
 

 

 University of Groningen

Q-learning with Experience Replay in a Dynamic Environment
Pieters, Mathijs; Wiering, Marco

Published in:
Adaptive Dynamic Programming and Reinforcement Learning (ADPRL)

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Final author's version (accepted by publisher, after peer review)

Publication date:
2016

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Pieters, M., & Wiering, M. (2016). Q-learning with Experience Replay in a Dynamic Environment. In
Adaptive Dynamic Programming and Reinforcement Learning (ADPRL) (Symposium Series on
Computational Intelligence (SSCI)).

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 11-02-2018

https://www.rug.nl/research/portal/en/publications/qlearning-with-experience-replay-in-a-dynamic-environment(a5ed743f-4597-4e0a-a2da-21fdba5b6a72).html


Q-learning with Experience Replay in a Dynamic
Environment

Mathijs Pieters
Institute of Artificial Intelligence

and Cognitive Engineering
University of Groningen, The Netherlands

Email: m.t.pieters@rug.nl

Marco A. Wiering (IEEE Member)
Institute of Artificial Intelligence

and Cognitive Engineering
University of Groningen, The Netherlands

Email: m.a.wiering@rug.nl

Abstract—Most research in reinforcement learning has focused
on stationary environments. In this paper, we propose several
adaptations of Q-learning for a dynamic environment, for both
single and multiple agents. The environment consists of a grid
of random rewards, where every reward is removed after a
visit. We focus on experience replay, a technique that receives
a lot of attention nowadays, and combine this method with Q-
learning. We compare two variations of experience replay, where
experiences are reused based on time or based on the obtained
reward. For multi-agent reinforcement learning we compare
two variations of policy representation. In the first variation
the agents share a Q-function, while in the second variation
both agents have a separate Q-function. Furthermore, in both
variations we test the effect of reward sharing between the agents.
This leads to four different multi-agent reinforcement learning
algorithms, from which sharing a Q-function and sharing the
rewards is the most cooperative method. The results show
that in the single-agent environment both experience replay
algorithms significantly outperform standard Q-learning and a
greedy benchmark agent. In the multi-agent environment the
highest maximum reward sum in a trial is achieved by using one
Q-function and reward sharing. The highest mean reward sum
is obtained with separate Q-functions and separate rewards.

I. INTRODUCTION

Reinforcement Learning (RL) [1], [2] is an area within ma-
chine learning that is used to control an agent by letting it learn
from its interaction with the environment. This environment
is often described as a Markov Decision Process [3]. In the
environment the agent aims to learn a policy from trial and
error that maximizes the cumulative reward. This is different
from supervised learning, where examples of correct input-
output pairs are given to the system. RL algorithms work
by learning a state-action value function that estimates the
utility after performing an action in a certain state. With such
a state-action value function the optimal policy for an agent
consists of selecting the action with the highest value in each
state. In order to learn the state-action value function the
agent has to explore the environment. The exploration should
however not be at the expense of the exploitation of its learned
value function. This trade-off is known as the exploration-
exploitation dilemma [4]–[6].

Reinforcement learning algorithms are most often applied
in stationary environments, although this is not a necessity.
Learning in dynamic environments is difficult, because the
results of state-action pairs are not consistent over time,

which makes predicting future rewards more complex. For
non-stationary multi-armed bandit problems, ε-greedy action
selection, softmax action selection, pursuit methods, and evo-
lutionary algorithms have been compared [7]. Another envi-
ronment that has been used for studying machine learning
in a dynamic environment is robotic navigation. Hierarchical
RL, a variation of RL where the problem is divided into
different domains, obtained good results for this task [8],
[9]. Instead of implicit detection of changes in a dynamic
environment, explicit change detection can also be effective.
The predictive multi-agent reinforcement learning (P-MARL)
algorithm consists of three components, the prediction model,
change detection model, and multi-agent system. P-MARL
achieved good results in a dynamic multi-agent energy reg-
ulation task [10]. A model-based approach for learning in
a dynamic environment is that of Instantiated Information,
where information about changes in the environment is used
to determine a new policy [11], [12].

