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Abstract

The microbiota of the gut has many crucial funcsiom human health. Dysbiosis of the
microbiota has been correlated to a large andistiieasing number of diseases. Recent
studies have mostly focused on analyzing the astoos between disease and an
aberrant microbiota composition. Functional studissng (n vitro) gut models are
required to investigate the precise interactiors thtcur between specific bacteria (or
bacterial mixtures) and gut epithelial cells. As stn@ut bacteria are obligate or
facultative anaerobes, studying their effect ongexyrequiring human gut epithelial
cells is technically challenging. Still, severah&arobic) bacterial-epithelial co-culture
systems have recently been developed that mimierhi@gsobe interactions occurring in
the human gut, including 1) the Transwell “apicakerobic model of the intestinal
epithelial barrier”, 2) the Host-Microbiota Intetenn (HMI) module, 3) the “Human
oxygen-Bacteria anaerobic” (HoxBan) system, 4) lthenan gut-on-a-chip and 5) the
HuMiX model. This review discusses the role of gutrobiota in health and disease and
gives an overview of the characteristics and appbas of these novel host-microbe co-

culture systems.

Introduction

Anaerobic gut bacteria play a pivotal role in hurh@alth and disease, most of which are
strict/obligate anaerobes. Due to the oxygen-sgitgitf these bacteria, it is technically
challenging to study their interaction with oxygeguiring gut epithelial cellg vitro.
Although many of the bacteria can survive oxygemimchanisms such as sporulation;

oxygen-free conditions are required for the andertlacteria to grow! Recently, a
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number of different anaerobe-epithelial co-cultaystems have been developed. These
co-culture systems allow research of both aeradlacépithelial) cells and specific strains
of anaerobic bacteria within one system. Develogne representative co-culture
systems that can mimic the gastrointestinal ecesysire valuable tools to study host-
microbiota interactions in detail at the mechaaibtvel. This review will first discuss the
role of the human gut microbiota in health and {glated) diseases. Secondly, the
relevance and the applications of the currentlyitalke anaerobe-epithelial co-culture

systems will be discussed.

1. The role of the gut microbiota

The human gut contains a wide variety of differemtroorganisms. Bacteria, viruses,
archaea, yeast and fungi colonize the bo@he bacterial part of the microbiota is the
most studied and best described of these diffemintoorganisms? The trillions of
bacteria that inhabit the gut of each individudbbg to hundreds of different speciés.
The composition of the gut microbiota is highly dymc and different for each human
individual and changes during the course of fif€he bacterial phyla Bacteroidetes and
Firmicutes are the most prevalent in adults anéttogy they form the majority of the gut
bacteria.*® The microbiota in the gut has many crucial funtsion human health and
affects the host via different host-microbiota fatgion pathways.® For example,
intestinal microbiota enable fermentation of comph®n-digestible carbohydrates and
produce short-chain fatty acids (SCFAs), such &sate, propionate and butyrat&™

Several anaerobic bacteria that dominate a hedatity such asFaecalibacterium
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prausnitziiand Roseburiaspeciesare major butyrate producer$:*® Butyrate is known
to be an important energy source for colonocyted,ia suggested to enhance intestinal
barrier function* Moreover, butyrate is known to possess anti-inflatory properties
and even possible anti-cancer effe¢fs®In addition, the ‘healthy gut microbiome’
plays an important role in the development of abetd immune-system. A certain level
of immunological tolerance exists for the intralmadi bacteria in a healthy guxtensive
profiling of the human gut microbiome has shownt teaveral common diseases are
associated with “dysbiosis” of the gut microbiofde term dysbiosis is often used to
describe a disturbed balance between ‘beneficialttdria with anti-inflammatory
properties and pathobionts with pro-inflammatorgparties. Moreover, many diseases

are associated with a decreased diversity of thenigrobiota.*®*®

For the majority of diseases it remains uncleawtich extent the dysbiosis is the cause
or the consequence of the disease and/or treatmdtftis issue is further complicated by
the fact that many studies investigate the badtenanposition of the fecal material,
which may significantly differ from the bacteriabmposition attached to the mucosa
(mucosa-associated microbiota, MAM) that may beemdirectly related to the actual
disease development® Moreover, the bacterial composition and abundawagy

between different parts of the gastrointestinaittra

It is well established that the two major formsimlammatory bowel disease (IBD) —
Crohn’s disease (CD) and ulcerative colitis (UC3re associated with alterations of the

microbiota.??? In both diseases, there is an inappropriate mliGosaune response
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triggered by the commensal microbiota in a gendyigmedisposed host>?’ Changes in
the gut microbiome seem more apparent in CD thasdr?®?° Also, CD patients show a
less diverse microbiota profile than healthy indials. ***! Typically, a decrease in
abundance ofBacteroidesand Firmicutes is detected, together with an e®eein
proteobacteria and fusobactefiaA consistent observation is a decreased abundznce
butyrate-producingF. prausnitzii and an increased number of Adherent-invasive
Escherichia coli(AIEC) in CD patients?3%3 |n addition, an increase of the mucin-
degrading bacteriunRuminococcus gnavuisas been described" CD patients with
higher numbers of pathobionts, suchEascoli, and lower proportions df. prausnitzii
have an increased risk of endoscopic recurrentsiésafter ileal/ileocecal resectiofr®®
Furthermore, CD patients with the lowest abundasfde. prausnitziioften have a less
favorable disease course, with worse disease sankglevated inflammatory markers.
% 1n line with these observations, the abundande. @irausnitziimay even function as a

