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Accepted 2014 March 4. Received 2014 March 3; in original form 2014 January 16

ABSTRACT
We map the kinematics of stars in simulated galaxy discs with spiral arms using the velocity
ellipsoid vertex deviation (lv). We use test particle simulations, and for the first time, fully
self-consistent high-resolution N-body models. We compare our maps with the tight winding
approximation model analytical predictions. We see that for all barred models, spiral arms
rotate closely to a rigid body manner and the vertex deviation values correlate with the density
peak’s position bounded by overdense and underdense regions. In such cases, vertex deviation
sign changes from negative to positive when crossing the spiral arms in the direction of disc
rotation, in regions where the spiral arms are in between corotation radius (CR) and the Outer
Lindblad Resonance (OLR). By contrast, when the arm sections are inside the CR and outside
the OLR, lv changes from negative to positive. We propose that measurements of the vertex
deviation’s pattern can be used to trace the position of the main resonances of the spiral
arms. We propose that this technique might exploit future data from Gaia and APO Galactic
Evolution Experiment (APOGEE) surveys. For unbarred N-body simulations with spiral arms
corotating with disc material at all radii, our analysis suggests that no clear correlation exists
between lv and density structures.

Key words: methods: analytical – methods: numerical – galaxies: kinematics and dynamics –
galaxies: structure.

1 IN T RO D U C T I O N

It is well known both from simulations and observations that the
large-scale structures in galaxies such as bars and spiral arms
strongly affect the stellar kinematics of their discs. One of the prop-
erties of such structures that is most relevant for the disc dynamics is
their pattern speed which sets the position of the resonance radius.
Rautiainen, Salo & Laurikainen (2008) have exhaustively reviewed
the methods usually applied to external galaxies to derive this in-
formation. Some of these methods are model-independent tech-
niques such as the so-called Tremaine & Weinberg (1984) method,
whereas others are parametric – they fit several given analytical
potential components to observations (i.e. Zhang & Buta 2007) – or
based on the relation of various morphological or photometric fea-
tures with resonances (e.g. Martı́nez-Garcı́a, González-Lópezlira &
Bruzual 2009). The model-dependent methods are based on several
assumptions, the adoption of a model for the spiral arm kinematics
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being one of the most critical (the density wave theory is usually im-
posed). In addition to these methods, and thanks to the new detectors
available, kinematic methods based on the analysis of the residual
pattern in the velocity field have been used by Canzian (1993) and
recently by Font et al. (2011). With these methods, a residual ve-
locity map allows the exploration of the resonant structure of the
galactic discs but, again, they require the removal of circular veloc-
ities (previous knowledge of the galactic rotation curve) and, up to
now they have been applied only to the gas component.

Focusing in our Milky Way galactic disc, the corotation radius
(CR) of the spiral pattern is still a controversial parameter. With-
out intending to be exhaustive, CR has been estimated, for exam-
ple, by applying techniques such as the Ogorodnikov-Milne model
to the Local Stellar System Kinematics of young Hipparcos stars
(Fernández, Figueras & Torra 2001) or by evaluating the change
of the kinematic substructures of the velocity field (usually named
as moving groups) in test particle simulations (e.g. Chakrabarty
2007; Antoja et al. 2011). Related to this, the distribution of the fine
structure in the velocity space has been used to study bars and spi-
ral arm morphology and dynamics both from solar neighbourhood
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observational data (e.g. Dehnen 2000) and from more extended
RAVE data (Antoja et al. 2014). All these methods require, again,
the adoption of a model for the bar or spiral arm potential.