Contributions In this paper we focus on using rein-
forcement learning algorithms for solving sequential decision
making problems in a non-stationary environment. First, we
created dynamic grid problems of several sizes where rewards
are only received the first time a location is visited. With this
environment, we explore the use of standard Q-learning [13]
in a dynamic environment and show that it is not effective.
Therefore, we developed a new Q-learning algorithm using
a smart exploration policy and combined this method with
experience replay (ER) [14]. Experience replay is a promising
technique for learning an accurate value function from less
experiences. In ER the experiences are stored for later use,
in contrast to standard Q-learning. This has the major benefit
that important experiences can be presented repeatedly to the
underlying learning function. Subsequently, we explore two
variations of experience saving, one based on time, and one
based on the obtained single-step reward. Furthermore, we also
study different multi-agent reinforcement learning methods for
handling the dynamic environment. First of all, we compare
the results of two agents that share a Q-function (policy
sharing) [15] against the results of two agents that have a
separate Q-function. We also examine the effect of reward
sharing between agents in which the single-step rewards of the
agents are averaged and given to both of them. We performed



experiments using two dynamic grid problems of different
sizes and compared the proposed single and multi-agent algo-
rithms to standard Q-learning and a greedy benchmark agent.
The results show that the proposed methods significantly
outperform the standard Q-learning algorithm and the greedy
benchmark agent. Furthermore, the most cooperative multi-
agent RL system that uses a shared Q-function and shared
rewards obtains the highest reward sums in a trial.

Fig. 1. Depiction of the dynamic 10× 10 grid environment

A. The Dynamic Grid Problem
In order to construct a dynamic environment, we propose the

use of a grid in which the agent has to maximize its cumulative
reward intake. The grid is a two-dimensional environment with
a closed border. The grid has a width and height of B (e.g.
10 or 20) discrete locations, illustrated in Figure 1. At each
iteration the agent can move in four directions, namely North,
East, South, and West. Actions that lead to a collision with a
wall cannot be selected from the set of actions.

At each location L there is a randomly initiated reward r ∈
[0, 1]. After each movement the agent receives the reward of
the corresponding location. However, after the agent received
the reward, the reward of that location is set to zero for the
rest of the trial. This makes the environment non-stationary
with respect to the reward function.

Since there is no randomness involved in the result of an
action in a certain state, the environment is deterministic.
We use the environment for both single and multi-agent RL.
Below we describe the adaption of the environment for both
cases.

1) Single-Agent: We first start with a single agent, where
the agent starts in the upper left location (L1,1) of the
environment. A complete trial consists of 50 (200) movements
of the agent in the 10×10 (20×20) environment. It is thus not
possible to visit each location in one trial. What makes this
problem difficult for RL is that the optimal policy consists of
both finding high rewards and avoiding low rewards, while
preventing a return to a previous location.

2) Multi-Agent: We will use the same grid environment
to study multi-agent RL. One agent starts at the upper left
location (L1,1), the other at the bottom right location (L10,10

or L20,20). In order to make the results comparable with
single-agent RL, a complete trial now consists of 25 and 100
movements for each of the two agents in the 10 × 10 and
20× 20 grid environments, respectively. Note that the reward
of a location is set to zero for both agents if either one of the
two agents visits that location.

Outline In Section II we will describe the used reinforce-
ment learning algorithms. In Section III we introduce the
adaptation of the RL algorithms for dynamic environments.
Section IV presents the experimental results for the grid
problem combined with a discussion. Finally, in Section V
we summarize the main findings and propose future work.

II. REINFORCEMENT LEARNING

This section presents the reinforcement learning framework
that we will use in the subsequent sections. We begin with
describing Markov Decision Processes. Then Q-learning is
described, followed by Experience Replay.

A. Markov Decision Processes

In the field of reinforcement learning a Markov Decision
Process (MDP) is generally used to describe the environment.
The mathematical framework of an MDP can be described
with the following terms:

• S is a set of states, where st ∈ S is the state of the
environment at time t.

• A is a set of actions, where at ∈ A is the action executed
by the agent at time t. n indicates the number of possible
actions from the current location. In the environment this
number is two for corners, three for edges, and four in
every other position.

• Pa(s, s′) is the transition function, indicating the proba-
bility that after performing action a in state s, the agent
arrives at state s′. In the dynamic grid problem, we will
make use of a deterministic transition function.

