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the role of weather conditions at hourly and daily scales      
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         W. M. G. Vansteelant (w.m.g.vansteelant@uva.nl), W. Bouten, E. E. van Loon and J. Shamoun-Baranes, Computational Geo-ecology, Inst. 
for Biodiversity and Ecosystem Dynamics, Univ. of Amsterdam, PO Box 94248, NL-1090 GE Amsterdam, the Netherlands.  –  R. H. G. Klaassen, 
B. J. Koks and A. E. Schlaich, Dutch Montagu ’ s Harrier Foundation, PO Box 46, NL-9679 ZG, Scheemda, the Netherlands. RHGK and AES 
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Netherlands.  –  J. van Diermen, Treetop Foundation/ � www.boomtop.org � , Talmastraat, NL-112 9406 KN Assen, the Netherlands.                              

 Given that soaring birds travel faster with supportive winds or in good thermal soaring conditions, we expect weather 
conditions en route of migration to explain commonly observed regional and seasonal patterns in the performance of 
soaring migrants. We used GPS-loggers to track 13 honey buzzards and four Montagu’s harriers for two to six migrations 
each. We determined how tailwinds, crosswinds, boundary layer height (a proxy for thermal convection) and precipita-
tion aff ected hourly speeds, daily distances and daily mean speeds with linear regression models. Honey buzzards mostly 
travel by soaring while Montagu’s harriers supplement soaring with fl apping. Th erefore, we expect that performance of 
harriers will be less aff ected by weather than for buzzards. Weather conditions explained between 30 and 50% of variation 
in migration performance of both species. Tailwind had the largest eff ect on hourly speeds, daily mean speeds and daily 
travel distances. Honey buzzards travelled signifi cantly faster and farther, and Montagu ’ s harriers non-signifi cantly faster, 
under better convective conditions. Honey buzzards travelled at slower speeds and shorter distances in crosswinds, whereas 
harriers maintained high speeds in crosswinds. Weather conditions varied between regions and seasons, and this varia-
tion accounted for nearly all regional and seasonal variation in fl ight performance. Hourly performance was higher than 
predicted at times when we suspect birds had switched to intermittent or continuous fl apping fl ight, for example during 
sea-crossings. Th e daily travel distance of Montagu ’ s harriers was determined to a signifi cant extent by their daily travel 
time, which diff ered between regions, possibly also due to weather conditions. We conclude with the implications of our 
work for studies on migration phenology and we suggest an important role for high-resolution telemetry in understanding 
migratory behavior across entire migratory journeys.   

 Migrating birds encounter widely varying weather condi-
tions throughout their seasonal journeys. Weather conditions 
may aff ect the timing of migration onset (Shamoun-Baranes 
et   al. 2006), stop-over schedules (Drake 2007, Bauer 
et   al. 2008, Arizaga et   al. 2011, Ma et   al. 2011), the route 
followed by migrants (Bohrer et   al. 2012), and their speed 
during travel (Gordo 2007, Shamoun-Baranes et   al. 2010). 
If adverse weather conditions are met during migration, 
birds risk delayed arrival and poor body condition, which in 
turn may aff ect their competitiveness or reproductive success 
(Drake et al. 2014). Th us, weather infl uences during migration 
may carry over to later stages of the annual cycle (McNamara 
et   al. 1998, Smith and Moore 2005, Newton 2006, Norris 

and Marra 2007). Unfortunately, despite that the travel speeds 
of many migratory organisms clearly depend on the environ-
mental conditions through which they travel (Luschi et   al. 
2003, Stefanescu et   al. 2007, T ø ttrup et   al. 2008, 2012), 
it is not clear yet if weather aff ects migrating birds diff erently 
between diff erent stages of their migration cycle (Shamoun-
Baranes et   al. 2010, Gordo et   al. 2013). However, for large 
birds, we are now able to record fl ight behavior as well as the 
weather conditions which they encounter over entire migratory 
journeys, due to recent advances in animal tracking and 
meteorological modeling. 

 Th e way weather aff ects migration depends on the 
fl ight mode of a bird, which is largely determined by its 
body size and morphology (Alerstam 1990, Hedenstr ö m 
1993, Pennycuick 2003, 2008, Shamoun-Baranes et   al. 
2010). Storks, pelicans and raptors tend to soar on thermals 
and orographic updrafts to avoid the high energetic cost of 
fl apping fl ight (Hedenstr ö m 1993). Consequently, the 
migratory itineraries of obligate soaring migrants are limited 
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by the availability of suitable soaring conditions en route 
(Shamoun-Baranes et   al. 2010). For example, strict soaring 
migrants do not usually travel at night when thermal updrafts 
are absent and tend to circumvent large bodies of water 
where such updrafts are too weak to support soaring (Ker-
linger 1989, Bildstein 2006). Soaring birds may also inter-
rupt their travel under adverse weather conditions (Th orup 
et   al. 2006) which may cause delays in their annual schedules 
(Allen et   al. 1996, Leshem and YomTov 1996a, Shamoun-
Baranes et   al. 2006). Moreover, soaring birds achieve higher 
ground speeds under stronger updraft conditions (Bruderer 
et   al. 1994, Spaar and Bruderer 1996, 1997a), and they 
choose local fl ight paths along landscape features that support 
strong updrafts (Leshem and YomTov 1996a, b, Maransky 
et   al. 1997, Alpert et   al. 2000, Brandes and Ombalski 2004). 
Th e ground speed of soaring migrants is strongly aff ected 
also by wind conditions. Local radar and visual studies have 
shown that soaring migrants travel signifi cantly faster when 
fl ying with tailwinds, while they travel slower when winds 
have an increasingly strong crosswind component (Kerlinger 
1989, Spaar and Bruderer 1996, 1997a). Tracking studies 
have shown similar eff ects of wind persist along the entire 
migratory journey of soaring migrants (Shamoun-Baranes 
et   al. 2003a, Mandel et   al. 2008, Chevallier et   al. 2010, 
Mellone et   al. 2012). 

 Some raptors have more slender wings, such as harriers 
and falcons, and they are potentially less aff ected by weather 
conditions in comparison to obligate soaring migrants as 
they more frequently alternate soaring with fl apping fl ight 
(facultative soaring migrants; Spaar and Bruderer 1997b). 
Consequently, they are able to continue migration dur-
ing the night (Stark and Liechti 1993), and to some extent 
under adverse weather conditions (Spaar et   al. 1998, Th orup 
et   al. 2006). Furthermore, birds travelling by fl apping are 
supported by tailwinds to the same extent as soaring birds, 
but are less aff ected by crosswinds as they lack the passive 
soaring fl ight phase during which birds may get fully drifted 
by crosswinds (Kerlinger 1989). 