At the eve of the Gaia era, new methodologies have to be set up
for such analysis in our Galaxy. Our aim here is to analyse deeply
the connection between resonant radius and the moments of the
stellar velocity distribution function. This link will open up new
avenues for a model-independent kinematic method to determine
CR. In this context, Vorobyov & Theis (2006, 2008) demonstrated,
from simulations, how second-order moments of the stellar velocity
distribution can be potential tracers of large-scale structures such as
the spiral arms in galactic discs. As known, the velocity ellipsoid
in axisymmetric systems is oriented with the radial and azimuthal
axis of the galaxy. The misalignment of this ellipsoid, known as
vertex deviation (lv), provides important information on the non-
axisymmetric components. Following that pioneer work, in this
first paper, we will focus on the analysis of the lv all through the
galactic disc, postponing for further investigations the use of higher
order moments or even the reanalysis of first-order moments, that
is, the mean residual velocities.

The misalignment of the velocity ellipsoid in the solar neigh-
bourhood was initially reported by Strömberg (1946). The deter-
minations of the local lv from Hipparcos data are around 30◦ for
early-type stars and 10◦ for old-disc stars (Dehnen & Binney 1998).
More recent measurements give values around 20◦, using late-type
stars from SDSS (Fuchs et al. 2009). Several possible causes for this
non-null lv have been proposed, most of them related, as mentioned,
to the non-axisymmetric components (bar and spirals). These non-
axisymmetric components can create patterns in the velocity field
that change the shape and orientation of the velocity ellipsoid.
Furthermore, the existence of fine kinematic substructure (moving
groups) may also change the moments of the velocity distribution
function (Binney & Tremaine 2008). This kinematic substructure
can consist of groups of young stars still following similar orbits
from the time when they were born or can be caused by the reso-
nances of the non-axisymmetries of the Galaxy for example through
mechanisms such as resonant trapping or scattering (Antoja et al.
2009, e.g.).

The possible connection of lv with the spiral structure was ear-
lier discussed by Woolley (1970) and Mayor (1970). The former
concluded that lv is a remnant of the conditions of stars when they
were formed, mostly based on the fact that lv is observed in young
stars but not so clearly in the old populations. The latter used the
analytical expressions of the density wave theory from Lin, Yuan
& Shu (1969) to quantify this effect in the solar neighbourhood.
He derived analytically the second-order moments of the velocity
distribution function by considering a Galactic system composed
of an axisymmetric part and a spiral perturbation and using the
zero- and first-order moments computed by Lin et al. (1969). In
particular, the tight winding approximation (TWA hereafter) was
imposed. As described by Binney & Tremaine (2008), the TWA
spiral arm model is the result of using the WKB approximation
used in quantum mechanics. In Mayor (1970), the epicyclic ap-
proximation was adopted and velocity dispersions were assumed
to be small (valid for a young and cool population). Furthermore,
his analytical approach required a small amplitude and pitch an-
gle of the spiral pattern (i.e. the TWA shall be fulfilled). Later on,
Hilton & Bash (1982) reproduced the observed lv sign and magni-
tude for young stars with a model where dense molecular clouds are
launched from spiral arms at post-shock velocities, and as a conse-
quence, the forming stars move at the same velocities. Coming back
to the analytical approach, Kuijken & Tremaine (1994) found how

elliptical potentials could also lead to a non-vanishing lv and tested
their results using orbital integrations. Muhlbauer & Dehnen (2003)
and Monari, Antoja & Helmi (2013) showed that a barred potential
induces different lv, depending on the position with respect to the
bar and its main resonances. They also found that the lv increases
with decreasing velocity dispersion.

As discussed above, Vorobyov & Theis (2006, 2008) computed
the moments of the velocity distribution function across the disc
in both test particle simulations, imposing a spiral arm potential,
and in spiral arm semi-analytical models (with the so-called BEADS-
2D code). In this study, they found a clear correlation between the
position of the density structures (i.e. the spiral arms) and the change
of the sign of the lv. They saw that large regions with positive lv
are present in front of the spiral arm (following the spiral rotation),
while negative lv were found behind the arms. In their analysis,
however, only cases where the spiral structure is located outside CR
were considered.