• Ra(s, s′) is the reward function, indicating the reward
the agent receives after performing action a in state s,
leading to s′, rt indicates the reward received at time t.

• γ ∈ [0, 1] is the discount factor, indicating the priority of
immediate rewards compared to later rewards.

With the MDP defined, we can now specify the policy π(s)
that maps states to actions. The definition of π(s) depends on
the definition of V (s), which contains the average discounted
sum of rewards after following policy π from state s:

π(s) = arg max
a

{∑
s′

Pa(s, s′)(Ra(s, s′) + γV π(s′))

}
V π(s) =

∑
s′

Pπ(s)(s, s
′)(Rπ(s)(s, s

′) + γV π(s′))

(1)



For an infinite horizon the expected cumulative reward when
following policy π is defined as:

E(

∞∑
t=0

γtRat(st, st+1)|at = π(st)) (2)

The optimal policy π∗(s) maximizes equation 2. The func-
tion V π(s) denotes the expected cumulative reward to be
received, when the agent follows policy π(s) and is currently
in state s:

V π(s) = E(

∞∑
t=0

γtRat(st, st+1)|s0 = s, at = π(st), π) (3)

We can use equation 1 to define the Q-function, which stores
for a state-action pair the expected discounted future reward
sum. For a policy π, and an action a in state s, we have:

Qπ(s, a) =
∑
s′

Pa(s, s′)(Ra(s, s′) + γV π(s′)) (4)

The optimal Q-function Q∗ can be recursively defined as
a set of non-linear equations depending on the reward and
transition function [16]. An agent maximizes its utility by
selecting at each state the action that has the highest Q-value:

Q∗(s, a) =
∑
s′

Pa(s, s′)(Ra(s, s′) + γmax
a′

Q∗(s′, a′)) (5)

The transition function P and the reward function R are
fixed in a stationary MDP, in contrast with a non-stationary
MDP which we will discuss in Section III.

B. Q-learning

Q-learning [13] is an online RL algorithm, it only uses
its last experience to update its policy. The algorithm starts
with an arbitrary Q-function Q0. After each experience
(st, at, rt, st+1) at time t = 1, 2, 3..., the Q-function is updated
as follows:

Qt+1(st,at) = Qt(st, at)+
α[rt + γmaxaQt(st+1, a)−Qt(st, at)]

(6)

where α ∈ [0, 1] is the learning rate, and γ is the discount
factor. The part between square brackets is referred to as
the updated value and is the difference between the current
estimate of the optimal Q-value Qt(st, at) for a state-action
pair (st, at), and the new estimate rt + γmaxaQt(st+1, a).
The Q-function approximates the optimal state-action value
function Q∗, independent of the policy that is followed [1].
It is noteworthy that the updated Q-function Qt only depends
on the previous function Qt−1 combined with the experience
(st, at, rt, st+1). This makes the algorithm both computa-
tionally and memory efficient. This is different from other
techniques such as Experience Replay [17], where experiences
are stored for later use. In order to find an optimal policy
Q∗, all state-action pairs (st, at) should be visited infinitely
often [18]. With the Q-function alone this condition can not
be satisfied, an exploration method is required. One such an
exploration method is the ε-greedy policy, which executes

either a greedy or random action. With ε ∈ [0, 1] the action is
defined as follows:

at =

{
arg maxaQ(st, a) with probability 1− ε
random action with probability ε

(7)

Algorithm 1 Experience Replay
Input: RL algorithm L, exploration probability ε, discount

factor γ, learning rate α, number of experiences to replay
N , number of replays K, number of iterations before
learning Z

1: Q← Q0 // Initialize Q-function
2: M ← ∅ // Set of experiences to replay
3: while not reached stopping criterion do
4: c = 0 // iteration counter
5: for t = 1, 2, .., T do

6: at =

{
arg maxaQ(st, a) with probability 1− ε
random action with probability ε

7: perform action at
8: observe new state st+1 and reward rt
9: E ← {st, at, rt, st+1}

10: M ← update(M,E,N)
11: end for
12: c = c+ 1
13: if c = Z then
14: Q← L(Q,M,K, γ, α)
15: c = 0 // restart counting
16: end if
17: end while

