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Given multivariate data, many research questions pertain to the covariance structure: whether and
how the variables (e.g., personality measures) covary. Exploratory factor analysis (EFA) is often
used to look for latent variables that might explain the covariances among variables; for example,
the Big Five personality structure. In the case of multilevel data, one might wonder whether or not
the same covariance (factor) structure holds for each so-called data block (containing data of 1
higher level unit). For instance, is the Big Five personality structure found in each country or do
cross-cultural differences exist? The well-known multigroup EFA framework falls short in
answering such questions, especially for numerous groups or blocks. We introduce mixture
simultaneous factor analysis (MSFA), performing a mixture model clustering of data blocks,
based on their factor structure. A simulation study shows excellent results with respect to
parameter recovery and an empirical example is included to illustrate the value of MSFA.

Keywords: factor analysis, latent variables, mixture model clustering, multilevel data

Given multivariate data, researchers often wonder whether
the variables covary to some extent and in what way. For
instance, in personality psychology, there has been a debate
about the structure of personality measures (i.e., the Big
Five vs. Big Three debate; De Raad et al., 2010).
Similarly, emotion psychologists have discussed intensely
whether and how emotions as well as norms for experien-
cing emotions can be meaningfully organized in a low-
dimensional space (e.g., Ekman, 1999; Fontaine, Scherer,

Roesch, & Ellsworth, 2007; Russell & Barrett, 1999;
Stearns, 1994). Factor analysis (Lawley & Maxwell, 1962)
is an important tool in these debates as it explains the
covariance structure of the variables by means of a few
latent variables, called factors. When the researchers have
a priori assumptions on the number and nature of the under-
lying latent variables, confirmatory factor analysis (CFA) is
often used, whereas exploratory factor analysis (EFA) is
applied when one has no such assumptions.

Research questions about the covariance structure get further
ramifications when the data have a multilevel structure; for
instance,when personalitymeasures are available for inhabitants
from different countries. We refer to data organized according to
the higher level units (e.g., the countries) as data blocks. For
multilevel data, one can wonder whether or not the same struc-
ture holds for each data block. For example, is the Big Five
personality structure found in each country or not (De Raad
et al., 2010)? Similarly, many cross-cultural psychologists
argue that the structure of emotions and emotion norms differ
between cultures (Eid & Diener, 2001; Fontaine, Poortinga,
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Setiadi, & Markam, 2002; MacKinnon & Keating, 1989;
Rodriguez & Church, 2003).

When looking for differences and similarities in covariance
structures, using EFA is very advantageous because it leaves
more room for finding differences than CFA does. For instance,
in the emotion norm example (Eid & Diener, 2001), one might
very well expect two latent variables to show up in each country
corresponding to approved and disapproved emotions, being
clueless about which emotions will be (dis)approved and how
this differs across countries. In the search for such differences
and similarities, one might perform a multigroup or multilevel1

EFA (Dolan, Oort, Stoel, & Wicherts, 2009; Hessen, Dolan, &
Wicherts, 2006;Muthén, 1991), or an EFAper data block. These
methods fall short in answering the research question at hand,
however. Multigroup or multilevel EFA can be used to test
whether or not between-group differences in factors are present,
but neither of them indicate how they are different and for which
data blocks. When multigroup or multilevel EFA indicates the
presence of between-block differences, one can compare the
block-specific EFA models to pinpoint differences and simila-
rities. When many groups are involved, however, the numerous
pairwise comparisons are neither practical nor insightful; that is,
it is hard to draw overall conclusions based on a multitude of
pairwise similarities and dissimilarities. For instance, we present
data on emotion norms for 48 countries. Because multigroup
EFA indicates that the factor structure is not equal across groups,
comparing the group-specific structures would be the next step.
It would be a daunting task, however, with no fewer than 1,128
pairwise comparisons. More important, subgroups of data
blocks might exist that share essentially the same structure and
finding these subgroups is substantively interesting. Multilevel
mixture factor analysis (MLMFA; Varriale & Vermunt, 2012)
performs a mixture clustering of the data blocks based on some
parameters of their underlying factormodel, but it does not allow
the factors themselves to differ across the data blocks.

Within the deterministic modeling framework, however, a
method exists that clusters data blocks based on their under-
lying covariance structure and performs a simultaneous com-
ponent analysis (SCA, which is a multigroup extension of
standard principal component analysis [PCA]; Timmerman
& Kiers, 2003) per cluster. The so-called clusterwise SCA
(De Roover, Ceulemans, & Timmerman, 2012; De Roover,
Ceulemans, Timmerman, Nezlek, & Onghena, 2013; De
Roover, Ceulemans, Timmerman, & Onghena, 2013; De
Roover, Ceulemans, Timmerman, et al., 2012) has proven its
merit in answering questions pertaining to differences and
similarities in covariance structures (Brose, De Roover,
Ceulemans, & Kuppens, 2015; Krysinska et al., 2014).

However, the method also has an important drawback, which
follows from its deterministic nature, in that no inferential tools
are provided for examining parameter uncertainty (e.g., stan-
dard errors, confidence intervals), conducting hypothesis tests
(e.g., to determine which factor loading differences between
clusters are significant), and performing model selection.
Furthermore, even though similarities between component
and factor analyses have been well-documented (Ogasawara,
2000; Velicer & Jackson, 1990; Velicer, Peacock, & Jackson,
1982), the theoretical status of components and factors is not
the same (Borsboom, Mellenbergh, & van Heerden, 2003;
Gorsuch, 1990). Therefore, to examine covariance structure
differences in terms of differences in underlying latent vari-
ables (i.e., unobservable variables that have a causal relation-
ship to the observed variables), such as the previously
mentioned personality traits and affect dimensions, an EFA-
based method is to be preferred.

Therefore, we introduce mixture simultaneous factor ana-
lysis (MSFA), which encompasses a mixture model clustering
of the data blocks, based on their underlying factor structure.
MSFA can be estimated by means of Latent GOLD (LG;
Vermunt & Magidson, 2013) or Mplus (Muthén & Muthén,
2005). Even though the stochastic framework provides many
inferential tools, various adaptations of the software will be
necessary to reach the full inferential potential of the MSFA
method (i.e., for the tools to be applicable for MSFA, as
explained later). Therefore, this article focuses mainly on the
model specification and an extensive evaluation of the good-
ness-of-recovery; that is, how well MSFA recovers the cluster-
ing as well as the cluster-specific factor models.

The remainder of this article is organized as follows. In the
next section, the multilevel multivariate data structure and its
preprocessing is discussed, as well as the model specifications
of MSFA, followed by its model estimation and its relations to
existing mixture or multilevel factor analysis methods. The
performance of MSFA is then evaluated in an extensive simu-
lation study, followed by an illustration of the method with an
application. Finally, the paper concludes with points of discus-
sion and directions for future research.

MIXTURE SIMULTANEOUS FACTOR ANALYSIS

Data Structure and Preprocessing

We assume multilevel data, which implies that observations
or lower level units are nested within higher level units (e.g.,
patients within hospitals, pupils within schools, inhabitants
within countries). Both the lower and the higher level units
are assumed to be a random sample of the population of
lower and higher level units, respectively. We index the
higher level units by i = 1, …, I and the lower level units
by ni = 1, …, Ni. The data of each higher-level unit i is
gathered in an Ni × J data matrix or data block Xi, where J
denotes the number of variables. Because MSFA focuses on

1Note that multilevel EFA (Muthén, 1991) models the pooled within-
block covariance structure and the covariance structure of the block-specific
means by lower and higher level factors, respectively. A connection
between equality of the lower versus higher order factor structure and
invariance of within-block factors across data blocks has been shown
(Jak, Oort, & Dolan, 2013), however.
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modeling the covariance structure of the data blocks
(within-block structure; Muthén, 1991), irrespective of dif-
ferences and similarities in their mean level (between-block
structure), all data blocks are columnwise centered before
the analysis.

Model Specification

MSFA applies common factor analysis at the observation
level and a mixture model at the level of the data blocks.
Specifically, we assume (a) that the observations are
sampled from a mixture of normal distributions that differ
with respect to their covariance matrices, but all have a zero
mean vector (which corresponds to all data blocks being
columnwise centered beforehand2), and (b) that all observa-
tions of a data block are sampled from the same normal
distribution.