Here, we map the lv caused by the spiral arms in the whole galactic
disc. To undertake our study, we use (i) an analytical approach,
(ii) test particle simulations imposing a fixed two-armed galactic
potential or a bar and (iii) self-consistent N-body simulations. First,
in our analytical development, we extend the modelling of Mayor
(1970) to analyse the expression for the lv in the TWA model not
only locally, as he did, but across the whole disc. Secondly, the use
of test particle simulations allows us to control the parameters of
the imposed potential and to explore the parameter space and its
influence on the results. For example, we can fix the position of
the spiral pattern resonances at our convenience and monitor the
behaviour of the lv inside or beyond CR, which was not addressed
in previous studies. Besides, we also use simulations where the
spiral arms are formed as a response to an imposed barred potential.
Finally, N-body simulations, used here for the first time to map the
lv, provide a more realistic framework because they are fully self-
consistent. These simulations also allow us to analyse the evolution
in time of lv.

In Section 2, we give the definition of the lv and the expressions to
compute its error. In Section 3, we present our analytical approach
and the simulations analysed here for both test particle and N-body
simulations. The results from our analysis are presented in Section 4,
and in Section 5 we summarize and give our conclusions. Finally, in
Appendix A, we detail the calculations for the analytical expression
of the lv in an axisymmetric potential plus TWA spiral arms.

2 V E RT E X D E V I AT I O N

The velocity dispersion tensor that defines the (p, q, r)th centred
moments of the velocity distribution at position x and time t is
defined as

μpqr = 1

μ000

∫
d3v (u − ū)p (v − v̄)q (w − w̄)r f , (1)

with v = (u, v, w), where u, v and w denote, respectively, the radial,
azimuthal and vertical velocity components, and f = f (x, v, t) is
the velocity distribution function. The vertex deviation (lv) is the
angle that measures the tilt of the velocity ellipsoid, in the u–v plane,
compared to the orientation of an axisymmetric configuration; it is
related to a non-null value of the cross-correlation coefficient μ110.
Here, we use the extended definition presented in Vorobyov & Theis
(2006) that includes the possibility of having large lv, which happens
when breaking the epicyclic approximation locally in regions where
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the spiral gravitational potential is strong:

l̃v = 1

2
atan

(
2μ110

μ200 − μ020

)
(2)

lv =
{

l̃v if μ200 > μ020.

l̃v + sign (μ110) π
2 if μ200 < μ020.

(3)

We computed the error on lv (denoted by εlv ) as the propagation
of the errors in the second- and fourth-order moments (Nunez &
Torra 1982):

εlv =
∣∣∣∣a4

√
b1 + a1b2 + b3

[μ220

N
+ μ2

110a2 + μ200μ020a3

]∣∣∣∣
a1 = 2 (N − 1)−1 − 3N−1

a2 = (N − 1)−1 − 2N−1

a3 = (N − 1)−1 − N−1

a4 = (μ110 (a1 + 4))−1

b1 = (μ400 + μ040) N−1

b2 = (
μ2

200 + μ2
020

)
b3 = (μ200 − μ020)2 (μ110)−2 . (4)

This expression takes into account the fact that the error is larger
both when the number of particles is low – due to Poisson noise –
and when the velocity ellipsoid is nearly circular, so the major axis
of the velocity ellipsoid is not well defined.

3 M E T H O D O L O G Y

Here, we present our analytical development as well as the charac-
teristics of the simulations used in our analysis.

3.1 TWA analytical approach

We have derived the analytical expression for the vertex deviation
lv(r, θ ) of the velocity distribution function proposed by Lin et al.
(1969). This consists of a perturbed classical Schwarzschild distri-
bution, where the perturbation is the result of an m-armed Lin &
Shu (1964) spiral arm. The final expressions and the development
procedure are presented in Appendix A, and they are a generaliza-
tion of the expressions by Mayor (1970). We use these expressions
to map the lv values across the whole galactic disc.