C. Experience Replay

The Q-learning algorithm only uses the last experience
combined with the current Q-function in order to update its
function, previous experiences are disregarded. However, it can
be advantageous to store the experiences. A rising technique
that exploits this strategy is Experience Replay [17], where
experiences are stored so that they can be used multiple times
to update the policy. Google’s DeepMind has recently obtained
good results across many Atari games using experience replay
by adapting the replay of experiences based on their priority
[19]. The Q-learning update function that is used for rein-
forcement learning does not need any modification, only the
moment of applying the function changes. The ER algorithm
is shown in Algorithm 1, we will now describe the essential
steps. After each action at, the experience (st, at, rt, st+1) is
stored in the database M . After some trials Z the experiences
are used to update the Q-function. We can vary in the number
of experiences to replay N and the number of times we learn
from those experiences (the number of replays) K, with which
we can trade off the speed of learning for computational com-
plexity. In most cases we do not want to store every experience
in the database, we thus have to define some pruning method.
A general solution is to use only the most recent experiences,
so that old experiences are disregarded (Algorithm 2). We
also consider another approach, in which we store only the



N−best experiences in which the obtained single-step reward
was highest, independent of time (Algorithm 3).

Algorithm 2 Update based on time
Input: Database M , experience E, number of experiences N

1: if size(M) < N then
2: M ←M ∪ E
3: else
4: remove least recent element from M
5: M ←M ∪ E
6: end if

Output: M

Algorithm 3 Update based on reward
Input: Database M , experience E, number of experiences N

1: if size(M) < N then
2: M ←M ∪ E
3: else
4: E′ ← arg minE reward(E) for all E ∈M
5: if reward(E′) < reward(E) then
6: M ←M − E′
7: M ←M ∪ E
8: end if
9: end if

Output: M

D. Multi-agent Q-learning

The use of Q-learning is not restricted to single-agent
environments. In this paper we narrow our focus on multi-
agent systems to environments with two agents. We will
discuss two variations of Q-learning, adjusted for a multi-
agent environment.

1) Shared Q-function: The most self-evident approach
is to share one single Q-function between two agents. The
agents one by one apply the Q-function update (formula 6)
and select ε-greedy actions based on the same function. When
two agents are at time t in the same state s, both agents will
follow exactly the same trajectory as long as both only make
greedy actions with respect to the shared Q-function. Due
to exploration steps, their paths will finally diverge again,
however.

2) Separate Q-function: In the second approach the two
agents have separate Q-functions. This can be regarded as
two agents independently learning a Q-function, although
within the same environment.

Note that for using the shared Q-function the agents need
some kind of communication. We can incorporate another
kind of communication by means of reward sharing. By
knowing the rewards the other agent obtains, the agents have
information how well it goes as a group and may also avoid
aiming for the same locations. The shared reward received by

the agents is then defined as the mean of the separate rewards
of the agents after both performed an action. In case two agents
visit the same location, both will receive less reward. This is
in contrast to agents that do not share their reward, where only
the second visiting agent receives no reward. The Q-function
for reward sharing is portrayed in formula 8, where r̄ means
the average reward of the agents:

Qt+1(st,at) = Qt(st, at)+
α[r̄t + γmaxaQt(st+1, a)−Qt(st, at)]

(8)

The four proposed multi-agent reinforcement learning
(MARL) algorithms differ whether they use: 1) A shared Q-
function or a separate Q-function, and 2) A shared reward
function or separate reward functions. The MARL algorithm
that shares both the Q-function and the reward function is most
cooperative. It relies on maximizing not only the reward of a
single agent, but that of both agents, and does this with a single
Q-function that allows the combination of experiences of both
agents. The algorithm that uses separate reward functions
and separate Q-functions is the most competitive MARL
algorithm. In this algorithm, both agents only want to optimize
their own cumulative reward and do not share anything with
the other agent.