 Even though aforementioned studies have revealed 
strong infl uences of wind and weather on the ground 
speeds of soaring migrants, these infl uences are rarely 
quantifi ed simultaneously and, espesially for entire migra-
tions (Mandel et   al. 2008). Satellite and GPS track-
ing studies on individual soaring migrants have revealed 
surprisingly similar patterns in hourly and daily speeds 
and daily travel distances achieved by diff erent species of 
obligate as well as facultative soaring migrants (Trierweiler 
et   al. 2007, Mandel et   al. 2008, Chevallier et   al. 2010, 
Mellone et   al. 2012). For example, Palearctic soaring migrants 
typically achieve relatively high hourly speeds and longer daily 
travel distances over the Sahara (Kjell é n et   al. 2001, Klaassen 
et   al. 2008, Chevallier et   al. 2010, L ó pez-L ó pez et   al. 2010) 
and it is often suggested that this is because birds may adjust 
their fl ight behavior over the hostile environment of this 
ecological barrier. Furthermore, several soaring migrants 
travel faster during spring migration compared to autumn 
(Mellone et   al. 2012), possibly resulting from a seasonal urge 
to arrive early at their breeding sites (Kokko 1999, Nilsson 
et   al. 2013). However, too little is known about the extent to 
which regional and seasonal performance relates to variation 
in the weather conditions encountered during travel (T ø ttrup 

et   al. 2008). Recently, non-soaring, nocturnal migrants were 
shown to migrate faster over Europe in spring, compared 
to autumn, because tailwinds are more common in spring 
(Kemp et   al. 2010). Furthermore, soaring birds like white 
storks  Ciconia ciconia  have been suggested to achieve higher 
speeds over the Sahara desert because relatively strong ther-
mal convective conditions enable faster fl ights in this region 
(Shamoun-Baranes et   al. 2003a). Also, more than half of the 
variation in travel performance of soaring Turkey vultures 
 Cathartes aura  can be explained from atmospheric conditions 
they encounter en route (Mandel et   al. 2008). Overall, we 
expect the eff ects of weather conditions along entire migra-
tory journeys may explain some of the seasonal or regional 
patterns in travel performance of (soaring) migrants. 

 We studied travel performance of two long-distance 
soaring migrants travelling along the East Atlantic fl yway 
between Europe and Africa (Boere and Stroud 2006), using 
UvA-BiTS GPS-loggers (Bouten et   al. 2012). Both spe-
cies migrate at roughly the same time of the year, and thus 
encounter similar large-scale weather conditions during 
their travel, but use distinct migration strategies: the true 
soaring European honey buzzard  Pernis apivorus  (Bildstein 
2006, Ferguson-Lees and Christie 2006) and the faculta-
tive soaring Montagu ’ s harrier  Circus pygargus  (Spaar and 
Bruderer 1997b). We fi rst describe general patterns in mea-
sured hourly speeds, mean daily speeds and daily travel 
distances, as well as in the weather conditions encountered 
for each species between diff erent seasons and regions. 
Subsequently, we predict hourly speeds, daily speeds and 
daily distances from key weather conditions for soaring 
fl ight: boundary layer height (as a proxy for thermal convec-
tive conditions), precipitation, and wind conditions relative 
to the realized travel direction. We expected that boundary 
layer height should have a stronger positive eff ect on the 
hourly and daily performance of honey buzzards compared 
to Montagu ’ s harrier, due to the aforementioned diff erences 
in their migration strategies. Finally, we add regional and 
seasonal factors to our weather models to explore whether 
any spatiotemporal behavioral patterns are not accounted for 
by weather conditions encountered en route.  

 Methods  

 Study species and GPS-tracking 

 Honey buzzards and Montagu ’ s harriers are long-distance 
migratory birds breeding in temperate regions and win-
tering in sub-Saharan Africa (Ferguson-Lees and Christie 
2006). Previous tracking studies using satellite transmit-
ters revealed that autumn routes of adult honey buzzards 
breeding in Sweden converged in southern Spain to mini-
mize the crossing of the Mediterranean Sea en route to 
tropical rainforests in western Africa (Hake et   al. 2003). 
Tracking a large number of individual Montagu ’ s harri-
ers throughout Europe revealed western birds are using 
routes via Spain and Italy to their western Sahelian winter-
ing quarters (Trierweiler et   al. 2014). Both species migrate 
almost exclusively during daylight hours (Bruderer et   al. 
1994, Spaar and Bruderer 1997b). Montagu ’ s harriers, 
however, may extend their travel into the night (Spaar and 
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Bruderer 1997b), especially during sea crossings (Limi ñ ana 
et   al. 2007, Trierweiler 2010). 

 We used UvA-BiTS GPS-loggers (Bouten et   al. 2013) to 
track adult breeding birds, and thus experienced migrants. 
Th e honey buzzard was studied in two conifer-dominated 
(80% coniferous wood of which 74%  Pinus sylvestris ) areas 
in the center of the Netherlands (52.37 ° N, 5.82 ° E, van 
Manen et   al. 2011). We trapped 13 individuals (Supple-
mentary material Appendix 1, Table A1) at their nests with 
a mist net using a live or stuff ed eagle owl  Bubo bubo  as a 
lure. Montagu ’ s harriers were studied in their core breeding 
area in the Netherlands situated in the vast and open arable 
landscape of eastern Groningen (53.14 ° N, 07.03 ° E; Trier-
weiler 2010). We trapped four breeding birds near their nest 
with a pole trap or a mist net using a stuff ed raptor decoy. 
GPS-loggers were fi tted using Tefl on or Tygontube harnesses 
(Kenward 1987, Snyder et   al. 1989). Maximum mass of the 
harness and device amounted to maximum 5% of the bird’s 
body mass. Birds were handled for less than 20 – 60 min after 
capture and so far we never observed nest desertion or failure 
related to our manipulations. GPS-locations were sampled 
at a resolution of 10 s to 1 h over the whole annual cycle. 
Data were downloaded in the breeding area through a com-
bined fi xed- and mobile relay-antennae system (Bouten et   al. 
2013).   

 Defi ning migration 

 For the full dataset spanning the entire annual cycle ( �    500 000 
GPS-locations) we fi rst calculated ground speeds from every 
location to the next and to the previous point and then 
averaged these two speeds to calculate ground speed for each 
location. Based on the frequency distribution of ground speeds 
we identifi ed and removed erroneous GPS-locations (ground 
speeds    �    30 m s  � 1 ). 

 In order to distinguish migration from other parts of 
the annual cycle we calculated daily travel distances as lox-
odrome distances between consecutive night roosts (fi rst 
and last location obtained between 00:00 and 23:59 
for each day). Based on histograms of daily distance we 
defi ned travel days as those days when more than 25 km was 
covered between roosts (cf. Klaassen et   al. 2011). We only 
included travel days in our analyses, i.e. stopover days (days 
with daily distance    �    25 km) were omitted. 

 Part of our study population of honey buzzards is known to 
exploit multiple wintering sites making itinerary movements 
(cf. Moreau 1972) between them (UvA-BiTS, unpubl.). 
Montagu’s harriers also show within-year itinerancy (Trier-
weiler et   al. 2013). In order to distinguish between travel 
days and itinerary movements we defi ned the onset and end 
of migration as the fi rst and last set of travel days with a 
three-day running average daily travel distance of at least 
65 km. Finally, we also left out pre- and post-migratory 
movements as these seem to diff er from genuine migratory 
movements (Strandberg et   al. 2008, Limi ñ ana et   al. 2012). 
We defi ned these as movements preceding or following a 
stop-over lasting at least three consecutive days within the 
breeding range (north of latitude 52 ° N) or near the winter-
ing stages (south of latitude 25 ° N). 

 Our dataset contained 27 spring journeys and 22 autumn 
journeys for 13 honey buzzards and four spring and fi ve 

autumn journeys for four Montagu’s harriers. Some travel 
days were not covered completely due to small gaps in the 
GPS data which in a few cases lead to an incorrect classifi ca-
tion as stop-over day. In a few cases this misclassifi cation was 
propagated when defi ning the core migration period based 
on the three-day running average of daily travel distance, 
in particular for honey buzzard #56 and Montagu ’ s har-
rier #187 (Supplementary material Appendix 1, Table A1). 
We have chosen to leave the migratory travel days with some 
missing hourly values out of the analysis rather than to make 
assumptions to estimate these missing values. Less than 
5% of the total data set was omitted because part of the 
hourly values within a day was missing. Th e number of 
migratory trips obtained per individual, species and season 
with the average number of travel days and travel distances 
that were retained are summarized in Supplementary mate-
rial Appendix 1, Table A1.   

