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Investigating the Practical
Consequences of Model Misfit
in Unidimensional IRT Models

Daniela R. Crisxan1, Jorge N. Tendeiro1, and Rob R. Meijer1

Abstract

In this article, the practical consequences of violations of unidimensionality on selection deci-
sions in the framework of unidimensional item response theory (IRT) models are investigated
based on simulated data. The factors manipulated include the severity of violations, the propor-
tion of misfitting items, and test length. The outcomes that were considered are the precision
and accuracy of the estimated model parameters, the correlations of estimated ability (û) and
number-correct (NC) scores with the true ability (u), the ranks of the examinees and the over-
lap between sets of examinees selected based on either u, û, or NC scores, and the bias in
criterion-related validity estimates. Results show that the û values were unbiased by violations
of unidimensionality, but their precision decreased as multidimensionality and the proportion of
misfitting items increased; the estimated item parameters were robust to violations of unidi-
mensionality. The correlations between u, û, and NC scores, the agreement between the three
selection criteria, and the accuracy of criterion-related validity estimates are all negatively
affected, to some extent, by increasing levels of multidimensionality and the proportion of mis-
fitting items. However, removing the misfitting items only improved the results in the case of
severe multidimensionality and large proportion of misfitting items, and deteriorated them
otherwise.
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Introduction

Item response theory (IRT; for example, Embretson & Reise, 2000) is a popular psychometric

framework for the construction and/or evaluation of tests and questionnaires, and applications

range from large-scale educational assessment to small-scale cognitive and personality mea-

sures. Although IRT has a number of practical advantages over classical test theory, the price to

pay for using IRT models in practice is that inferences made from IRT-based estimates are accu-

rate to the extent that the empirical data meet the sometimes rather restrictive model assump-

tions and thus the model fits the data. The common assumptions for dichotomously scored data

1University of Groningen, The Netherlands

Corresponding Author:

Daniela R. Crisxan, Department Psychometrics and Statistics, Faculty of Behavioral and Social Sciences, University of

Groningen, Grote Kruisstraat 2/1, 9712 TS Groningen, The Netherlands.

Email: d.r.crisan@rug.nl

http://sagepub.com/journalsPermissions.nav
http://doi.org/10.1177/0146621617695522
http://journals.sagepub.com/home/apm


analyzed using cumulative IRT models are unidimensionality, monotonicity, and local indepen-

dence (Embretson & Reise, 2000).

In practice, the data rarely, if ever, meet the strict assumptions of the IRT models. Thus,

model fit is always a matter of degree (e.g., McDonald, 1981). Therefore, there is a large body

of literature that concentrates on developing methods for testing model assumptions and model

fit (e.g., Bock, 1972; Haberman, 2009; Orlando & Thissen, 2000; Smith, Schumacker, & Bush,

1998; Stone & Zhang, 2003; Suárez-Falcón & Glas, 2003; Yen, 1981).

When a model does not fit data well enough or when the data violate one or more model

assumptions to some degree, practitioners or test constructors are usually advised to use a

better fitting model or to remove misfitting items (Sinharay & Haberman, 2014). Item fit is

often determined by investigating the differences between the observed and expected pro-

portions of correct item scores, where large residuals indicate misfit. Items that do not fit the

model may be removed from the test so that a set of items is obtained that can reasonably be

described by the IRT model under consideration. In practice, however, it is not always easy

to remove items.

A first complication is that it is often not easy to define what a ‘‘large’’ residual should be.

Another more practical consideration is that removing items from a test may distort the content

validity of the measurement. For example, sometimes items are chosen so that they represent

specific content domains that are important for representing the overall construct to be mea-

sured. Removing items that do not fit an IRT model may then result in an underrepresentation

of the construct that is being measured. A third consideration is that if the test has already been

administered, removing badly fitting items could disadvantage the test takers who answered

them correctly. Finally, sometimes IRT models are not used for test construction or evaluation

but to calibrate the items so that IRT-based methods can be used. Examples can be found in

educational research, where IRT is used to link or equate different versions of a test, or in clini-

cal assessment, where IRT is used to conduct IRT-based differential item functioning or IRT-

based person–fit analysis (Meijer & Sijtsma, 2001). In these cases, it is decided beforehand

which IRT model should be used, and then once implemented, it is often impossible to remove

items, change the existing test, or use a different (i.e., better fitting) IRT model. Sometimes,

there are even contractual obligations that determine the type of IRT model that is chosen (see

Sinharay & Haberman, 2014).