biomarker for predicting disease course in CD pasié®**

Another example of a disease in which an aberracroimota composition is observed is
celiac disease. In the duodenum of these patigpisally an increase in Bacteroidetes is
detected?**® Also, an association between the gut microbiontetha development and
the progression of intestinal cancer has been iescf®*’ Recent evidence suggests a
relationship between aberrant intestinal microbemad non-gastrointestinal disorders. It
is increasingly recognized that common metabolgeases, such as obesity and type 2
diabetes mellitus, are associated with an alteréctofriota composition.**>* For

instance, a recent study shows that a relativelygh habundance ofAkkermansia
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muciniphila is associated with a healthier metabolic staftisFinally, associations
between an altered microbiota composition and negio or psychiatric diseases, such

as anxiety, depression and autism are described.

The composition of the gut microbiota is dynamiomplex, and is influenced by both
non-adjustable factors, such as age and geograpdeedion, and adjustable factors, like
diet and medication®**® The strong link between aberrant microbiota widvesal
common diseases, and the possibility to resham®itgosition, makes the microbiota an
attractive target for health improvement®’ As a result of a dysbiotic state of the
intestinal bacteria, host functions, such as ththelpl barrier and an adequate immune

response may be compromised.

It is apparent that dietary interventions haveranst effect on microbiota composition.
*85% The western diet, characterized by high sugarfahdontent and low amounts of
dietary fiber, has adverse effects on the micr@baaimposition, especially in the context
of IBD. °®® Certain probiotic (living microorganisms) and pmlz (non-digestible

polysaccharides) supplements can be used to dleenmicrobiota composition®?®°

Moreover, different types of medication have adeersfects on the microbiota
composition. For example, treatment of bacteridedtions with antibiotic drugs is
common in modern medicine. However, these drugsuldhde prescribed in a
conservative way, because of the profound effecthee drugs on the microbiota

composition 28 Similarly, chemotherapeutic agents may have an eware detrimental

effect on the microbiota, with dramatic reductianghe number of anaerobic bacteria.
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%9.70 Also, a recent study, combining the data of tHezge Dutch cohorts, shows that
proton pump inhibitors (PPI's) negatively modifyethmicrobiota and predispose to
Clostridium difficile infection. "* ‘Improving’ the composition of the gut microbiots
therefore a promising target for the treatment ahyndiseases. F&. difficile infection,
fecal microbiota transplantation (FMT) has alredden shown to be an effective and
highly successful treatmerf:”® However, FMT has shown to be less promising fdD IB
patients.”* Moreover, FMT has several risks, such as potet@smission of viruses.
Also the long-term effects of this treatment aré fody determined yet. Multiple studies
have evaluated the effect of prebiotic and probiotterventions in IBD. In this review

we will only discuss a selection of important sesdperformed in this areZ.

In UC the role of the probiotic supplement VSL#3swevaluated. This supplement is a
probiotic mixture, consisting of four strains dfactobacillus three strains of
Bifidobacteriumand one strain dbtreptococcus salivariusubsp thermophilus VSL#3
intake results in an increase of ‘protective’ baateand may help to prevent a flare-up of
intestinal inflammation® Indeed, a recent meta-analysis revealed that VSt#@n
added to conventional therapy, improves remissidesrin mild to moderate active UC.
In a similar way, this probiotic mixture enhancednission in chronic pouchitis patients.
7.8 Also in CD, the other major form of IBD, differedietary interventions (i.e. pre- and
probiotics) aiming to modify the microbiota compasi have been performed. The
clinical trials with pre- and probiotics can be smwered as rather opportunistic as they
test the “known suspects” for their therapeuticeptil. However, in many cases the

results of such clinical trials are inconsistéitNumerous factors, such as interindividual



202 genetic variation and differences in environmentaicumstances, are frequently
203 encountered in prospective human studies. Of cothiese factors influence the outcome
204 of these intervention studies, and may compromise reliability of the findings.
205 Considering the ethical issues and high costs adedowith such clinical trials, it would
206 be of immense value when the potential therapeaftects of pre- and probiotics could
207 be analyzed in a controlled and reproducible mar@eotobiotic animals, such as germ-
208 free mice, seem to be an attractive model betwesnah clinical studies anith vitro

209 models. 88! Advantages of these germ-free mice consist of mtrofiable host
210 environment and the opportunity to investigate gjpeloacterial contributionsHowever,

211 in recent years, manyn vitro gut systems have undergone great technological
212 improvements and increasingly become more repraseatof thein vivo situation.
213 These improvements im vitro gut models will likely result in increased usagettuése
214 systems, for instance as a screening tool for giéméerventions3*528°