More formally, the MSFA model can be written as
follows:

f Xi; θð Þ ¼
XK
k¼ 1

πk fk Xi; θkð Þ

¼
XK
k¼ 1

πk
YNi

ni ¼ 1

MVN xni ;
X

k

� �
with

X
k
¼ ΛkΛk

0 þ Dk

(1)

where f is the total population density function, and θ refers to
the total set of parameters. Similarly, fk refers to the kth cluster-
specific density function and θk refers to the corresponding set
of parameters. The latter densities are specified as K normal
distributions, the covariance matrices of which are modeled by
cluster-specific factor models. Thus, θk refers to the cluster-
specific factor loadings in the J × Q matrix Λk (implying the
number of factors Q to be the same across clusters3) and the
unique variances on the diagonal of Dk . The mixing propor-
tions (i.e., the prior probabilities of a data block belonging to

each of the clusters) are indicated by πk, with
PK
k¼1

πk ¼ 1.

Equation 1 implies the following additional assumptions:
First, the cluster-specific covariance matrices are perfectly
modeled by the corresponding low-rank cluster-specific factor
models (i.e., no residual covariances, implying that Dk is a
diagonal matrix). Second, within each block, the observations
are locally independent, warranting the use of the multiplica-
tion operator in Equation 1. Third, we impose the factor scores
and the residuals to be normally distributed for each data

block, with the covariance matrix of the factor scores being
an identitymatrix and that of the residuals being equal toDk . In
this article, the factor (co)variance matrix is restricted to equal
identity for each data block to capture all differences in
observed-variable covariances by means of the cluster-specific
factor loadings—which implies creating the exact stochastic
counterpart of the clusterwise SCA variant described by De
Roover, Ceulemans, Timmerman, Vansteelandt, et al., (2012).
This has the interpretational advantage of establishing all
structural differences without having to inspect the (possibly
many) block-specific factor (co)variances. Of course, more
flexible model specifications in terms of the factor (co)var-
iances are possible. Note that the cluster-specific factors have
rotational freedom, which we take into account by using a
rotational criterion, such as Varimax (Kaiser, 1958) and gen-
eralized Procrustes rotation (Kiers, 1997), that enhances the
interpretability of the factor loading structures. Because factor
rotation is not yet included in LG, we take the loadings
estimated by LG 5.1 and rotate them in Matlab R2015b.

By means of Bayes’s theorem, the posterior classification
probabilities of the data blocks can be calculated, giving
information regarding the blocks’ cluster memberships and
the uncertainty about this clustering. Specifically, these prob-
abilities pertain to the posterior distribution (i.e., conditional
on the observed data) of the latent cluster memberships zik:

γ zikð Þ ¼ f zik ¼ 1jXi; θð Þ ¼ f Xi; zik ¼ 1ð Þ
f Xið Þ

¼ πk fk Xi; θkð ÞPK
k0¼1

πk 0 fk0 Xi; θk0ð Þ
(2)

Relations to Existing Methods

Because MSFA is an exploratory method, we omit related
confirmatory methods like mixture factor analysis (Lubke &
Muthén, 2005; Muthén, 1989; Yung, 1997), factor mixture
analysis (Blafield, 1980; Yung, 1997), multilevel factor
mixture modeling (Kim, Joo, Lee, Wang, & Stark, 2016),
and a number of multigroup CFA extensions (Asparouhov
& Muthén, 2014; Jöreskog, 1971; Muthén & Asparouhov,
2013; Sörbom, 1974). As mentioned earlier, methods based
on CFA leave less room to find differences. Indeed, CFA
imposes an assumed structure of zero loadings on the fac-
tors; thus, CFA-based methods can only account for differ-
ences in the size of the freely estimated (i.e., nonzero) factor
loadings. Specifically, we compare MSFA to (a) a nonmul-
tilevel mixture EFA model, called mixtures of factor analy-
zers (MoFA; McLachlan & Peel, 2000), and (b) a multilevel
mixture EFA model, MLMFA (Varriale & Vermunt, 2012).

MoFA performs a mixture clustering of individual observa-
tions based on their underlying EFA model. The observation-
level clusters differ with respect to their intercepts, factor
loadings, and unique variances, whereas the factors have

2An alternative would be to include block-specific (rather than cluster-
specific) means in the model. This does not affect the obtained solution.

3 Allowing for a different number of factors across the clusters complicates
the comparison of cluster-specific models and implies a severe model selection
problem (e.g., De Roover, Ceulemans, Timmerman, Nezlek, & Onghena, 2013)
that needs to be scrutinized in future research.
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means of zero and an identity covariance matrix per cluster. In
contrast, MSFA deals with block-centered multilevel data and
clusters data blocks (instead of individual observations) based
on their factor loadings and unique variances (omitting the
intercepts).

MLMFA models between-block differences in intercepts,
factor means, factor (co)variances, and unique variances by a
mixture clustering of the data blocks, but MLMFA requires
equal factor loadings across blocks. Hence, the MLMFA
model specification differs in the following respects from
MSFA. First, unlike in MSFA, the cluster-specific means of
the K multivariate normal distributions are not restricted to
zero and capture between-block differences in mean levels on
either the observed variables (intercepts) or the latent vari-
ables (factor means). Second, unlike MSFA,MLMFAmodels
differences in covariance structures by means of differences
in unique variances and factor (co)variances but not by dif-
ferences in factor loadings (i.e., in contrast to Equation 1,
loadings are common across clusters). Thus the range of
covariance differences that MLMFA can capture is rather
limited when compared to MSFA. Moreover, because both
mean levels and covariance structures are taken into account,
the MLMFA clustering will often be dominated by the means
because they have a larger influence on the fit, whereas with
MSFA mean differences are discarded.

Model Estimation

The unknown parameters θ of the MSFA model are esti-
mated by means of maximum likelihood (ML) estimation.
This involves maximizing the logarithm of the likelihood
function:

log L θjXð Þ ¼ log
QI
i¼ 1

PK
k¼ 1

πk
QNi

ni ¼ 1

1
2πð ÞJ=2 Σkj j1=2 exp � 1

2 xniΣ
�1
k xni

0� � !

¼ PI
i¼ 1

log
PK
k¼ 1

πk
QNi

ni ¼ 1

1
2πð ÞJ=2 Σkj j1=2 exp � 1

2 xniΣ
�1
k xni

0� � !
:

(3)

where X is the N × J data matrix—with N ¼PI
i¼1

Ni—that is

obtained by vertically concatenating the I data blocks Xi. Note
that the likelihood function is computed as a product of the
likelihood contributions of the I data blocks, assuming that
they are a random sample and thus mutually independent. To

find the parameter estimates θ̂ that maximize Equation 3, ML
estimation is performed by LG, which uses a combination of
an expectation maximization (EM) algorithm and a Newton–
Raphson algorithm (NR; see Appendix A). Because the stan-
dard random starting values procedure turned out to be rather
prone to local maxima (especially when the number of clusters
or factors increases), we experimented with alternative starting
procedures. Appendix A describes the procedure we used,

which involves starting with a PCA solution to which random-
ness is added.

SIMULATION STUDY

Problem

To evaluate the model estimation performance in terms of the
sensitivity to local maxima and goodness of recovery, data sets
were generated (by LG 5.1) from an MSFA model with a
known number of clusters K and factors Q. We manipulated
six factors that all affect cluster separation: (a) the between-
cluster similarity of factor loadings, (b) the number of data
blocks, (c) the number of observations per data block, (d) the
number of underlying clusters and (e) factors, and (f) between-
variable differences in unique variances. Factor 1 pertains to
the similarity of the clusters and we anticipate the performance
to be lower when clusters have more similar factor loadings.
Factors 2 and 3 pertain to sample size. We expect the MSFA
algorithm to perform better with increasing sample sizes (i.e.,
more data blocks or observations per data block; de Winter,
Dodou, & Wieringa, 2009; Steinley & Brusco, 2011). With
respect to Factors 4 and 5 (i.e., the complexity of the under-
lying model), we hypothesize that the performance will
decrease with increasing complexity (de Winter et al., 2009;
Steinley & Brusco, 2011). Factor 6, between-variable differ-
ences in unique variances, was manipulated to study whether
and to what extent the performance of MSFA is affected by
these differences. Theoretically, MSFA should be able to deal
with these differences perfectly, in contrast to the existing
clusterwise SCA, which makes no distinction between com-
mon and unique variances (De Roover, Ceulemans,
Timmerman, Vansteelandt, et al. 2012).