 Hourly speeds and daily distances 

 Safi  et   al. (2013) recommend using instantaneous speed 
measurements for studying animal movement ecology. 
However, it is not ideal to use instantaneous speeds for 
quantifying performance of soaring migrants as soaring 
fl ight consists of stages of circle-soaring in thermals alter-
nated with glides between thermals (Kerlinger 1989) and 
instantaneous speeds during soaring and gliding do not 
accurately refl ect cross-country performance (Kerlinger 
1989). Instead, we defi ned hourly travel segments (described 
in more detail below) which are a good measure of short 
term ground speed because these segments include at least 5 – 
10 complete soaring-gliding bouts (Kerlinger 1989, Leshem 
and YomTov 1996b, Spaar 1997). Furthermore, we expect 
that daily travel distance is a biologically meaningful scale 
of movement because soaring migrants are restricted to the 
daylight period for travel. 

 For every travel day, we used a minimum ground speed 
of 1.5 m s  � 1  between two consecutive measurements 
to determine the start and end of the daily travel period. 
Subsequently, we resampled the whole dataset, creating 1 
h segments, by retaining consecutive locations with a time 
diff erence as close to one hour as possible (minimum and 
maximum segment duration was 50 and 70 min, respec-
tively). Hourly speeds (m s  � 1 ) were recalculated after resam-
pling, and hourly speeds lower than 1.5 m s  � 1  were classifi ed 
as resting events, which were omitted from the hourly travel 
performance analyses. 7583 and 1376 hourly travel segments 
were obtained for honey buzzards and Montagu’s harriers, 
respectively. 

 After resampling, we also recalculated daily distances, 
as the loxodrome distance between the fi rst and last 
hourly location of the daily travel period. Th e fi nal dataset 
contained 1223 and 205 daily distances for honey buzzards 
and Montagu’s harriers, respectively.   

 Daily mean speeds and the role of travel time 

 Daily travel distance is the sum of hourly speeds over the daily 
travel time, thus daily travel time has a profound eff ect on 
daily distance (Klaassen et   al. 2008). Th e length of the day-
light period, and thus the length of the period with favorable 
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soaring conditions, varies considerably across the migration 
period, particularly in spring (Mellone et   al. 2011, 2012). 
Furthermore, migrants may interrupt fl ights (e.g. for forag-
ing or to avoid rain or strong headwinds; Th orup et   al. 2006) 
or may extend their daily travel period through dusk and 
dawn (Stark and Liechti 1993, Spaar and Bruderer 1997b, 
Limi ñ ana et   al. 2007, Trierweiler 2010). As our aim is to 
quantify the eff ect of weather on performance while trav-
elling, we predict daily distance based on those conditions 
encountered during travel hours only. In order to adjust for 
variation in daily travel times we also calculated daily mean 
travel speeds. Comparing daily mean speeds with daily dis-
tances allows for a better understanding of the role of travel 
time in shaping daily travel performance.   

 Regional and seasonal patterns in weather 
conditions and performance 

 In order to evaluate regional and seasonal patterns in 
migration performance and weather conditions encountered 
by the birds we used an ANOVA and a Tukey ’ s HSD. A 
t-test was used to compare the two seasons. In both cases 
diff erences with a p-value of 0.05 or lower were considered 
signifi cant. 

 We used the borders of global biomes (Olson et   al. 2001) 
to distinguish six regions in terms of their geographical 
position and their characteristic vegetation: temperate forests 
(broad-leaf and coniferous forest in Europe), Mediterranean 
(including subtropical grasslands north of 25 ° N), sea, desert, 
tropical grasslands (including fl ooded savannas), and tropi-
cal rainforest (rainforest and mangroves). 

 If birds change their behavior above diff erent regions we 
want to ignore those segments during which birds crossed 
from one region into another. We, therefore, subset our data 
to hourly speeds determined over segments where a bird 
was continuously travelling over the same region (i.e. start 
and end location fell within the same region), and for days 
during which at least 60% of the hourly segments was spent 
over the same region.   

 Modeling weather effects 

 Th e response variables in our study are hourly speed, daily 
mean speed and daily distance. We adopted a backward 
model selection procedure including four predictor vari-
ables (boundary layer height, tailwind, absolute crosswind 
and precipitation) in our initial linear regression model for 
hourly speeds and three predictor variables (mean daily 
boundary layer height, tailwind and absolute crosswind) in 
our initial regression model for daily distance and daily mean 
speed. During variable selection, predictor variables with 
a p-value lower than 0.05 were removed starting with the 
least signifi cant variable until all remaining variables were 
signifi cant. In order to compare the relative importance of 
between predictor variables (i.e. relative eff ect sizes) we addi-
tionally fi tted the fi nal models based on normalized response 
and predictor variables, i.e. for each model we standardized 
all variables to units of standard deviation after which linear 
regression coeffi  cients yielded eff ect sizes showing the change 
of the response variable in units of SD, for every unit of SD 
change in one of the predictor variables. 

 We obtained boundary layer height (m), u- and v-wind 
components (i.e. latitudinal and longitudinal wind veloci-
ties, m s  � 1 ) and the accumulated rainfall (mm) from the 
ECMWF (European Center for Medium-Range Weather 
Forecasts) regional atmospheric model at a resolution of 
0.25 °  and 3 h (Anderson 2013). Data were linearly interpo-
lated in space and time for each hourly location. Boundary 
layer height is a good approximation of convection at hourly 
to daily scales as a higher boundary layer is associated with 
stronger thermals (allowing faster and higher climbs dur-
ing soaring), as well as with more dense thermal fi elds (Stull 
1988), both of which are likely to aff ect the performance of 
soaring migrants (Spaar et   al. 2000, Shannon et   al. 2002, 
Shamoun-Baranes et   al. 2003a, b). 

 Wind strength and direction may vary strongly with 
altitude above the ground (Stull 1988) and the ECMWF 
regional atmospheric model grid provides conditions at dif-
ferent barometric pressure levels relative to sea level (i.e.: 
at 10 m above the sea, and at pressure levels 925, 850 and 
700 mB). Th erefore, we fi rst calculated hourly fl ight direc-
tion to determine hourly tailwind and crosswind components 
(cf. Chevallier et   al. 2010) at each pressure level, and then 
linearly interpolated tailwind and crosswind components 
from the two pressure levels nearest to the bird ’ s eff ective 
fl ight altitude. Th e two closest pressure levels were deter-
mined based on the vertical distance between the geopo-
tential heights of the pressure levels (available in ECMWF) 
and the bird ’ s altitude above the sea. ECMWF precipitation 
data represent accumulated rainfall over three-hour periods, 
hence we used an estimate for hourly rainfall by dividing the 
ECMWF-scores by three. 

 We determined mean daily values for each predictor 
variable across all hourly travel segments between 00:00 and 
23:59, and so excluding all resting hours. In order to obtain 
daily tailwind and crosswind components we calculated the 
tailwind and absolute crosswind component at each hourly 
location relative to the daily mean axis of movement before 
we averaged each component across each day. We then 
predicted daily distance in function of daily mean boundary 
layer height, mean tailwind and mean absolute crosswind. 
We did not analyze the eff ect of precipitation at the daily scale 
because the strongest eff ect of precipitation on daily distance 
likely comes from birds interrupting travel altogether under 
rainy conditions (Kerlinger 1989, Th orup et   al. 2006).   

 Regional and seasonal differences in response 
to weather 

 In order to identify potential diff erences in response to 
weather between diff erent regions and seasons we describe 
and compare regional and seasonal patterns in predicted 
and observed performance. Furthermore, we test whether 
any signifi cant additional variation in performance can 
be explained by regional or seasonal eff ects that are not 
accounted for by weather conditions. To do so, we compare 
three extended versions of the fi nal weather models for each 
response variable for each species, by including region, sea-
son or both factors together as additional predictor variables. 
We then use Aikaike ’ s information criterion (AIC) to com-
pare model fi t, and Pearsons R to compare the amount of 
variation explained between models. 
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grasslands and forests in autumn compared to spring, likely 
because of frequent autumn rains in those areas (Supplemen-
tary material Appendix 1, Fig. A2a, Table A3).   