As models give, at best, good approximations of the data, researchers have investigated the

effects of model violations on the estimation of item and person parameters. Also, the robust-

ness of the estimated parameters under different model violations has been investigated. The

majority of previous studies focused on determining the robustness of different estimation meth-

ods against these violations (e.g., Drasgow & Parsons, 1983), and/or on the statistical signifi-

cance of misfit on model parameters or on IRT-based procedures such as test equating (e.g.,

Dorans & Kingston, 1985; Henning, Hudson, & Turner, 1985). Some studies have explored the

robustness of item parameter estimates to violations of the unidimensionality assumption (e.g.,

Bonifay, Reise, Scheines, & Meijer, 2015; Drasgow & Parsons, 1983; Folk & Green, 1989;

Kirisci, Hsu, & Yu, 2001). As Bonifay et al. (2015) noted,

. . . if a strong general factor exists in the data, then the estimated IRT item parameters are relatively

unbiased when fit to a unidimensional measurement model. Accordingly, in applications of unidimen-

sional IRT models, it is common to see reports of ‘‘unidimensional enough’’ indexes, such as the rela-

tive first-factor strength as assessed by the ratio of the first to second eigenvalues. (p. 505)

Also, indices have been proposed that give an idea about the strength of departure from uni-

dimensionality, such as the DETECT index (Stout, 1987, 1990). DETECT is based on
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conditional covariances between items to assess data dimensionality. The idea is that the covar-

iance between two items, conditional on the common latent variable, is nonnegative when both

items measure the same secondary dimension and it is negative when they clearly measure dif-

ferent secondary dimensions. Recently, Bonifay et al. (2015) investigated the ability of the

DETECT ‘‘essential unidimensionality’’ index to predict the bias in parameter estimates that

results from misspecifying a unidimensional model when the data are multidimensional.

Although the studies cited above are important, a next logical step is to investigate the impact

of model misfit on the practical decisions that are being made based on the estimates derived

from the model (i.e., the practical significance of model misfit), which is a far less studied but

important issue (Molenaar, 1997). Practitioners are interested in knowing to what extent the

main conclusions of their empirical research are valid under different models and settings—for

example, with or without misfitting items, or with or without misfitting item score patterns.

Sinharay and Haberman (2014) defined practical significance as ‘‘an assessment of the extent to

which the decisions made from the test scores are robust against the misfit of the IRT models’’

(p. 23). The assessment of practical significance of misfit involves evaluating the agreement

between decisions made based on estimated trait levels derived from misfitting models and the

decisions made based on estimated trait levels derived from better fitting models (Sinharay &

Haberman, 2014).

Recently, Sinharay and Haberman (2014) investigated the practical significance of model

misfit in the context of various operational tests: a proficiency test in English, three tests that

measure student progress on academic standards in different subject areas, and a basic skills

test. Their study mostly considered the effect of misfit on equating procedures. They found that

the one-, two-, and three-parameter logistic models (1PLM, 2PLM, and 3PLM), and the gener-

alized partial credit model (e.g., Embretson & Reise, 2000), did not give a good description of

any of the datasets. Moreover, they found severe misfit (i.e., large residuals between observed

and expected proportion-correct scores) for a substantial number of items. However, they also

found that for several tests that showed severe misfit, the practical significance was small, that

is, a difference that matters (DTM) index lower than 0.5 (which was the recommended bench-

mark) and a disagreement of 0.0003% between a poor-fitting and a better fitting model–data

combination with regard to pass–fail decisions.

As Sinharay and Haberman (2014) discussed, their study was concerned with the practical

significance of misfit on equating procedures. The aim of the present study was to extend the

Sinharay and Haberman (2014) study, and to investigate the practical significance of viola-

tions of unidimensionality on rank ordering and criterion-related validity estimates in the

context of pattern scoring. More specifically, the impact of model misfit and of retaining or

removing misfitting items on the rank ordering of simulees and on the bias in criterion-

related validity estimates was assessed, as these are important outcomes for applied research-

ers. Misfit was simulated by inducing violations of the assumption of unidimensionality,

which is a common underlying assumption for many IRT models. The validity of IRT appli-

cations largely depends on the assumption of unidimensionality (Reise, Morizot, & Hays,

2007). However, as Bonifay et al. (2015) noted, only narrow measures are strictly unidimen-

sional. Often, multidimensionality is caused by diverse item content that is necessary to

properly represent a complex construct. The question then is whether, and to what extent,

violations of unidimensionality do affect the practical decisions that are made based on the

estimated trait levels, and whether removing the items that violate the model with respect to

unidimensionality improves the validity of these decisions. Moreover, the authors of this

study were interested in whether practical effects associated with model misfit are affected

by the selection ratio.
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The following research questions were formulated:

Research Question 1 (RQ1): What is the effect of misfit on the estimated latent trait (û)

and on the estimated item parameters? The authors focused on the 2PLM (e.g.,

Embretson & Reise, 2000); hence, the item parameters of interest are the discrimination

and difficulty parameters. The 2PLM was chosen as it is a model commonly applied to

dichotomous multiple-choice items. The effect of model misfit on the precision and accu-

racy of item and person parameter estimates was investigated. The authors hypothesized

to find evidence in agreement with Bonifay et al. (2015), who found that although some

bias in parameter estimates might exist as a consequence of model misspecification, its

magnitude is relatively small if a strong general factor exists in the data. Although inves-

tigating the effects of misfit on the precision and accuracy of model parameter estimates

is not the main focus of this article, it is important to first show that the operationaliza-

tion of misfit is sensible, so that the practical effects of misfit can be interpreted in rela-

tion to these violations. The novelty of this study is brought by RQ2 and RQ3.