215

216

217

218 2. Gastrointestinalin vitro model systems

219 Studies that establish an association between cfispmicrobiota composition and a
220 disease phenotype provide incomplete informationouab possible underlying
221 mechanisms®® In vitro studies are often required to give more mechaniissight. The
222 complex interactions between human gut microbietathelial cells and immune cells
223 are difficult to mimic inin vitro models, and also other factors, such as variabjgesx

224  levels and gut peristalsis should be included. Aomadvantage o vitro models is that

225 they can be tightly controlled under reproducibdamditions. Also, they allow detailed



226 mechanistic analysis; have limited ethical resgaand require no expensive and time-
227 consuming ethical approval procedures (as reqdoediuman clinical trials or animal
228 studies). Furthermore, since pharmaceutical proesdand dietary research usually take
229 many years, a representatinevitro model may considerably accelerate these procedures
230 Altogether, this makes the developmentiofvitro models that closely resemble the
231 conditions in thegastrointestinal tract highly relevant.

232

233 Exactly mimicking the gastrointestinal situatiam vitro seems hardly possible; some
234 parameters will typically be omitted in the devetwmt of a model that is suitable to
235 answer specific questions. Thus, the researchiqunedb be answered largely determine
236 whichin vitro model is most appropriate to use, although altenuly available systems
237 have their specific limitations as well. Ideallhetin vitro model should allow the
238 analysis of the direct interactions between hod$ emd microbes, as it exists in the gut.
239 Direct host-microbe interactions may be more raktuathe small intestine, with a rather
240 thin mucus layer compared to the colon where thehntbicker mucus layer is a more
241 prominent physical barrier. The gut lumen is almmshpletely anaerobic. Only minute
242 amounts of oxygen will penetrate from the epithaliinto the lumen. Thus, the gut
243 microbiome consists of facultative and (predomihardtrict anaerobic bacteria. An
244  vitro model of the gut therefore preferably establisines anaerobic conditions for the
245 microbes, while the host cells are cultured undgolaic conditions. Ideally, aim vitro
246 gut modelallows the analysis of parameters that differeati@tween health and disease,
247 as well as the effect of (dietary) intervention®sHparameters that are considered to be

248 important are cell viability, proliferation and féifentiation, epithelial permeability

10
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(barrier function) and cytokine production. On tleninal side, microbial parameters,
such as bacterial fithess, bacterial compositiarhssate utilization and metabolite
production (such as SCFASs) are important to analybe currently availablén vitro
models of the human gastrointestinal tract areudised in the following sections. These
models can be divided into models that enable theysof isolated components of the
gut ecosystem, such as gut epithelium cells andsagsection 2.1)or models that study
the gut microbiota in isolatiorfsection 2.2) However, to truly mimic the mutual
communication between human gut (epithelial) calsl the gut bacteria, systems are

needed that allow co-culturing of both in one systerhich are reviewed isection 2.3

2.1 Models for gut epithelium and mucosa

Intestinal cell lines, such as Caco-2, HT-29, Te8#l DLD-1, are frequently used as
representatives of the human gastrointestinal elpnittm, however, they originate from
gastrointestinal tumors. Their true epithelial awheristics are often compromised. Still,
epithelial cell lines can be used in Ussing changx@eriments, in which properties like
transport of substances and permeability throughegiithelial cell layer can be assessed.
Intestinal explants have the advantage that thegiity of the intestinal mucosa layer
remains intact’®® Also, precision-cut intestinal tissue slices (PGi& arex vivomodel
used for drug metabolism studi& All cell types from the gut are present in PCIg an
this model also allows study of diseased tisSti#élore recently, intestinal organoids or
‘mini guts’ are being established as models of tiuenan intestinal epithelium that
contain all main types of epithelial cells, e.gtezacytes, goblet cells, enteroendocrine

cells and Paneth cell¥ These gut organoids can be groinnvitro from resident stem

11
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cells in the gut and remain genetically stable uttuze for many cell divisions (over
months to years).”® Also, the gut organoids maintain their locatiorafic
characteristics, so a differentiation can be mad&véen colonic, ileal, jejunal and
duodenal primary human intestinal epitheliuthModels using epithelial cells can be
exposed to bacteria or bacterial extracts or prisdsecreted by bacteria. However, this is
different from a co-culture device, in which diféat cell types are grown (and remain
viable) for a certain time period. Also, a potehtitiect of the epithelial cells towards the

bacteria cannot be studied in such a cell modeésys

2.2 Models for gut bacteria

Examples of systems that are used to study the inguiamicrobiota in isolation are the
TNO dynamicin vitro model of the human large intestine (TIM-2), the Glewor of the
Human Intestinal Microbial Ecosystem (SHIME), thEhfee stage continuous culture
system”, the Lacroix model and the fecal minibiateaarrays (MBRAs)?*> The TIM-

