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Abstract:  28 

Virulence pathways in Gram-negative pathogenic bacteria are regulated by quorum-sensing 29 

mechanisms, through the production and sensing of N-acylhomoserine lactone (AHL) signal 30 

molecules. Enzymatic degradation of AHLs leading to attenuation of virulence (quorum 31 

quenching) could pave the way for the development of new antibacterials. Penicillin V acylases 32 

(PVAs) belong to the Ntn hydrolase superfamily, together with AHL acylases. PVAs are 33 

exploited widely in the pharmaceutical industry, but their role in the natural physiology of their 34 

native microbes is not clearly understood. This report details the characterization of AHL 35 

degradation activity by homotetrameric PVAs from two Gram-negative plant pathogenic 36 

bacteria, Pectobacterium atrosepticum (PaPVA) and Agrobacterium tumefaciens (AtPVA). Both 37 

the PVAs exhibited substrate specificity for degrading long chain AHLs. Exogenous addition of 38 

these enzymes into Pseudomonas aeruginosa greatly diminished the production of elastase and 39 

pyocyanin, biofilm formation and increased the survival rate in an insect model of acute 40 

infection. Subtle structural differences in the PVA active site that regulate specificity for acyl 41 

chain length have been characterized, which could reflect the evolution of AHL-degrading 42 

acylases in relation to the environment of the bacteria that produce them and also provide 43 

strategies for enzyme engineering. The potential for using these enzymes as therapeutic agents in 44 

clinical applications and a few ideas about their possible significance in microbial physiology 45 

have also been discussed. 46 

Keywords:  47 

Penicillin V acylase, N-acylhomoserine lactone acylase, Ntn hydrolase, quorum quenching, 48 

pathogenesis  49 
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Introduction: 55 

Penicillin acylases are microbial enzymes that cleave the amide bond of natural penicillins 56 

(Arroyo et al. 2003), finding industrial application in the manufacture of the pharmaceutical 57 

intermediate 6-aminopenicillanic acid (6-APA). Penicillin acylases can show substrate 58 

preference for benzyl penicillin (Pen G, PGAs) or phenoxymethyl penicillin (Pen V, PVAs). 59 

Although both enzymes belong to the Ntn hydrolase superfamily (Oinonen and Rouvinen 2000), 60 

they differ in their catalytic N-terminal nucleophile residue (PGA-ser, PVA-cys) and their 61 

subunit composition. While PGAs are heterodimeric enzymes, PVAs are homotetramers and are 62 

evolutionarily related to bile salt hydrolases (BSHs) that deconjugate bile salts in the mammalian 63 

gut (Kumar et al. 2006) forming the cholylglycine hydrolase (CGH) group. A recent study 64 

(Panigrahi et al. 2014) has explored the phylogenetic clustering of CGHs from Gram-positive 65 

and Gram-negative bacteria into two different groups. 66 

Quorum sensing (QS) allows the bacteria to perceive their population density (Rutherford and 67 

Bassler 2012) through the secretion of auto-inducer signal molecules and modulate gene 68 

expression to trigger specific metabolic pathways. QS has been linked to bioluminescence, 69 

bacterial virulence and swarming motility among other physiological processes (Li and Nair 70 

2012). Bacterial pathogens including Pseudomonas aeruginosa, Vibrio cholerae and 71 

Acinetobacter baumanii use QS to regulate virulence genes and formation of biofilms, thereby 72 

increasing their persistence (Li and Tian 2012). Gram-negative proteobacteria use autoinducers 73 

N-acylhomoserine lactones (AHLs) (Churchill and Chen 2011), with a homoserine lactone ring 74 

linked via an amide bond to an acyl side chain (C4-C18) which may be saturated or unsaturated, 75 

or with a hydroxy, oxo or no substituent on the carbon at the 3-position of the N-linked acyl 76 

chain. Synthesized AHLs diffuse into neighbouring cells, where they modulate gene expression 77 

through binding to the LuxR family of regulators. While Pectobacterium carotovorum and 78 

Agrobacterium tumefaciens produce 3-oxo-C6 and 3-oxo-C8-HSLs, respectively (Uroz et al. 79 

2009), P. aeruginosa utilizes C4 and 3-oxo-C12-HSLs as signals for auto-induction. Bacteria in 80 

mixed-species communities have also been known to respond to structurally related non-cognate 81 

AHLs produced by other bacteria (Winson et al. 1998).   82 

The disruption of AHL-directed signaling (termed “quorum quenching”, QQ) through inhibition 83 

or enzymatic degradation is an attractive strategy for controlling bacterial pathogenesis and 84 
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biofilm formation (Dong et al. 2007). Enzymes that degrade AHL include lactonases (ring 85 

cleavage) and acylases (amide bond cleavage), which have been characterized from a variety of 86 

bacteria. An exhaustive list has been provided by Grandclément et al. (2016). Penicillin acylases 87 

are known to share similar structural fold and mechanistic features with AHL acylases, and the 88 

probability of substrate cross-reactivity has been suggested earlier (Kreszlak et al. 2007).  89 