Research Question 2 (RQ2): What is the effect of misfit on the rank ordering of per-

sons, in combination with selection ratios? Although it is well known that û and NC

scores correlate highly (e.g., Molenaar, 1997), the rank ordering of persons based on the

model-fit data outcomes (buFit, NCFit) is expected to outperform the counterpart measures

based on the model-misfit data (buMisfit, NCMisfit). The correlation of û and NC scores with

the true u is expected to decrease as the proportion of misfitting items increases and as

the correlation between dimensions decreases. It is unknown from the literature how the

trait-level estimates based on the reduced datasets (i.e., datasets from which the misfitting

items are removed) would perform in comparison with buMisfit and NCMisfit. Moreover, the

authors were interested to investigate to what extent the sets of selected examinees coin-

cide across the three scoring settings (model-fit, model-misfit, or misfitting items

removed). The authors expected to find similar results across selection ratios, but with

larger effect sizes as the selection ratio would decrease.

Research Question 3 (RQ3): What is the effect of misfit on criterion-related validity

estimates? The authors hypothesized that the accuracy of estimating criterion-related

validity would decrease as the proportion of misfitting items increased. Larger bias was

also expected as the correlation between dimensions decreased. The authors had no prior

expectation regarding the effect of removing the misfitting items on the bias in criterion-

related validity estimates.

Method

Design and Simulation Setup

Independent variables. The following factors were manipulated in this study:

Proportion of misfitting items. Rupp (2013) provided an overview of simulation studies on

model fit, and showed that the chosen number of misfitting items varied greatly between simu-

lation studies, with values between 8% (e.g., Armstrong & Shi, 2009a, 2009b) and 75% or even

100% (e.g., Emons, 2008, 2009). Here, three levels were considered: Imisfit = :10, :25, :50. This

is representative of small, medium, and large proportions of misfitting items.

Test length. Two test lengths were used: I = 25, 40. Test lengths between 20 and 60 items are

typically used in simulation studies. These test lengths are representative of many intelligence

and personality questionnaires.
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Correlation between dimensions. The responses for the misfitting items were generated from a

two-dimensional model (discussed below). Two levels for the correlation between dimensions

u1 and u2 were considered: r(u1, u2) = .70, .40. The lower this correlation, the more multidimen-

sional the data are. A correlation of approximately .70 is found between subtests of many educa-

tional tests that are considered unidimensional for practical purposes (Drasgow, Levine, &

McLaughlin, 1991). A correlation of .40 might be considered too extreme. However, it allows

exploring the effects of misfit in the case of severe multidimensionality.

Selection ratio. The selection ratio refers to the proportion of respondents who are selected,

for example, for a job or an educational program, based on the test results. When the selection

ratio is close to 1, the majority of individuals in the sample are selected. However, when the

selection ratio is small, only a small number of individuals are selected. In this study, the fol-

lowing selection ratios (SR) were considered: SR = 1, :80, :50, and :30. For a given SR, the effect

of keeping or removing misfitting items on the selected top (1003SR)% of examinees was

assessed. Selection ratios of .80, .50, and .30 are representative of high through low selection

rates. The proportion of selected top respondents was based on sorting the full sample on the

basis of either u, û, or NC scores.

Dependent variables. To investigate the precision and accuracy of the estimated model para-

meters (RQ1), the mean absolute deviation (MAD, given by
PT
t = 1

jvt � bvtj=T ) and the bias

(BIAS, given by
PT
t = 1

ðvt � bvtÞ=T ) for the model parameters were analyzed across conditions,

where v denotes the model parameter under consideration and T denotes the sample size if v

refers to the person parameter, or the test length if v refers to an item parameter.

To investigate the differences in the rank ordering of simulees under the different conditions

(RQ2), Spearman’s rank correlations between the various ranks were first computed based on

u, û, and NC scores across conditions.1 The Spearman rank correlations were always based on

the entire sample of simulees; that is, with SR = 1. Second, to compare the sets of top selected

simulees defined by each SR according to the rankings based on u, û, and NC scores, the

Jaccard index was computed as a measure of the overlap between pairs of sets. The Jaccard

index (Jaccard, 1912) for two sets is defined as the ratio of the cardinals of the intersection set

to the union set, ranging from 0 (the two sets do not intersect) through 1 (the sets coincide; see

Equation 1).

