

to the function and homeostasis of this organelle, and has therefore been investigated in a large

number of cell types, tissues and organisms (Fawcett, 1981). There is a considerable diversity in

mitochondrial architecture, but common basic structural elements can be recognized (Man-

nella, 2008; Perkins et al., 2010; Sun et al., 2007). Mitochondria are delimited from the cytosol by

the outer membrane (OM). The inner membrane (IM) is composed of the inner boundary membrane

(IBM) and the crista membranes. The cristae are invaginations of the IM into the interior of the mito-

chondria (Figure 1). In most cases they form lamellae, but tubules are also observed (Faw-

cett, 1981). Crista junctions (CJs) join the cristae with the IBM. They represent small ring or slot like

openings that connect the intermembrane space with the intracrista space. The IM encloses the

matrix space. Cristae do not cross the matrix space completely, but they are closed by strongly bent

crista rims. Septa completely cross the matrix space and separate it into distinct compartments.

They are virtually absent in wild type (WT) cells, but are frequent in a variety of mutant cells. Continu-

ous protein and lipid import leads to generation of curved septa which can be seen as onion-like

structures in cross sections (Figure 1). Over the past 20 years a number of proteins have been identi-

fied which play key roles in mitochondrial function, dynamics and homeostasis. Still, our knowledge

concerning the molecular mechanisms that determine the formation and maintenance of mitochon-

drial architecture is quite limited.

A molecular understanding of these complex processes is possible only when biochemical and

genetic analyses are combined with 3D electron microscopy (EM) analysis, whose resolution is suffi-

cient to precisely evaluate the ultrastructure of mitochondrial membranes and localize proteins with

nano-scale precision. With this as a guiding principle, we have addressed a central question of the

molecular biology of mitochondria, the mechanisms of the biogenesis and maintenance of cristae.

This question is open ever since the structural organization of mitochondria was discovered (Pal-

ade, 1953; Sjostrand and Hanzon, 1954).

eLife digest Cells contain compartments called mitochondria, which are often called the

powerhouses of the cell because they provide energy that drives vital cellular processes.

Mitochondria have two membranes: an outer and an inner membrane. The outer membrane

separates the mitochondria from the rest of the cell. The inner membrane is elaborately folded and

the folds – called cristae – create a larger space to accommodate all of the protein machinery

involved in producing energy. The cristae can be shaped as flat sac-like structures called lamellar

cristae or as tubes known as tubular cristae.

Mitochondria are dynamic and are constantly fusing with other mitochondria and splitting up.

Even though the internal architecture of mitochondria was first revealed around 60 years ago, it is

still not clear how the cristae form. Harner et al. now address this question in yeast cells by

combining imaging, biochemistry and genetic approaches.

The experiments show that lamellar cristae form when two mitochondria fuse with each other.

The outer membranes merge and then the inner membranes start to fuse around their edges to

generate the sac-like structure of lamellar cristae. A yeast protein called Mgm1 (known as Opa1 in

mammals) drives the fusion of the inner membranes, but this process only takes place when enzymes

called F1FO-ATP synthases on the inner membrane form pairs with one another. These F1FO-ATP

synthase pairs stabilize the cristae membranes as they curve to form the sac-like structure. Later on,

the formation of a group of proteins called the MICOS complex halts the fusion process to prevent

the lamellar cristae from completely separating from the rest of the inner membrane.

Harner et al. also found that tubular cristae form using a different mechanism when the inner

membrane of the mitochondria grows inwards. This process also requires pairs of F1FO-ATP

synthases and the MICOS complex, but does not involve Mgm1/Opa1. Together, these findings

show that lamellar and tubular cristae in yeast form using two different mechanisms. Since the key

components of these mechanisms are also found in virtually all other eukaryotes, the findings of

Harner et al. are also likely to apply to many other organisms including animals.

DOI: 10.7554/eLife.18853.002
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Our approach has led us to an entirely novel hypothesis on the formation and homeostasis of cris-

tae and CJs. Based on our results we present a model that postulates the existence of two different

pathways of crista formation and is fully consistent with published data on mitochondrial structure,

function and dynamics in yeast and mammalian cells. In the first pathway, two IBM sheets are con-

verted into a single lamellar crista upon fusion of mitochondria. This process not only requires

Figure 1. Schematic representation of the ultrastructure of the mitochondria. Upper panel, a wild type mitochondrion containing a crista. Lower left

panel, a mitochondrion containing a septum. A septum separates the matrix into two discontinuous subcompartments. Lower right panel, a

mitochondrion containing an extended curved septum, appearing as an onion-like profile in EM. The drawings illustrate the reconstruction of the 3D

structures from the 2D EM sections whose directions are indicated by the grey planes. Blue line, outer membrane (OM); green line, inner membrane

(inner boundary membrane (IBM), crista membrane (CM) and septa membranes); small light rings, assembled MICOS complex forming a crista junction.

In the lower panels, the inner boundary membranes of two matrix subcompartments are drawn in red and green to point out that the matrix is divided

by a septum.

DOI: 10.7554/eLife.18853.003
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Mgm1, the dynamin-like fusion protein of the IM, but also the dimeric form of the F1FO-ATP syn-

thase (F1FO) and the MICOS complex. Mgm1 appears to mediate fusion of the IM only when dimeric

F1FO is available to stabilize bending of the newly formed crista membrane and to thereby generate

crista rims. Assembly of the MICOS complex is proposed to limit the fusion process by forming a CJ.

In the second pathway, crista formation is independent of Mgm1, but dependent on dimeric F1FO
and MICOS. It entails formation of tubular cristae and not of lamellar cristae. Our results suggest a

mechanism by which growth of membranes from the IBM, driven by the influx of newly synthesized

proteins and lipids, creates these tubular cristae. Importantly, all proteins found to be involved in

crista biogenesis are conserved from yeast to human, emphasizing the general importance of this

process.

Results

Mgm1 plays a direct role in cristae formation
The dynamin-related GTPase, Mgm1 (yeast)/Opa1 (higher eukaryotes), is essential for fusion of the

mitochondrial IM. Its deletion in yeast leads to fragmentation of mitochondria and loss of respira-

tion-dependent growth as well as of mtDNA (Cipolat et al., 2004; Jones and Fangman, 1992;

Meeusen et al., 2006; Song et al., 2009; Wong et al., 2000). Previous EM analyses showed an

altered IM structure in Dmgm1 cells that includes the loss of cristae (Sesaki et al., 2003). Consistent

with these observations, quantitative EM of Dmgm1 cells revealed mitochondrial profiles that were

mainly empty or contained one or a few septa. Vesicular and crista-like membranes were present

only to a minor extent (Figure 2—figure supplement 1). Moreover, the levels of mitochondrial

respiratory components were strongly reduced (Figure 2—figure supplement 2).