Design and Procedure

The six factors were systematically varied in a complete
factorial design:

1. The between-cluster similarity of factor loadings at
two levels: medium, high similarity.

2. The number of data blocks I at three levels: 20, 100,
500.

3. The number of observations per data block Ni at five
levels: for the sake of simplicity, Ni is chosen to be
the same for all data blocks; specifically, equal to 5,
10, 20, 40, 80.

4. The number of clusters K at two levels: 2, 4.
5. The number of factors Q at two levels: 2, 4.
6. Between-variable differences in unique variances:

Differences among the diagonal elements in Dk (k = 1,
…, K) are either absent or present (explained later).
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With respect to the cluster-specific factor loadings, a
binary simple structure matrix was used as a common base
for each Λk . In this base matrix, the variables are equally
divided over the factors; that is, each factor gets six loadings
equal to one in the case of two factors, and three loadings
equal to one in case of four factors (see Table 1). To obtain
medium between-cluster similarity (Factor 1), each cluster-
specific loading matrix Λk was derived from this base
matrix by shifting the high loading to another factor for
two variables, whereas these variables differ among the
clusters (see Table 1). For the high similarity level, each
Λk was constructed from the base matrix by adding, for each
of two variables, a crossloading of √(.4) and lowering the
primary loading accordingly (see Table 1). Note that the
factor loadings are constructed such that each observed
variable has the same common variance per cluster—that
is, (1 – ek), where ek is the mean of the unique variances
within a cluster. To quantify the similarity of the obtained

cluster-specific factor loading matrices, they were orthogon-
ally Procrustes rotated to each other (i.e., for each pair of Λk

matrices, one was chosen to be the target matrix and the
other was rotated toward the target matrix) and a congru-
ence coefficient φ (Tucker, 1951) was computed4 for each
pair of corresponding factors in all pairs of Λk matrices,
where a congruence of one indicates that the two factors are
proportionally identical. Subsequently, a grand mean of the
obtained φ values was calculated, over the factors and
cluster pairs. On average, φ amounted to .73 for the medium
similarity condition and .93 for the high similarity
condition.

Regarding Factor 6, the first level of this factor was
realized by simply setting each diagonal element of Dk

equal to ek. For the second level, differences in unique
variance were introduced by ascribing a unique variance
of (ek − ek/2) to a randomly chosen half of the variables
and a unique variance of (ek + ek/2) to the other half of the
variables.

The simulated data were generated as follows: The num-
ber of variables J was fixed at 12 and an overall unique
variance ratio e of .40 was pursued for all simulated data

sets, where e ¼ 1
JK

PK
k¼1

traceðDkÞ ¼ 1
K

PK
k¼1

ek . Between-cluster

differences in ek were introduced for all data sets, because
they are usually present in empirical data sets. Specifically,
in the case of two clusters, the ek values are .20 and .60,
whereas in the case of four clusters, the intermediate values
of .30 and .50 are added for the additional clusters. To keep
the overall variance equal across the clusters, the Λk

matrices were row-wise rescaled by
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ek

p
. Finally, to

make the simulation more challenging, the cluster sizes
were made unequal. Specifically, the data blocks are divided
over the clusters such that one cluster is three times smaller
than the other cluster(s). Thus, in the case of two clusters,
25% of the data blocks were in one cluster and 75% in the
other one. In the case of four clusters, the small cluster
contained 10% of the data blocks whereas the other clusters
consisted of 30% each. The cluster memberships were gen-
erated by randomly assigning the correct number of data
blocks to each cluster, according to these cluster sizes.

For each cell of the factorial design, 20 raw data matrices
Xrwere generated, using the LG simulation procedure, as
described in Appendix C. The Xr

i matrices resulting from
the procedure were centered per variable, and their vertical
concatenation yields the total data matrix X. In total, 2
(between-cluster similarity of factor loadings) × 3 (number
of data blocks) × 5 (number of observations per data block)
× 2 (number of clusters) × 2 (number of factors) × 2
(between-variable differences in unique variances) × 20
(replicates) = 4,800 simulated data matrices were generated.

TABLE 1
Base Loading Matrix and the Derived Cluster-Specific Loading

Matrices for Clusters 1 and 2, in the Case of Two Factors (Top) and
in the Case of Four Factors (Bottom)

Base Loading Matrix Cluster 1 Cluster 2

Factor 1 Factor 2 Factor 1 Factor 2 Factor 1 Factor 2

Var. 1 1 0 λ1 λ2 1 0
Var. 2 1 0 1 0 λ1 λ2
Var. 3 1 0 1 0 1 0
Var. 4 1 0 1 0 1 0
Var. 5 1 0 1 0 1 0
Var. 6 1 0 1 0 1 0
Var. 7 0 1 λ2 λ1 0 1
Var. 8 0 1 0 1 λ2 λ1
Var. 9 0 1 0 1 0 1
Var. 10 0 1 0 1 0 1
Var. 11 0 1 0 1 0 1
Var. 12 0 1 0 1 0 1

F1 F2 F3 F4 F1 F2 F3 F4 F1 F2 F3 F4

Var. 1 1 0 0 0 λ1 λ2 0 0 1 0 0 0
Var. 2 1 0 0 0 1 0 0 0 λ1 λ2 0 0
Var. 3 1 0 0 0 1 0 0 0 1 0 0 0
Var. 4 0 1 0 0 λ2 λ1 0 0 0 1 0 0
Var. 5 0 1 0 0 0 1 0 0 λ2 λ1 0 0
Var. 6 0 1 0 0 0 1 0 0 0 1 0 0
Var. 7 0 0 1 0 0 0 1 0 0 0 1 0
Var. 8 0 0 1 0 0 0 1 0 0 0 1 0
Var. 9 0 0 1 0 0 0 1 0 0 0 1 0
Var. 10 0 0 0 1 0 0 0 1 0 0 0 1
Var. 11 0 0 0 1 0 0 0 1 0 0 0 1
Var. 12 0 0 0 1 0 0 0 1 0 0 0 1

Note. In the case of medium similarity λ1 equals 0 and λ2 equals 1,
whereas in the case of high similarity λ1 equals √(.6) and λ2 equals √(.4).
When the number of clusters is four, the two additional loading matrices are
constructed similarly; for example, in the four factor case, by shifting the
primary loading or adding a cross-loading for Variables 3 and 6 for Cluster
3, and for Variables 4 and 7 for Cluster 4.

4 The congruence coefficient (Tucker, 1951) between two column vec-
tors x and y is defined as their normalized inner product: φxy ¼ x0yffiffiffiffiffi

x0x
p ffiffiffiffiffi

y0y
p .
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Each data matrix X was analyzed by means of an LG syntax
specifying an MSFA model with the correct number of
clusters K and factors Q (e.g., Appendix B) and applying
25 different sets of initial values (generated as described in
Appendix A). No convergence problems were encountered
in this simulation study.

Results

First, the sensitivity to local maxima is evaluated. Second,
the goodness of recovery is discussed for the different
aspects of the MSFA model: the clustering, the cluster-
specific factor loadings, and the cluster-specific unique var-
iances. Finally, some overall conclusions are drawn.

Sensitivity to local maxima

To evaluate the occurrence of local maximum solutions,
we should compare the log L value of the best solution
obtained by the multistart procedure with the global ML
solution for each simulated data set. The global maximum is
unknown, however, because the simulated data do not per-
fectly comply with the MSFA assumptions and contain
error. Alternatively, we make use of a proxy of the global
ML solution; that is, the solution that is obtained when the
algorithm applies the true parameter values as starting
values. The final solution from the multistart procedure is
then considered to be a local maximum when its log L value
is smaller than the one from the proxy. By this definition,
only 227 (4.7%) local maxima were detected over all 4,800
simulated data sets. Not surprisingly, most of these occur in
the more difficult conditions; for example, 179 of the 227
local maxima are found in the conditions with a high
between-cluster similarity of the factor loadings and 153
are found for the most complex models; that is, when K as
well as Q equal four.