Although recent studies have  demonstrated activity of Kluyvera citrophila PGA (Mukherji et al. 90 

2014) and aliphatic penicillin acylase from Streptomyces lavendulae (Torres-Bacete et al. 2015) 91 

on AHLs, both these enzymes are ser-Ntn hydrolases with heterodimeric structure. A new AHL 92 

acylase from P. aeruginosa (HacB) (Wahjudi et al. 2011) cleaves Pen V to a small extent; 93 

however, AHL degradation by PVA enzymes or any other cys-Ntn hydrolase has not been 94 

explored in detail so far. Moreover, the role of PVAs in microbial physiology is not been clearly 95 

understood till date, but a few possible links to quorum sensing and pathogenesis have been 96 

suggested (Avinash et al. 2016b).  97 

In earlier reports, we have characterized the unique biochemical (Avinash et al. 2015) and 98 

structural (Avinash et al. 2016a) features of a highly active PVA from the Gram-negative 99 

Pectobacterium atrosepticum (PaPVA). The present study describes the characterization of PVA 100 

from another related plant pathogen A. tumefaciens (AtPVA, 62% sequence identity with 101 

PaPVA) and elucidates the subtle structural differences between the enzymes. Further, we report 102 

the promiscuous deacylation of AHLs by these PVAs, and explore the structural interactions 103 

involved in AHL binding.  The application of PVA enzymes also led to reduction in QS-104 

regulated biofilm formation in P. aeruginosa PAO1 culture and the attenuation of P. aeruginosa 105 

virulence in Galleria mellonella infection models, making them attractive options for novel QQ-106 

based therapeutic formulations. 107 

 108 

Materials and Methods: 109 

Bacterial strains and plasmids:  110 

The bacterial strains and plasmids used in this study are listed in Table 1. E. coli DH5a and BL21 111 

star strains were maintained on Luria-Bertani (LB) medium supplemented on appropriate 112 
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antibiotics and cultured at 37°C. Antibiotics were added (100 g/ml ampicillin, 35 g/ml 113 

kanamycin or 10 g/ml tetracycline) as required.  114 

Preparation of AtPVA and PaPVA: 115 

The pva gene from A. tumefaciens (GenBank GI:159185562) was cloned in pET22b vector 116 

between NdeI and XhoI restriction sites using the primers AtuF 117 

(gcttgacatatgtgcacgcgtttcgtttatatag) and AtuR (ctgaatctcgagaagcccgagaaacttgaaag), and 118 

expressed in E. coli BL21 star cells with a C-terminal His-tag. The enzyme was purified to 119 

homogeneity using a HIS Select Ni
2+

 affinity column (Sigma) and ENrich
TM

 650 (BioRad) size 120 

exclusion column. The protein was dialyzed against 10 mM Tris-Cl buffer pH 7.4 containing 100 121 

mM NaCl and 1mM DTT and stored in aliquots at -20°C. PaPVA was purified from 122 

recombinant E. coli as described earlier (Avinash et al. 2015). 123 

PVA enzyme activity assay 124 

Pen V hydrolysis activity was estimated by studying the formation of Schiff’s conjugate with the 125 

product 6-APA and p-dimethyl amino benzaldehyde (Shewale et al. 1987). One unit (IU) of 126 

enzyme activity was defined as the amount of enzyme producing 1 mol 6-APA in 1 min. 127 

Biochemical characterization of AtPVA 128 

The Pen V hydrolysis activity was assayed at different pH (4-9) and temperatures (20-70°C) to 129 

ascertain the optimum conditions. AtPVA stability was studied by incubating the protein in 10 130 

mM Tris-Cl buffer pH 7.4 for 2 h at different temperatures between 30-90°C, and assaying for 131 

PVA activity at 45°C after different time intervals. Effect of pH on enzyme stability was studied 132 

by incubating the protein in 100 mM buffers of different pH (1-11) for 4 h at 25°C and assaying 133 

the residual activity. Kinetic parameters were determined by assaying the enzyme activity with 134 

increasing concentrations (5-240 mM) of penicillin V (potassium salt, Sigma) as substrate. The 135 

data were fitted using non-linear regression as detailed for PaPVA earlier (Avinash et al. 2015). 136 

AtPVA crystallization and structure determination 137 

Crystallization trials were set up with AtPVA (15 mg ml
-1

) using the sitting drop vapour diffusion 138 

technique. The protein crystallized in the 0.1M HEPES pH 7.5 and 12% PEG 3350 condition of 139 
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the PEG Rx crystallization screen (Hampton Research, USA). The crystals were frozen in liquid 140 

nitrogen with 25% (w/v) 2, 5-hexanediol as cryoprotectant.  Diffraction data were collected at 141 