2 is designed to simulate the conditions founchi grroximal colon?® Accumulation of
metabolites in the lumen is prevented by constadtaative removal of these metabolites
by means of a dialysis system. In addition, pde&atemperature and pH are controlled
in this system to mimic than vivo human situation. The TIM-2 system allows for the
analysis of fermentation patterns and effects ebjatic and probiotic supplement intake
on microbial composition'®*% The SHIME contains five connected vessels that are
designed to closely mimic the bacterial compartna@nthe gastrointestinal tract of an
adult human!®® Each reactor simulates a different part of thetr&t: stomach, small

intestine, ascending colon, transverse colon arsgeseling colon. In this model, the

12
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316

‘intraluminal content’ is continuously stirred apéi-controlled. In addition, pancreatic
enzymes and bile are added to more closely resetfmbdie vivo situation. In this model
the fermentation patterns of four polysaccharidesewshown to be similar to the
fermentation pattern that occuirs vivo. *°’ The SHIME is relevant for intervention
studies, such as supplementation studies of diffembiotic strains or prebiotics®*°
The “Three stage continuous culture system” corepribree culture vessels, simulating
the ascending, transverse and descending colos.sykiem simulates the nutritional and
environmental conditions in the human large intestiOxygen-free conditions, pH
control and transit time closely resemble itheivo situation.”>****2The Lacroix model

is also a three stage continuous culture systenthwises immobilized fecal microbiota
and is used to simulate fermentation of the infaaton. °*** Finally, the fecal
minibioreactor array (MBRA) is another vitro system used toultivate and investigate
fecal microbiota communities. In these bioreactarsnsisting of six single vessel
chambers in an anaerobic chamber, the diluted fefcesiltiple human donors is used. In
one study this system is used to test competitietwden different ribotypes of.

difficile. %8

The systems described abovay generate valuable information about the respafs
the gut mucosa to bacterial (products) or direéeot$ of nutritional factors to the
composition of the gut microbiota. However, theyrd allow the analysis of the mutual
communication between the gut bacteria and thetintd epithelium or simulate disease

conditions of the host. For such systems, an aniditibarrier needs to be taken and that

13
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is to co-culture bacteria under anaerobic conditiovhile gut (epithelial) cells are

provided with sufficient oxygen.

2.3 Models for gut host-microbe interactions

An in vitro gut host-microbe co-culture system would have madyantages for
unraveling the direct role of gut bacteria in itit@sl health, provided that it is robust and
truly simulates the gut ecosystem. A schematicrégaf the host-microbe interaction at
the aerobe-anaerobe interphase is showirigure 1A. Below, we give a concise
overview of recently developed systems that end#fde co-culture of (anaerobic) gut
bacteria and (oxygen-requiring) epithelial cellts¢aseeTable 1 for a comparative
overview).

I) Transwell co-culture models are examples of systdmat are used to study cell-cell
interaction. These Transwell co-culture systemsnstebe particular useful to study the
interaction between bacteria, mucosal immune @eit$ intestinal epithelial cells under
static conditions, but are more frequently usedeuraérobic conditions***°Recently,

a custom-made variant of such a Transwell co-celgystem was developed that allows
the analysis of host-microbe interactions betwerpgen-requiring Caco-2 cells and
anaerobicF. prausnitzii bacteria for up to 8 h**” The Transwell'apical anaerobic
model of the intestinal epithelial barrier chamber (se&igure 1B) contains oxygen-
containing medium in the bottom compartment. Cacel’ pre-grown on the filter of an
insert are placed in the chamber. Subsequentlyerabz culture medium, with or
without F. prausnitzij is added in the insert allowing direct contadivthe Caco-2 cells.

After this, the whole system is placed in an anaieravorkstation. Dissolved oxygen

14
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levels remained high in the bottom compartmentlandin the upper compartment over
a 12 h incubation periods. prausnitzii bacteria pre-grown to stationary phase were
added in anaerobic host cell culture medium (M1@OYhe upper compartment. The
number of viable F. prausnitzii remained relatively stable, but still dropped
approximately 10-fold after an 8 h co-culture pdrigith Caco-2 cells. In comparison,
viability of F. prausnitziidropped over 10,000-fold when cultured for 30 imiroxygen-
containing M199. During 8 h of co-culturing, Cacal@pendent transepithelial electrical
resistance (TEER) was slightly enhanced By prausnitzii compared to control
conditions without bacteria. TH&l-mannitol flux across the Caco-2 monolayer was not
affected byF. prausnitziiduring the first 6 h of co-culture, after whichinicreased in
comparison to control conditions without bactef&obal gene expression analysis of
Caco-2 cells exposed for 4 h to either live or UWel F. prausnitziirevealed that live
bacteria suppress cellular pathways involved irmmmatory response and immune cell
trafficking much stronger than dead bacteria. Thestnpronounced findings were the
increase in IL-10 and a decrease in fB-signaling. Thus, the ‘apical anaerobic model
of the intestinal epithelial barrier’ maintains ffgtient) viability of host cells and
microbes for up to 8 h, allowing real time measuwpta of TEER. In addition, it shows
that the metabolic activity oF. prausnitziiis required to acquire its maximum anti-
inflammatory capacity.