Goodness of cluster recovery

To examine the goodness of recovery of the cluster mem-
berships of the data blocks, we (a) compare the modal cluster-
ing (i.e., assigning each data block to the cluster for which the
posterior probability is the highest) to the true clustering, and
(b) investigate the degree of certainty of these classifications.
To compare the modal clustering to the true one, the Adjusted
Rand Index (ARI; Hubert & Arabie, 1985) is computed. The
ARI equals 1 if the two partitions are identical, and equals 0
when the overlap between the two partitions is at chance level.
The mean ARI over all data sets amounts to .93 (SD = 0.18),
which indicates a good recovery. The ARI was affected most
by the amount of available information. Specifically, the mean
ARI for the conditions with only 20 data blocks and five
observations per block was only .51, whereas the mean over
the other conditions was .96.

To examine the classification certainty (CC), we com-
puted the following statistics:

CCmean ¼
PI
i¼1

PK
k¼1

ẑikγ zikð Þ
I

and

CCmin ¼ min
i

XK
k¼1

ẑikγ zikð Þ
(4)

where γ zikð Þ and ẑik indicate the posterior probabilities
(Equation 2) and the modal cluster memberships (i.e., esti-
mates of the latent cluster membership zik), respectively. On
average, CCmean and CCmin amount to .9983 (SD = 0.007)
and .94 (SD = 0.14), respectively, indicating a very high
degree of certainty for the simulated data sets. Because
CCmean hardly varies over the simulated data sets, we
focused on CCmin and inspected to what extent it is related
to cluster recovery. To this end, a scatterplot of CCmin versus
the ARI is given in Figure 1. From Figure 1, it is apparent
that lack of classification certainty often does not coincide
with classification error or the other way around.

Goodness of loading recovery

To evaluate the recovery of the cluster-specific loading
matrices, we obtained a goodness-of-cluster-loading-recovery
statistic (GOCL) by computing congruence coefficients φ
(Tucker, 1951) between the loadings of the true and estimated
factors and averaging across factors and clusters as follows:

GOCL ¼

PK
k¼1

PQ
q¼1

φ λkq; λ̂kq
� �

KQ
(5)

with λkq and λ̂kq indicating the true and estimated loading
vector of the qth factor for cluster k, respectively. The
rotational freedom of the factors per cluster was dealt with
by an orthogonal Procrustes rotation of the estimated toward

FIGURE 1 Scatter plot of CCmin versus ARI for the simulated data sets.
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the true loading matrices. To account for the permutational
freedom of the cluster labels, the permutation was chosen
that maximizes the GOCL value. The GOCL statistic takes
values between 0 (no recovery at all) and 1 (perfect recov-
ery). For the simulation, the average GOCL is .98
(SD = 0.04), which corresponds to an excellent recovery.
As for the clustering, the loading recovery depends strongly
on the amount of information; that is, the mean GOCL is .87
for the conditions with only 20 data blocks and five obser-
vations per block and .99 for the remaining conditions.

Goodness of unique variance recovery

To quantify how well the cluster-specific unique var-
iances are recovered, we calculated the mean absolute dif-
ference (MAD) between the true and estimated unique
variances:

MADuniq ¼

PK
k¼1

PJ
j¼1

dkj � d̂kj
�� ��
KJ

(6)

On average, the MADuniq was equal to .06 (SD = 0.06). Like
the cluster and loading recovery, the unique variance recov-
ery depends most on the amount of information; that is, the
MADuniq has a mean value of .22 for the conditions with 20
data blocks or five observations per data block and .05 for
the other conditions. Also, the MADuniq value is affected by
the occurrence of Heywood cases (Van Driel, 1978), a
common issue in factor analysis pertaining to “improper”
factor solutions with at least one unique variance estimated
as being negative or equal to zero. When this occurs during
the estimation process, LG restricts it to be equal to a very
small number (Vermunt & Magidson, 2013). Therefore, for
the simulation, we consider a solution to be a Heywood case
when at least one unique variance in one cluster is smaller
than .0001. This was the case for 633 (13.2%) out of the
4,800 data sets, most of which occurred in the conditions
with 20 blocks or five observations per block and thus with
small within-cluster sample sizes (i.e., 601 out of the 633),
or in the case of four factors per cluster (i.e., 522 out of the
633). Specifically, the mean MADuniq is equal to .18 for the
Heywood cases and .04 for the other cases. In the literature,
a Heywood case has been considered a diagnostic of pro-
blems such as (empirically) underdetermined factors or
insufficient sample size (McDonald & Krane, 1979;
Rindskopf, 1984; Van Driel, 1978; Velicer & Fava, 1998).

Conclusion

The low sensitivity to local maxima indicated that the applied
multistart procedure is sufficient. The goodness-of-recovery
for the clustering, and cluster-specific factor loadings and

unique variances was very good, even in the case of very
subtle between-cluster differences in loading pattern, and was
mostly affected by the within-cluster sample size.

APPLICATION

To illustrate the empirical value of MSFA, we applied it to
cross-cultural data on norms for experienced emotions from
the International College Survey (ICS) 2001 (Diener, Kim-
Prieto, & Scollon, 2001; Kuppens, Ceulemans, Timmerman,
Diener, & Kim-Prieto, 2006). The ICS study included
10,018 participants from 48 different nations. Each of
them rated, among other things, how much each of 13
emotions is appropriate, valued and approved in their
society, using a 9-point Likert scale ranging from 1 (people
do not approve it at all) to 9 (people approve it very much).
Participants with missing data were excluded, so that 8,894
participants were retained. Differences between the coun-
tries in the mean norm ratings were removed by centering
the ratings per country.

MSFA is applied to this data set to explore differences
and similarities in the covariance structure of emotion norms
across the countries. To this end, the number of clusters and
factors to use needs to be specified. Within the stochastic
framework of MSFA, different information criteria are read-
ily available. Even though the Bayesian information criter-
ion (BIC; Schwarz, 1978) is often used for factor analysis or
clustering methods (Bulteel, Wilderjans, Tuerlinckx, &
Ceulemans, 2013; Dziak, Coffman, Lanza, & Li, 2012;
Fonseca & Cardoso, 2007), its performance for MSFA
model selection still needs to be evaluated. Therefore,
model selection is based on interpretability and parsimony
for this empirical example.

With respect to the number of factors, we a priori expect a
factor corresponding to the positive (i.e., approved) emotions
and a factor corresponding to the negative (i.e., disapproved)
emotions. To explore this hypothesis and to confirm the
presence of factor loading differences, we performed multi-
group EFA by means of the R packages Lavaan 0.5–15 and
SemTools 0.4–0 (Rosseel, 2012). A multigroup EFA with
group-specific loadings for one factor indicated a bad fit
(comparative fit index [CFI] = .74, root mean square error
of approximation [RMSEA] = .14), whereas the fit for two
(group-specific and orthogonal) factors was excellent
(CFI = .99, RMSEA = .03; Hu & Bentler, 1999), thus sup-
porting the hypothesis of two factors. When restricting the
loadings of these two factors to be invariant across countries,
the fit dropped severely (CFI = .78, RMSEA = .12). The latter
confirms that the countries differ in their factor loadings and,
thanks to MSFA, the 1,128 pairwise comparisons across the
48 country-specific EFA models are no longer needed to
explore these differences.
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The comparison of MSFA models with different numbers
of clusters and two factors per cluster indicated that, in
general, the same two extreme factor structures were always
found, with the additional clusters only leaving more room
for setting apart data blocks with an intermediate factor
structure. Thus, we select the MSFA model with two clus-
ters and two factors per cluster. The clustering of the
selected model is given in Table 2. Most countries are
assigned to the clusters with a posterior probability of 1,
whereas a negligible amount of classification uncertainty is
found for Slovakia and South Africa. To validate and inter-
pret the obtained clusters, we looked into some demo-
graphic measures that were available on the countries. An
interesting difference between the clusters pertained to the
Human Development Index (HDI) 1998, which was avail-
able from the Human Development Report 2000 (United

Nations Development Program, 2000) for 47 out of the 48
countries in the ICS study (i.e., only lacking for Kuwait).
The HDI takes on values between 0 and 1 and measures the
average achievements in a country in terms of life expec-
tancy, knowledge, and a decent standard of living. Figure 2a
depicts boxplots of the HDI per cluster and shows that
Cluster 1 contains less developed countries. Another aspect
distinguishing the clusters was the level of conservatism
(Schwartz, 1994), which was available for only half of the
countries. Conservatism corresponds to a country’s empha-
sis on maintaining the status quo, propriety, and restraining
actions or desires that might disrupt group solidarity or
traditional order. Specifically, as Figure 2b shows, the coun-
tries in Cluster 1 are more conservative than the ones in
Cluster 2.