J A, Bð Þ= jA \ Bj
jA [ Bj : ð1Þ

For SR = 1, the Jaccard index is always equal to 1, as all examinees are selected. When one

of the two sets of top selected simulees is based on u, the Jaccard index can be thought of as a

measure of sensitivity (when computed in the misfit conditions) or specificity (when computed

in the fit or reduced conditions).

To answer RQ3, the bias in criterion-related validity estimates was computed as the differ-

ence between the sample estimated validity and the population validity. Similar to Dalal and

Carter (2015), the authors of the present study simulated, for each person, scores on a criterion

variable that correlated r = :15, r = :25, r = :35, or r = :45 with u. These values represent the pop-

ulation criterion-related validities.

Model-fit items. Dichotomous item scores (0 = incorrect; 1 = correct) were generated according

to the 2PLM. All datasets were based on sample sizes equal to N = 2, 000. True item and u
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parameters were drawn for each condition represented by a combination of the levels of all

independent variables. The true item discrimination parameters ai(i = 1, . . . , I) were randomly

drawn from the uniform distribution in the interval (0:5, 2:0), and the true difficulty parameters

bi were randomly drawn from the standard normal distribution bounded between bi = � 2:0
and bi = + 2:0. Each simulee’s un value was randomly drawn from a standard normal distribu-

tion. This configuration of model and parameters is in line with similar types of simulation

studies.

Model-misfit items. Violations of unidimensionality were generated using a two-dimensional

model for a proportion of Imisfit randomly selected items. The following model based on Yu and

Nandakumar (2001, Equation 7) was used:

Pi u1n, u2nð Þ= 1

1 + e�a1i u1n�bið Þ�a2i u2n�bið Þ : ð2Þ

Each pair (u1n, u2n) was randomly drawn from a uniform distribution in the interval

(un � 1:15, un + 1:15) or the interval (un � 2:15, un + 2:15), depending on whether the desired

correlation between dimensions was around r = :7 or r = :4. The intervals from which the pairs

(u1n, u2n) were drawn were obtained by trial and error: Preliminary analyses showed that this

sampling procedure generated pairs of u values that correlated around the desired values. The

discrimination parameters a1i and a2i in Equation 2 were equal to a1i = aisin(gi) and

a2i = aicos(gi), where ai is the discrimination parameter for item i that was generated for the

model-fitting data situation, and gi is an angle randomly drawn from the uniform distribution in

the interval (0, p=2). As a consequence, two underlying correlated latent variables were used to

generate the item scores, where each latent variable was partly contributing to the probability

of correctly answering the items.

Model-fit checks. Some nonparametric model-fit checks (Sijtsma & Molenaar, 2002) were per-

formed. In particular, violations of manifest monotonicity (Sijtsma & Molenaar, 2002) and uni-

dimensionality were investigated. Manifest monotonicity is similar to the usual IRT latent

monotonicity property but, instead of conditioning on the latent trait u, one conditions on the

observable total or rest score. It has been shown that, for dichotomous items, latent monotonicity

implies manifest monotonicity (Junker & Sijtsma, 2000). Thus, violations of the latter imply

violations of the former. Violations of unidimensionality were checked using the DETECT pro-

cedure (Stout, 1987, 1990). The DETECT value was computed based on one partitioning of the

items into two disjoint clusters: Model-fitting items and model-misfitting items. The confirma-

tory approach of this study therefore sought for multidimensionality induced by the model

assumption violation that was manipulated. The DETECT values of Roussos and Ozbek (2006)

were used as reference: 0.2 \ DETECT \ 0.4: weak multidimensionality; 0.4 \ DETECT \
1.0: moderate to large multidimensionality; DETECT . 1.0: strong multidimensionality (see,

however, Bonifay et al., 2015 for a discussion of these benchmarks). Possible values for the

DETECT index range between �‘ and + ‘. The DETECT index was computed for both the

model-fit and the model-misfit data. Furthermore, to assess item fit, the authors of this study

computed the adjusted chi-square to degrees of freedom ratios for item singles, pairs, and triples

(x2=df ; Drasgow, Levine, Tsien, Williams, & Mead, 1995). Adjusted x2=df ratios above 3 are

considered to be indicative of substantial misfit (Stark, Chernyshenko, Drasgow, & Williams,

2006). For the model-fit data, which were stochastically generated from the 2PLM, no model-fit

issues were expected. The authors decided to perform these checks to serve as benchmarks for

the similar model-fit outcomes for data displaying model-fit problems.
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Design and implementation. A fully crossed design consisting of 3 (Imisfit)32(I)32(r(u1, u2)) = 12

conditions, with 100 replications per condition, was used. To test the adequacy of the chosen

number of replications, the asymptotic Monte Carlo errors (MCEs; Koehler, Brown, &

Haneuse, 2009) for each outcome were estimated across all experimental conditions. The MCEs

for all outcomes were always smaller than 0.02, which was deemed acceptable for the purpose

of this study. The simulation study was implemented in R (R Development Core Team, 2016).