2.8 Å resolution at the SSRL-BL12-2 beamline at the Stanford Synchrotron Light Source (USA). 142 

Investigation and scaling of the diffraction data was performed using XDS (Kabsch 2010) and 143 

SCALA (Evans 2006). The AtPVA structural model was built using molecular replacement on 144 

Phaser ver. 2.5.6 (McCoy et al. 2007) and Autobuild (Phenix), with the refined structure of 145 

PaPVA (PDB ID: 4WL2) as the template. Further model building and refinement was done 146 

using Coot and Refmac5 (CCP4 software suite) respectively. AtPVA crystallized in P212121 147 

space group with a single tetramer per asymmetric unit (Table S1, Online Resource 1).  148 

Bioluminescence assay for detection of AHL degradation 149 

AHL degradation activity was monitored by employing biosensors that exhibit luminescence in 150 

the presence of specific AHLs (Winson et al. 1998). Quenching of luminescence levels can be 151 

used as an indication of AHL hydrolysis by the acylase enzymes (Steindler and Venturi 2007).  152 

0.5 L of 5 mM AHL stock solution in DMSO was spotted to a flat-bottom Clear white 153 

microplate (Greiner Bio-One) and dissolved in 50 µL reaction mixture containing 5 µg enzyme 154 

in 100 mM NaCl, 1 mM DTT and 25 mM Tris HCl buffer pH 7.4 (for AtPVA) or 20 mM sodium 155 

acetate buffer pH 5.2 (for PaPVA). After 4 h incubation at 25°C, the enzyme was heat 156 

inactivated (80°C for 15 min), and an equal volume of modified PBS (137 mM NaCl, 2.7 mM 157 

KCl, 100 mM Na2HPO4, 1.8 mM KH2PO4) was added to each well, followed by 100 µl of 1:100 158 

diluted overnight biosensor. Luminescence of the biosensors was measured at 30°C during a 12 h 159 

time-course using FLUOstar Omega (BMG Labtech) as described previously (Papaioannou et al. 160 

2009). Control reactions were performed in the same manner using heat-inactivated enzyme. E. 161 

coli (pSB536) was used to analyze C4-HSL degradation, E. coli (pSB401) for C6- to C8-HSL 162 

(Swift et al. 1997), and E. coli (pSB1075) for C10- to (3-OH- and 3-oxo-) C12-HSL (Winson et al. 163 

1998). To determine the enzyme activity on AHLs, the ratio of luminescence unit to biosensor 164 

growth in OD600 (relative luminescence unit, RLU) from active enzymes was compared to those 165 

from inactive enzymes. 166 

 167 

  168 
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HPLC analysis  169 

To confirm the deacylase activity of PVA enzyme on long chain AHLs, the reaction with C10-170 

HSL was analyzed by HPLC (Uroz et al. 2008). The enzymes (25 g in 3ml of same buffer as 171 

the bioluminescence assay) were incubated with 0.4 mM C10-HSL for 4 h at 25°C (heat-172 

inactivated enzyme was used as a control). Samples of 750 l from time 0 and 4 h were 173 

processed for detection of residual substrate, HSL and decanoic acid (Wahjudi et al. 2011).  174 

For detection of the substrate, residual C10-HSL in the reaction mixture was extracted twice with 175 

an equal volume of acidified ethyl acetate. The free HSL released during the reaction was 176 

dansylated with an equal volume of 2.5 mg ml
-1

 dansyl chloride (in acetone) and incubated 177 

overnight at 37°C (Lin et al. 2003). After SpeedVac evaporation, the sample was neutralized 178 

with 50 l of 0.2 M HCl and diluted with acetonitrile. Decanoic acid in the sample was extracted 179 

thrice with an equal volume of hexane followed by drying under a nitrogen stream and 180 

derivatization with 4-bromomethoxy-7-methyl coumarin (BrMMC) reagent was performed as 181 

described previously (Wolf and Korf 1990).   182 

HPLC was carried out in a Shimadzu LC-10AT VP system using a Phenomenex Luna C18 183 

reverse-phase column (250 x 4.60 mm, 5 µm) coupled with a SPD-M10AVP PDA detector. The 184 

column was washed with 5% acetonitrile in water (solvent A), and the sample was eluted in a 185 

linear gradient to 100% acetonitrile (solvent B). C10-HSL was detected at 219 nm, dansylated 186 

HSL at 267 nm, and BrMMC-derivatized decanoic acid at 328 nm (Uroz et al. 2008). Reaction 187 

control of reference substrate and products showed that the dansylation and BrMMC 188 

derivatization was specific to HSL and decanoic acid, respectively (data not shown).   189 