 Seasonal and regional patterns in performance 
and travel time 

 Honey buzzards showed a signifi cant diff erence in migra-
tory performance between regions and seasons (Fig. 1A, 
II – IV, Table 1, 2) at both the hourly and the daily scale. 
Honey buzzards travelled consistently faster and further 
during spring than during autumn migration. Within 
seasons, the highest regional hourly and daily speeds and 
daily distances were achieved above the Sahara (Fig. 1A, 
II – IV, Table 1). In autumn, honey buzzards achieved 
higher hourly speeds above sea compared to the average 
over terrestrial regions (Fig. 1A, II). In both seasons, short-
est daily distances were reached above rainforest (Fig. 1A, 
III) because they achieved moderately lower daily mean 
travel speeds (Fig. 1A, IV) and because they travelled for 
about 1 – 3 h less per day, compared to elsewhere in Africa 
and the Mediterranean. 

 Overall, performance of Montagu ’ s harriers did not diff er 
signifi cantly between seasons (Table 2), but hourly speeds 
and daily distances were lowest on arrival in the Sahel, and 
highest among the terrestrial habitats on departure from the 
Sahel (Fig. 1B, II, III). Daily mean speeds were more or less 
consistent across terrestrial regions (Fig. 1B, IV, Table 1). In 
autumn, Montagu ’ s harriers achieved the lowest daily dis-
tance and travel times above tropical grasslands of the Sahel. 
In spring, daily mean speeds and travel times were lowest in 
the temperate region. Furthermore, they achieved far greater 
daily distance and travel time over open sea than over any 
other area (Fig. 1B, III, V, Table 1).   

 Weather effects on performance 

 Th e fi nal models are given for honey buzzards in Table 3a and 
for Montagu’s harriers in Table 3b. Th e full models before 
backward model selection are shown in Supplementary 
material Appendix 1, Table A4, including the signifi cance 
and normalized regression coeffi  cients for each weather vari-
able. Variation in weather conditions predicted 48% of the 
variability in hourly speeds, 41% of variation in daily dis-
tances and 32% of variation in daily mean speeds achieved 
by honey buzzards. For Montagu ’ s harriers, our fi nal weather 
models predicted 42% of the variation in hourly speeds, 
33% of variation in daily distances and 32% of variation in 
daily mean speeds. 

 Th e eff ects of weather on hourly speed were similar for 
both species, with a dominant positive infl uence of tail-
winds, an additional positive eff ect of boundary layer height, 
and a negative eff ect of absolute crosswinds (Table 3a, b). 
Honey buzzards travelled signifi cantly slower at the hourly 
scale with increasing rainfall, although they travelled in weak 
to moderate rains (Supplementary material Appendix 1, 
Fig. A2a, Table 3a) which only had a small infl uence on 
hourly travel speeds compared to other weather variables 
(Table 3a). Precipitation had no eff ect on the hourly perfor-
mance of Montagu ’ s harriers (Tables 3a, b, Supplementary 
material Appendix 1, Table A4). 

 All statistical modeling was conducted in the program 
R 2.15.0 (R Core Development Team), using the ggplot2 
package (Wickham 2009) for graphical representation of 
results.    

 Results 

 Honey buzzards on average spent 25 d to migrate between 
their breeding grounds in the center of the Netherlands 
and their individual wintering grounds across tropical West 
to Central Africa (Supplementary material Appendix 1, 
Table A1). Th ey usually crossed the Mediterranean Sea 
in one to two hours at its narrowest point at the Strait of 
Gibraltar (Fig. 1A, I). Two birds fl ew parallel to the eastern 
Spanish coast for 3 and 6.5 h, respectively, in spring 2010. 
However, these birds also continued to travel over land on 
those days such that honey buzzards never spent an entire 
day only over the sea (Supplementary material Appendix 1, 
Table A1). Th ese events were not plotted in Fig. 1a since 
we only plotted hourly locations when at least 60% of daily 
travel time was spent over the same biome. When crossing 
the desert, some honey buzzards made notable detours devi-
ating east (both autumn and spring) or west (spring) from 
their initial heading (Fig. 1A, I, Supplementary material 
Appendix 1, Table A1). One occasion involving two birds 
suggests the birds detoured in avoidance of a dust storm 
(Treep 2012). Honey buzzards travelled short distances over 
the rain forests so relatively few travel segments were obtained 
there (Fig. 1A, I, Table 1). Montagu’s harriers travelled about 
28 d to reach their wintering grounds in the Sahel in Sen-
egal and Niger. Two used a westerly route via Spain and two 
others fl ew over the central Mediterranean (Fig. 1B, I, note 
one spring journey was removed almost entirely during data 
processing due to frequent gaps in data). Th ey travelled only 
short distances over the Sahel, so we have a relatively small 
sample over tropical grasslands (Fig. 1B, I). On two occa-
sions Montagu ’ s harriers made long autumn sea-crossings 
lasting up to 19 h. In spring the harriers used islands as step-
ping stones while migrating between Africa and the Italian 
peninsula (Fig. 1B, I).  

 Seasonal and regional patterns in encountered 
weather conditions 

 Weather conditions diff ered between regions and in 
some regions also between seasons (Supplementary mate-
rial Appendix 1, Fig. A2a, b, and Table A3). However, 
Montagu ’ s harriers only encountered seasonally diff er-
ent hourly tailwinds, while all hourly and daily conditions 
encountered by honey buzzards diff ered between seasons. 
Largest diff erences in mean conditions were usually tenfold 
the size of the variance in mean conditions per region and 
season. For example, honey buzzards encountered signifi -
cantly more crosswinds over the desert and more frequent 
tailwinds over Europe in spring than in autumn (Supple-
mentary material Appendix 1, Fig. A2a, b, Table A3). Cross-
ing the Sahara, honey buzzards experienced hourly and daily 
mean boundary layer heights reaching about 700 m lower in 
spring compared to autumn. Moreover, the boundary layer 
heights they encountered were much lower over the tropical 
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  Figure 1.     Migration routes (I), hourly travel speeds (II), daily travel distance (III), daily mean travel speed (IV) and daily travel times (V) 
of honey buzzards (A) and Montagu’s harriers (B) for autumn (top panels) and spring (bottom panels) migrations respectively. Migration 
routes are plotted as the hourly locations (semi-transparent points) from all travel days. Box-plots show mean (bold line) and spread of 
values (box bounds    �    inter-quartile range of values from the 25th to the 75th percentile, whiskers    �    1.5 * inter-quartile range) with outliers 
(dots). Full box-plots show distributions of observed values and dashed box-plots show predicted values for each variable. Colours of box-
plots and in background of migration routes indicate diff erent regions (Table 1).  

 Th e daily distance and daily speed of honey buzzards 
was determined by daily mean tailwind and added eff ects of 
daily mean boundary layer height and crosswinds, whereas 
the performance of Montagu ’ s harriers was aff ected only by 
tailwind at the daily scale (Table 3a, b). 

 For honey buzzards the normalized eff ect of tailwinds on 
hourly speed, daily distance and daily mean speed was almost 
two times as large as the normalized eff ect of boundary layer 

height, and almost 5 times larger than the normalized eff ect 
of absolute crosswinds (Supplementary material Appendix 
1, Table A4), showing that tailwinds have a much stronger 
infl uence on migration performance than other weather 
variables. For Montagu ’ s harriers the normalized eff ect of 
tailwinds on hourly speeds was three times the normalized 
eff ect of boundary layer height (Supplementary material 
Appendix 1, Table A4).   
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  Table 1. Regional patterns in hourly speed, daily distance and daily mean speed as observed from GPS-tracking and as predicted from 
weather conditions encountered en route of migration (see Table 2 for models), during autumn and spring migration of honey buzzards and 
Montagu ’ s harriers respectively. Class identifi ers (a – f) were determined by a Tukey-HDS test for each variable in both species to identify those 
biomes over which speeds or distances were signifi cantly similar.  