The R package mirt (Chalmers, 2012) was used to fit the 2PLM to each dataset. The function

‘‘check.monotonicity’’ from the mokken R package (Van der Ark, 2007, 2012) was used to

check manifest monotonicity. The DETECT program, which was used to compute the DETECT

index, comes with the DIM-Pack software (Version 1.0; Measured Progress, 2016). The

adjusted x2 degrees of freedom ratios were computed using an R implementation of Stark’s

(2001) MODFIT program (the code is available upon request from the authors of this article).

Results

To test the hypotheses and to answer the research questions of this study, several ANOVAs were

performed in two stages: First, the authors included in the models all the independent variables

with their main effects, two-way interactions, and, where the plots suggested it, three-way inter-

actions. Then, if some effects were nonsignificant, they fitted a second set of models in which

they only retained the significant main effects and interactions. In reporting and interpreting the

effects, the authors will focus on those for which h2 � :02 which corresponds to a small effect

according to Cohen (1992).

Model-Fit Checks

The monotonicity assumption was not affected by the manipulation of unidimensionality. A sig-

nificant difference was not found between the proportion of violations of monotonicity in the fit

and in the misfit data, x2(1) = :018, p = :894, as in both conditions about 10% of the generated

samples contained at least one significant violation of monotonicity.

Regarding unidimensionality, the DETECT procedure was sensitive to the operationalization

of model misfit. As shown in Figure 1, the average DETECT values increased as Imisfit increased

and as r(u1, u2) decreased. About 38% of the variation in the DETECT values was caused by

the differences between the fit and misfit conditions, 16% was caused by the proportion of mis-

fitting items, and 10% was caused by the variation in r(u1, u2). In the misfit condition, the aver-

age DETECT value ranged between 0.013 (SD = 0:03, for I = 25, Imisfit = :10, and r(u1, u2) = :70)

and 0.69 (SD = 0:09, for I = 25, Imisfit = :50, and r(u1, u2) = :40).

The x2=df values also suggest that the operationalization of misfit was sensible. The average

proportion of x2=df larger than 3 was very close to 0 for the model-fit data, in all conditions,

for item singles, doubles, and triples. The x2=df statistic for item singles was insensitive to the

manipulation of dimensionality, as all values were smaller than 3, on average, in all conditions.

However, the proportion of x2=df for item doubles and triples that were larger than 3 increased

in the misfit condition, as the proportion of misfitting items increased and as r(u1, u2) decreased

from .70 to .40. In the reduced condition (i.e., in datasets from which the misfitting items have

been removed), the results were very similar to the model-fit condition.

Effect of Misfit on Model Parameters

Although investigating the effects of misfit on the precision and accuracy of model parameter

estimates (RQ1) is not a major objective of this article, it is important to first show that the

Crisxan et al. 7



operationalization of misfit actually affected these estimates, so that the practical effects of mis-

fit can be interpreted in relation to these violations. Therefore, the authors of this study first dis-

cuss the effects of violations of unidimensionality on person and item parameter estimates in

terms of MAD and BIAS.

Effect of misfit on û. The authors of this study analyzed the effect of violations of unidimension-

ality on the precision (MAD) and accuracy (BIAS) of û. The analyses confirmed their

expectations.

Figure 2 shows that the MAD of the û values for the misfit condition increased as the propor-

tion of misfitting items increased and as multidimensionality became stronger; that is, r(u1, u2)

decreased. Also, the MAD decreased as test length increased. The ANOVA showed large main

effects of Dataset (fit=misfit conditions), F(1, 2384) = 8,723:13, p\:001, h2 = :20, I , F 1, 2384ð Þ =
7, 526:54, p\:001, h2 = :17, Imisfit, F(2, 2384) = 3, 687:34, p\:001, h2 = :17, and r(u1, u2),

F(1, 2384) = 3,106:51, p\:001, h2 = :07. A small, but significant, three-way interaction effect of

Dataset, Imisfit, and r(u1, u2) was also found, F(2, 2384) = 1,058.62, p\ .001, h2 = .05.

Subsequent analyses showed that, as expected, introducing violations of unidimensionality

deteriorated the precision of û as compared with the fit condition in terms of MAD; precision

decreased even more as Imisfit and multidimensionality increased. Thus, when r(u1, u2) = .70, the

effect size d of the difference between the MAD of buFit and the MAD of buMisfit increased from

very small in the case of 10% misfitting items to very large in the case of 50% misfitting items.

When r(u1, u2) = .40, the effects were stronger, and they increased faster. Overall, increasing

the number of items improved the precision of û.

Figure 1. Average DETECT index of departure from unidimensionality for both the fit and the misfit
data, across proportions of misfitting items, test lengths, and correlations between dimensions.
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Regarding the accuracy of û, there was hardly any impact on the BIAS index when unidi-

mensionality was violated, regardless of the proportion of misfitting items or of the degree of

multidimensionality.