III. DQLER: DYNAMIC Q-LEARNING WITH EXPERIENCE
REPLAY

Until now we discussed RL algorithms that have been
proven to be successful in stationary MDPs. In a non-
stationary MDP the transition function P and/or the reward
function R are susceptible to change. Non-stationary MDPs
can be regarded as a generalization of stationary MDPs, where
data are no longer assumed to be stationary [20]. With a
stationary reward function we have Rta(s, s′) = Rt+∆t

a (s, s′),
where ∆t is some arbitrary offset in time. With a non-
stationary reward function, this does not necessarily hold. The
transition function is stationary if P ta(s, s′) = P t+∆t

a (s, s′).
If this is false for any ∆t, the transition function is non-
stationary. In the dynamic grid problem we deal with a non-
stationary (dynamic) reward function, the transition function
is in fact stationary. The reward function is non-stationary,
because visiting a location s′ twice results in distinctive
rewards, the reward namely decreases to zero after the first
visit. Note also that the Markov assumption does not hold
for a dynamic environment. Furthermore, there are exponen-
tially many action sequences in the considered dynamic grid
problem, and dynamic programming techniques [16] cannot be
simply used because the Markov assumption does not hold.

A. DQLER

Since the standard approach of using Q-learning is un-
successful, we adopt Q-learning for a dynamic environment.
The main obstacle with Q-learning in the proposed dynamic
environment is that the reward function Ra(s, s′) changes over
time. Since this information is not incorporated in the Q-
function without visiting the same state multiple times, the
agents base their actions on a sub-optimal Q-function. The



tendency we observed is that with standard Q-learning the
agents often tend to go back to locations already visited,
resulting in a reward of zero.

DQLER is based on Q-learning and Experience Replay with
a smart exploration strategy adapted for dynamic environ-
ments. To prevent the agents from visiting the same location
recurrently, we save the locations visited by the agents. We
call the set with all visited locations V , at the start of a trial
V is empty. After each action the new location is added to V .
An action a in state s is part of Av if:

Pa∈A(s, s′) = 1 for some s′ ∈ V (9)

where A is the set of all possible actions. Note that the DQLER
algorithm a-priori knows the transition function, but for the
deterministic grid problem this information can be easily
obtained. We can now define An as the relative complement
of A and Av , thus An = A \Av .

Instead of using the ε-greedy action selection, we propose
another solution. As described before, An are the actions that
lead to a location that is not yet visited. The set of actions
that lead to another location that is already visited is Av .
Because the grid problem is deterministic, it is computationally
cheap to keep track of this information. We then define the
exploration method of the proposed algorithm as an adjusted
ε-greedy action selection with ε ∈ [0, 1] as follows:

at =


arg max

a
Q(st, a ∈ An) if An 6= ∅

arg max
a

Q(st, a ∈ Av) if An = ∅

}
w.p. 1− ε

random action w.p. ε
(10)

Now we substitute formula 10 for formula 7 in Algorithm
1 to create the DQLER algorithm. For multiple agents, the
list of visited states is kept separately for both agents, so one
agent does not know which states the other agent has already
visited. Note that essentially the algorithm circumvents visiting
some state multiple times, which makes the environment much
more predictable. The proposed algorithm does not need a long
history of previous state-action pairs to keep track of, and is
therefore an elegant solution for the considered problem.

IV. EXPERIMENTS AND RESULTS

In this section we will explain the set-up of the experiments,
followed by the results. The goal for the single agent is to
maximize the sum of rewards R =

∑T
t=1 rt, where T is the

time horizon. In the multi-agent environment the goal of the
agents is to maximize their combined sum of rewards R =∑T
t=1 r

1
t +

∑T
t=1 r

2
t , where r1

t and r2
t are the rewards of the

two different agents at time step t.

A. Greedy Benchmark

For both the single and multi-agent environment we want
to compare the results of the proposed algorithms with some
benchmark. Since such a benchmark does not exist for the
dynamic grid world, we test the proposed algorithms against

a greedy agent. The greedy agent a-priori knows the reward
and transition functions and selects actions defined by:

at =

{
arg maxaRa∈An

(st, s
′
t) if An 6= ∅

random action if An = ∅
(11)

where An is again the set of actions that leads to a state
that is not yet visited and s′t is known by the greedy agent
because it has access to the transition function. The benchmark
value for the single-agent environment is R =

∑T
t=1 rt.

In the multi-agent environment we compare the proposed
algorithms against multiple greedy agents, which start at the
same locations as the learning agents.