To shed light on how the covariance structure of emotion
norms differs between the conservative and less developed
countries on the one hand and the progressive and devel-
oped countries on the other hand, we first look at the
Varimax rotated cluster-specific factor loading matrices in
Table 3. As expected, the two factors correspond to positive
or approved and negative or disapproved emotions, respec-
tively, and they do so in both clusters, indicating that the
within-country covariance structures have much in com-
mon. In addition to slight differences in the size of primary
and secondary loadings, the most important and interesting
cross-cultural difference is found with respect to pride.
Specifically, in Cluster 1, the primary loading of pride is
on the negative factor, whereas, in Cluster 2, its primary
loading is on the positive factor. Thus, by applying MSFA,
we conveniently learned that in the conservative and less
developed countries of Cluster 1, pride is a disapproved
emotion, whereas in the progressive, developed countries

a) b)

FIGURE 2 Boxplots for (a) the Human Development Index (HDI) 1998 (United Nations Development Program, 2000) and (b) the level of conservatism
(Schwartz, 1994) of the countries per cluster of the Mixture Simultaneous Factor Analysis model with two clusters and two factors per cluster for the
International College Survey data set on emotion norms.

TABLE 2
Clustering of the Countries of the Mixture Simultaneous Factor

Analysis Model With Two Clusters and Two Factors Per Cluster for
the Emotion Norm Data From the 2001 ICS Study

Cluster 1 Bangladesh, Brazil, Bulgaria, Cameroon, Georgia, Ghana,
India, Iran, Nepal, Nigeria, Slovakia (γ zi1ð Þ= .9980), South
Africa (γ zi1ð Þ= .9965), Thailand, Turkey, Uganda,
Zimbabwe

Cluster 2 Australia, Austria, Belgium, Canada, Chile, China, Colombia,
Croatia, Cyprus, Egypt, Germany, Greece, Hong Kong,
Hungary, Indonesia, Italy, Japan, Kuwait, Malaysia,
Mexico, Netherlands, Philippines, Poland, Portugal, Russia,
Singapore, Slovenia, South Korea, Spain, Switzerland,
United States, Venezuela

Note. Except for Slovakia and South Africa, all countries are assigned
to the clusters with a posterior probability γ zikð Þ of 1. The probabilities for
Slovakia and South Africa are given in brackets.
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of Cluster 2, pride is more positively valued by society.
Possibly in Cluster 1 pride is considered to be an expression
of arrogance and superiority, whereas in Cluster 2 it is
regarded as a sign of self-confidence, which is a valued
trait in progressive and developed countries. To complete
the picture of the covariance differences, the cluster-specific
unique variances are given in Table 4. From Table 4, it is
apparent that all items have a higher unique variance in
Cluster 2, implying that they have more idiosyncratic varia-
bility in the progressive, developed countries.

In addition to the visual comparison of the cluster-specific
loadings (and unique variances), hypothesis testing is useful to

discern which differences are significant or not. By default, LG
provides the user with results of Wald tests for factor loading
differences across clusters (Vermunt & Magidson, 2013). We
need to eliminate the rotational freedom of the cluster-specific
factors for these results to make sense, however. This can be
done by a sensible set of loading restrictions such as echelon
rotation (Dolan et al., 2009; McDonald, 1999) and choosing
these restrictions is easier in the case of less clusters and less
factors per cluster. In Table 3, we see that jealousy has a
loading of (almost) zero in both clusters. Restricting this load-
ing to be exactly zero in both clusters imposes echelon rotation
and solves the rotational freedom. The resulting cluster-speci-
fic loadings are given in the lower portion of Table 3 and they
hardly differ (i.e., the difference is never larger than .03) from
the Varimax rotated ones. As indicated in Table 3, 8 factor
loadings are significantly different between the clusters at the
1% level, whereas 10 are significantly different at the 5% level
(Bonferroni correction for multiple testing was applied).5

DISCUSSION

In this article, we presented MSFA, a novel exploratory
method for clustering groups (i.e., higher level units or
data blocks, in general) with respect to the underlying factor
loading structure as well as their unique variances. When
researchers have statistical, empirical, or theoretical reasons
to expect possible differences, MSFA provides a solution to
evaluate which differences exist and for which blocks. The
solution is parsimonious because of the clustering of the
data blocks, implying that only a few cluster-specific factor
loading matrices need to be compared to pinpoint the

TABLE 4
Unique Variances of the Mixture Simultaneous Factor Analysis Model
With Two Clusters and Two Factors Per Cluster for the Emotion

Norm Data From the 2001 ICS Study

Cluster 1 Cluster 2

Contentment 1.47 3.48
Happy 0.63 1.39
Love 1.21 2.37
Sad 2.76 4.19
Jealousy (in romantic situations) 2.85 4.94
Cheerful 1.53 2.38
Worry 2.01 2.86
Stress 2.15 2.63
Anger 1.87 2.23
Pride 3.41 5.33
Guilt 2.80 4.42
Shame 3.01 4.85
Gratitude 2.88 3.95

TABLE 3
Varimax (Top) and Echelon (Bottom) Rotated Loadings of the
Mixture Simultaneous Factor Analysis Model With Two Clusters

and Two Factors Per Cluster for the Emotion Norm Data From the
2001 ICS Study

Cluster 1 Cluster 2

Varimax Rotation Positive Negative Positive Negative

Contentment 1.44 −0.25 1.21 −0.11
Happy 1.60 −0.26 1.42 −0.15
Love 1.39 −0.26 1.22 −0.06
Sad −0.32 1.32 0.05 1.26
Jealousy (in

romantic
situations)

0.00 1.29 −0.02 1.27

Cheerful 1.18 −0.30 1.04 −0.05
Worry −0.07 1.74 0.04 1.43
Stress −0.25 2.01 −0.19 1.69
Anger −0.37 1.97 −0.18 1.54
Pride 0.27 1.10 0.60 0.35
Guilt 0.05 1.24 0.11 1.10
Shame 0.18 1.03 0.08 1.07
Gratitude 0.95 −0.29 0.86 −0.12

Cluster 1 Cluster 2

Echelon Rotation Positive Negative Positive Negative

Contentment 1.44** −0.25 1.21** −0.13
Happy 1.60** −0.26 1.42** −0.17
Love 1.39* −0.26 1.22* −0.08
Sad −0.32** 1.32 0.07** 1.26
Jealousy (in

romantic
situations)

0 1.29 0 1.27

Cheerful 1.18 −0.30* 1.04 −0.06*
Worry −0.07 1.74** 0.07 1.43**
Stress −0.25 2.01** −0.16 1.69**
Anger −0.37 1.97** −0.16 1.54**
Pride 0.27** 1.10** 0.61** 0.34**
Guilt 0.05 1.24 0.13 1.10
Shame 0.18 1.03 0.10 1.07
Gratitude 0.95 −0.29 0.86 −0.14

Note. For each emotion, the primary loading is shown in bold. Below,
the restricted loadings are in italic and underlined and loadings that are
significantly different across clusters (according to Wald tests and after
Bonferroni correction) are indicated by **p < .01 and *p < .05.

5 Note that Wald test results are also available for differences in unique
variances. For the emotion norm data set, all between-cluster differences in
unique variances were significant at the 1% level.
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differences in factor structure. Moreover, the clustering is
often an interesting result in itself.