Effect of misfit on item parameters. Concerning the precision and accuracy of item parameter esti-

mates, the results support the conclusion of Bonifay et al. (2015) that the effect of misfit on

parameter estimates is small if a strong general factor underlies the data. The precision of both

the discrimination and difficulty parameters decreased when violation of unidimensionality was

induced and as Imisfit increased (results not shown). Thus, in the case of ai, Cohen’s d for the dif-

ference between the fit and the misfit conditions increased from 1.55 to 6.49 as Imisfit increased

from .10 to .50 and r(u1, u2) = .70. Respectively, the average MAD increased from 0.09 in the

misfit condition with 10% misfitting items to 0.26 in the misfit condition with 50% misfitting

items. For r(u1, u2) = .40, the pattern was similar, but the effects were somewhat stronger. For

bi, Cohen’s d for the difference between the fit and the misfit conditions increased from 3.04

for Imisfit = .10 to 6.50 for Imisfit = .50. The average MAD for the bi estimates increased from

0.16 in the misfit condition with 10% misfitting items to 0.54 in the misfit condition with 50%

misfitting items.

Regarding the accuracy of the item parameter estimates, the effect of misfit on the accuracy

of bi was negligible (results not tabulated): The average bias ranged between �0:01 and 0.01

across conditions. For ai, however, the effect of violation of unidimensionality was stronger,

and the bias increased with Imisfit. Thus, Cohen’s d for the difference between the fit and the

Figure 2. Average MAD for û for both the fit and the misfit data across proportions of misfitting items,
test lengths, and correlations between dimensions.
Note. MAD = mean absolute deviation.
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misfit conditions increased from 0.15 for Imisfit = .10 (the average BIAS for the misfit condition

was �0:006) to 4.26 for Imisfit = .50 (the average BIAS for the misfit condition was �0:19).

Effect of Misfit on Rank Ordering of Persons

The effect of violations of unidimensionality on rank ordering and selection decisions (RQ2),

and on criterion-related validity (RQ3, findings presented in the next section) represents the

main focus of this study.

Correlations between u, û, and NC scores. The Spearman correlations between u, û, and NC scores

(RQ2) were analyzed. On one hand, as expected, very high correlations were found between û

and NC scores (all greater than .95), which were not affected by violations of unidimensionality,

regardless of their severity. Also, removing the misfitting items did not have any impact. On the

other hand, it was found that misfit affected the correlation between u and û, and between u and

NC scores. The results for these two correlations were very similar; thus, for simplicity, only the

results concerning the rank correlation between u and û are now presented (Figure 3). The con-

clusions can be extended to the rank correlation between u and NC scores.

As can be seen in Figure 3, the analyses of the present study showed that violations of unidi-

mensionality (misfit condition) had some decreasing effect on the magnitude of the correlation

between u and û; only when multidimensionality was extreme (i.e., r(u1, u2) = .40) and the per-

centage of misfitting items was 25 or 50, removing the misfitting items (reduced condition) led

Figure 3. Average Spearman rank correlation between u and û computed over the fit, the misfit, and
the reduced datasets, across proportions of misfitting items, test lengths, and correlations between
dimensions.
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to a higher rank correlation. Overall, increasing the test length had a positive effect on the cor-

relation. ANOVA showed a significant main effect of test length, F(1, 3576) = 6,686.25, p \
.001, h2 = .17, and a small but significant three-way interaction between Dataset, Imisfit , and

r(u1, u2), F(4, 3576) = 698.28, p \ .001, h2 = .07, which is discussed next. In the condition

with r(u1, u2) = .70, the rank correlation remained high, on average, ranging between .86 and

.95. This variation in the average correlation was explained by the interaction between Dataset

and Imisfit : Violations of unidimensionality caused a medium to large decrease in the average

correlation only when there were 25% or 50% misfitting items, but removing these items actu-

ally reduced the correlation even more, for all values of Imisfit. For the extreme condition with

r(u1, u2) = .40, the effects were stronger, and removing the misfitting items led to higher rank

correlations.

The Jaccard index. It is well known that large rank correlations do not necessarily imply high

agreement with respect to the sets of selected examinees (Bland & Altman, 1986). To check to

what extent the sets of top selected examinees coincided, the Jaccard index was used across con-

ditions. The results regarding the agreement between u and û were very similar to the results

regarding the agreement between u and NC scores; thus, only the results for the former case are

discussed in detail.

The analyses of this study showed that the disagreement between u and û regarding the top

selected simulees was larger when multidimensionality was severe. Moreover, removing the

misfitting items only improved the agreement if their proportion in the test was large (50%)

and multidimensionality was severe. Figure 4 clearly shows that there is a strong main effect of

selection ratio on the Jaccard index between u and û; that is, overall, the proportion of overlap

between sets of top selected examinees decreased greatly with selection ratio. In fact, the results

showed that 89% of all the variance in the Jaccard index between u and û can be attributed to

the different selection ratios. However, there seems to be some interesting effects within selec-

tion ratios; for example, there is a three-way interaction effect between Dataset, Imisfit, and

r(u1, u2), which is further interpreted below in the case when SR = .80. The other levels of SR

led to very similar effects in terms of strength and direction.