These observations raised the possibility that Mgm1 is required for the formation of cristae. Cris-

tae membranes accommodate the respiratory chain complexes which consist of both nuclear and

mitochondria-encoded subunits. Thus, it is conceivable that loss of mtDNA first leads to the loss of

respiratory chain complexes and then indirectly also to the loss of cristae. Alternatively, Mgm1 might

be required for cristae formation, and in the absence of cristae mtDNA is not maintained. To dis-

criminate between these two scenarios, we made use of the temperature sensitive mgm1-5 mutant

in which a shift to non-permissive temperature leads to the inactivation of the protein and concomi-

tant fragmentation and alteration of mitochondrial ultrastructure (Meeusen et al., 2006;

Wong et al., 2000). We performed quantitative EM of WT and mgm1-5 cells grown at 25˚C, shifted
to 37˚C for 25 min, and back again to 25˚C for 30 min. In WT cells almost only cristae were present

and no significant changes were observed upon exposure to 37˚C and return to 25˚C (Figure 2A

and B). In mgm1-5 cells grown at 25˚C, cristae made up about 70%; apparently the temperature sen-

sitive mutant was leaky. Exposure to 37˚C and thus inactivation of Mgm1 led to a drastic loss of cris-

tae (Figure 2A and B). We expected that a time period of 25 min, which is much less than one

generation time of yeast, would be too short to result in loss of mtDNA. Indeed, staining of mtDNA

and test on respiratory competence revealed no loss of functional mtDNA upon exposure to 37˚C
for 25 min (Figure 2C and Figure 2—figure supplement 3). However, longer exposure (72 hr) of

mgm1-5 cells to non-permissive temperature led to inhibition of cell growth on respiratory medium

(Figure 2—figure supplement 3). Strikingly, upon return of the mgm1-5 cells to 25˚C for 30 min cris-

tae reappeared and septa were reduced, comparable to the situation before incubation at non-per-

missive temperature (Figure 2A and B). Interestingly, mitochondrial respiratory complexes in both

WT and mutant, as determined for Complex III and IV, remained intact during the temperature shifts

(Figure 2—figure supplement 4).

In parallel to the ultrastructure of the IM, the morphology of mitochondria was determined by

fluorescence microscopy. While the normal mitochondrial tubular network was not altered by the

temperature shift in WT, it was converted to numerous small fragments in almost all mgm1-5 cells

that were exposed to 37˚C. Normal mitochondrial morphology was largely restored in mgm1-5 cells

during recovery at 25˚C (Figure 2D).

Although the structural analysis of the mgm1-5 mutant strongly suggested that crista formation

and maintenance depends on Mgm1, reproducibly about 20% of the mitochondrial cristae remained

intact after inactivation of Mgm1 in the various experiments (Figure 2B). To analyze the structure of

these cristae we used electron tomography. Notably, exposure of mgm1-5 cells to 37˚C led to a
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Figure 2. Mgm1 controls mitochondrial ultrastructure. (A) Inactivation of Mgm1 leads to rapid loss, and reactivation to the rapid regeneration of cristae.

WT cells and cells expressing the temperature sensitive mgm1-5 mutant were grown in YPD medium at 25˚C to logarithmic phase. Aliquots of the

cultures were incubated for 25 min at either 25˚C or 37˚C; further aliquots were incubated for 25 min at 37˚C and shifted back to 25˚C for 30 min. Cells

were analyzed by EM. Scale bars, 0.2 mm. (B) Quantitative evaluation. 150–200 mitochondrial profiles were analyzed for each sample. (C) Maintenance of

Figure 2 continued on next page
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decrease of lamellar and an increase of tubular cristae as compared to WT (Figure 2E and F; Videos 1

and 2). These results show that the disappearance and reappearance of cristae are rapid and depend

on functional Mgm1. We conclude that the formation of lamellar and tubular cristae relies on two dif-

ferent pathways. Moreover, Mgm1 plays a direct role in the formation and maintenance of lamellar but

not of tubular cristae.

To further study the role of Mgm1 in cristae formation we first explored where Mgm1 is exactly

located in mitochondria. Quantitative immuno-EM revealed that the majority of Mgm1 was localized

to the OM/IBM and only about one third to the matrix/crista space (Figure 3A). Mgm1 is present in

two isoforms (Shepard and Yaffe, 1999; Wong et al., 2000). l-Mgm1 contains a transmembrane

helix that anchors it to the IM; in contrast, s-Mgm1 lacks the transmembrane helix and was reported

to be present at the IBM or OM (Sesaki et al., 2003; Wong et al., 2000) and a short form of Opa1

was found to be co-localized with the OM fission machinery (Anand et al., 2014). Importantly, both

l-Mgm1 and s-Mgm1 forms are required for Mgm1 function in mitochondrial fusion (DeVay et al.,

2009; Zick et al., 2009). To test where s-Mgm1 is located, we generated sub-mitochondrial vesicles

by sonication and separated them by gradient density centrifugation. Remarkably, s-Mgm1 co-frac-

tionated with the outer membrane marker Tom70, indicating that it is associated with the outer

membrane (Figure 3B). These data suggest that Mgm1 could interact with the OM in the course of

IM fusion. Thus, as outlined below, it is possible that after fusion of the OM a septum is formed by

IMs that are not yet fused, and that Mgm1 at IM/OM contact sites initiates the conversion of these

Figure 2 continued

mtDNA in the mgm1-5 mutant upon exposure to 37˚C. WT and mgm1-5 cells were grown in YPD medium at 25˚C and incubated at 37˚C for 25 min.

The percentage of cells containing mtDNA was determined by DAPI staining. (D), Mitochondrial morphology in WT and in the mgm1-5 cells expressing

mitochondrially targeted GFP. Cells were treated as described in (A). The morphology of the mitochondrial network in 100 cells per sample was

analyzed by fluorescence microscopy. (E) EM tomographic reconstruction of a mitochondrion of a WT yeast cell. Green, IBM and lamellar cristae

connected to the IBM; blue, tubular crista. (F) Tomographic reconstruction of a mitochondrion of a mgm1-5 cell grown at 25˚C and shifted to 37˚C for

25 min. Green, IBM and cristae connected to the IBM.

DOI: 10.7554/eLife.18853.004

The following figure supplements are available for figure 2:

Figure supplement 1. Mgm1 is required for wild type inner membrane structure.

DOI: 10.7554/eLife.18853.005

Figure supplement 2. Mgm1 is required for wild type protein composition.

DOI: 10.7554/eLife.18853.006

Figure supplement 3. Incubation of mgm1-5 cells for 25 min at non-permissive temperature does not lead to loss of functional mtDNA.

DOI: 10.7554/eLife.18853.007

Figure supplement 4. Changes of mitochondrial ultrastructure upon inactivation of Mgm1 do not affect the assembly state of respiratory chain

supercomplexes.

DOI: 10.7554/eLife.18853.008

Video 1. 3D reconstruction with modelling of a

mitochondrion in wild type cells. Grey, OM; green, IBM

and cristae connected to the IBM; blue, tubular cristae

without visible connection to the IBM.

DOI: 10.7554/eLife.18853.009

Video 2. 3D reconstruction with modelling of a

mitochondrion in mgm1-5 cells incubated for 25 min at

37˚C. Grey, OM; green, IBM and cristae connected to

the IBM.

DOI: 10.7554/eLife.18853.010
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septa membranes into a crista membrane by IM fusion.