B. Experimental Set-up

In the experiment we will make a distinction between
a small and large grid, which have a width and height of
10× 10 and 20× 20, respectively.

1) Small Grid environment: For the single agent experiment
one trial exists of 50 actions, for the two agents one trial exists
of 25 actions for each agent. One simulation consists of 4000
trials, after each trial the grid environment is set back to its
original initialisation of the reward function.

2) Large Grid environment: One trial in the large grid of
the single agent experiment consists of 200 actions, for two
agents it consists of 100 actions for both agents. In this way
the ratio between the number of steps and number of locations
is the same in both the small and large grid environments.
For the greedy benchmark we adjust the number of steps to
match that of the learning agents. One simulation consists
again of 4000 trials.

We test each set-up for 100 simulations. At the beginning
of each different simulation, each reward for a location in
the environment is set to a random value between zero and
one. After a coarse search through parameter space we chose
to use the following parameters for all Q-learning and ER
methods: a learning rate α of 1, a discount factor γ of 0.99,
and an exploration probability ε of 0.1. The agents also use
exploration in the testing phases. Because of the recursive
nature of the Q-function, the algorithm implicitly expects
initial conditions. As an initial value we used 0.5, which is
the average reward in the grid. Furthermore, for ER we set
the number of experiences to save and replay N to 50 or 200
(for the large environment). The number of replays K is set
to 10, and the number of iterations before learning Z to 1
so that the Q-function is updated after every trial. After some
preliminary experiments we found that these combinations of
values led to the best outcomes.

We will start off comparing the two update strategies
(Algorithm 2, and Algorithm 3) for Experience Replay in
a single agent environment. In the second experiment we
have a multi-agent environment in which we compare DQLER
using a shared Q-function against DQLER using a separate Q-
function for both agents. Moreover, for both strategies in the
second experiment we once use reward sharing, and once we



do not. In the multi-agent experiment we use the ER update
function based on time (Algorithm 2).

In every simulation we measure the maximum and mean
reward sum per trial. The maximum is defined as the highest
sum of rewards received during a trial in a simulation. The
mean reward sum is the average of all reward sums received
in all trials. Note that for the greedy agent(s) the mean reward
sum is irrelevant since there is no learning involved. The
figures show the maximum sum of rewards obtained during
some trial until a specific number of iterations, which is
therefore constantly increasing.

C. Small Grid Environment
Results with a single agent Figure 2 plots the highest

obtained reward sum until some number of iterations for the
two DQLER update functions, combined with the highest
reward sum of the original Q-learning algorithm and the
greedy benchmark. In Table I the mean and max reward
sums of the first experiment are depicted, combined with their
standard errors.

Fig. 2. The figure shows the maximum reward sum in a single trial for
DQLER with updates based on time and on reward, for the small single-
agent environment. It also shows the results using the greedy benchmark and
standard Q-learning. The results are averaged over 100 simulations.

TABLE I
SUM OF REWARDS DURING A TRIAL OF THE SINGLE AGENT IN THE SMALL

GRID ENVIRONMENT. THE MAX REWARD SUM IS THE AVERAGE OF THE
MAXIMUM SCORE OF A TRIAL FOR THE 100 SIMULATIONS. THE MEAN

REWARD SUM IS THE AVERAGE OF THE REWARD SUMS OF EVERY TRIAL
FOR THE 100 SIMULATIONS. FOR BOTH MEASURES THE STANDARD ERROR

IS INDICATED.

Algorithm max reward mean reward

Standard Q-learning 13.0± 0.14 3.9± 0.01

DQLER Update based on reward 28.9± 0.18 23.0± 0.20

DQLER Update based on time 29.3± 0.15 23.3± 0.18

Greedy benchmark 27.0± 0.45 −

In Figure 2 we see that all three single-agent algorithms
start with a steep learning curve. Both DQLER algorithms

outperform standard Q-learning from the start. Standard
Q-learning never comes close to the greedy benchmark,
however both DQLER algorithms outperform the benchmark
early on. Table I shows that the ER update based on time
achieves a slightly higher average maximum reward sum
compared to the ER update based on reward. An unpaired
t-test shows however that the difference is not significant.
Using an unpaired t-test we find that both DQLER algorithms
score a significantly higher average maximum reward sum
(P < 0.001) compared to the greedy benchmark. With
regard to the mean reward, both DQLER algorithms score
significantly higher (P < 10−6) compared to standard
Q-learning.