Kinetics of AHL degradation by PVAs 190 

The kinetic behavior of AtPVA and PaPVA on 3-oxo-C12-HSL was determined by an end-point 191 

assay using ortho-phthalaldehyde (OPA) derivatization of the HSL product. Eight different 192 

concentrations of 3-oxo-C12-HSL in which the substrate was completely soluble (0.01-0.25 mM) 193 

were prepared from DMSO stock. The reaction mixture consisted of 100 mM NaCl, 1 mM DTT 194 

and 25 mM sodium phosphate buffer pH 7.4 (for AtPVA) or 20 mM sodium acetate buffer pH 195 

5.2 (for PaPVA). The DMSO concentration was kept at 0.8% for each reaction. Enzyme (2 µg 196 

AtPVA or 0.5 µg PaPVA) was added into the 1 ml reaction mixture; a 90 µL sample was taken 197 
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immediately and thereafter regularly at 1 min intervals. The enzyme was inactivated with 10 µL 198 

of 1M NaOH; this step did not interfere with the subsequent derivatization. After removal of 199 

enzyme by centrifugation, 50 µL was transferred into a black Fluotrac microplate (Greiner Bio-200 

One) and mixed with 50 µL OPA reagent (Sigma-Aldrich), followed by 20 min incubation at 201 

25°C. Fluorescence was measured on a FLUOstar Omega, BMG Labtech with an excitation at 202 

355 nm and emission at 460 nm. A standard curve using 0-0.25 mM HSL standard prepared in 203 

reaction mixture showed a straight line that can be fitted to the following equation: y = 77290x + 204 

490.5 (R
2
=0.9996). Initial velocity was limited in the range of 15% substrate conversion and 205 

calculated from the standard curve. The enzyme kinetics model was analyzed by fitting the v/[S] 206 

curves in GraphPad Prism software. 207 

 Docking of AHLs to PaPVA and AtPVA 208 

The 3D structures of C6-HSL, C10-HSL and 3-oxo-C12-HSL used in the docking study were 209 

obtained from PubChem compound database. Partial atomic charges of each ligand atom were 210 

determined from OPLS_2005 all-atom force field using LigPrep. Grid based ligand docking 211 

program Glide was used for docking these ligands in the binding site of PaPVA and AtPVA. The 212 

binding site was defined as a grid box of dimension 26x26x26 Å, centered on the Cys1 residue. 213 

Receptor grid generation was followed by ligand docking where the ligands were docked flexibly 214 

using Glide’s extra precision. Free energy of binding was roughly estimated by using an 215 

empirical scoring function called GlideScore, which includes electrostatic, van der Waals 216 

interaction and other terms for rewarding or penalizing interactions that are known to influence 217 

ligand binding. All structural figures were prepared using PyMol or CCP4MG.   218 

Disruption of quorum sensing in Pseudomonas aeruginosa PAO1 by PVAs 219 

Purified AtPVA (0.08 mg ml
-1

) or PaPVA (0.4 mg ml
-1

) was added to a 1:100 diluted overnight 220 

culture of P. aeruginosa PAO1 in 100 ml LB. Samples were taken at 6 and 24 h post inoculation, 221 

centrifuged for 5 min and supernatant was stored at -20°C until further analysis.  222 

(i) AHLs measurement. The levels of 3-oxo-C12-HSL and C4-HSL were measured by 223 

bioluminescence assay using biosensor E. coli pSB1075 and pSB536 respectively (Winson et al. 224 

1998; Swift et al. 1997). Cell-free supernatant was filtered through a 0.2 µm pore filter, and 20 225 
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µL of the sample was mixed with 180 µL of 1:100 diluted overnight biosensor culture. Light 226 

production was monitored at 30°C for 12 h.   227 

(ii) Elastase assay. Cell-free supernatant (100 µL) was added to 900 µL of elastase buffer (100 228 

mM Tris HCl pH 7.5; 1 mM CaCl2) containing 20 mg of Elastin Congo Red (ECR, Sigma 229 

Aldrich) (Ohman et al. 1980). After 2h at 37°C, elastase activity of the supernatant was measured 230 

as A495/A600.    231 

(iii) Pyocyanin assay. Cell-free supernatant (5 ml) was extracted with 3 ml chloroform, and re-232 

extracted with 1 ml of 0.2 M HCl (Essar et al. 1990). After centrifugation, the absorbance of HCl 233 

layer was measured at 520 nm. Production of pyocyanin (g ml
-1

 culture) was calculated as 234 

(A520/A600) ×17.072. 235 

(iv) Biofilm formation assay. The static biofilm assay was performed in a round-bottom 236 

polystyrene 96-well plate (Greiner Bio-One) using a method by Merrit et al. (2005) with 237 

modification. mg ml
-1

 AtPVA or 0.66mg ml
-1

 PaPVA was added to an overnight culture of 238 

P. aeruginosa PAO1 (0.01OD) in M9 medium (47.7 mM Na2HPO4.7H2O; 22 mM KH2PO4; 8.5 239 

mM NaCl; 18.7 mM NH4Cl; 2 mM MgSO4; 0.1 mM CaCl2; 0.01 mM glucose). A minimum of 240 