Dimeric F1FO-ATP synthase is preferentially located at crista
membranes, but the monomeric form is present at septa and inner
boundary membrane
Dimeric F1FO provides positive curvature to crista membranes (Dudkina et al., 2005; Strauss et al.,

2008; Thomas et al., 2008). The subunits of the FO sector, Su e/Atp21 and Su g/Atp20, mediate

the formation of F1FO dimers (Arnold et al., 1998; Habersetzer et al., 2013). Deletion of Su e or Su

g leads to the formation of membrane sheets that are crossing the matrix space completely and to

Figure 3. Mgm1 is present at the mitochondrial inner and outer membranes. (A) Distribution of Mgm1 between OM/IBM and cristae. Cells expressing

3xHA tagged Mgm1 were analyzed by immuno-EM. Left panel, four mitochondrial profiles (M) showing gold particles at the IBM. Scale bar, 0.2 mm.

Right panel, quantification of gold particles. (B) Distribution of Mgm1 between OM and IM. Mitochondrial vesicles generated by sonication were

subjected to sucrose density gradient centrifugation followed by fractionation, SDS-PAGE and immunoblotting. Arrow, s-Mgm1. The membrane anchor

of l-Mgm1 is notorious for being clipped off during isolation of mitochondria (c.f. Figures 5C and 7C). Therefore, l-Mgm1 was not detected after

mitochondrial subfractionation. Cor2, subunit two of respiratory chain complex III.

DOI: 10.7554/eLife.18853.011

Harner et al. eLife 2016;5:e18853. DOI: 10.7554/eLife.18853 7 of 25

Research article Biochemistry Cell Biology

http://dx.doi.org/10.7554/eLife.18853.011
http://dx.doi.org/10.7554/eLife.18853


onion-like structures. Examination of a large number of EM sections showed that these membrane

sheets are not cristae as previously assumed, but septa. Onions represent cross sections of curved

septa (Figure 1). This is also apparent upon tomographic reconstruction of isolated mitochondria

from cells lacking dimeric F1FO (Davies et al., 2012). A fundamental difference between cristae and

septa is that crista membranes are strongly bent to generate crista rims and thus the sac-like crista

structure, whereas septa are not closed but divide the matrix into membrane-limited subcompart-

ments. In spite of this drastic alteration of mitochondrial architecture, growth is only moderately

retarded under respiratory conditions (Paumard et al., 2002; Rabl et al., 2009). It is presently

unknown how and when during crista formation this bending is taking place. We localized fully

assembled F1FO by detection of its subunit F1b and found it almost exclusively in the crista mem-

branes of WT mitochondria (Figure 4A). In the Su e deletion mutant, however, the fraction of mono-

meric F1FO detected in the IBM was increased by a factor of three in comparison to WT (Figure 4B).

Figure 4. Localization and dimerization of F1FO are relevant to mitochondrial architecture. (A) Distribution of F1FO between IBM and cristae in WT cells.

WT cells expressing 3xHA tagged F1b were subjected to immuno-EM and quantified. (B) Distribution of F1FO between IBM and cristae/septa in Dsu e

cells. Dsu e cells expressing 3xHA tagged F1b were analyzed as in (A). (C) Distribution of Su e between IBM and cristae in WT. WT cells expressing

3xHA tagged Su e were analyzed as in (A). Scale bars, 0.2 mm.

DOI: 10.7554/eLife.18853.012
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Figure 5. The stacked membrane sheets in mitochondria lacking Mic60 are functionally similar to crista membranes. (A) Distribution of F1b in Dmic60

cells. Dmic60 cells expressing 3xHA tagged F1b were analyzed by immuno-EM and quantified. (B) Distribution of Cox5A in Dmic60 cells. Dmic60 cells

expressing 3xHA tagged Cox5A were analyzed as in (A). (C) Levels of MICOS subunits in Dsu e cells. WT cells and cells lacking Su e were grown on YPG

(left) or YPD (right). Aliquots of mitochondrial protein were analyzed by SDS-PAGE and immunoblotting. Arrow head, l-Mgm1; arrow, s-Mgm1; asterisk,

Figure 5 continued on next page

Harner et al. eLife 2016;5:e18853. DOI: 10.7554/eLife.18853 9 of 25

Research article Biochemistry Cell Biology

http://dx.doi.org/10.7554/eLife.18853


This observation is compatible with the assumption that the distribution of F1FO in cristae and IBM

correlates with its oligomeric state. Similar to F1b, Su e was present in crista membranes of WT mito-

chondria (Figure 4C). Very low levels of F1b, monomeric F1FO and unassembled Su e may exist in

the IBM into which new components are continually being inserted, but dimeric F1FO is present

almost exclusively in cristae and does not assemble in the planar IBM. Thus, the assembly of dimeric

F1FO is likely to take place during the formation of cristae when the bending of membranes has to

occur.

The internal membranes in MICOS deficient mitochondria are
structurally and functionally similar to crista membranes
The MICOS complex is located in the mitochondrial IM of yeast and higher eukaryotes, where it is

required for the formation of CJs as well as the formation of contact sites with the OM. Mitochondria

lacking Mic60 contain characteristic stacked membranes in the matrix that have no connections to

the IBM (Alkhaja et al., 2012; Darshi et al., 2011; Harner et al., 2011; Hoppins et al., 2011;

Jans et al., 2013; John et al., 2005; Rabl et al., 2009; von der Malsburg et al., 2011). Since CJs

are essential elements of cristae, we asked whether MICOS has a function in the formation of cristae.

A so far unanswered question is whether the cristae in WT and the stacked membranes in the

Dmic60 mutant differ in their functions. The protein composition of these mitochondria is very similar

to that of WT cells (Harner et al., 2014). Importantly F1FO is present in the dimeric form (Rabl et al.,

2009). To analyze whether there is a difference in the distribution of IM proteins in the stacked

membranes in the Dmic60 mutant as compared to WT cristae, we examined the distribution of F1b

and the cytochrome c oxidase subunit Cox5a by immuno-EM. F1b was found almost exclusively in

the IM stacks of Dmic60 mitochondria as in WT (Figure 5A). Likewise, the distribution of Cox5a

between the IBM and the cristae in WT cells and between IBM and the internal membranes in the

Dmic60 mutant was almost identical (Figure 5B). The fact that the distribution of these two proteins

is not changed in mitochondria of Dmic60 cells suggests that CJs are not required for assembly of

protein complexes in the mitochondria and integration into crista membranes. Consistently, mito-

chondria of the Dmic60 mutant are able to perform oxidative phosphorylation (OXPHOS) and thus

maintain mtDNA.

Deletion of Su e did not lead to a reduction of MICOS subunits both during respiratory growth

and fermentative growth (Figure 5C). The level of the assembled MICOS complex, however, was

strongly diminished (Figure 5D). This suggests that MICOS is partly dissociated when cristae are

absent. Interestingly, the MICOS subunit Mic10 was found to be strongly enriched at the sites where

septa membranes meet the IBM and the bending of septa is strongest (Figure 5E). This observation

is in line with the finding that this MICOS subunit has an important role in the formation of the nar-

row ring or slot like structure of the crista junctions (Barbot et al., 2015; Bohnert et al., 2015;

Milenkovic and Larsson, 2015).

Taken together, this suggests that cristae and stacks are functionally similar if not identical. Fur-

thermore, in the absence of the dimeric ATP synthase assembled MICOS is not sufficient to allow

the generation of cristae. These findings raise the questions of how the internal membrane stacks

originate and how proteins reach them in view of the virtually complete absence of connections with

the IBM.