1) The Host-Microbiota Interaction (HMI ™) module is a custom-made co-culture
system consisting of two compartments, a “lumir@ipartment containing gut bacteria
and a “host” compartment containing the “enterogjte.g. Caco-2 cells (sdegure

1C). '8 An important difference with the above-describedriBwell co-culture system is

15
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that these two compartments have (semi-)continflousof fluid and are separated by a
functional double layer (a semi-permeable memb@ame an artificially added mucus
layer). The HMI module was designed to be connetbedn adapted version of the
SHIME, containing only the first 3 reactors thahalate the stomach, the small intestine
and the ascending colon. The SHIME was inoculatéd & fecal sample of a healthy
individual and after passing the 3 reactors thiueffit, consisting of a complex mixture
of intestinal bacteria, flows through the “lumina@dmpartment of the HMI module. The
“host” compartment containing Caco-2 cells receigesni-continuous flow of cell
culture medium in the opposite direction. The sefag layer (semi-permeable
polyamide membrane with 0.2-um pore size coatel avinucus layer) was shown to be
permeable for FITC-dextran of up to 150 kDa in stagt obviously does not allow direct
interaction between bacteria and host cells. la tio-culture system, important features
of the gastrointestinal tract, such as shear stpssneability, oxygen diffusion and the
possibility of the microbiota to colonize the mudager are taken into account to closely
mimic the humann vivo situation. In addition, a dietary intervention ngithe dried
fermentation products of baker's yeaSa¢charomyces cerevisjagas studied in this
system. Caco-2 cells appeared very sensitive tectdexposure to the effluent of the
adapted SHIME leading to a 80% reduction in cedbility after 2 h. In contrast, Caco-2
cells remained viable for up to 48 h when culturethe HMI module downstream of the
SHIME. The SHIME-HMI combined system was used talgtthe effect on the luminal
and mucosa-associated microbiota, as well as own-Camediated cytokine production
upon treatment with fermentation productsSofcerevisiaeThe presence of Caco-2 cells

in the HMI module did not strongly affect the numbed relative abundance of different
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406

407

bacterial groups in the luminal samples, althouglom@sistent trend of reduced bacterial
numbers was observed in time (comparing 0, 24 &t 4o-culturing). The treatment
with S. cerevisiadermentation products significantly enhanced #wels of SCFAs in
the SHIME effluent entering the HMI module. Remdnlka this was associated with a
lower total number of luminal bacteria, similar fat four groups tested. Passing the
cerevisiaetreated effluent through the Caco-2-containing HMbdule resulted in a
significant increase in the abundance of luminalctBeoidetes, Firmicutes and
bifidobacteria. Interestingly, Caco-2 cells prodilicsignificant amounts of pro-
inflammatory IL-8 at the end of the 48 h co-culhgriwith the normal SHIME effluent,
which was completely suppressed by the treatmetit ®i cerevisiaefermentation
products, indicating an anti-inflammatory respomsiced by this “intervention”. This is
in line with immune modulating / anti-inflammatopyoperties of this product that have
previously been demonstratediinvivo studies ****** A reduction of pro-inflammatory
IL-8 production was correlated with an increasetytate production in the SHIME?
Interestingly, this intervention resulted in a 3186rease in butyrate production in the
ascending colon of the HMI module. Simultaneousiiy HMI module allows for the
analysis of the bacterial colonization of the mudasger. While the strict anaerobic
bifidobacteria colonized the upper side of the nsudayer (facing the Iluminal
compartment)F. prausnitziiwas mainly detected in the lower parts of the rsuéacing
the “host” compartment) as observed in the humanrguivo. This may be due to the
capability of F. prausnitzii to survive microaerophilic conditions in the abantd

presence of flavins and/or thiols.
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) The 3 system that aims to simulate host-microbe intémastoccurring at the oxic-
anoxic interphase of the (human) gut is thlaman oxygen Bacteria anaerobic’
(HoxBan) co-culturing system(seeFigure 1D). In contrast to the previously described
“apical anaerobic model of the intestinal epithdbarrier” and HMI module, the HoxBan
system does not require specialized (e.g. custodejmnequipment. The HoxBan system
consists of an anaerobic and an aerobic compartthahtire created in a 50 mL plastic
tube. The bottom compartment contains the anaerobateria of interest in specific
culture medium solidified with 1% agar. The top gartment contains the oxygen-
requiring epithelial cells on a glass coverslipllécéacing down), covered with cell
culture medium. Oxygen is penetrating in the agamfthe top compartment, creating an
oxygen gradient, resembling the steep gradientsactioe human intestinal epithelium.
Obligate anaerobic bacteria in the lower compartraea protected from oxygen by the
agar and can grow at the lower end of the gradt&hin practice, the liquid (hand-warm)
agar broth is inoculated wifh prausnitziiin an anaerobic workstation, aliquoted (40 mL
each) in 50 mL plastic tubes and allowed to sofidBubsequently, the HoxBan tubes are
transferred to a cell culture cabinet and Cacol®,gare-grown on coverslips to 80-100%
confluency, are placed upside-down on the bactemdaining agar medium. The tubes
are filled to the top with cell culture Dulbeccatdodified Eagle Medium (DMEM).
Subsequently, the tubes are placed in a standanétiiied cell culture incubator at 3¢
and 5% CQ for up to 18-36 h. No reduction in viability of &&2 cells was observed
when co-cultured withF. prausnitziifor 24 h. In fact, this analysis showed for thestfi
time that mutualism is observed between oxygenineguintestinal epithelial (Caco-2)