20 wells per treatment were used with an aliquot of 110 µL in each well. Biomass quantification 241 

was performed using a crystal violet method (Chow et al. 2014) after 18 h at 30°C.  242 

(v) Galleria mellonella killing assay. Larvae of G. mellonella were obtained from Frits Kuiper 243 

(Groningen, The Netherlands) and kept in a dark container at 15°C. Animals of 2.5-3 cm size 244 

were selected for the assay, with a minimum of 15 animals per treatment. An overnight culture of 245 

P. aeruginosa PAO1 was diluted 1:100 in LB medium, grown into an early logarithmic phase 246 

(A600 0.3-0.4), and the CFU count was determined from a standard curve of CFUs/ A600. The 247 

cells were then washed with sterile 10 mM MgSO4, and diluted into 10
3 

CFU/mL. Afterwards, 248 

100 µL of enzyme (mg ml
-1

 AtPVA or 0.66mg ml
-1

 PaPVA) or reaction buffer was added to 249 

900 µL of bacteria and incubated at 30°C for 1 hour. An insulin pen (HumaPen Luxura; Lilly 250 

Nederland) was used to inject 10 µL of the culture to the last proleg of the larvae. Animals 251 

injected with 10 mM MgSO4 served as a control for physical trauma. Infection development was 252 

followed for 24 hours at 30°C (Beeton et al. 2015; Koch et al. 2014b). The animals were 253 

considered dead when not reacting to touch or have turned black. 254 
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Accession code:  255 

The structural coordinates for AtPVA have been deposited in the PDB under the accession codes 256 

5J9R. 257 

 258 

 Results:  259 

Biochemical characterization of AtPVA 260 

AtPVA was expressed as a tetramer of molecular mass 148 kDa; the enzyme exhibited a specific 261 

activity of 205 molmin
-1

mg
-1

with high specificity for Pen V over bile salts and other -lactam 262 

antibiotics (Fig. S1, Online Resource 1). Maximum Pen V hydrolysis was observed at 45°C in 263 

optimum pH 6 - 7 (Fig. 1). AtPVA was stable in the pH range 5-8, while PaPVA (Avinash et al. 264 

2015) was more stable in acidic pH (3-6). There was also a drastic reduction in AtPVA activity 265 

and loss of tertiary structure at 60°C (Fig. 1).  266 

AtPVA was observed to exhibit complex kinetic behaviour similar to PaPVA, showing positive 267 

cooperativity and substrate inhibition with Pen V and modulation of PVA activity in the presence 268 

of bile salts (Fig. 2a).  The major difference between AtPVA and PaPVA lies in the extent of 269 

substrate inhibition; AtPVA showed a Ki of 47.2 mM, compared to 163.1 mM for PaPVA. Near 270 

complete reduction of AtPVA activity was observed at 240 mM Pen V, while PaPVA still had 271 

considerable activity (20% of Vmax) at the same concentration (Avinash et al. 2015). Drastic 272 

reduction in Pen V hydrolysis with AtPVA was also observed in the presence of high GDCA 273 

(glycodeoxycholate, a bile salt) concentration (Fig. 2b).  274 

Structural analysis of AtPVA 275 

The structural features of AtPVA closely resemble the PaPVA structure (PDB ID 4WL2) with a 276 

few subtle differences. Although the AtPVA tetramer (Fig. 3) possesses a similar non-planar 277 

orientation and distance between subunits as PaPVA (Avinash et al. 2016a), the angle between 278 

the opposite subunits (169.6°) was closer to the planar shape of the PVA from Bacillus 279 

sphaericus (171°) than PaPVA (158°). AtPVA shares many similar active site residues with 280 

PaPVA including the nucleophilic N-terminal cysteine (C1), and the presence of two Trp 281 
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residues (W21, W80) in the active site participating in substrate binding. Superposition of the 282 

two structures revealed that AtPVA (and other PVAs) lack the 5-residue insertion in the loop 283 

region (61-74) near the active site in contrast to PaPVA (Avinash et al. 2015). It is possible that 284 

the length of this loop might play a role in modulating the substrate inhibition in PVAs from 285 

Gram-negative bacteria. Finally, AtPVA and BtBSH (BSH from Gram-negative Bacteroides 286 

thetaiotamicron, PDB ID 3HBC) also lack a solvent-exposed loop covering the region 228-239 287 

that is present in PaPVA. 288 

AHL degradation by PVAs 289 

The ability of PVAs from Gram-negative bacteria (PaPVA and AtPVA) to hydrolyze AHL 290 

signals was evaluated to explore their possible association with quorum sensing. Incubation (4 h) 291 

of long chain AHLs with pure PVA enzymes showed reduction in bioluminescence compared to 292 

the heat-inactivated control, indicating AHL degradation. Activity of PaPVA was restricted to 293 