Mitochondria lacking Dnm1 show altered crista structure
Dnm1 (in yeast)/Drp1 (in higher eukaryotes), a dynamin-related GTPase, is an essential component

of the fission machinery. Its deletion leads to the formation of a highly branched and interconnected

mitochondrial network (Bleazard et al., 1999; Otsuga et al., 1998; Smirnova et al., 1998). Loss of

Mgm1 in cells depleted of Dnm1 does not lead to loss of cristae (Sesaki et al., 2003). This surprising

Figure 5 continued

cross-reaction of the Mic60 antibody. (D) Assembly state of MICOS subunits in Dsu e cells. Mitochondria were isolated and lysed using digitonin.

MICOS complex was analyzed by BN-PAGE and immunoblotting. Arrow, assembled MICOS complex. The result of one of four independently

performed experiments is shown. (E) Distribution of Mic10 in Dsu e cells. Dsu e cells expressing 3xHA tagged Mic10 were analyzed as in (A). SM,

septum membrane; SJ, septum junction. Scale bars, 0.2 mm.

DOI: 10.7554/eLife.18853.013
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Figure 6. Structure and protein composition of cristae in cells deficient in Dnm1. (A) Ultrastructure and quantitative evaluation of mitochondria in

Ddnm1 cells grown on YPG (scale bars, 0.2 mm). (B) Tomographic reconstruction of a mitochondrion of a Ddnm1 cell. Green, IBM and cristae connected

to the IBM; blue, tubular cristae without visible connection to the IBM. (C) Steady state levels of mitochondrial proteins of Ddnm1 cells. WT and Ddnm1

Figure 6 continued on next page
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observation appeared to contradict our suggestion that Mgm1 is directly required for crista forma-

tion and maintenance. To resolve this apparent discrepancy, we first analyzed the ultrastructure of

mitochondria in the Ddnm1 mutant. We observed that mitochondrial architecture differed signifi-

cantly from that in WT. These mitochondria are considerably enlarged, densely filled with vesicular

profiles and short tubular cristae, while CJs are abundant along the IBM (Figure 6A). In comparison

to WT, the number of cristae with lamellar structure was found to be much lower as highlighted by

electron tomography. 3D reconstruction revealed that the vesicular profiles mostly represent inter-

connected highly convoluted and branched tubular structures (Figure 6B; Video 3). These tubules

seem to have the ability to fuse and to branch. Interestingly, we identified tubular cristae also in WT

cells by tomography, albeit much less frequently (Figure 2E; Video 1). Normal levels of components

of OXPHOS as well as assembled MICOS and dimeric F1FO were present in these mitochondria

(Figure 6C and D). Notably, the level of the assembled MICOS complex in the Ddnm1 mutant was

significantly increased. This is consistent with the higher number of cristae and CJs in this mutant.

The necessity for the accommodation of OXPHOS and other membrane proteins likely requires an

increase of the number of cristae since the surface area of tubular cristae compared to lamellar cris-

tae is much lower. In summary, we reasoned that the mitochondrial network is in an almost

completely fused state in the absence of Dnm1, and thus the rate of fusion is strongly decreased.

The diminished Mgm1 activity might then result in a drastically reduced formation of lamellar cristae

and massive production of tubular cristae.

Mitochondrial fusion/fission dynamics contributes to the formation of
lamellar cristae
In order to obtain more insight into the role of Mgm1 in the formation of cristae, we analyzed the

biochemical composition and ultrastructure of mitochondria in the Ddnm1Dmgm1 double deletion

mutant. Growth of the Ddnm1 and Ddnm1Dmgm1 strains on non-fermentable carbon sources was

similar (Figure 7A). On fermentable carbon source, however, the double deletion mutant displayed

a high rate of loss of mtDNA, pointing to a residual function of Mgm1 in mitochondria of the Ddnm1

mutant (Figure 7B). The steady state levels of a number of mitochondrial proteins were similar in

WT, Ddnm1, and Ddnm1Dmgm1 strains (Figure 7C). The interior of Ddnm1Dmgm1 mitochondria,

like that of the Ddnm1 mutant, was full of tubular cristae. Strikingly, lamellar cristae were not

observed in mitochondria of the Ddnm1Dmgm1 mutant (Figure 7D and E; Video 4). Thus, Mgm1

appears to be essential for the formation of

Figure 6 continued

cells were grown on YPG, aliquots of mitochondrial protein were analyzed by SDS-PAGE and immunoblotting. (D) Assembly state of MICOS and of

F1FO in Ddnm1 cells. Analysis as in Figure 4D. Arrow head, assembled MICOS complex.

DOI: 10.7554/eLife.18853.014

Video 3. 3D reconstruction with modelling of a

mitochondrion in the Ddnm1 mutant. Green, IBM and

cristae connected to the IBM; blue, tubular cristae

without visible connection to the IBM; yellow, tubular

cristae without connection to the IBM.

DOI: 10.7554/eLife.18853.015

Video 4. 3D reconstruction with modelling of a

mitochondrion in the Ddnm1Dmgm1 double deletion

mutant. Green, IBM and cristae connected to the IBM;

blue, tubular cristae without visible connection to the

IBM; yellow, tubular cristae without connection to the

IBM.

DOI: 10.7554/eLife.18853.018
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Figure 7. Growth, structure and protein composition of cristae in mutants lacking either Mgm1, Mic10, Mic60 or Su e in the Dnm1 deletion

background. (A) Growth of double mutant strains deficient in Dnm1 and Mgm1, Mic10, Mic60 or Su e. The strains were cultured on YPG medium to

logarithmic phase followed by growth analysis on the indicated media by drop dilution assay. (B) mtDNA maintenance in cells lacking either Mgm1,

dimeric F1FO or MICOS in the Ddnm1 background. Strains were grown on YPG and transferred to YPD medium. At time 0 hr and after 48 hr the

Figure 7 continued on next page
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lamellar cristae, but is not required for the formation of tubular cristae and CJs.

To further study the role of mitochondrial fusion in the formation of lamellar cristae, we analyzed

mitochondrial architecture in 4dnm14fzo1 cells, which have a block of outer membrane fusion and

fission. Indeed, we observed mitochondria with numerous tubular cristae (Figure 7—figure supple-

ment 1), supporting the idea that tubular cristae are the predominant type in the absence of fusion

activity. However, this phenotype was observed to a much lesser degree than in the 4dnm14mgm1

mutant. Strikingly, 4dnm14fzo1 cells quite frequently contained constricted mitochondria and mito-

chondria with septa (Figure 7—figure supplement 1). Since it has been repeatedly suggested that a

separate Dnm1-independent fission mechanism exists for the IM (Gorsich and Shaw, 2004;

Ishihara et al., 2013; Westermann, 2010), we consider it possible that these structures represent

division events of the IM in the absence of OM fusion. This could then provide Mgm1 with suitable

inner membrane structures for the formation of lamellar cristae and explain why the cristae pheno-

type of 4dnm14fzo1 is less severe than that of 4dnm14mgm1. Together, these observations sug-

gest that mitochondrial fusion is important for generating crista structure.

We further investigated the mitochondria in the Ddnm1Dmic60 mutant; they displayed a virtually

complete absence of cristae and CJs. Vesicular-tubular profiles, often located close to the IBM and

associated with sheet-like membrane structures, were present in the interior of the mitochondria.