Hourly speed Daily distance Daily speed

Species season Biome n obs obs class pred n obs obs class pred n obs obs class pred

Honey buzzard autumn Temp forest 764 7.19 d 7.08 122 171.57 cd 177.48 122 7.91 cd 7.63
Mediter 828 7.65 d 7.96 76 227.53 b 214.88 76 8.81 bcd 8.78
Sea 29 8.44 bcd 7.38  –  –  –  –  –  – 
Desert 886 8.79 bc 9.61 109 237.85 b 277.52 109 9.27 bc 10.39
Trop grass 1011 6.7 d 6.92 163 153.1 cd 176.38 163 7.54 d 7.77
Trop forest 169 6.55 d 7.03 35 102.7 d 185.43 35 7.07 d 8.27

spring Temp forest 838 7.62 d 7.68 140 172.1 cd 199.97 140 8.09 bcd 8.46
Mediter 911 8.56 bc 8.19 86 244.36 b 219.72 86 9.33 bc 9.11
Sea 55 7.53 d 6.59  –  –  –  –  –  – 
Desert 905 10.77 a 9.51 103 318.98 a 261.24 103 11.78 a 10.32
Trop grass 1004 8.96 b 9.34 129 233.62 b 260.54 129 9.43 b 10.09
Trop forest 183 7.83 cd 8.35 26 135.39 cd 222.47 26 8.9 bcd 9.42

Montagu ’ s harrier autumn Temp forest 219 7.09 bc 6.63 28 177.35 c 204.76 28 7.18 a 7.4
Mediter 235 5.8 d 6.56 25 152.55 c 189.2 25 5.94 a 7.01
Sea 46 9.39 a 8.12 2 556.49 a 320.16 2 10.01 a 10.29
Desert 273 7.51 abc 7.96 26 277.58 b 226.34 26 8.12 a 7.94
Trop grass 42 5.99 cd 7.47 6 116.77 c 203.79 6 6.37 a 7.37

spring Temp forest 138 6.29 cd 5.96 19 165.18 c 185.59 19 7.84 a 6.92
Mediter 147 7.09 bc 6.89 20 161.02 c 207.86 20 7.71 a 7.47
Sea 30 8.27 abc 6.42  –  –  –  –  –  – 
Desert 172 7.44 abc 7.09 21 209.5 bc 216.03 21 8.13 a 7.68
Trop grass 70 8.36 ab 8.45 7 206 bc 240.37 7 8.34 a 8.29

  Table 2. Seasonal averages, and differences therein (student ’ s t-test), of hourly speed, daily distance and daily mean speed as observed 
from GPS-tracking and of hourly and mean daily weather conditions encountered by honey buzzards and Montagu ’ s harriers respectively. 
p-values of signifi cant seasonal differences (p    �    0.05) are highlighted in bold.  

Hourly scale Daily scale

autumn spring seas. diff p autumn spring seas. diff p

Honey buzzard
Speed (m s  � 1 ) 7.51 8.95 1.29    �  –  �    1.59   �    2.2E-16 8.28 9.62 0.89  �  –  �    1.76  3.11E-13 
Distance (km)  –  –  –  – 193.33 238.41 33.09  �  –  �    57.08  3.11E-13 
Boundary layer height (m) 1656.21 1719.55 19.37    �  –  �    107.31  4.76E-04 1670.77 1808.27 49.34  �  –  �    225.67  2.26E-03 
Tailwind (m s  � 1 )  – 0.21 1.27 1.32    �  –  �    1.63   �    2.2E-16  – 0.51 0.93 1.06  �  –  �    1.82  2.45E-13 
Absolute crosswind (m s  � 1 ) 2.69 3.41 0.61    �  –  �    0.85   �    2.2E-16 2.63 3.54 0.64  �  –  �    1.18  4.14E-11 
Precipitation (mm) 0.22 0.11  – 0.13    �  –  �   – 0.08   �    2.2E-16  –  –  –  – 

Montagu ’ s harrier
Speed (m s  � 1 ) 6.96 7.22  – 0.13    �  –  �    0.65 0.20 7.12 7.94  – 0.30  �  –  �    1.96 0.15
Distance (km)  –  –  –  – 204.72 182.10  – 61.36  �  –  �    16.11 0.25
Boundary layer height (m) 1638.99 1623.59  – 143.59    �  –  �    112.81 0.81 1686.38 1700.16  – 236.51  �  –  �    264.08 0.91
Tailwind (m s  � 1 ) 1.29 0.68  – 1.09    �  –  �     – 0.14  0.01 0.58 0.31  – 1.51  �  –  �    0.97 0.67
Absolute crosswind (m s  � 1 ) 2.97 2.96  – 0.27    �  –  �    0.26 0.98 3.18 3.44  – 0.45  �  –  �    0.96 0.48
Precipitation (mm) 0.11 0.12  – 0.04    �  –  �    0.06 0.69  –  –  –  – 

 Regional and seasonal differences in the infl uence of 
weather 

 Th e predicted seasonal and regional patterns in hourly 
speed, daily distance and daily speed overall closely matched 
the patterns we observed for both species (Fig. 1A, II – IV; 
Table 1). Region and season accounted for less than 1% 
of the variation in hourly and daily speeds of either species 
when weather eff ects were accounted for (Table 3a, b). Th ese 
small regional eff ects do not improve the overall predictive 
ability of our hourly and daily speed models because the 
infl uence of weather is much greater (Table 3a, b). Regional 
eff ects did explain ca 7 and 13% additional variation in daily 

distances which was not accounted for by weather condi-
tions encountered by honey buzzards and Montagu’s harriers 
respectively. Seasonal diff erences, however, only accounted 
for about 2% of all variation in daily travel distance. 

 Honey buzzards reached consistently higher speeds than 
predicted over the sea (Fig. 1A, II, Table 1). Furthermore, 
daily distances travelled by honey buzzards are consistently 
lower than predicted above the tropical forests, whereas this 
is not the case for daily speeds (Fig. 1A, III – IV), indicat-
ing that they seem to make frequent short stops there. For 
Montagu’s harriers, daily distances achieved over the sea were 
much higher than predicted due to extremely long travel 
times (Fig. 1B, II – III; Table 1). Furthermore, daily distances 
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  Table 3a. Final linear regression models for hourly speed, daily mean speed and daily distance of honey buzzards in function of signifi cant 
weather variables and three extended models testing for additional regional or seasonal effects not accounted for by weather conditions. 
Regional and seasonal factors to not improve model fi t (AIC) nor the amount of variation explained (R 2 ), except for daily distance models 
where regional effects account for up to 6% more of total variation than can be explained by weather conditions.  