cells and anaerobiE. prausnitziibacteria. A remarkable enhancemenfofrausnitzii
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growth was observed directly below the Caco-2-dairtg coverslips. Interestingly, this
was not seen whehR. prausnitziiwas co-cultured with non-intestinal cells, like the
human liver cancer cell line HepG2, indicating thi@s effect is (intestinal) cell type-
specific. Moreover, Caco-B- prausnitzii co-cultures in the HoxBan system confirmed
the anti-inflammatory and anti-oxidative stresseef$ of liveF. prausnitziion Caco-2
cells. The HoxBan setup allowed analyses of theswmption and production of
metabolites (the “exo-metabolome”, including SCFAgdrocarbons, lipids and amino
acids) in the liquid cell culture medium after 1®fhco-culture. These analyses revealed
that levels of formate are strongly increase#.iprausnitziiis co-cultured with Caco-2
cells, while butyrate levels are not changed (caeghaoF. prausnitziiwithout Caco-2
cells). The selective effect on the levels of th8€4-As requires further study, but could
be a result of the selective use of butyrate by“dmterocytes”. Currently, research in
additional applications of the HoxBan system isnggberformed. These include studies
assessing the effect of prebiotic and vitamin weations on host-microbiota interplay
and adaptation of this system to a disease moddBfD. The results observed in the
HoxBan model correspond with previously perfornmedivo studies. Anti-inflammatory
effects of this bacteria were demonstrated in ameufFNBS-induced (chemical induced)
colitis model, in which administration of. prausnitzii and its supernatant had a

protective effect!?*

Also a beneficial effect of. prausnitziion intestinal epithelial
barrier function has been described in a murine ehod low-grade inflammation?®
Furthermore, a large meta-analysis in 2014 shoatthe abundance Bf prausnitziiis

reduced in IBD patients when compared with headtyjects°
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IV) A 4" system that is relevant for host-microbe intemacstudies is theuman gut-
on-a-chip (seeFigure 1E). However, in contrast to the previously describgstems, its
use for co-culturing human cells with strict andmeayut bacteria has not been performed
yet and it may be technically very challenging taimtain both aerobic and (strict)
anaerobic conditions in this system. Still, vertenesting results were obtained when co-
culturing Caco-2 cells with oxygen-tolerant gut teai@, which may be relevant for
further development of true aerobic-anaerobic dbidang systems. The gut-on-a-chip
consists of two microchannels, simulating the guhén and the blood compartment,
separated by a porous flexible membrane coated s&wtracellular matrix (ECM) and
lined by Caco-2 cells?® Apart from continuous medium flow providing lowesir stress
to Caco-2 cells, this system is unique becausehef fact that it can also mimic
peristalsis-like motions by stretching and relaxthg ECM-coated porous membrane.
This membrane is attached to two hollow side chambbat are rhythmically
inflated/deflated. Especially promoted by the patss-like motions, Caco-2 cells
differentiate into a complex intestinal epitheliwwansisting of four types of intestinal
epithelial cells, i.e. absorptive enterocytes, nsusecreting goblet cells, enteroendocrine
cells and Paneth cells. Moreover, 3D villi-likewstiures are formed?®*?’ The gut-on-a
chip allows the analysis of TEER, which increasedrenrapidly compared to
monocultured Caco-2 cells in transwell cultures.t-Gua-chip allows the long-term
(days up to two weeks) co-culture with bacteriabiutic Lactobacillus rhamnosu&G
(LGG) formed microcolonies on the surface of Cacoells and increased the TEER
compared to Caco-2 cells not exposed to LGG. Caxenfy of Caco-2 cells with a

formulation of probiotic bacteria (VSL#3, contaigine bacterial strains originally
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isolated from the human gut microbiome) for 72 Huiced transcriptome changes in
Caco-2 cells that more closely resemble the hurdeami, as compared to monocultured
Caco-2 cells in the gut-on-a-chip. Moreover, VSL&8 well as antibiotic therapies, were
shown to suppress Vvillus injury and loss of TEERswaduced by pathogenic Entero-
invasiveE. coli (EIEC) bacteria. Interestingly, exposure to LP&ated from pathogenic
E. colidid not directly affect TEER or villus injury indo-2 cells in the gut-on-a-chip.
Only when human peripheral blood mononuclear q€IBMCs) were also included in
the lower capillary channel (simulating the bloampartment), both loss of TEER and
villus injury were induced by LPS. Moreover, indlus of PBMCs and LPS in the gut-
on-a-chip resulted in the polarized secretion dammatory cytokines (IL-f, IL-6 and
TNFo) to the “blood compartment”. Finally, the manipgida of peristaltic motions
appeared to be highly relevant for host-microberaattions, where the absence of such
cyclic mechanical deformations increased the lewéE. coli colonizing the enterocyte
surface, a process that might resemble bacterexigoowth. As highlighted before, strict
anaerobic bacteria have not been co-cultured wetbo€2 cells in the gut-on-a-chip and
given the small diameters of the channels it mayes@nically impossible to maintain
anaerobic conditions in the “luminal compartment”.