The three-way interaction between Dataset, Imisfit, and r(u1, u2) was small, but significant,

F(4, 3579) = 194.12, p \ .001, h2 = .04. When r(u1, u2) = .70 and Imisfit = .10, keeping or

removing the misfitting items had a trivial effect on the agreement between u and û, which was

around 91% for all conditions given by Dataset (i.e., in the model-fit datasets, in the datasets

where misfit was induced, and in the datasets from which the misfitting items were removed).

When Imisfit = .25 or .50, larger differences between conditions were found: Keeping the misfit-

ting items in the test reduced the overlap between sets, especially in the latter case where a very

large effect size was found, but removing them led to an even lower agreement. The average

Jaccard index ranged between 0.88 for the reduced condition with 50% misfitting items and

0.91 for the misfit condition with 10% misfitting items.

As can be seen in Figure 4, when r(u1, u2) = .40, the pattern of results is different for the con-

ditions with 25% or 50% misfitting items, where violations of unidimensionality reduced the

overlap between sets to a very large extent, and removing the misfitting items led to a medium

to very large improvement of the agreement between sets of top selected examinees. Here, the

average Jaccard index ranged between .85 in the misfit condition with 50% misfitting items and

.90 in the reduced condition with 25% misfitting items.

The effects were slightly stronger, and the overlap between sets of top selected examinees

decreased as the selection ratio became smaller (not tabulated). Thus, when SR = .30, the over-

lap between sets of examinees selected based on u and û ranged between 56% (for the condition

with r(u1, u2) = .40 and Imisfit = .50) and 74% (for the fit and misfit conditions, with Imisfit = .10
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and r(u1, u2) = .70). Similar percentages were found for the overlap between sets of examinees

selected based on u and NC scores. The overlap between sets of examinees selected based on u

and NC scores was larger than 80% in all experimental conditions.

Effect of Misfit on Criterion-Related Validity Estimates

For the bias in criterion-related validity estimates, the effects were tested on several population

validity values, and it was found that the pattern of results was the same in all cases.

Interestingly, the absolute value of BIAS increased overall as the population validity increased

from .15 to .45. This is consistent with the findings of Dalal and Carter (2015). To avoid redun-

dancy, more detailed results were provided here for the case when the population validity is

.45. The conclusions can be generalized to the other validity values.

In Figure 5, the average BIAS in validity estimates is depicted across conditions. A very

interesting result was that when multidimensionality was not extreme (i.e., r(u1, u2) = .70), it

was better to keep the misfitting items in the test even when their proportion was large. Overall,

the effect of violation of unidimensionality on the accuracy of criterion-related validity esti-

mates is small: The largest mean value of BIAS equals �0:088 and was found for the misfit con-

dition, with Imisfit = .50, r(u1, u2) = .40, and I = 25. Although not very large in magnitude, the

bias in criterion-related validity estimates is affected by whether misfitting items are kept in the

test and by the proportion of misfitting items, and these effects differ when r(u1, u2) = .70 or

Figure 4. Average Jaccard index of agreement between u and û computed over the fit, the misfit, and
the reduced datasets, across proportions of misfitting items, test lengths, and correlations between
dimensions.
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.40. That is, there is a significant, albeit small three-way interaction effect between Dataset,

Imisfit, and r(u1, u2), F(4, 3576) = 179.97, p \ .001, h2 = .05. The interaction between Imisfit and

Dataset was further analyzed separately at both levels of r(u1, u2).

When r(u1, u2) = .70, bias in estimating criterion-related validity did not increase with viola-

tions of unidimensionality, but removing the misfitting items from the test resulted in a small

increase in bias. When Imisfit = .25 or .50, bias increased due to violation of unidimensionality to

a medium to very large extent, but removing the items from the test actually increased the bias

even more.

When r(u1, u2) = .40 and Imisfit = .10, the situation was similar to the condition with

r(u1, u2) = .70. For Imisfit = .25 or .50, however, the effect of removing the misfitting items was

reversed. More specifically, in these cases removing the misfitting items actually led to a

medium to strong decrease of the bias in criterion-related validity estimates.

Discussion

Model-fit assessment is an important step when fitting an IRT model to a set of item responses.