Tomographic reconstructions revealed a rather corrugated and perforated appearance, in contrast

to the planar structure of WT lamellar cristae. Therefore, these membranes are most likely formed

by association of extended tubules, which partly fuse with each other (Figure 7F; Video 5). Interest-

ingly, in contrast to the Ddnm1Dmgm1 mutant, growth of Ddnm1Dmic60 cells was very slow on respi-

ratory medium (Figure 7A) and the rate of mtDNA loss was higher in this mutant, indicating that in

the absence of fully functional Mgm1, MICOS and thereby CJs and tubular cristae contribute to

maintenance of mtDNA (Figure 7B). The steady state levels of the mitochondrial proteins analyzed

were similar to those in Ddnm1 cells. MICOS components were an exception, as they were reduced

to different degrees. This was, however, also observed with the 4mic10 or 4mic60 single deletion

mutants. The level of Cox2, a mitochondrial gene product, was also reduced (Figure 7C). We sug-

gest that in Ddnm1Dmic60 mutant, in contrast to the Dmic60 single mutant in which lamellar cristae

can be made, the proteins and lipids imported into the mitochondria invaginate the IBM. This results

in irregular networks which, as indicated by the biochemical and the growth phenotype, lack the

characteristic properties of cristae.

Deletion of both Dnm1 and Su e resulted in cells that grew extremely slowly on non-fermentable

carbon source (Figure 7A). Mitochondria contained many highly branched septa and multi-layered

onion-like profiles (Figure 7G). In addition, mtDNA was lost at a high rate, indicating that dimeric

F1FO is important for maintenance of mtDNA when Mgm1 has no obvious role (Figure 7B). Strik-

ingly, mitochondria in the Ddnm1Dmgm1Dmic60 and the Ddnm1Dsu eDmic60 triple mutants showed

even more severe ultrastructural alterations than the Ddnm1Dmgm1, Ddnm1Dmic60, or Ddnm1Dsu e

double mutants. Fewer internal sheet-like membranes were present and approximately 50% of mito-

chondrial profiles were completely empty (Figure 7H). Loss of mtDNA in the Ddnm1Dmgm1Dmic60

triple mutant was particularly high (Figure 7B). Attempts to generate a respiratory competent

Ddnm1Dmgm1Dsu e triple or Ddnm1Dmgm1Dmic60Dsu e quadruple mutant by either strain crossing

Figure 7 continued

percentage of cells containing mtDNA was determined by DAPI staining. Mean values of three independent experiments. Error bars, standard

deviation. (C), Steady state levels of mitochondrial proteins in the Ddnm1 double mutant cells. Cells were grown on YPG medium, proteins were

extracted and their levels were analyzed by SDS-PAGE and immunoblotting. Arrow head, l-Mgm1; arrow, s-Mgm1. (D) Mitochondrial ultrastructure of

Ddnm1Dmgm1 cells analyzed by EM. (E) Tomographic reconstruction of a mitochondrion of a Ddnm1Dmgm1 cell. Green, IBM and cristae connected to

the IBM; blue, tubular cristae without visible connection to the IBM; yellow, tubular cristae without connection to the IBM. (F) Tomographic

reconstruction of a mitochondrion of a Ddnm1Dmic60 cell. Green, IBM; other colors, perforated tubular-sheet like membrane structures in the matrix

without connections to the IBM. To be able to discriminate between the different tubular elements they are shown in different colors. (G) Ultrastructure

of mitochondria in Ddnm1Dsu e cells. (H) Quantitative evaluation of the EM analysis of the indicated mutant strains. Scale bars, 0.2 mm.

DOI: 10.7554/eLife.18853.016

The following figure supplement is available for figure 7:

Figure supplement 1. Mitochondrial outer membrane fusion is important but not essential for the formation of lamellar cristae.

DOI: 10.7554/eLife.18853.017
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or direct deletion were not successful, suggesting that the simultaneous loss of Mgm1, F1FO dimers

and MICOS is deleterious for crista formation and/or maintenance of mtDNA.

We conclude that the pathway of tubular crista formation does not need the fusion activity of

Mgm1, but does require both MICOS and dimeric F1FO. In contrast, the pathway leading to the for-

mation of lamellar cristae, in addition to MICOS and dimeric F1FO, appears to depend on Mgm1.

Furthermore, the drastically altered membrane structures present in cells lacking Dnm1 and at the

same time MICOS core components or Su e cannot substitute for lamellar and tubular cristae to

maintain mtDNA and respiratory growth.

Discussion
Major advances have been made in our understanding of the biogenesis of mitochondrial protein

complexes and supercomplexes, but the biogenesis of mitochondrial architecture, the next higher

level of organization, has been investigated to a much lesser degree. In particular, organization and

formation of the cristae are poorly understood. We report here on novel and basic insights into the

molecular mechanisms underlying the formation of lamellar and of tubular cristae, and the key fac-

tors involved in these pathways.

Three factors have decisive functions in the biogenesis of cristae: Mgm1, the dimeric F1FO-ATP

synthase, and the MICOS complex. Based on our findings and the literature about these three fac-

tors and their interactors, we developed a hypothesis that postulates the existence of two distinct

mechanisms for the generation of lamellar and tubular cristae. Regarding the formation of lamellar

cristae, a first important issue is how Mgm1 performs fusion of the mitochondrial IM (Figure 8A). It

is known that dysfunction of the components that mediate mitochondrial membrane fusion, Fzo1,

Ugo1, and Mgm1, leads to loss of mtDNA and loss of cristae, concomitant with septa formation and

inhibition of IM fusion (Hermann et al., 1998; Hoppins et al., 2009; Meeusen et al., 2006;

Sesaki et al., 2003). It was shown that Fzo1 in the OM interacts with the IM, and Mgm1 in the inner

membrane interacts physically with Fzo1 and Ugo1 in the OM (Fritz et al., 2001; Sesaki et al.,

2003; Wong et al., 2003). Both l-Mgm1 anchored in the IM and s-Mgm1 bound to the OM are

required for fusion (DeVay et al., 2009; Zick et al., 2009). These observations suggest a mechanism

by which progression of IM fusion takes place at sites where IM and OM are in close contact

(Figure 8A). Fusion of the OM by Fzo1 would first generate a mitochondrion with a planar septum

consisting of non-fused IM. Tethering of these two IMs by Mgm1 could take place at the IM surface

in contact with the OM. According to our hypothesis, the fusion of the IM is then initiated by Mgm1

and proceeds along the IM-OM contacts, thereby generating a membrane sac protruding into the

matrix. Shifting the temperature sensitive mgm1-5 mutant to non-permissive temperature leads to

rapid fragmentation of mitochondria (Meeusen et al., 2006; Wong et al., 2000). Quantitative EM

analysis of this process reveals that, in addition to fragmentation, a rapid and extensive loss of cris-

tae takes place, while septa are formed. These findings strongly suggest that the activity of Mgm1

not only is required for fusion but also for maintenance of cristae. Importantly, cristae are rapidly

regenerated upon reactivation of Mgm1. Equally important, mtDNA is retained during inactivation

of Mgm1 and remains functional. Thus, it is not the loss of mtDNA that causes loss of cristae and for-

mation of septa, emphasizing a role of Mgm1 in crista maintenance.