V) The 8" and most recently described aerobic-anaerobicuttare system is the
HuMiX (human-microbial crosstalk) modular microflui dic device *?® This device is
composed of a modular stacked assembly of elastorgaskets sandwiched between
two polycarbonate enclosures (seigure 1F). Each gasket defines a distinct spiral-
shaped microchannel. The upper compartment is Nierobial microchamber’ and is

separated from the middle compartment: ‘the Ephetell microchamber’ by a
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Nanoporous membrane (pore diameter 50 nm). ThethH&ml cell microchamber’
contains the oxygen-requiring Caco-2 cells, formihg epithelial cell barrier. The
bottom microchannel is the ‘perfusion microchampevhich is separated from the
‘Epithelial cell microchamber’ by a Microporous merane (pore diameter 1 um). In this
device, Caco-2 cells are first cultured and groan days to form a well-differentiated
layer of epithelial cells. Monocultured Caco-2 sebstablished significantly higher
TEER in the HuMiX as compared to Caco-2 cells gelfuin a similar set-up in a
Transwell device. Moreover, clear expression oftiflet junction protein occludin at the
cellular membrane was demonstrated by immunoflwerese microscopy. Subsequently,
bacteria were inoculated in the Microbial microct@mand co-cultured for an additional
24 hours. Following co-culture, all individual celbntingents can easily be accessed and
evaluated. In this study, the researchers firstcutaied the commensal facultative
anaerobd.actobacillus rhamnosu&G (LGG), which was also studied in the gut-on-a
chip (see above). Both the oxygen-requiring Caaml®s and the facultative anaerobe
LGG remain viable during co-culture. Integrated gaiy sensors in this device allow the
real time monitoring of dissolved oxygen concembrag. Clearly different oxygen levels
were detected between the “perfusion microchaméed’the “microbial microchamber”,
though the latter was not completely devoid of @ygsStill, the authors show that this
device can also be used to study the effect ofgat#i anaerobic bacteria in co-culture
with Caco-2 cells. The obligate anaerobic strBacteroides cacca€of the phylum
Bacteroidetes) inoculated in combination with LG@mrined viable and a relative
increase in number d8. caccaecompared to LGG was detected after a 24 hour co-

culture period with Caco-2 cells. However, absolutenbers of both bacteria before and
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after co-culture were not shown. Moreover, the pidé difference in growth rate
between these two bacteria (in the absence of Camsls) was not established. So a
potential selectivity of Caco-2 cells towards sfieddacteria cannot be concluded from
these experiments. Importantly, this device alldlws additional inclusion of immune
cells (i.e. CD4+ T cells) to the perfusion chambier, help further clarify specific
immunological research questions. Finally, the arglvalidate the HuMiX in relation to
previously performedh vivo studies. They show that the transcriptional resgemnd the
epithelial cells co-cultured with LGG in the HuMixre in line within vivo expression
data obtained from human and piglet studi&&™! This study nicely demonstrates that it
is crucial to establish (near) anaerobic conditiforsthe microbiota in a representative
gastrointestinal co-culture device, since cleafedénces in transcriptional responses

between LGG grown under aerobic and anaerobic tondiwere shown.

23



Table 1. Characteristics and applications of receht developed (anaerobic) bacterial-epithelial gut@-culture models.

Human gut epithelium
model (cell type)

Direct contact bacteria ang
host cells

Mucus layer

“Gut epithelial cells”
grown in:
(during co-culturing)
(Anaerobic) bacteria
grown in:
(during co-culturing)

Host-Microbe co-culture

time

Static or fluid flow (shear
stress)

Simulation of peristalsis

Co-culture with strict
anaerobic bacteria

Mixed bacterial cultures

Combination with other
types of (human) cells

Analysis of epithelial
barrier function

Intervention studies (diet,
medication, etc)

Model of disease

A. Transwell
‘apical anaerobic
model of the
intestinal
epithelial barrier’

Caco-2

Yes

No

B. Host-
Microbiota
Interaction

(HMI ™) module

Caco-2

No (separated by
mucus and
microporous
membrane)
Yes (artificially
added)

C. HoxBan co-
culture system

Caco-2, DLD-1

Yes

Yes (artificially
added)

M199 + 10% FBS DMEM + 10% FBS DMEM + 10% FBS

Anaerobic M199 (-
FBS)