C10 and C12-HSL. AtPVA was active on a broader substrate spectrum (C6 to C12-HSL), although 294 

significant quenching was observed with the long chain AHLs, with moderate activity on C6 and 295 

C8-HSLs (Table 2). Both enzymes were observed to be distinctly more active on straight chain 296 

AHLs, with only moderate quenching in case of oxo- or hydroxy- substituted AHLs. The activity 297 

of the PVA enzymes on long chain AHLs was further confirmed by monitoring the degradation 298 

of C10-HSL using HPLC (Fig. 4). 299 

Kinetics of AHL degradation 300 

For kinetic analysis, 3-oxo-C12-HSL was chosen as a representative substrate as it is a highly 301 

studied signal produced by P. aeruginosa and has significant clinical relevance (Cooley et al. 302 

2010; Miyari et al. 2006). PaPVA (18.9 molmin
-1

mg
-1

) exhibited 4-fold higher activity over 303 

AtPVA (4 molmin
-1

mg
-1

) with 0.2 mM 3-oxo-C12HSL as substrate, similar to the trend for Pen 304 

V as substrate (Avinash et al. 2015).  305 

AtPVA and PaPVA showed sigmoid v/[S] curves with increasing concentrations of 3-oxo-C12-306 

HSL, exhibiting a better fit for allosteric behaviour. However, saturation could not be achieved 307 

for both the enzymes as the low solubility of 3-oxo-C12-HSL in aqueous buffer did not permit 308 

rate measurements at concentrations higher than 0.25 mM. A reasonable estimate of kinetic 309 

parameters calculated by applying initial values as constraints to the allosteric sigmoidal 310 
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equation revealed similar K0.5 values but a significantly higher Vmax for PaPVA (Fig. 5).  311 

Apparent kcat/Km values for PaPVA (13.5x10
4 

M
-1

s
-1

) and AtPVA (2.68x10
4
 M

-1
s

-1
) were 312 

comparable to the available value for HacB acylase (7.8x10
4 

M
−1

s
−1

) (Wahjudi et al. 2011) and 313 

10 fold higher than PvdQ acylase (5.8x10
3
 M

−1
s

−1
) (Koch et al. 2014a).  314 

Binding of long chain AHLs to AtPVA and PaPVA 315 

Docking studies were performed to understand the structural interactions responsible for the 316 

selective activity of PVAs on long chain AHLs. The mode of binding was almost identical in 317 

both PVAs, with the AHLs (C6-HSL, C10-HSL and 3-oxo-C12-HSL) binding to the active site 318 

with similar amide bond orientation and favourable binding energy (Fig. S2, Online Resource 1). 319 

However, the extent of interaction of enzyme residues with the substrate molecule seemed to 320 

increase with the increase in length of acyl chain of the AHL molecule. 321 

The lactone ring was housed in the same pocket where the -lactam moiety was bound in the 322 

case of Pen V (Avinash et al. 2016a) with an Asn residue (N250 in AtPVA or N271 in PaPVA) 323 

involved in hydrogen bonding with the NH group of the amide bond. The AHL acyl chain fits 324 

into a hydrophobic pocket lined primarily by the two Trp residues in the active site (W23, W87 325 

in AtPVA and W21, W80 in PaPVA respectively) and residues from loop 2 and loop3 326 

surrounding the active site (Fig. 6). It appears that longer hydrophobic chains in C10-HSL and 3-327 

oxo-C12-HSL enable greater number of hydrophobic interactions with the enzyme.  The loop 328 

residues (Y61, L137, A138 in AtPVA and F63, M69, L146 and A147 in PaPVA respectively) 329 

form additional interactions with the hydrophobic acyl chain in these substrates, probably 330 

enhancing the strength of binding and favourably orienting the AHL molecule in the active site. 331 

Better binding affinity values (estimated as glidescores) and smaller nucleophilic attack distances 332 

from the N-terminal catalytic cysteine (C1) to the carbonyl carbon of the substrate were also 333 

observed in C10-HSL and 3-oxo-C12-HSL over C6-HSL (Table 3). The presence of a (oxo- or 334 

hydroxy-) substituent did not effect a significant change in binding orientation, although a 335 

reduction in activity was observed (Table 3). It is possible that a change in polarity due to the 336 

presence of a 3’ substituent might have caused a binding impediment. A preference for 337 

unsubstituted AHLs has also been observed in AHL acylases from Shewanella sp. (Morohoshi et 338 

al. 2008) and Acinetobacter sp. (Ochiai et al. 2014).   339 
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Quorum quenching in P. aeruginosa by PVAs  340 