Hourly speed (m s  � 1 ) Daily speed (m s  � 1 ) Daily distance (km)

Model Predictor Eff. size p AIC R 2 Eff. size p AIC R 2 Eff. size p AIC R 2 

 ∼  weather WEATHER: Int. 6.492  �    2E-16 32780 0.48 7.740  �    2E-16 4662 0.32 146.661  �    2E-16
Blh 1.18E-03  �    2E-16 9.00E-04 6.41E-11 0.046  �    2E-16
Tailwind 0.572  �    2E-16 0.600  �    2E-16 16.318  �    2E-16 10439 0.41
Crosswind  – 0.159  �    2E-16  – 0.180 1.91E-04  – 5.433 9.44E-06
Rain  – 0.225 4.10E-05  –  –  –  – 

 ∼  weather 
 �  region

WEATHER: Int. 6.978  �    2E-16 32699 0.49 8.666  �    2E-16 4659 0.33 205.300  �    2E-16
Blh 1.35E-03  �    2E-16 7.84E-04 1.59E-06 0.003  �    2E-16
Tailwind 0.562  �    2E-16 0.603  �    2E-16 15.900  �    2E-16 10352 0.47
Crosswind  – 0.181  �    2E-16  – 0.206 3.71E-05  – 6.710 3.23E-08
Rain  – 0.138 0.013  –  –  –  – 

REGION: Mediter  – 0.323 2.38E-04  – 0.353 0.352  – 3.078 0.737
Sea 0.685 0.014  –  –  –  – 
Temp for  – 0.353 1.19E-04  – 0.582 0.106  – 43.410 7.31E-07
Trop for  – 0.958 4.49E-08  – 1.111 0.080  – 121.200 7.80E-15
Trop grass  – 0.689 6.21E-16  – 1.016 2.51E-03  – 48.590 3.25E-09

 ∼  weather 
 �  season

WEATHER: Int. 6.837  �    2E-16 32668 0.49 8.090  �    2E-16 4659 0.33 162.111  �    2E-16
Blh 1.17E-03  �    2E-16 9.22E-04 1.53E-10 0.045  �    2E-16
Tailwind 0.555  �    2E-16 0.596  �    2E-16 15.662  �    2E-16 10425 0.42
Crosswind  – 0.172  �    2E-16  – 0.197 5.23E-05  – 6.186 5.15E-07
Rain  – 0.170 1.84E-03  –  –  –  – 

SEASON: Autumn  – 0.637  �    2e-16  – 0.532 2.01E-02  – 23.457 5.21E-05

 ∼  weather 
 �  season 
 �  region

WEATHER: Int. 7.385  �    2E-16 32579 0.49 9.099  �    2E-16 4656 0.34 223.500  �    2E-16
Blh 1.12E-03  �    2E-16 7.49E-04 4.64E-06 0.031 2.84E-15
Tailwind 0.546  �    2E-16 0.585  �    2E-16 15.170  �    2E-16
Crosswind  – 0.194  �    2E-16  – 0.222 1.02E-05  – 7.384 1.28E-09
Rain  – 0.082 0.139  –  –  –  – 

SEASON: Autumn  – 0.655  �    2E-16  – 0.549 0.017  – 23.120 3.24E-05 10337 0.48
REGION: Mediter  – 0.371 2.15E-05  – 0.430 0.256  – 6.343 0.487

Sea 0.621 0.025  –  –  –  – 
Temp for  – 0.416 5.00E-06  – 0.679 0.060  – 47.500 5.73E-08
Trop for  – 0.962 3.06E-08  – 1.086 0.086  – 120.200 7.54E-15
Trop grass  – 0.736  �    2E-16  – 1.057 1.66E-03  – 50.280 6.89E-10

achieved by Montagu ’ s harriers, which frequently interrupted 
travel over the tropical grasslands, were lower than predicted 
by tailwinds (Fig. 1B, III; Table 1). In contrast, predicted 
daily mean travel speeds were accurate over the grasslands of 
the Sahel as well as over the sea (Fig. 1B, IV; Table 1).   

 Diurnal patterns in hourly speeds 

 We observed a striking diurnal pattern in the accuracy of 
prediction of hourly speeds with a tendency for both species 
to migrate slower than predicted at sunrise and sunset, most 
notably so for honey buzzards which tend to wait for thermal 
convection to develop after sunrise (Fig. 2).    

 Discussion  

 Species-specifi c weather effects 

 Our results show that weather explains between 40 and 50% 
of the variation in hourly speeds and between 30 and 40% of 
variability in daily distances and daily mean speeds achieved 

by soaring migrants. We show that wind conditions as well 
as boundary layer height, which refl ects the depth of the 
atmospheric boundary layer in which thermal convection 
develops and how high birds can climb while soaring (Spaar 
et   al. 2000, Shamoun-Baranes et   al. 2003b), are important 
determinants of hourly travel performance for honey buz-
zards and Montagu ’ s harriers along their entire migratory 
journey. Previously the infl uence of both wind and convec-
tive conditions on soaring fl ight was observed for our study 
species only from single-site studies (Bruderer et   al. 1994, 
Spaar 1997, Spaar and Bruderer 1997a, b, Shamoun-Baranes 
et   al. 2003b). Some authors have compared the travel speed 
of broad-winged hawks in the Americas and honey buzzards 
in Europe between a northern and southern location along 
their respective migration fl yways and also found that travel 
performance was higher at southern latitudes where ther-
mal soaring conditions were better (Bruderer et   al. 1994, 
Careau et   al. 2006). Moreover, black storks  Ciconia nigra  
migrating between Europe and Africa, and Swainson’s hawks  
Buteo swainsoni  migrating over the Americas, like our study 
species, also achieved higher hourly ground speeds at south-
ern latitudes, most likely due to better thermal convective 
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  Table 3b. Final linear regression models for hourly speed, daily mean speed and daily distance of Montagu ’ s harriers in function of signifi cant 
weather variables and three extended models testing for additional regional or seasonal effects not accounted for by weather conditions. 
Regional and seasonal factors to not improve model fi t (AIC) nor the amount of variation explained (R 2 ), except for daily distance models 
where regional effects account for up to 13% more of total variation than can be explained by weather conditions.  

Hourly speed (m s  � 1 ) Daily speed (m s  � 1 ) Daily distance (km)

Model Predictor Eff. size p AIC R 2 Eff. size p AIC R 2 Eff. size p AIC R 2 

 ∼  weather WEATHER: Int. 6.045  �    2E-16 6162 0.42 7.214  �    2E-16 713 0.32 188.281  �    2E-16
Blh 5.61E-04  �    2E-16  –  –  –  – 
Tailwind 0.493  �    2E-16 0.473 2.10E-13 17.041 2.03E-13 1738 0.32
Crosswind  – 0.138 1.10E-05  –  –  –  – 

 ∼  weather 
 �  region

WEATHER: Int. 5.570  �    2E-16 6122 0.44 7.590  �    2E-16 718 0.33 232.729  �    2E-16
Blh 7.29E-04  �    2E-16  –  –  –  – 
Tailwind 0.494  �    2E-16 0.468 1.18E-12 15.278 1.09E-12
Crosswind  – 0.153 1.52E-06  –  –  –  – 1714 0.45

REGION: Mediter  – 0.066 0.751  – 0.970 0.128  – 77.571 2.55E-04
Sea 1.977 1.40E-07  – 0.698 0.813 344.001 4.75E-04
Temp for 0.745 3.35E-04  – 0.112 0.857  – 53.049 0.010
Trop grass  – 0.469 0.096  – 0.666 0.481  – 85.783 0.006

  ∼ weather 
 �  season

WEATHER: Int. 6.361  �    2E-16 6150 0.42 7.720  �    2E-16 711 0.34 177.469  �    2E-16
Blh 5.68E-04  �    2E-16  –  –  –  – 
Tailwind 0.498  �    2E-16 0.474 1.29E-13 17.014 2.18E-13 1738 0.32
Crosswind  – 0.138 9.90E-06  –  –  –  – 

SEASON: Autumn  – 0.579 1.25E-04  – 0.906 0.062 19.347 0.270

∼ weather 
 �  region 
 �  season

WEATHER: Int. 5.943  �    2E-16 6105 0.45 8.160  �    2E-16 716 0.35 226.604  �    2E-16
Blh 7.42E-04  �    2E-16  –  –  –  – 
Tailwind 0.500  �    2E-16 0.468 7.36E-13 15.273 1.25E-12
Crosswind  – 0.155 9.30E-07  –  –  –  – 