In this article, the MSFA model was specified as the exact
stochastic counterpart of the clusterwise SCA variant described
by De Roover, Ceulemans, Timmerman, Vansteelandt, (2012),
that is, with block-specific factor (co)variance matrices equal to
identity, such that all differences in observed-variable covar-
iances are captured between the clusters by their cluster-specific
factor loading matrices. Of course, in some cases, more flexible
specifications are preferable; for instance, when one wants data
blocks with the same factors but different factor (co)variances to
be assigned to the same cluster. Another alternative model
specification might include block-specific intercepts, instead of
using data block centering, thus preserving information on
block-specific mean levels and capturing them in the model.

In contrast to clusterwise SCA, MSFA provides informa-
tion on classification uncertainty, when present. Also, com-
mon variance is distinguished from unique variance
(including measurement error). Thus, in specific cases
wherein the unique variances differ strongly between vari-
ables, between clusters, or both, MSFA will capture the
underlying latent structures and the corresponding clustering
more accurately. When this is not the case, clusterwise SCA
might give similar results.

Of course, when pursuing inferential conclusions, the sto-
chastic framework is to be preferred. For instance, it might be
interesting to look at the standard errors of the parameter esti-
mates. More important, with respect to the factor loading differ-
ences, one could argue that visual comparison of the cluster-
specific loadings is too subjective. Conveniently, hypothesis
testing for factor loading differences is available within the
stochastic framework of MSFA and in LG. As stated earlier,
these inferential tools are not yet readily applicable for MSFA,
which is due to the rotational freedom of the cluster-specific
factors. For now, for the standard errors and Wald test results to
make sense, rotational freedom can be eliminated by imposing
loading restrictions, as was illustrated earlier. To avoid this
choice of restrictions and its possible influence on the clustering,
standard error estimation should be combined with the specifi-
cation of rotational criteria for the cluster-specific factor struc-
tures. It is important to note that the factor rotation of choice
affects which differences are found between the clusters, be it
visually or by means of hypothesis testing. Therefore, future
research will include evaluating the influence and suitability of
different rotational criteria. Rotational criteria pursuing both
between-cluster agreement and simple structure of the loadings
seem appropriate (Kiers, 1997; Lorenzo‐Seva, Kiers, & Berge,
2002) and the criteria can be converted into loading constraints
to be imposed directly during maximum likelihood estimation
(Archer & Jennrich, 1973; Jennrich, 1973).

The rotational freedom per cluster is a consequence of
our choice for an exploratory approach (i.e., using EFA
instead of CFA per cluster). Developing an MSFA var-
iant with CFA within the clusters might be interesting for
very specific cases like imposing the Big Five structure

of personality for one cluster and the Big Three for the
other cluster (De Raad et al., 2010) to see which coun-
tries end up in which cluster. Note that a priori assump-
tions on the underlying factor structure(s) can also be
useful for the current, exploratory MSFA; that is, as a
target structure when rotating the cluster-specific factor
structures and when selecting the number of factors.

Finally, the obtained factor loading differences and clusters
depend on the number of clusters as well as the number of
factors within the clusters. Therefore, solving the so-called
model selection problem is imperative. To this end, the perfor-
mance of the BIC for MSFA model selection will be thor-
oughly evaluated and adaptations will be explored if needed.
The fact that the BIC performance needs to be scrutinized is
illustrated by the fact that, for the application, the BIC selected
seven clusters, which appears to be an overselection when
comparing cluster-specific factors and considering the (lack
of) interpretability and stability of the clustering. Adaptations
that will be considered include the hierarchical BIC (Zhao, Jin,
& Shi, 2015; Zhao, Yu, & Shi, 2013) and stepwise procedures
like the one described by Lukočienė, Varriale, and Vermunt
(2010). Their performances will be investigated and compared,
also for the more intricate case wherein the number of factors
might vary across clusters.
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APPENDIX A

MAXIMUM LIKELIHOOD ESTIMATION OF MSFA BY
LG 5.1

In this appendix, we consecutively elaborate on the MSFA
algorithm and the multistart procedure that we recommend
using. An example of the syntax for estimating an MSFA
model in LG 5.1. is given and clarified in Appendix B.

Algorithm

Two of the most common algorithms for ML estimation are
EM (Dempster, Laird, & Rubin, 1977) and NR (Jennrich &
Sampson, 1976). In LG, a combination of both types of itera-
tions is applied to benefit from the stability of EM when it is far
from the maximum of log L, and the convergence speed of NR
when it is close to the maximum (Vermunt &Magidson, 2013).

Expectation-maximization lterations

As in all mixture models, log L (Equation 3)—also
referred to as the observed-data log-likelihood—is compli-
cated by the latent clustering of the data blocks, making it
hard to maximize log L directly. Therefore, the EM algo-
rithm makes use of the so-called complete-data (log)like-
lihood; that is, the likelihood when the cluster memberships
of all data blocks are assumed to be known or, in other
words, the joint distribution of the observed and latent data:

L θjX;Zð Þ ¼ f X ;Z ;θÞ ¼ f ðZ; θÞf XjZ; θð Þð (A:1)

where Z is the I × K latent membership matrix, containing
binary elements zik to indicate the cluster memberships. The
probability density of the observed data conditional on the
latent data is defined as follows:

f XjZ; θð Þ ¼
YI
i¼1

YK
k¼1

YNi

ni¼1

fk xni ; θkð Þzik (A:2)

and the probability density of the latent cluster member-
ships, or the so-called prior distribution of the latent cluster-
ing, is given by a multinomial distribution such that:
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f Z; θð Þ ¼
YI
i¼1

YK
k¼1

πk
zik (A:3)

with the mixing proportions πk as the prior cluster prob-
abilities. When data block i belongs to cluster k (zik = 1),
the corresponding factors in Equations A.2 and A.3
remain unchanged and, when the data block doesn’t
belong to cluster k (zik = 0), they become equal to 1.
Inserting Equations A.2 and A.3 into Equation A.1 leads
to a complete-data likelihood function containing no
summation. Therefore, the complete-data log-likelihood
or log Lc can be elaborated as follows:

log Lc ¼ log L θjX;Zð Þ ¼ log
YI
i¼ 1

YK
k¼ 1

πk
zik
YNi

ni¼1

fk xni ; θkð Þzik
 !

¼ log
YI
i¼ 1

YK
k¼ 1

πk
zik fk Xi; θkð Þzik

 !

¼
XI
i¼ 1

XK
k¼1

log πk
zikð Þ þ

XNi

ni ¼ 1

zik log
1

2πð ÞJ=2 Σkj j1=2
exp � 1

2
xniΣ

�1
k xni

0
� 	 !" #

¼
XI
i¼ 1

XK
k¼ 1

zik log πkð Þ þ zik
XNi

ni ¼ 1

log
1

2πð ÞJ=2 Σkj j1=2
 !

� 1

2
xniΣ

�1
k xni

0
 !" #

¼
XI
i¼ 1

XK
k¼ 1

zik log πkð Þ � zik
2

XNi

ni ¼ 1

J log 2πð Þ þ log Σkj jð Þ þ xniΣ
�1
k xni

0� �" #

(A:4)

From the summations in Equation A.4, we conclude that
one difficult maximization (i.e., of Equation 3) is replaced
by a sequence of easier maximization problems (see M-step
of the EM procedure). Because the values of zik are
unknown, their expected values—that is, the posterior clas-
sification probabilities γ zikð Þ (Equation 2)—are inserted in
Equation A.4, thus obtaining the expected value of log Lc or
E(log Lc). Note that log L can be obtained by summing E
(log Lc) over the K possible latent cluster assignments for
each data block.

Starting from a set of initial values θ̂0 for the parameters,
the EM procedure performs the following two steps for each
iteration ν:

E-step: The E(log Lc) value given the current parameter
estimates θ̂ν�1(i.e., θ̂0 when ν = 1 or the estimates from the
previous iteration when ν > 1) is determined as follows:

The posterior classification probabilities γ zikð Þ are calcu-
lated (Equation 2).