At the same time these findings raise the question how this rapid reformation of cristae can be

explained. The fusion rate of mitochondria in wild type cells has been measured by live cell micros-

copy (Jakobs et al., 2003). Under steady-state conditions at least one fusion and one fission event

was observed per minute and cell. This rate is apparently determined by regulatory processes that

ensure a balance of fusion and fission. In contrast, fusion of the IM in mgm1-5 mutant cells by reacti-

vation of Mgm1 is likely to reflect an entirely different situation. Here, the conversion of a septum to

a crista requires only the time of IM fusion by Mgm1 which upon its reactivation is immediately ready

to function. The overall process of mitochondrial fusion requires a multitude of steps, including

fusion of the OM. Fusion of the IM likely represents one of the fastest steps. Notably in this context,

fusion intermediates have not been identified convincingly in intact cells. These conclusions are in

good agreement with observations that acute ablation of Opa1 in mouse embryonic fibroblasts

leads to disorganized cristae and reduced respiratory function, but maintenance of mtDNA

(Cogliati et al., 2013).

The conversion of two membranes into a single one by Mgm1 entails the necessity to bend the

membrane. Very interestingly, recent experiments with reconstituted vesicles have revealed that
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Mgm1 mediates membrane bending

(Rujiviphat et al., 2015). Bending of crista mem-

branes takes place only when the F1FO-ATP syn-

thase can dimerize (Davies et al., 2012;

Rabl et al., 2009). Therefore, it is reasonable to

assume that bending of crista membranes takes

place concurrently with the fusion process, and

dimeric F1FO-ATP synthase is required to stabilize

the bending of the membrane. Importantly,

according to our model, in the absence of Su e, a

dimerization component of the F1FO-ATP syn-

thase, fusion of IM by Mgm1 cannot take place.

Rather, OM fusion still occurs in the absence of

IM fusion and septa are generated. The continual

import of proteins and lipids then leads to expan-

sion of the septa membranes. This expansion

may cause the curved structures of septa that in

EM sections appear as onion-like profiles

(Figure 1).

Our hypothesis proposes that fusion of IM is

halted by the assembly of MICOS complexes,

leading to the generation of a CJ and thereby represents the final step in the formation of lamellar

cristae (Figure 8A). In agreement with this speculation, we found that the MICOS component Mic10

is preferentially located at sites where septa merge with the IMS, the septum junctions. Our hypoth-

esis does not exclude a stabilizing function of MICOS for cristae. Since membrane proteins and pro-

tein complexes can shuttle between cristae and the IBM (Vogel et al., 2006), it seems likely that a

major reason for crista stability is the continued presence and activity of Mgm1. In addition, our

hypothesis provides a rational explanation for the generation of the stacked closed membrane

sheets lacking connection with the IBM that are formed in the absence of functional MICOS com-

plex. In the absence of the MICOS core components, Mic60 and Mic10, fusion proceeds as in WT

cells, but cannot be halted (Figure 8A). Interestingly, a very similar mechanism was suggested for

the fusion of vacuoles, the yeast homolog of lysosomes (Wickner, 2010). Upon fusion of vacuoles an

internal vesicle is generated (Wang et al., 2002). It might well be that these vesicles are generated

like the internal stacks in Mic10 or Mic60 deletion mutants. According to our hypothesis, during

fusion septa membranes and the nascent crista membrane form a continuum. This allows free distri-

bution of proteins between the IBM and the nascent crista membrane. This would also explain the

similarity of the composition of intramitochondrial membrane sheets, made in the absence of

MICOS, to crista membranes as well as their full functionality in mediating OXPHOS.

After completion of fusion and formation of CJs, cristae may grow by uptake of newly synthesized

proteins, along with assembly of subunits of the F1FO-ATP synthase, which extend the crista rims.

Thus, our hypothesis also offers an explanation of how the characteristic shape of lamellar cristae is

generated and how cristae can expand.

Our results also suggest the existence of a second pathway of crista biogenesis (Figure 8B). In

this pathway, import of newly synthesized proteins and lipids into the IBM and passage through CJs

leads to the formation of tubular cristae. Assembly of CJs can take place since a pool of MICOS sub-

units is present in the IBM (Harner et al., 2011). Interestingly, oligomeric forms of the MICOS sub-

unit Mic10 can induce membrane curvature in vitro and were suggested to form CJs in vivo

(Barbot et al., 2015; Bohnert et al., 2015; Milenkovic and Larsson, 2015). We propose that the

shape of CJs formed by the MICOS complex determines the tubular shape of nascent cristae. Dimer-

ization of F1FO would stabilize bending of the tubular cristae, very much like it stabilizes the rims of

lamellar cristae. Interestingly, regular helical zipper-like structures of presumably dimeric F1FO were

observed at the surface of the tubular cristae of the protist Paramecium multimicronucleatum by

scanning EM (Allen et al., 1989). Remarkably, in the absence of both Dnm1 and functional MICOS,

tubules are formed. We suggest that they are generated by the continual influx of proteins and lipids

and shaped by dimeric F1FO. Since CJs are not formed, these tubules are rather unstable, having a

high tendency to fuse and to generate bizarre corrugated networks, and are not functional in

Video 5. 3D reconstruction with modelling of a

mitochondrion in the Ddnm1Dmic60 double deletion

mutant. Green, IBM and cristae connected to the IBM;

blue and red, fused tubular structures and perforated

tubular-sheet like membrane structures in the matrix

without connections to the IBM; yellow, ER-type

tubules.

DOI: 10.7554/eLife.18853.019
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Figure 8. Model of the formation of cristae by the fusion dependent and independent pathways. (A) Formation of lamellar cristae by the fusion

dependent pathway. Steps in the conversion of the septa membranes of two fusing mitochondria into a crista membrane. (a) Two mitochondria before

fusion; (b) after fusion of OM and before fusion of IM; (c) tethering of the two septa membranes; (d–e) progressing fusion intermediates; (f) final stage

of fusion after formation of a crista junction; (g) formation of a closed crista-like membrane vesicle without connection to the IBM in mutants deficient in

Figure 8 continued on next page
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OXPHOS and maintenance of mtDNA (Figure 8C). This points to a correlation between presence of

cristae and mtDNA. In fact, mtDNA, condensed in nucleoids, was reported to be bound to crista

membranes, possibly to crista rims (Kopek et al., 2012; Kukat and Larsson, 2013).

This second pathway of crista biogenesis suggested in our hypothesis becomes apparent when

fission is compromised. In this situation, the mitochondrial network is virtually completely fused and

Mgm1-dependent fusion activity should be drastically reduced. The lack of requirement of Mgm1 in

this pathway provides a rational explanation for the most surprising observation that Mgm1 can be

deleted in the Dnm1 deletion background without loss of cristae. Residual formation of lamellar cris-

tae in the absence of Dnm1 can be explained by residual fusion and fission activity of mitochondria

(Gorsich and Shaw, 2004; Ishihara et al., 2013; Westermann, 2010). The virtually complete lack of

lamellar cristae in cells deficient in both Dnm1 and Mgm1 further supports this assumption. Most

interestingly, a study on the role of Opa1 in mitochondrial cristae remodeling showed that mitochon-

dria isolated from mouse embryonic fibroblasts lacking functional Opa1 lacked lamellar cristae;

instead, these mitochondria contained short tubular-type cristae (Frezza et al., 2006). These obser-

vations are not only in very good agreement with our conclusions on a direct role of Mgm1 in crista

formation, but also point to the conservation of its role in crista biogenesis in mammalian cells.