SEASON: Autumn  – 0.650 1.46E-05  – 0.966 0.049 10.376 0.519 1716 0.45
REGION: Mediter  – 0.091 0.658  – 1.021 0.106  – 77.014 2.94E-04

Sea 1.931 2.24E-07  – 0.305 0.917 339.786 5.85E-04
Temp for 0.756 2.48E-04  – 0.124 0.840  – 52.921 0.010
Trop grass  – 0.644 0.023  – 0.834 0.375  – 83.974 0.008
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  Figure 2.     Th e diurnal pattern of the diff erence between predicted 
and observed hourly speeds for honey buzzards (top panels) and 
Montagu ’ s harriers (bottom panels) during autumn (left panels) 
and spring (right panels) respectively. For each season we calculated 
minimum and maximum dawn, sunrise, sunset and dusk times 
encountered by all birds. Th e daytime period is shown in yellow, 
between the latest sunrise and earliest dawn encountered through-
out either season for each species. Orange indicates range between 
earliest and latest sunrise and sunset times, while red zones indicate 
earliest and latest twilight periods in each season. Night time is 
shown in grey, between the latest dusk and the earliest dawn expe-
rienced during migration.  

conditions (Fuller et   al. 1998, Chevallier et   al. 2010). Turkey 
vultures  Cathartes aura,  breeding in North America ,  were 
shown to be aff ected strongly by  ‘ turbulent kinetic energy ’  
(a proxy for vertical atmospheric energy, including thermal 
convection) and wind strength for migration (Mandel et   al. 
2008) along their entire journeys. Unlike most of these stud-
ies, however, we explicitly quantifi ed the relative eff ects of 
diff erent weather variables on performance, showing that 
tailwind is the highly dominant factor aff ecting daily travel 
distance of both an obligate and a facultative soaring migrant 
along the entire fl yway (cf. Mellone et   al. 2012). Honey buz-
zards were more sensitive to variation in boundary layer height 
than Montagu ’ s harriers, which we expected because harriers 
may modulate their fl ight time substantially for reasons other 
than optimizing travel performance as a function of convec-
tive conditions (Spaar and Bruderer 1997b, Limi ñ ana et   al. 
2007). Our results also show that the hourly speeds of facul-
tative soaring Montagu ’ s harriers are less aff ected by variation 
in crosswind than honey buzzards. We expected this because 
harriers could overcome crosswinds rather effi  ciently by 
switching to fl apping fl ight (Limi ñ ana et   al. 2013) compared 
to honey buzzards which we expect to refrain from such ener-
getically costly fl apping, even if they then must accept some 
drift from their intended travel direction. 

 Moreover, we provide evidence that a true soaring species 
travels faster and further with stronger average daily ther-
mal convection (Spaar et   al. 2000, Shamoun-Baranes et   al. 
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to higher ground speeds than predicted from our model, 
given the model was parameterized on predominantly conti-
nental soaring migration data. Behavioral information from 
accelerometers integrated in tracking devices can help to 
distinguish fl apping from soaring fl ight events to generate 
a more complete understanding of how weather infl uences 
these migrants (Bouten et   al. 2013, Liechti et   al. 2013).   

 The role of travel time 

 Remaining diff erences in daily travel distance between 
regions (7 – 13% of total variation for honey buzzard and 
Montagu ’ s harrier respectively) show that daily performance 
is aff ected by how soaring migrants modulate their travel 
time. Honey buzzards, for example, travelled much shorter 
distances than predicted above tropical forests (Fig. 1, Table 1), 
probably because they frequently interrupted their travels 
there due to precipitation (Th orup et   al. 2006). Montagu ’ s 
harriers reduced their daily travel time, hourly speeds and 
daily distances over the Sahel in autumn and over the Medi-
terranean region in spring, likely because they were forag-
ing there to replenish their energy reserves (Trierweiler et   al. 
2007, Limi ñ ana et   al. 2012). Other fl y-forage migrants such 
as ospreys  Pandion haliaetus  also vary their travel and feed-
ing schedules depending on regional and seasonal energy 
requirements (Klaassen et   al. 2008). In addition, the birds 
may have reduced their daily travel time because they arrived 
close to their seasonal destinations (Meyburg et   al. 1995, 
Fuller et   al. 1998). 

 Montagu’s harriers travelled much further per day 
over the sea than predicted by weather conditions, because they 
did not interrupt travel during sea-crossings in the central 
Mediterranean, even when stepping stones were available as in 
spring (Fig. 1B, I, V), and continued to fl y even when soaring 
conditions were not available. Interestingly, winds experienced 
by Montagu ’ s harriers during sea-crossing were signifi cantly 
weaker in spring than in autumn, with a lower proportion of 
strong crosswinds (Supplementary material Appendix 1, Fig. 
A2a, b). Th is suggests that, similar to marsh harriers (Klaassen 
et   al. 2010), some Montagu ’ s harrier may have evolved a sea-
sonal loop migration, whereby they avoid a detour in spring by 
crossing the Mediterranean directly, as winds are more favor-
able for sea-crossings in that season. Montagu’s harriers that 
do make sea-crossings in autumn tend to select specifi c wind 
conditions to do so (Meyer et   al. 2000). 

 Overall, the take-off  and stop-over decisions of soaring 
migrants, which determine their daily travel times, seem 
more infl uential for overall daily performance than modula-
tions in fl ight speed (Nilsson et   al. 2013). Th is fi nding stresses 
the need for further research on how precipitation and other 
weather factors may aff ect the daily time budgets of soaring 
migrants (Th orup et   al. 2006, Klaassen et   al. 2008).   

 The role of orientation and wind 

 Th ere are only small regional patterns remaining in hourly 
speeds that are not accounted for by weather, nor by travel 
time. Honey buzzards, for example, achieved consistently 
higher hourly speeds than predicted in spring, and migrated 
consistently slower than predicted in autumn (Fig. 1A, 
II – IV, Table 1). Th e fast Sahara-crossing in spring is clearly 

2003a, Mandel et   al. 2008, Chevallier et   al. 2010). Harriers, 
however, extended their daily travel time in the absence of 
suitable soaring conditions, during early morning and after 
dusk, thereby reducing their reliance on daily boundary layer 
conditions (Limi ñ ana et   al. 2007, Klaassen et   al. 2008). Th e 
absence of a crosswind eff ect on daily speeds and travel 
distances of harriers is consistent with our expectation that 
facultative soaring migrants would more readily use fl apping 
fl ight to compensate for drift and thus fl y at higher ground 
speeds than possible during soaring fl ight.   

 Regional and seasonal patterns in migration 
performance and weather conditions 

 When accounting for weather conditions on the way, no 
more large diff erences were found in the performance of 
soaring migrants, neither among terrestrial regions nor 
between seasons. Th us we show that seasonal fl ight speeds of 
soaring migrants are not primarily due to a seasonal change 
in behavior as often suggested for higher migration speeds 
noted in spring compared to autumn (Kokko 1999, L ó pez-
L ó pez et   al. 2010, Nilsson et   al. 2013), but are rather pre-
dominantly the eff ect of weather conditions encountered 
during fl ight (T ø ttrup et   al. 2008, Kemp et   al. 2010). Th e 
small regional diff erences in migration speeds which we 
could not explain from weather conditions could arise from 
regional variation in fl ight orientation, foraging strategies, 
airspeeds or a combination of changes in fl ight behavior. 
A recent study showed that soaring migrants passing over 
Israel adjust their gliding airspeeds to thermal soaring condi-
tions, but that they glide more slowly than expected in order 
to stay in the air longer during the gliding phase, thereby 
increasing the chance of reaching the next thermal without 
the need to resort to fl apping (Horvitz et   al. 2014). Such a 
risk-averse strategy may be more important in regions or sea-
sons with relatively poor soaring conditions, and thus soar-
ing migrants may adjust their airspeeds to soaring conditions 
diff erently between diff erent regions or seasons. However, we 
expect the eff ect would be small in comparison to the strong 
infl uence of wind. Given this strong dependence on weather, 
soaring migrants may most effi  ciently infl uence their per-
formance by choosing the best available atmospheric fl ows 
for travel. To do so, they could interrupt their travel under 
disadvantageous conditions (Th orup et   al. 2006), or orient 
themselves in the best possible angle relative to the wind 
in order to maximize the progress they make toward their 
destinations (Klaassen et   al. 2011). 