Upto8h

Static

No

Yes (i.e. F.
prausnitzii)

Not described

Not described

Yes (TEERH-
mannitol flux, IF-
staining for TJ
proteins)

Not described

Not described

Mixed carbon-
source bacterial
broth for SHIME

Upto48h
connected to
SHIME
Fluid flow
(6.5 mL min=
3 dyne crﬁ)

No

Yes (SHIME
effluent, including
F. prausnitzii)
Yes (fecal inoculunr
from healthy humar
in SHIME)

Not described

Yes (bilateral
diffusion of 4-20-
150 kDa FITC
dextran)
Yes (S. cerevisiae
fermentation
products)

Not described

YCFAG (Anaerobic
F. prausnitzii broth)

Upto36h

Static

No

Yes (i.e. F.
prausnitzii)

Not described

Not described

Yes (staining for TJ
proteins)

Yes (prebiotics,
vitamins)

Yes (induction of
inflammatory state
in epithelial cells)

D. Human gut-on-
a-chip

Caco-2

Yes

Yes (mucus
production)

DMEM + 20%
FBS

DMEM + 20%
FBS

1-2 week

Fluid flow
-1
(30uL h=
2
0.02 dyne cm)

Yes

Not described

Yes (VSL#3)

Yes (PBMCs,
endothelial cells)

Yes (TEER)

Yes (probiotic
VSL#3 and
antibiotic mixture)
Yes (bacterial
overgrowth and
inflammation)

E. The HuMiX
model

Caco-2

No (separated by
Nanoporous
membrane)

Yes (mucin layer)
DMEM + 20% FBS

Anoxic DMEM
medium

24 h

Flow rate: 25 pl
min*

No

Yes (Bacteroides
caccae)

LGG and B. caccae

Yes CD4+ T cells

Yes (HUMiX-TEER

device and Staining

for TJ protein
occludin)

LGG is used as a
probiotic treatment

Not described

535
536
537
538
539

Abbreviations Caco-2: human colon epithelial cell line. DLD-thuman colon epithelial cell line. M199:
medium 199. DMEM: Dulbecco’s Modified Eagle MeditWCFAG: medium containing yeast extract,
casitone, fatty acids and glucose. FBS: fetal bevserum. H: hours. PBMCs: peripheral blood
mononuclear cells. TEER: transepithelial electricasistance. TJ proteins: tight junctions proteih&G:
Lactobacillus rhamnosus GG.
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540 Concluding remarks

541 Dysbiosis of the gut microbiota is associated withny common diseases, however
542 limited tools are available to determine what i® tbause or consequence of this
543 phenomenonin vitro models for host-microbe interactions occurringtlie (largely
544 anaerobic) gut are instrumental to analyze the ocotde and cellular mechanisms
545 involved. Several (anaerobic) bacteria-gut epidhetio-culture systems models have
546 recently been developed. A comparative overviewhefcharacteristics and applications
547 of these systems is given Trable 1 Each of these systems has its own pros and cons,
548 and the specific research question will largelyed®aine which system is most suitable to
549 use. Key factors to consider are 1) whether atstmaerobic compartment for gut
550 Dbacteria is required; 2) whether single or compieixtures of bacteria need to be
551 analyzed; 3) whether direct contact with bactend gut epithelial cells is important, 4)
552 whether analysis of the barrier function (such BER) is needed; 5) whether effects on
553 both gut epithelia, as well as bacterial metabolgthbe analyzed; and maybe at least as
554 important 6) whether the equipment and infrastmctis available to perform such
555 experiments. A major “weakness” of all systemsasoid that they all rely on the use of
556 Caco-2 cells as representative of the human gtibedpim. Still, Caco-2 cells originate
557 from heterogeneous human epithelial colorectal acirtinoma and may therefore
558 behave quite differently as compared to true hugdrepithelium. Recent advancements
559 in generating primary human epithelium from intestistem cells hold great promise for
560 “upgrading” these host-microbe co-culturing systemigh location-specific and/or
561 disease-specific human gut epithelium. Thus, ctudalg oxygen-requiring human gut

562 epithelial cells with anaerobic gut bacteria isht@cally feasible, however, the individual
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563 systems need further refinement to help us unrdéneetomplex functional links between
564 disease and gut microbiome dysbiosis.
565

566
567
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571 Figure 1. Recently developed (anaerobic) bacteriapithelial gut co-culture models. A) Schematic
572 figure of the aerobe-anaerobe interphase of the huam gut (adapted fromBarbosa T. et al.; Wiley
573 Interdiscip Rev Syst Biol Med, 2010} ; B) The Transwell ‘apical anaerobic model of théntestinal
574  epithelial barrier ''”; C) The Host Microbiota Interaction module (HMI™ module)'*®; D) The
575 Human Oxygen-Bacteria anaerobic (HoxBan) co-culturesystem'* ; E) The human gut-on-a-chip
576  microdevice' and F) The HuMiX device.'”® See main text for detailed description. All modelsre
577  shown with permission of the authors when this isaquired.

578
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