As input parameters, we used a spiral arms’ rotation frequency
of 35 km s−1 kpc−1, a pitch angle of 8◦, a mass of 5 per cent of
the disc mass, a radial velocity dispersion of 20 km s−1, constant
with radius, and a disc rotation curve derived from the axisymmetric
Galactic model of Allen & Santillan (1991). The CR in this model
is placed at 6.2 kpc and the Outer Lindblad Resonance (OLR) at
10.2 kpc, while the Inner Lindblad Resonance (ILR) does not exist.
The amplitude of the spiral arms potential declines in radius as ∝ r
exp(−r/R�) with a radial scalelength of R� = 2.5 kpc. We use an
amplitude normalization (Asp) of 850 km2 s−2 kpc−1. The locus of
the spiral is an m = 2 logarithm that starts at 2.6 kpc.

3.2 Test particle simulations

We run test particle simulations using several galactic potentials.
Potentials used here are the result of a superposition of an ax-
isymmetric part plus spiral arms or bar components. In all cases,
the axisymmetric component is the one described in Allen & San-
tillan (1991) and consists of the superposition of analytical and
time-independent bulge, disc and halo potentials. Here, we analyse

Table 1. Parameters of test particle and N-body simulations. TWA, PER
and FBar are test particle models with imposed cosine spiral arms, PERLAS
spiral arms and Fbar, respectively (see Section 3.2). B5 and U5 are two
snapshots from different N-body simulations (see Section 3.3). The i values
refer to the pitch angle of the imposed spiral structure, �b the pattern speed
of the perturbation, RCR its CR and tint the integration time of the simulation.

Model i Initial N �b RCR tint

(◦) conditions (106) (km s−1 kpc−1) (kpc)

TWA1 8 ICMN20 5 20 10.2 5 rot.
TWA2 8 ICMN20 5 35 6.2 5 rot.
TWA3 8 ICMN20 5 50 4.04 5 rot.
PER1 8 ICMN20 4.3 35 6.2 5 rot.
PER2 15.5 IC2 4.8 20 10.2 5 rot.
FBar – ICMN30 80 50 4.04 18 rot.
B5 – – 5 22 7.7 1.2 Gyr
U5 – – 5 – – 1 Gyr

separately the non-axisymmetric components of the potential (im-
posed bar and imposed spirals) to avoid a more complex scenario
when interpreting the connection of density structures with the lv.

The parameters of our basic models and characteristics of our
simulations are presented in Table 1, where we show for each model
some of the main properties of the potential, the number of parti-
cles and the total integration time. The number of particles in all
cases is around or much higher than 5×106 and the integration time
was from about 5 to 20 rotations of the non-axisymmetric structure.
Whereas with large integration times the test particles have reached
approximately total statistical equilibrium with the galactic poten-
tial, for shorter times the particles may not be completely relaxed or
face-mixed. Nonetheless, by analysing snapshots with higher and
lower evolution times, we tested that results presented in Section 4
are independent of the integration time.

3.2.1 Spiral arm potentials

We use two different types of spiral arm potentials, namely the
TWA (Lin et al. 1969; Binney & Tremaine 2008) and the PERLAS
(Pichardo et al. 2003) models, which are both described in Antoja
et al. (2011). These simulations are for 2D discs. As initial con-
ditions, we used an axisymmetric Miyamoto–Nagai disc density
profile. The initial velocity field has been approximated using the
moments of the collisionless Boltzmann equation, simplified by the
epicyclic approximation with a local normalization of σ u(R�) =
20 km s−1 (for more details see Antoja et al. 2011). According to
Aumer & Binney (2009), this value corresponds to a young pop-
ulation of late B- and early A-type stars. We refer to these initial
conditions as ICMN20. In some cases, we use simulations gener-
ated for other purposes (see Antoja et al. 2011). They use an initial
2D exponential density distribution as in Hernquist (1993), and are
named IC2.