Exogenous addition of the PVAs into P. aeruginosa PAO1 culture was followed by 341 

measurement of AHL levels and monitoring of QS-regulated virulence factors and biofilm 342 

formation, to study their quorum quenching activity. Decrease in 3-oxo-C12-HSL levels was 343 

apparent 6h post incubation (Fig. 7a), but the accumulation of C4-HSL was unaffected (data not 344 

shown). This result corroborates the finding that both PVAs hydrolyze only long chain AHLs.  345 

Elastase and pyocyanin levels were also negatively influenced at 6 h after acylase addition (early 346 

stationary phase) (Fig. 7b). Interestingly, AtPVA almost completely blocked the production and 347 

pyocyanin and elastolytic activity even at 5-fold lower concentration than PaPVA, despite 348 

PaPVA exhibiting higher activity on AHLs in vitro. This might be explained by a probable loss 349 

in enzyme (PaPVA) activity at pH 7 required for P. aeruginosa growth, or proteolytic 350 

degradation of the enzymes in bacterial culture. Although there was comparable decrease in 3-351 

oxo-C12-HSL levels in both cases after 6 h, the insufficient stability of PaPVA might have 352 

caused a delay in AHL degradation, giving the bacteria time to activate the QS circuit. Decrease 353 

in QQ-mediated attenuation of virulence over time has been observed earlier in the case of AhlM 354 

from Streptomyces sp. (Park et al. 2005).  355 

PVA-mediated AHL degradation also led to a moderate reduction in biofilm formation by P. 356 

aeruginosa (Fig. 7c). Weakening of biofilm structure in P. aeruginosa has been linked to the 357 

disruption of the 3-oxo-C12HSL regulated lasI/R QS system (DeKievit et al. 2001). In addition, 358 

the therapeutic effects of PVAs in attenuation of P. aeruginosa virulence could be ascertained by 359 

studies on G. mellonella larvae. Simplicity of use and a positive correlation between P. 360 

aeruginosa virulence patterns in insects and mice make G. mellonella an attractive alternative 361 

infection model for anti-virulence experiments (Papaioannau et al. 2013; Jander et al. 2000). In 362 

the present study, preincubation of P. aeruginosa culture (10 cfu) with PVAs was observed to 363 

increase the survival rates of G. mellonella larvae after 24 h from only 10.3±7.2% in untreated 364 

infection to 73±5% (AtPVA) or 53.7±11% (PaPVA) (Fig. 7d). Control injection with only 365 

MgSO4 only did not affect the survival of the larvae. Here too as in the in vitro assay, AtPVA 366 

turned out to be more efficient in attenuating virulence. Regardless, these results establish the 367 

potential efficacy of PVAs as QQ therapeutic agents. 368 
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 369 

Discussion:  370 

Enzymes active on AHLs hold great potential for application as QQ agents in clinical therapy as 371 

they can reduce virulence without affecting the growth of the bacteria, thereby diminishing the 372 

chance for emergence of resistant strains. Apart from the many AHL acylases and lactonases 373 

characterized so far, it has recently come to light that other related enzymes can promiscuously 374 

degrade the AHL signals as well, effecting QQ albeit at a lower rate. Examples include 375 

mammalian paraoxanases (Dong et al. 2007), porcine acylase (Xu et al. 2003) and PGA from 376 

Kluyvera citrophila (KcPGA) (Mukherji et al. 2014). Although PVAs and PGAs come under the 377 

same functional ambit, they show significant differences in sequence and structural composition. 378 

While AHL acylases are generally homologous to heterodimeric PGAs and share similar active 379 

sites including an N-terminal catalytic serine, bacterial PVAs are homotetrameric and 380 

evolutionarily related to BSHs with cysteine at the N-terminal. The heterodimeric acylase from 381 

Streptomyces avendulae (SlPVA) active on aliphatic penicillins and Pen V has been recently 382 

hinted to degrade AHLs (Torres-Bacete et al. 2015), but it shares significant sequence and 383 

structural homology with the ser-Ntn hydrolases. In the present study, the ability of cys-Ntn 384 

PVAs from Gram-negative bacteria to degrade long chain AHLs and attenuate QS-mediated 385 

virulence in P. aeruginosa has been described for the first time. Both the organisms employed in 386 

this study are also well-known plant pathogens that produce AHLs and employed as model 387 

systems to study AHL-based QS mechanisms (Steindler and Venturi 2007). The AiiB (Liu et al. 388 

2007) and BlcC/AttM  (Carlier et al. 2003; White et al. 2009 ) lactonases from A. tumefaciens 389 

have been implicated in QQ; however, no acylase active on AHLs has been reported so far from 390 

these bacteria.  391 

Acylases active on AHLs have been observed to vary in their substrate specificities, and separate 392 

into different phylogenetic clusters (Ochiai et al. 2014). Enzymes of the AAC group (including 393 