 While both species reduced their travel time and speeds 
when approaching seasonal destinations (e.g. when reach-
ing the Sahel in autumn, and when reaching the temper-
ate forest in spring), these patterns are accounted for by 
weather conditions, and so we suspect the birds were not 
fl ying slower because they were relaxing while approach-
ing their destinations (Meyburg et   al. 1995, Fuller et   al. 
1998). Only above sea we consistently underestimated the 
hourly and daily performance for both species. Th e general 
absence of thermals over large water bodies in the temperate 
zones prohibits stationary circle-soaring there and requires 
soaring migrants to cross water bodies using fl apping fl ight 
(Kerlinger 1989, Bildstein 2006, Bildstein et   al. 2009). We 
actually would expect that a transition to fl apping fl ight lead 
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Middleton 2001), we suspect more detours to be associated 
to such storms (Strandberg et   al. 2010). Our models did not 
predict fl ight performance any worse during detours than 
when keeping course, probably because they were drifting 
with the wind ahead of a storm, although detours did cause 
an estimated delay of arrival in Gibraltar of two to six days 
(Treep 2012). Our tracking data suggests that honey buz-
zards prefer making a detour, potentially increasing their 
migration route by several hundred kilometers, rather than 
to sit and wait through a dust-storm or try and fl y through 
one, a behavior more often observed in ospreys, marsh 
and Montagu ’ s harriers (R. Strandberg pers. comm. (Lund 
Univ., Sweden), RHGK and BJK unpubl.). Th e latter strate-
gies may pose an increased risk of running severe delays, or 
death by starvation or dehydration (Strandberg et   al. 2010, 
Klaassen et   al. 2014), especially during dust-storms that last 
several days. Considering that we only study migrations that 
were successfully completed by adult birds returning to the 
breeding grounds, we should expect these individuals to be 
well adapted to cope with disadvantageous or dangerous 
weather.   

 Implications for migration phenology 

 While the general timing of migration may in part be 
endogenously controlled in response to day length (Gwinner 
and Helm 2003, Visser et   al. 2010), general climatic condi-
tions also infl uence timing of migration (Shamoun-Baranes 
et   al. 2010). For example, long-distance migrating rap-
tors, including both our study species, have advanced their 
autumn migration passage dates in southern France by 5 – 
10 d over the past 40 yr, probably due to climate change 
(Filippi-Codaccioni et   al. 2010). On an even fi ner time 
scale, the onset of migration can be triggered by weather 
conditions at the region of departure (Shamoun-Baranes 
et   al. 2006, Jaff r é  et   al. 2013). Our results suggest that 
soaring migrants may also have advanced arrival dates if 
gradually ameliorating fl ight conditions have improved 
migration performance (Gordo 2007). 

 For example, an increase of 1 m s  � 1  in average tailwind 
components experienced by a soaring migrant would lead 
to an increase of 15 – 20 km travel distance per day. Honey 
buzzards, which normally travel approx. 160 km per travel 
day, would then be able to complete their whole journey 
2 – 3 d faster than they do now. Furthermore, higher tem-
peratures would also lead to stronger convection, increased 
boundary layer height, and thus a higher travel performance 
(Shamoun-Baranes et   al. 2003a, Gordo et   al. 2013). Inter-
estingly, conditions for soaring raptors have ameliorated in 
recent decades over Europe in spring (i.e. higher tempera-
tures and increasing frequency of tailwinds, H ü ppop and 
H ü ppop 2003, Pirazzoli and Tomasin 2003, T ø ttrup et   al. 
2008, Kemp et   al. 2010) but may, for example, have dete-
riorated over the Sahara by an increase in the frequency and 
intensity of dust-storms or crosswinds. 

 Understanding the impact of migration events within 
the annual cycle, and subsequent fi tness consequences, will 
require researchers to unravel trends in adverse and supportive 
weather conditions along entire fl yways (Shamoun-Baranes 
et   al. 2010, Gordo et   al. 2013, Drake et al. 2014). We 
also need to separate the eff ects of weather on migration 

related to stronger winds over the desert during spring (Sup-
plementary material Appendix 1, Table A3a, Fig. A2a) which 
enabled honey buzzards to reach higher ground speeds than 
they could under the stronger convective conditions over 
the Sahara in autumn (Supplementary material Appendix 1, 
Table A3a, Fig. A2a). However, the honey buzzards should 
also compensate relatively more for winds during (the last 
stage of ) the desert crossing in spring while they navigate 
towards the Gibraltar Strait (Klaassen et   al. 2011) whereas 
they seem to drift with prevailing winds over the Sahara in 
autumn. If honey buzzards are held back more by side winds 
when compensating, than otherwise, we should expect our 
model, which was parameterized from a dataset combining 
drift and compensation events, to predict, on average, slightly 
higher speeds than achieved during compensation. Honey 
buzzards did experience relatively strong absolute crosswinds 
in spring, suggesting they regularly compensated for wind 
drift when travelling toward Gibraltar. Th is example shows 
it is important to consider that we calculated tail- and cross-
wind components relative to the realized hourly and daily 
travel directions, rather than the intended travel direction 
(Shamoun-Baranes et   al. 2007, Nathan et   al. 2008, Klaassen 
et   al. 2011, Kemp et   al. 2012). We thus studied the infl uence 
of wind on fl ight after they decided how to compensate for 
side winds and, therefore, wind compensation decisions may 
account for small seasonal diff erences in regional behavior 
(Shamoun-Baranes et   al. 2007, Nathan et   al. 2008, Klaassen 
et   al. 2011, Kemp et   al. 2012).   

 Daily patterns of hourly behavior 

 We showed that weather predicted travel performance much 
less accurately during morning and evening hours compared 
to mid-day fl ights, especially for honey buzzards. During 
the course of a day, the internal motivation and navigational 
decisions of a soaring migrant may change for reasons other 
than weather conditions. For example, birds are likely to 
begin searching for a suitable roosting site in the evening 
(Tsovel and Allon 1991, Alpert et   al. 2000). Moreoever, we 
suspect honey buzzards also react diff erently to weather in 
the morning because they are not able to compensate for 
wind as effi  ciently as compared to mid-day. Th is is because, 
at mid-day, honey buzzards should climb faster in stronger 
or closely spaced thermals allowing them to exit thermals at 
higher altitudes (Kerlinger 1989, Bruderer et   al. 1994, Spaar 
and Bruderer 1997a, Shamoun-Baranes et   al. 2003c) and to 
glide more steeply between thermals which are likely to be 
available along the best possible travel direction to compen-
sate for drift (Pennycuick 2003). Montagu’s harriers do not 
alter their behavior so strongly at specifi c times of the day, 
because their superior fl apping abilities allow them to move 
independently of diurnal cycles in the atmosphere (Spaar 
and Bruderer 1997b).   

 Negotiating dust-storms 

 Several honey buzzards made obvious detours over the 
Sahara and these occurred most frequently in spring. 
We know some of these detours were caused by dust-storms 
(Treep 2012), and given the prevalence of detours is higher 
in spring when dust-storms are most frequent (Goudie and 
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