The γ zikð Þ values are inserted into Equation A.4 to obtain
E(log Lc) for θ̂

ν�1.
M-step: The parameters θ̂ν are estimated such that E(log

Lc) is maximized. Note that this also results in an increase
with respect to log L (Dempster et al., 1977).

An update of each πk—satisfying
PK
k¼1

πk ¼ 1—is given
by (McLachlan & Peel, 2000):

π̂k ¼
PI
i ¼ 1

γ zikð Þ
I

: (A:5)

For each cluster k, the factor model for Σk is obtained by
weighting each observation by the corresponding γ zikð Þ
value and performing factor analysis on the weighted data.
To this end, a separate EM algorithm (Rubin & Thayer,
1982) can be used or one of the alternatives described by
Lee and Jennrich (1979). Currently, LG uses Fisher scoring
to estimate the cluster-specific factor models. Fisher scoring
(Lee & Jennrich, 1979) is an approximation of the NR
procedure described next.

Newton–Raphson iterations

In contrast to EM, NR optimization operates directly on
log L (Equation 3). Specifically, NR iteratively maximizes
an approximation of log L, based on its first- and second-
order partial derivatives, in the point corresponding to esti-
mates θ̂ν�1. Using these derivatives, NR updates all model
parameters at once. The first-order derivatives—with respect
to parameters θr, r = 1, …, R—are gathered in the so-called
gradient vector g:

g ¼ PI
i¼1

# log f ðXi;θ̂
ν�1Þ

#θ1
:::

PI
i¼1

# log f ðXi;θ̂
ν�1Þ

#θr
:::

PI
i¼1

# log f ðXi;θ̂
ν�1Þ

#θR


 �

(A:6)

where R is equal to K � 1þ KðJQþ JÞ for MSFA with
orthogonal factors. The gradient vector indicates the direc-
tion of the greatest rate of increase in log L, where element
gr is positive when higher values of log L can be found at
higher values of θr and negative otherwise. The derivations
of the elements of the gradient for an MSFA model are
given in the next section.

The matrix of second-order derivatives—also called the
Hessian or H—contains the following elements:

H ¼ Hrs½ �withHrs ¼
XI
i¼1

#2 log f ðXi; θ̂
ν�1Þ

#θr#θs
(A:7)

where Hrs refers to the element in row r and column s of
H. Geometrically, the second-order derivatives refer to the
curvature of the R-dimensional log-likelihood surface.
Taking the curvature into account makes the update
more efficient than an update based on the gradient
alone (Battiti, 1992). H and g are combined in the NR
update as follows:

θ̂ν ¼ θ̂ν�1 � εH�1g (A:8)

518 DE ROOVER ET AL.



where the stepsize ε, 0 < ε < 1, is used to prevent a decrease
in log L whenever a standard NR update �H�1g causes a
so-called overshoot (for details, see Vermunt & Magidson,
2013). The calculations of the second-order derivatives
make the NR update computationally very expensive.
Therefore, LG applies an approximation of the Hessian,
which is given in the next section.

First- and second-order derivatives of observed-
data log-likelihood

The first-order derivative of log L can be decomposed as:

d log L

dθ
¼
XI
i ¼ 1

d log f Xi;ð Þ
dθ

¼
XI
i¼ 1

1

Li

dLi
dθ

with Li ¼ f Xi;ð Þ ¼
XK
k¼1

πkfk Xi; kð Þ ¼
XK
k¼ 1

Lik

¼
XI
i¼ 1

XK
k¼1

Lik
Li

1

Lik

dLik
dθ

¼
XK
k¼ 1

XI
i¼1

γðzikÞ d logLikdθ
with γðzikÞ ¼ Lik

Li
ðEquation 2Þ

¼
XK
k¼ 1

d log Lk
dθ

(A:9)

where log Lk ¼
PI
i¼1

γðzikÞ log Lik is the log-likelihood contri-

bution of cluster k. When defining the expected observed
number of blocks and number of observations in cluster k as

Ik ¼
PI
i¼1

γðzikÞ and Nk ¼
PI
i¼1

NiγðzikÞ respectively, log Lk can

be expressed in terms of the cluster-specific expected

observed covariance matrix Sk ¼ 1
Nk

PI
i¼1

PNi

ni¼1
γðzikÞxni 0xni as

follows:

logLk¼
XI
i¼1

γðzikÞlogLik¼
XI
i¼1

γðzikÞlog πk fk Xi;θkð Þð Þ

¼
XI
i¼1

γðzikÞ log πkð Þ�1

2

XNi

ni¼1

J log 2πð Þþ log Σkj jð ÞþxniΣ
�1
k xni

0� �" #

¼ Ik log πkð Þ�Nk

2
J log 2πð Þ�Nk

2
log Σkj jð Þ�1

2

XI
i¼1

γðzikÞ
XNi

ni¼1

tr xniΣ
�1
k xni

0� �

¼ Ik log πkð Þ�Nk

2
J log 2πð Þ�Nk

2
log Σkj jð Þ�1

2
tr
XI
i¼1

XNi

ni¼1

γðzikÞxni 0xniΣ�1
k

 !

¼ Ik log πkð Þ�Nk

2
J log 2πð Þþ log Σkj jð Þþ tr SkΣ

�1
k

� �� �
(A:10)

The first derivative of log Lk thus becomes the following
(Magnus & Neudecker, 2007):

d log Lk
dθ

¼ Ik
d log πkð Þ

dθ
� Nk

2

d log Σkj jð Þ
dθ

þ tr
dSkΣ�1

k

dθ

� 	� 	

¼ Ik
πk

dπk
dθ

� Nk

2
tr Σ�1

k

dΣk

dθ

� 	
þ tr

dSk
dθ

Σ�1
k þ Sk

dΣ�1
k

dθ

� 	� 	

¼ Ik
πk

dπk
dθ

� Nk

2
tr Σ�1

k

dΣk

dθ

� 	
þ tr �SkΣ

�1
k

dΣk

dθ
Σ�1
k

� 	� 	

with
dSk
dθ

¼ 0

¼ Ik
πk

dπk
dθ

þ Nk

2
tr Σ�1

k SkΣ
�1
k

dΣk

dθ

� 	
� tr Σ�1

k

dΣk

dθ

� 	� 	

¼ Ik
πk

dπk
dθ

þ Nk

2
tr Σ�1

k SkΣ
�1
k � Σ�1

k

� � dΣk

dθ

� 	� 	

¼ Ik
πk

dπk
dθ

þ Nk

2
vec Σ�1

k SkΣ
�1
k � Σ�1

k

� �0
vec

dΣk

dθ

� 	� 	
;

(A:11)

such that d log L
dθ ¼ PK

k¼1

Ik
πk

dπk
dθ þ PK

k¼1

Nk
2 vec Σ�1

k SkΣ�1
k

��
�Σ�1

k Þ0vec dΣk
dθ

� �Þ : The second-order derivative of log Lk is
then equal to (Magnus & Neudecker, 2007):

d2logLk
dθdθ0

¼Nk

2

d

dθ
tr Σ�1

k SkΣ
�1
k �Σ�1

k
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2
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k
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k
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@

1
A:

Because the expected value of Sk � Σkð Þ equals zero, the
expected value of the second derivative of log Lk becomes

E d2 log Lk
dθdθ0

� �
¼ Nk

2 tr Σ�1
k

dΣk

dθ0 Σ
�1
k

dΣk
dθ

� �
. Therefore, within LG,

the second-order derivative of log L is approximated as:

d2 log L

dθdθ0
¼
XK
k¼1

d2 log Lk
dθdθ0

¼
XK
k¼1

Nk

2
tr Σ�1

k

dΣk

dθ0
Σ�1
k

dΣk

dθ

� 	
: (A:13)

Convergence

In practice, the estimation process starts with a number of
EM iterations. When close to the final solution, the program
switches to NR iterations to speed up convergence.
Convergence can be evaluated with respect to log L or with
respect to the parameter estimates. LG applies the latter
approach (Vermunt &Magidson, 2013). More specifically, con-
vergence is evaluated by computing the following quantity:
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δ ¼
XR
r¼1

θ̂vr � θ̂v�1
r

θ̂v�1
r

�����
�����; (A:14)

which is the sum of the absolute value of the relative
changes in the parameters. The convergence criterion that
is used for MSFA in this article is δ < 1 × 10−8. The iteration
also stops when the change in log L is negligible; that is,
smaller than 1 × 10−12.