Results with multiple agents In Figure 3 we show the
results of two agents using a combined or separate Q-function,
together with the effect of reward sharing and the greedy
benchmark. Table II shows the mean and max reward sums
and their standard errors for the four learning strategies in the
multi-agent environment.

Fig. 3. The figure shows the maximal reward sum in a single trial in
the small multi-agent environment for the four DQLER algorithms. It also
shows the results of the greedy benchmark. The results are averaged over 100
simulations.

TABLE II
COMBINED SUM OF THE REWARDS OF THE TWO AGENTS IN THE SMALL

MULTI-AGENT GRID ENVIRONMENT. THE MAX REWARD IS THE AVERAGE
OF THE MAXIMUM SCORE OF A TRIAL FOR EACH OF THE 100

SIMULATIONS. THE MEAN REWARD SUM IS THE AVERAGE OF THE
REWARD SUMS OF EVERY TRIAL FOR EACH OF THE 100 SIMULATIONS.

FOR BOTH MEASURES THE STANDARD ERROR IS INDICATED.

Algorithm max reward mean reward

Separate reward two Q-functions 29.7± 0.18 24.6± 0.18

Shared reward two Q-functions 30.0± 0.17 24.2± 0.15

Separate reward one Q-function 30.5± 0.19 24.4± 0.19

Shared reward one Q-function 30.6± 0.19 24.1± 0.16

Greedy benchmark 27.8± 0.30 −



Figure 3 and Table II show that when agents share one
Q-function, the maximum reward is higher compared to the
use of a separate Q-function, this difference is significant
(P < 0.05). It seems that sharing the Q-function improves
the ability of the agents to determine together which locations
should be visited. Furthermore, the use of reward sharing
leads to slightly higher maximum rewards, this difference is
however not significant. The difference in maximum reward
between all four algorithms and the greedy benchmark is very
significant (P < 10−6). For the mean reward we observe that
separate rewards, as well as two Q-functions, leads to higher
scores. From this we can conclude that the cooperative MARL
algorithm can obtain the best results during some trials, but can
suffer from both agents following each other for few steps in
case they reach the same state. Therefore, the maximal score is
higher, but the mean score is lower for the cooperative MARL
method compared to the competitive MARL method that does
not share the Q-function or reward function.

Fig. 4. The figure shows the maximal reward sum in a single trial for
DQLER with updates based on time and on reward, for the large single-
agent environment. It also shows the results of the greedy benchmark and
standard Q-learning. The results are averaged over 100 simulations.

D. Large Grid Environment

Results with a single agent Figure 4 shows the highest
reward sums for each iteration of the two DQLER algorithms
for the large environment for a single agent, in combination
with the highest reward sum of standard Q-learning and the
greedy benchmark. Table III shows the mean and max reward
sums for the single-agent environment, combined with their
standard errors.

The results of the single agent in the large grid environment
are comparable to the results in the small grid environ-
ment. Both single-agent DQLER algorithms outperform the
greedy benchmark with respect to the maximum reward sum.
An unpaired t-test shows that the difference is significant
(P < 10−6). The difference between the standard Q-learning
algorithm and the DQLER algorithms has become even more
substantial. In Table III we see that the DQLER algorithm

based on reward significantly outperforms (P < 0.005) the
DQLER algorithm based on time with respect to the mean
reward. It is therefore profitable to replay good experiences
to increase the mean sum of rewards, but for the maximum
reward in a trial it is not a significant improvement.

TABLE III
SUM OF REWARDS OF THE SINGLE AGENT IN THE LARGE GRID

ENVIRONMENT. THE MAX REWARD IS THE AVERAGE OF THE MAXIMUM
SCORE OF A TRIAL FOR EACH OF THE 100 SIMULATIONS. THE MEAN

REWARD SUM IS THE AVERAGE OF THE REWARD SUMS OF EVERY TRIAL
FOR EACH OF THE 100 SIMULATIONS. FOR BOTH MEASURES THE

STANDARD ERROR IS INDICATED.