Can both pathways of crista biogenesis coexist? This is clearly the case in yeast, as we observed

lamellar and, to a lower extent, tubular cristae in WT cells. Inspection of a large number of published

EM images of mitochondria from different cell types reveals a bias to lamellar vs. tubular cristae. For

example, lamellar cristae dominate in pancreatic cells and hepatocytes, whereas in steroidogenic

cells tubular cristae are the principle architectural feature. A mixed situation prevails in certain types

of muscle cells where both lamellar and tubular profiles can be recognized (Blinzinger et al., 1965;

Fawcett, 1981; Hanaki et al., 1985). Tomographic reconstruction is the optimal approach to deter-

mine precisely the distribution of these two types of cristae. Such a study has been performed with

cerebellar neuronal cells and revealed lamellar and tubular cristae that are regularly connected by

sites of fusion (Perkins et al., 1997). Furthermore, the differentiation of isolated zona glomerulosa

cells of rat adrenal cortex triggered by treatment with adrenocorticotropic hormone leads to a dras-

tic change of the corticoid hormones synthesized and to a concomitant transformation of the crista

structure from mainly “lamellar-tubular” to “tubular-convolute” (Andreis et al., 1990). Interestingly,

steroidogenesis in human trophoblasts was reported to be dependent on the activity of Opa1. Dur-

ing developmental induction of the steroidogenic pathway, Opa1 levels decreased and steroid for-

mation increased. Manipulations of cells to increase Opa1 levels led to decreased efficiency of

steroidogenesis. At the same time, crista structure was observed to be remodeled

(Wasilewski et al., 2012). Altogether, many basic questions need to be answered, including how

mitochondrial architecture is modulated in response to metabolic and developmental requirements,

how the state of cellular differentiation affects mitochondrial ultrastructure and why specific crista

structures are necessary for specific cellular functions.

In conclusion, our investigation of the determinants of mitochondrial architecture has led us to an

entirely novel concept of pathways of mitochondrial biogenesis. Since the identified key players are

highly conserved from yeast to human, our study has immediate relevance for the relationship of

structure and function of mammalian mitochondria of different tissues under normal and dysfunc-

tional conditions. Finally, our results emphasize that understanding inheritance and homeostasis of

mitochondria requires an integrated view on their three-dimensional architecture and the molecular

topological functions of the various key players involved.

Figure 8 continued

Mic60 or Mic10. (B) Formation of tubular cristae by the fusion independent pathway. (C) Formation of bizarre membrane assemblies in mitochondria of

MICOS deficient cells by the fusion independent pathway. Blue lines, OM; green lines, IBM, septa membrane and crista membrane; light green, matrix

space.
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Materials and methods

Yeast strains and growth conditions
S. cerevisiae strains YPH499 or W303 were used as wild type (WT). Genetic manipulations were per-

formed according to standard procedures (Longtine et al., 1998). The genotypes are listed in

Table 1. Cells were grown as indicated on YPD (1% yeast extract, 2% peptone, 2% glucose), YPGal

(1% yeast extract, 2% peptone, 2% galactose) or YPG (1% yeast extract, 2% peptone, 3% glycerol)

(Sherman, 1991). mgm1-5 cells were kept at 25˚C to avoid loss of mtDNA. Loss of Mgm1 function

was induced by resuspension of cells in pre-warmed liquid medium and subsequent incubation at

37˚C for 25 min. For restoration of Mgm1 function, cells were resuspended in liquid medium (25˚C)
and incubated for additional 30 min.

Isolation of mitochondria
Mitochondria were isolated as described (Lee et al., 1998). Cells were cultured to a final OD600 of

0.8–1.2 and harvested by centrifugation for 5 min at 2000 xg at RT. Cells were washed with 40 ml

water and the wet weight was measured. They were resupended in 30 ml of alkaline solution (100

mM Tris (pH not adjusted), 10 mM DTT) and incubated for 30 min at 30˚C under gentle agitation.

Cells were harvested, washed once with spheroplast buffer (20 mM Tris-HCl pH 7.4, 1 mM EDTA,

Table 1. Genotypes of the strains used in the study. Left column, names of the stains. Right column, genotypes of the strains.

Strain Genotype

W303 WT MATa or MATa, ade2-1, leu2-3, his3-11,15, trp1-1, ura3-1, can1-100

W303 mgm1-5 MATa, ade2-1, leu2-3, his3-11,15, trp1-1, ura3-1, can1-100, mgm1-5 (G408 to D408) (Wong et al., 2000)

YPH499 WT MATa; ura3-52, lys2-801amber, ade2-101ocre, trp1-D63, his3-D200, leu2-D1} or BY4724 {MATa; his3D1; leu2D0; lys2D0; ura3D0

Dsu e MATa; ura3-52, lys2-801amber, ade2-101ocre, trp1-D63, his3-D200, leu2-D1, su e::HISI3

F1b-3xHA MATa; ura3-52, lys2-801amber, ade2-101ocre, trp1-D63, his3-D200, leu2-D1, F1b-3xHA::HISI3

Dsu e F1b-3xHA MATa; ura3-52, lys2-801amber, ade2-101ocre, trp1-D63, his3-D200, leu2-D1, su e::HISI3, F1b-3xHA::TRP1

Su e-3xHA MATa; ura3-52, lys2-801amber, ade2-101ocre, trp1-D63, his3-D200, leu2-D1} or BY4724 {MATa; his3D1; leu2D0; lys2D0; ura3D0; Su
e-3xHA::HIS3

Dmgm1 MATa; ura3-52, lys2-801amber, ade2-101ocre, trp1-D63, his3-D200, leu2-D1, mgm1::KAN

Mgm1-3xHA MATa; ura3-52, lys2-801amber, ade2-101ocre, trp1-D63, his3-D200, leu2-D1, MGM1-3xHA::TRP1

Dmic60 F1b-3xHA MATa; ura3-52, lys2-801amber, ade2-101ocre, trp1-D63, his3-D200, leu2-D1, mic60::His3, F1b-3xHA::TRP1

Cox5A-3xHA MATa; ura3-52, lys2-801amber, ade2-101ocre, trp1-D63, his3-D200, leu2-D1} or BY4724 {MATa; his3D1; leu2D0; lys2D0; ura3D0;
COX5A-3xHA::KAN

Dmic60 Cox5A-
3xHA

MATa; ura3-52, lys2-801amber, ade2-101ocre, trp1-D63, his3-D200, leu2-D1, mic60::His3, COX5A-3xHA::KAN

Ddnm1 MATa; ura3-52, lys2-801amber, ade2-101ocre, trp1-D63, his3-D200, leu2-D1, dnm1::KAN

Dmic10 MATa; ura3-52, lys2-801amber, ade2-101ocre, trp1-D63, his3-D200, leu2-D1} or BY4724 {MATa; his3D1; leu2D0; lys2D0; ura3D0;
mic10::KAN

Dmic60 MATa; ura3-52, lys2-801amber, ade2-101ocre, trp1-D63, his3-D200, leu2-D1} or BY4724 {MATa; his3D1; leu2D0; lys2D0; ura3D0;
mic60::HIS3