AAC from Shewanella sp., PvdQ from P. aeruginosa, AhlM from Streptomyces sp. and AiiD 394 

from Ralstonia sp.) degrade only long chain AHLs, while some members of the penicillin G 395 

acylase group (including QuiP and HacB from P. aeruginosa, and AiiC from Anabena sp.) group 396 

can act on both long and short chain AHLs. A newly characterized AHL acylase AmiE of the 397 

amidase family (Ochiai et al. 2014) possesses an activity preference for long chain unsubstituted 398 
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AHLs similar to PVAs. However, the PVA enzymes shared little sequence similarity (<15%) 399 

with any of the known acylases active on AHLs (Fig. S3, Online Resource 1). In addition, both 400 

the PVAs explored in this study did not act on the AHL signals secreted by the bacteria that 401 

produce these enzymes – 3-oxo-C8-HSL of A. tumefaciens and 3-oxo-C6-HSL of P. 402 

atrosepticum. It would be however, interesting to study whether the substrate spectrum of 403 

penicillin acylases would include the non-canonical aryl HSLs (Ahlgren et al. 2011) as well, 404 

given that penicillins also possess aryl side chains.   405 

Docking analysis showed that the AHLs bind to PVA enzymes at the same site as Pen V, with 406 

the acyl chain housed in a hydrophobic pocket lined by Trp residues and loop 2 and 3 while the 407 

lactone ring interacts with residues from loop 4. Accommodation of the AHL acyl chains in the 408 

active site hydrophobic pocket has been illustrated in the AHL acylase PvdQ (Bokhove et al. 409 

2010) and KcPGA (Mukherji et al. 2014), while the S. lavendulae acylase also contains a long 410 

hydrophobic pocket to bind aliphatic penicillins that can accommodate AHLs. The size of the 411 

hydrophobic pocket and the conformational variations of a few critical residues in the binding 412 

site have been suggested to modulate the activity of different PGAs on AHLs (Chand et al. 413 

2015). Moreover, it has been demonstrated in PvdQ that mutagenesis of two residues (L146W, 414 

F24Y) in the active site could change the size of the hydrophobic binding pocket thus effecting 415 

a change in substrate specificity from long chain to medium chain AHLs (Koch et al. 2014a).   416 

PVAs occur in a diverse range of bacteria and some fungi (Avinash et al. 2016b), and are usually 417 

expressed constitutively. It has been demonstrated in V. cholerae (Kovacikova et al. 2003) that 418 

the PVA expression is reduced during the induction of virulence genes by the AHL-based 419 

AphA/HapR QS system and expressed more at high cell densities. Moreover, long chain AHLs 420 

have been known to antagonize QS in organisms that use C6-C8 HSLs as signals, including 421 

Chromobacterium violaceum (McClean et al. 1997) and Aeromonas hydrophila (Swift et al. 422 

1997). It is therefore possible that the PVAs could be employed in the environment to gain a 423 

competitive advantage in a mixed species community (Roche et al. 2004), while not interfering 424 

with the bacterium’s own QS system. Further genomic and knockout analyses of PVA producing 425 

strains could help shed some light on the relevance of their QQ ability in microbial physiology.  426 

Nevertheless, the recent additions of many novel acylases to the list of AHL-degrading enzymes 427 
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seem to go hand in hand with the complexity of AHL-based signaling mechanisms in Gram-428 

negative bacteria.  429 

Importantly, the knowledge of AHL-hydrolysis activity of penicillin acylases adds them to the 430 

list of QQ enzymes that can be developed for clinical applications. PVA enzyme formulations 431 

could have great potential for the biocontrol of P. aeruginosa pulmonary infection in cystic 432 

fibrosis patients. A dry powder formulation of the enzyme could not only be directly delivered 433 

into the lungs, but also increases its shelf life (Wahjudi et al. 2011). With their broad spectrum 434 

activity, PVAs can also help attenuate virulence in Acinetobacter baumanii (Chow et al. 2014) 435 

and co-infections by other pathogens whose QS mechanisms are at least partly dependent on 436 

long chain AHLs. QQ enzymes have also been applied to disrupt bacterial biofilms on silicone 437 

surfaces (Ivanova et al. 2015). Sustained QQ activity can be ensured for clinical application by 438 

enhancing protein stability (via directed evolution) and the use of stabilizing excipients. It is also 439 

advantageous that many penicillin acylases have been already optimized for industrial use with 440 

methods for their production on large scale; this could help in reducing development times for 441 

their clinical application in QQ systems. However, their activity levels and specificity for AHL 442 

acyl chain length should also be studied to direct their application to specific pathogens. With the 443 

recent expansion in the volume of information about QS systems in pathogenic bacteria, the 444 

development of a battery of enzymes acting on a broad range of AHLs would definitely prove 445 

beneficial in tackling bacterial virulence. In addition to its potential clinical application, this 446 

result also encourages the further exploration of possible link between QQ and the natural role of 447 

PVAs for the bacteria. 448 
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