The validity of the conclusions derived from an estimated IRT model decreases as the severity

of violations of model assumptions in the data increases. As, in practice, there is always some

degree of misfit between the data and the model, researchers and practitioners are constantly

faced with having to choose between essentially three strategies, all of which might have

Figure 5. Average BIAS in criterion-related validity estimates computed over the fit, the misfit, and the
reduced datasets, across proportions of misfitting items, test lengths, and correlations between
dimensions.
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important drawbacks: (a) ignore the misfit, which might affect the accuracy of model parameter

estimates; (b) remove the items that seem to cause the misfit and reassess the model fit. This

might be problematic for reasons discussed in the ‘‘Introduction’’ (e.g., underrepresentation of

the construct or impossibility to remove items); or (c) use a better fitting model. This strategy

might also be problematic because, for example, the additional complexities might pose new

estimation problems. It would be very useful to know which strategy would be more appropriate

in which situation, based on the practical consequences of model misfit (i.e., the robustness of

conclusions that are made based on a poorly fitting model). In cases where removing items is

unfeasible, practitioners could profit from knowing how severe the problems may be when all

items are taken into consideration.

In this study, the authors only focused on model misfit caused by violations of the assump-

tion of unidimensionality in the context of dichotomously scored, educational tests. Three main

conclusions can be drawn from the results of this study based on the three stated research ques-

tions: First, regarding the precision and accuracy of the model parameters, the precision of û

decreased with increasing severity of multidimensionality and with increasing proportion of

misfitting items (to a small extent), but û was essentially unbiased by violations of unidimen-

sionality. The item parameters seemed to be robust against violations of unidimensionality.

Precision decreased with increasing severity of multidimensionality and with increasing propor-

tion of misfitting items, for both the discrimination and difficulty parameters, but the magnitude

of this effect was small. The accuracy of the discrimination parameter also decreased with

increase of both multidimensionality and the proportion of misfitting items. Again, the amount

of overestimation was small.

Second, regarding the effect of misfit on the rank ordering of examinees according to either

u, û, or NC scores, similar patterns were found for the Spearman rank correlations and for the

Jaccard index of overlap between sets of top selected examinees. More specifically, when mul-

tidimensionality was not extreme, both the rank correlation and the Jaccard index decreased

with increasing proportion of misfitting items, but they remained high. Removing the misfitting

items slightly lowered both the correlations and the overlap between sets, especially for shorter

tests with many misfitting items. Regarding the overlap between pairs of sets, it was found that

it quickly decreased as the selection ratio decreased.

Third, the effect of misfit on the accuracy of criterion-related validity estimates was rather

small, and it became even smaller as the population validity decreased. Nevertheless, the pat-

terns of effects were similar to those found in this study for the rank ordering of examinees: If

multidimensionality was not severe, removing the misfitting items actually decreased the accu-

racy of criterion-related validity estimates.

Practical Implications

Perhaps the most important message derived from this study is that, with respect to violations

of unidimensionality, practical decisions seem to be only affected by model misfit to a small

extent. Moreover, perhaps surprisingly, removing the misfitting items had in general a negative

effect on practical decisions. One explanation for these findings might be that removing the

misfitting items decreases the reliability of the test scores, which, in turn, might lead to poorer

selection decisions and predictive validity. Although in the practice of large-scale educational

testing misfitting items are more often replaced or revised rather than removed, in small-scale

testing the practice of removing the misfitting items from the test is encountered more often

(e.g., Bolt, Deng, & Lee, 2014; Sinharay, Haberman, & Jia, 2011; Sinharay & Haberman, 2014;

Sondergeld & Johnson, 2014). Therefore, practitioners and researchers should be very careful

when removing misfitting items from a test, whenever this possibility exists. Both the content
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validity and the psychometric quality of a test as a whole may be influenced by removing items,

and this may have an effect on important outcome measures. This message is particularly com-

forting in settings in which item removal is not an option, as one may now better gauge the con-

sequences of retaining the misfitting items.

On a more general note, the aim of constructing and using psychological tests is not to

obtain unidimensional measures but measures that are theoretically and practically useful. As

Gustafsson and Åberg-Bengtsson (2010) discussed, the strict requirement of unidimensionality

may have negative effects on the interpretability and usefulness of the resulting measures. In

fact, there are many widely used instruments that do not meet the unidimensionality require-

ment but are highly useful for theoretical, diagnostic, and predictive purposes (e.g., intelligence

test batteries such as the Wechsler series). As such, a narrow instrument measuring a homoge-

neous construct may have some desirable psychometric properties but may be of limited useful-

ness for some practical purposes.

Limitations and Future Research

In this study, the following limitations are discussed: (a) the authors only considered dichoto-

mously scored items; investigating these effects on polytomous items would also be of great

practical value; (b) they only considered misfit due to violations of unidimensionality; the prac-

tical significance of violations of other assumptions and/or their interactions could also be

insightful; (c) regarding practical decisions, the authors focused on various outcomes in educa-

tional settings. One can expect that, in context other than educational assessment, different con-

clusions about the impact of model misfit on practical decisions may arise. All these limitations

ought to be addressed in future research.
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Note
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approaches, and therefore, only the results based on Spearman’s coefficients were discussed.
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