It is important to note that, when convergence is reached,
this is not necessarily a global maximum. To increase the
probability of finding the global maximum, a multistart
procedure is used, which is described in the next section.

Multistart Procedure

LG applies a tiered testing strategywith respect to sets of starting
values (Vermunt &Magidson, 2013). Specifically, it starts from
a user-specified number of sets (say 25), each of which is
updated for a maximum number of iterations (e.g., 100) or
until δ is smaller than a specified criterion (e.g., 1 × 10–5).
Subsequently, it continues with the 10% (rounded upward)
most promising sets (i.e., with the highest log L), performing
another two times the specified number of iterations (e.g.,
2 × 100). Finally, it continues with the best solution until
convergence. Note that such a procedure increases considerably
the probability of finding the global ML solution, but does not
guarantee it. Thus, one should remain cautious of local maxima.

With respect to generating sets of starting values, a special
option was added to the LG 5.1 syntax module to create
suitable initial values for the cluster-specific loadings and
unique variances of MSFA. Specifically, the initial values are
based on the loadings and residual variances of a principal
component (PCA) model (Jolliffe, 1986; Pearson, 1901), in
principal axes position, for the entire data set. This seems
reasonable as typically loadings from PCA strongly resemble
the ones of EFA (Widaman, 1993). To create K sufficiently
different sets of initial factor loadings, randomness is added to
the PCA loadings for each cluster k:

Λk ¼ ð:25þ randð1ÞÞ�ΛPCA for k ¼ 1; :::;K (A:15)

where rand(1) indicates a J × Q matrix of random numbers
sampled from a uniform distribution between 0 and 1, and ‘*’
denotes the elementwise product. Note that the default random
seed is based on time, such that the added random numbers will
be unique for each set of starting values (Vermunt &Magidson,
2013). To avoid the occurrence of Heywood cases (Rindskopf,
1984; Van Driel, 1978) very early in the model estimation, the
initial unique variances are generated as follows:

diagðDkÞ ¼ varðEPCAÞ�1:5 for k ¼ 1; :::;K; (A:16)

where diag(Dk) refers to the diagonal elements of Dk and
var(EPCA) denotes the variances of the PCA residuals.

Preliminary simulation studies indicated a much lower sen-
sitivity to local maxima and a faster computation time when
using these starting values instead of mere random values.

APPENDIX B

LATENT GOLD 5.1 SYNTAX FOR MSFA ANALYSIS

The LG syntax is built up from three sections: ‘options,’ ‘vari-
ables,’ and ‘equations.’ First, the ‘options’ section pertains to
specifications regarding the estimation process and to output
options. The parameters in the ‘algorithm’ subsection indicate
when the algorithm should proceed with NR instead of EM
iterations and when convergence is reached (see Vermunt &
Magidson, 2013). The ‘startvalues’ subsection includes the para-
meters pertaining to the multistart procedure. Specifically, for
each set of starting values (the number of sets is specified by
‘sets’), the model is reestimated for as many iterations as speci-
fied by ‘iterations’ or until δ drops below the ‘tolerance’ value.
Then, the multistart procedure proceeds as described in
Appendix A. ‘PCA’ prompts LG to use the PCA-based starting
values, whereas otherwise ‘seed = 0’ would give the default
random starts (for other possible ‘seed’ values, see Vermunt &
Magidson, 2013). In the ‘output’ and ‘outfile’ subsections, the
desired output can be specified by the user (for more details, see
Vermunt & Magidson, 2013). The parameters of the remaining
subsections are not used in this article.

Second, the ‘variables’ section specifies the different types of
variables included in the model. Because MSFA operates on
multilevel data, after ‘groupid,’ the variable in the data file that
specifies the group structure (i.e., the data block number for each
observation) should be specified (e.g., ‘V1’), using its label in the
data file. In the ‘dependent’ subsection, the dependent variables
of themodel (i.e., the observed variables) should be specified, by
means of their label in the data file and their measurement scale.
Next, the ‘independent’ variables can be specified. In theMSFA
case, it is useful to include the grouping variable as an indepen-
dent variable to get the clustermemberships per data block rather
than per row (i.e., in the ‘probmeans-posterior’ output tab;
Vermunt & Magidson, 2013). Finally, the ‘latent’ variables of
theMSFAmodel are the factors (i.e., ‘F1’ to ‘F4’ in the example
syntax) and the mixture model clustering (i.e., ‘Cluster’). In
particular, the former are specified as continuous latent variables,
whereas the latter is specified as a nominal latent variable at the
group level with a specified number of categories (i.e., the
desired number of clusters). By ‘coding = first’ Cluster 1 is
(optionally) coded as the reference cluster in the logistic regres-
sion model for the clustering (explained later). For other coding
options, see Vermunt and Magidson (2013).

In the ‘equations’ section, the model equations are listed.
First, the factor variances are specified and fixed at one. No
factor covariances are specified, implying that orthogonal
factors are estimated. Note that both restrictions apply to
each data block, because we do not specify an effect of the
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grouping variable on the factor (co)variances. Next, a logis-
tic regression model for the categorical latent variable
‘Cluster’ is specified (Vermunt & Magidson, 2013), which
contains only an intercept term in case of MSFA.
Specifically, this intercept vector relates to the prior prob-
abilities or mixing proportions of the clusters in that it
includes the odds ratios for the K − 1 nonreference clusters
with respect to the reference cluster; that is, Cluster 1:

oddsk ¼ log
πk
π1

� 	
: (B:1)

Then, regression models are defined for the observed
variables; that is, which variables are regressed on

which factors. Note that, for MSFA, all variables are
regressed on all factors (i.e., it applies EFA) and that no
intercept term is included. By default, overall factor
means are equal to zero and no effect is specified to
make them differ between data blocks or clusters. To
obtain factor loadings that differ between the clusters, ‘|
Cluster’ is added to each regression effect. Finally, item
variances are added, which pertain to the unique var-
iances in this case and which are also allowed to differ
across clusters. Optionally, at the end of the syntax, addi-
tional restrictions might be specified or starting values for
all parameters might be given, either by directly typing
them in the syntax or by referring to a text file (see
Vermunt & Magidson, 2013).
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APPENDIX C

LATENT GOLD 5.1 SYNTAX FOR MSFA SIMULATION

For generating the simulated data sets by means of LG,
syntaxes were used like the one shown here. The cluster
memberships, the data block sizes (i.e., the number of rows
per block), as well as the number of variables (including a
variable to identify the data blocks) were communicated to
the simulation syntax by means of a text file (Figure C.1),
which is referred to as the ‘example’ file in the LG manual
(Vermunt & Magidson, 2013). The observed variables are
still to be simulated and can thus take on arbitrary but

admissible values in the example file; in this simulation
study, random numbers from a standard normal distribution
were used. The simulation syntax lists a lot of technical
parameters in the ‘Options’ section. Most of them are dis-
cussed in Appendix B. The ‘outfile simulateddata.txt simu-
lation’ option will generate one simulated data set from the
population model that is specified further on in the syntax,
and will save it as a text file. The montecarlo parameters
pertain to other types of simulation studies and resampling
studies (see Vermunt & Magidson, 2013). The MSFA
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population model encompasses a model syntax (see
Appendix B) and ‘starting values’ for all free model para-
meters (i.e., the population-level parameter values that
were written into a text file, with, per cluster, first the
unique variances and then the loadings of the first factor,
followed by the loadings of the second factor, and so on).

The model syntax determines the data block structure of
the data to be simulated by the ‘groupid’ and ‘caseweight’
variable. An important difference with an analysis is that,
when simulating, the clustering is known (through the
example file) and it is thus defined as an independent
variable in the simulation syntax model.

FIGURE C.1 ‘Example.txt’ file communicating the clustering (‘Cluster’), the number of variables (‘V2’ to ‘V13’) and the data block structure (‘V1’ and
‘rows’) to the simulation syntax for LG 5.1. Note that, in general, the number of rows can differ across data blocks.
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