RL algorithm max reward mean reward

Standard Q-learning 23.8± 0.19 7.4± 0.20

DQLER Update based on reward 107.2± 0.36 61.3± 0.95

DQLER Update based on time 106.9± 0.34 57.2± 1.00

Greedy benchmark 83.3± 2.77 −

Results with multiple agents Figure 5 shows the results
of the two agents using a combined or separate Q-function,
together with the effect of reward sharing and the greedy
benchmark. Table IV shows the mean and max reward sums
for the four learning strategies in the multi-agent environment,
combined with their standard errors.

TABLE IV
COMBINED SUM OF THE REWARDS OF THE TWO AGENTS IN THE LARGE

MULTI-AGENT GRID ENVIRONMENT. THE MAX REWARD IS THE AVERAGE
OF THE MAXIMUM SCORE OF A TRIAL FOR THE 100 SIMULATIONS. THE
MEAN REWARD SUM IS THE AVERAGE OF THE REWARD SUMS OF EVERY

TRIAL FOR THE 100 SIMULATIONS. FOR BOTH MEASURES THE STANDARD
ERROR IS INDICATED.

RL algorithm max reward mean reward

Separate reward two Q-functions 107.4± 0.35 81.3± 0.60

Shared reward two Q-functions 107.7± 0.34 77.1± 0.47

Separate reward one Q-function 108.5± 0.35 76.8± 0.72

Shared reward one Q-function 109.0± 0.39 74.7± 0.46

Greedy benchmark 102.6± 1.41 −

In the multi-agent environment the differences between
the proposed algorithms and the greedy benchmark are very
significant (P < 10−6). Again reward sharing leads to higher
maximum reward sums, although the differences are not
significant. The highest maximum reward sum is achieved
again by the cooperative MARL algorithm that uses both
reward sharing and Q-function sharing. Using this approach
leads to significant (P < 0.05) better results compared to
both non-reward sharing with two Q-functions and reward
sharing using two Q-functions. As can be seen in Table
IV two agents that have separate rewards and separate Q-
functions outperform every other examined multi-agent RL
algorithm regarding the mean reward. This difference is highly
significant (P < 0.0001). Moreover, the differences in mean
reward between separate and shared rewards is also significant



(P < 0.05). Thus again we can conclude that the most
cooperative MARL method can obtain the highest maximal
score during a simulation, but the most competitive MARL
algorithm obtains the highest average scores.

Fig. 5. The figure shows the maximal reward sum obtained in a single trial
in the large multi-agent environment for the four DQLER algorithms. It also
shows the results of the greedy benchmark. The results are averaged over 100
simulations.

V. CONCLUSION AND FUTURE WORK

In this paper we described several reinforcement learning
algorithms for solving a dynamic sequential decision making
problem. The proposed algorithms are adjusted variants of Q-
learning with Experience Replay that use a smart exploration
policy. In the single-agent environment we compared two
versions of Experience Replay updates, one based on time
and one based on reward. Both approaches significantly out-
perform standard Q-learning, as well as the greedy benchmark
agent. In the multi-agent environment we compared the differ-
ences in results between two agents that share one Q-function
and two agents that have separate Q-functions. Furthermore,
we also compared the effect of sharing rewards among the
agents. This led to four different algorithms, from which the
algorithm sharing the Q-function and the reward function is
most cooperative. The results have shown that the cooperative
agents achieve higher maximum, and lower mean scores. The
lower mean score can mean that the agents follow each other
with higher probability in case one Q-function is used. The
higher maximum reward sum means that the agents are able
to better determine together which locations to visit.

For future work, we want to compare the proposed algo-
rithms to approaches such as ant colony systems [21] and
branch and bound techniques that have been shown effective
for other planning problems. We also would like to study
multi-agent RL with more than two agents, for which the use
of one Q-function for all agents could be less effective. Reward
sharing can be extended by incorporation of an importance
measure of rewards of others. Furthermore, we want to experi-
ment with more complex reward functions, for example reward
functions that vary over time. We also want to examine other

experience saving techniques for experience replay, possibly
using visit counters of state-action pairs. Finally, we want
to focus on the application of the proposed algorithms in
other non-stationary, stochastic environments, such as forest-
fire control [22].
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