Ddnm1 Dmgm1 MATa; ura3-52, lys2-801amber, ade2-101ocre, trp1-D63, his3-D200, leu2-D1, dnm1::KAN, mgm1::hphNT1

Ddnm1 Dfzo1 MATa, ura3-52, lys2-801amber, ade2-101ocre, trp1-D63, his3-D200, leu2-D1, dnm1::HIS3, fzo1::KAN, rho+

Ddnm1 Dmic10 MATa; ura3-52, lys2-801amber, ade2-101ocre, trp1-D63, his3-D200, leu2-D1, dnm1::KAN, mic10::hphNT1

Ddnm1 Dmic60 MATa; ura3-52, lys2-801amber, ade2-101ocre, trp1-D63, his3-D200, leu2-D1, dnm1::KAN, mic60::HIS3

Ddnm1 Dsu e MATa; ura3-52, lys2-801amber, ade2-101ocre, trp1-D63, his3-D200, leu2-D1, dnm1::KAN, su e::HIS3

Ddnm1 Dmgm1
Dmic60

MATa; ura3-52, lys2-801amber, ade2-101ocre, trp1-D63, his3-D200, leu2-D1} or BY4724 {MATa; his3D1; leu2D0; lys2D0; ura3D0;
dnm1::KAN, mic60::HIS3; mgm1::hphNT1

Ddnm1 Dsu e
Dmic60

MATa; ura3-52, lys2-801amber, ade2-101ocre, trp1-D63, his3-D200, leu2-D1} or BY4724 {MATa; his3D1; leu2D0; lys2D0; ura3D0;
dnm1::KAN, mic60::HIS3; su e::HIS3

DOI: 10.7554/eLife.18853.021
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1.2 M sorbitol), resuspended in spheroplast buffer (10 ml/g wet weight) containing 6.6 mg Zymo-

lyase per g wet weight and incubated for 30 min at 30˚C. Spheroplasts were harvested by centrifu-

gation at 2000 xg at 4 ˚C for 5 min and washed twice with 15 ml ice-cold lysis buffer (20 mM MOPS-

KOH pH 7.2, 1 mM EDTA, 0.6 M sorbitol, 0.2 % (w/v) BSA, 1 mM PMSF). Spheroplasts were resus-

pended in 15 ml ice-cold lysis buffer by pipetting using a Pipetman P5000 (Gilson, Middleton, USA)

with 1cm cutoff P5000 tips. Unbroken spheroplasts were harvested by centrifugation at 2000 xg at 4

˚C for 5 min and again resuspended in ice-cold lysis buffer. The supernatants were collected, pooled

and mitochondria were harvested by centrifugation at 12,000 xg and 4˚C for 5 min. Mitochondria

were washed once with SM buffer (20 mM MOPS, pH 7.4, 0.6 M sorbitol) and finally resuspended in

SM buffer.

Subfractionation of mitochondria
Generation and separation of membrane vesicles were performed as described previously

(Harner et al., 2011). 10 mg of freshly isolated mitochondria were resuspended in SM buffer, then

20 ml swelling buffer (20 mM MOPS, pH 7,4, 0.5 mM EDTA, 1 mM PMSF, 1x Roche complete prote-

ase inhibitor) were added dropwise, followed by incubation under continuous stirring for 30 min on

ice. 5 ml 2.5 M sucrose were added and the suspension was incubated for 15 min on ice. The sus-

pension was subjected to sonication for 3 times 30 s with 30 s breaks on ice at 60% duty cycle and

output control 0 (Branson Sonifier 250; Branson, Danbury, USA) using a microtip. Residual intact

mitochondria were removed by centrifugation for 20 min at 20,000 xg and 4˚C. The submitochon-

drial vesicles were concentrated on a 2.5 M sucrose cushion by high speed centrifugation (120,000

xg for 100 min at 4˚C). The vesicle pellet was resuspended, loaded under a continuous sucrose gra-

dient (0.8-1.25 M sucrose in 20 mM MOPS, pH 7.4, 0.5 mM EDTA) and separated by centrifugation

for 24 h at 200,000 xg and 4˚C. The gradient was fractionated in 500 ml fractions, the proteins were

TCA precipitated and analyzed by SDS-PAGE and immunoblotting.

Drop dilution assay
Cells were grown in YPG liquid medium and kept in logarithmic phase, washed once with water,

diluted in water to an OD600 of 0.3. Afterwards serial dilutions were performed (1:10; 1:100; 1:1000;

1:10,000). 3 ml of each dilution were spotted on agar plates containing the indicated media and

were incubated at 30˚C.

Maintenance of mtDNA and DAPI staining
Yeast strains were grown on YPG plates to select for mtDNA, transferred to liquid YPD medium to

allow for loss of mtDNA and continuously kept in the logarithmic growth phase. At time point 0 and

after 48 hr the percentage of cells containing mtDNA was determined by DAPI staining. DAPI stain-

ing was performed as described (Harner et al., 2014).

Generation of yeast cell extract
For analysis of cell extracts the strains were grown to logarithmic phase. Cells (OD600 12.5) were har-

vested by centrifugation, washed with water and resuspended 1ml water containing 100 mg PMSF.

Cells were lysed by incubation for 10 min in 0.25 M NaOH and 1 % b-mercapto ethanol (final con-

centration). Proteins were subjected to TCA precipitation and acetone washed. The pellets were

resuspended in 100 ml Laemmli buffer.

Electron microscopy
Electron microscopy of chemically fixed cells was performed as described (Bauer et al., 2001). Ultra-

thin sections were collected on Pioloform-coated copper slot grids (Plano, Wetzlar, Germany) and

stained with uranyl acetate and lead citrate (Reynolds, 1963). For electron microscopy after cryo-

sectioning (Tokuyasu method), cells were grown to exponential phase in YPD or YPG medium, chem-

ically fixed, embedded in 12% gelatin and cryo-sectioned as described previously (Griffith et al.,

2008). Ultrathin cryo-sections were collected with a 1:1 mixture of 2% methylcellulose (in ddH2O)

and 2.3 M, sucrose 120 mM PIPES, 50 mM HEPES, pH 6.9, 4 mM MgCl2, 20 mM EGTA and layered

on Formvar/carbon coated copper 100 mesh grids. Structural phenotypes were analyzed by evalua-

tion of 100 mitochondrial profiles unless otherwise indicated. Immunological reactions were
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performed with monoclonal anti-HA (RRID:AB_514505) and a protein A-gold 10 nm conjugate. Pro-

tein localization gold particles present in 100 cells were counted. Samples for the electron tomogra-

phy analyses were processed as previously described (Mari et al., 2014).

Blue native gel electrophoresis (BN-PAGE)
75 mg of mitochondria were pelleted by centrifugation and resuspended in BN-lysis buffer

(Wittig et al., 2006). For analysis of F1FO-ATP synthase or MICOS complex 1 % (w/v) or 3 % (w/v)

digitonin were used. Cleared lysates were supplemented with Native PAGE 5% G-250 Sample Addi-

tive and subjected to BN-PAGE (Native PAGE 3–12% Bis-Tris; Life Technologies, Carlsbad, CA,

USA). After blotting on PVDF membranes (Roth, Karlsruhe, Germany) immuno-decoration using the

indicated antibodies was performed.
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