The simulations named TWA1, TWA2 and TWA3 are our basic
models. The non-axisymmetric component of the potential has been
introduced abruptly from the beginning. Particles have been then
integrated during five spiral arm rotations. We also produced exper-
iments increasing adiabatically the spiral arms, and we noticed that
for the pitch angle and spiral arms mass ratio employed here, the
effect of introducing the arms impulsively (from t = 0) or adiabati-
cally is negligible. The parameters that fix the TWA potential are the
amplitude of the cosine perturbation A(R) = −AspR exp(−R/R�),
the radial scalelength R� , the number of spiral arms m, its initial
phase φ0, its locus g(r), which in turn depends on the pitch angle i,
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and the radius at which the spiral arms begin Rsp (see Antoja et al.
2011). Here, we used Asp = 850 km2 s−2 kpc−1, R� = 2.5 kpc, m =
2, φ0 = 0, Rsp = 2.5 kpc and g(r) = −2/ tan(i) ln(r/Rsp) + φ0. The
pattern speed for TWA1 (TWA2 and TWA3, respectively) is fixed to
20, (35 and 50, respectively) km s−1 kpc−1, and it is assumed to be
constant at all radii. As known, a change on this parameter directly
produces a change in the CR. This lets us study differences in the
lv values inside or outside CR. Note that TWA2 has very similar
parameters to the ones set in our analytical approach of Section 3.1.

Apart from the main models (TWA1, TWA2 and TWA3), we
performed several more simulations only changing one of the pa-
rameter each time. This is to test the independence of our results on
the most critical parameters: spirals amplitude, pitch angle, initial
velocity dispersions of the test particles, angular speed of the pattern
and total integration time.

In particular, we scanned the values of 8–15◦ for the pitch
angle, 600–1300 km2 s−2 kpc−1 for the TWA amplitude, 10–
40 km s−1 kpc−1 for the radial velocity dispersions and 2–7 spiral
rotations for the integration time.

The PERLAS model is a density distribution-based potential for
the spiral arms. In this case, unlike the very simple spiral arm
mathematical approximation represented by the TWA model, PER-
LAS is formed, like bricks in a building, by inhomogeneous oblate
spheroids, simulating beads on a necklace (from there the acronym).
This model presents more abrupt gravitational potential and forces
(see figs 7 and 8 in Antoja et al. 2011). We run two PERLAS models.
Model PER1 has a set of parameters selected so that the spiral arms
are comparable to TWA2 in terms of pitch angle (8◦) and pattern
speed (35 km s−1 kpc−1). However, they produce a smaller force.
This can be quantified with the parameter Qt(R) which measures the
maximum azimuthal force in a given radius scaled to the axisym-
metric force at that radius. While at a characteristic radius of 8 kpc
this parameter is 0.005 for PER1, it is 0.017 for TWA1, TWA2 and
TWA3. For model PER2, we used the same initial parameters as
in PER1 but a pitch angle of 15.◦5, instead of 8◦, and the pattern
speed is fixed to 20 km s−1 kpc−1. Because of the larger pitch angle,
the torque produced by PER2 is higher than for PER1, and it has
a parameter Qt at 8 kpc of 0.020, which makes it more similar in
terms of force to the previous TWA models.

3.2.2 Barred potentials

We selected barred potentials that generate a spiral arm structure
as a response. Several tests have been performed using Ferrers and

quadrupole bars. As initial conditions, we used a 3D axisymmetric
Miyamoto–Nagai density profile with a radial velocity dispersion at
the Sun’s position of σ u(R�) = 30 km s−1 and a scaleheight value
of hz = 300 pc. According to Binney & Tremaine (2008) and Robin
& Creze (1986), these values would correspond to a hot population
of red clump K giants. We refer to this set of initial conditions as
ICMN30.

The characteristics of the bar potential presented here [Ferrers
bar potential (FBar)] can be found in Romero-Gómez et al. (2011).
As this model has been developed to be compared with the Milky
Way, its main parameters are fixed within observational ranges for
the Milky Way bar (see Romero-Gómez et al. 2011). The model
is a superposition of two bars in order to obtain a boxy/bulge type
of bar. For the COBE/DIRBE bulge, we set the semimajor axis to
a = 3.13 kpc and the axes ratios to b/a = 0.4 and c/a = 0.29. The
mass is Mbul = 6.3 × 109 M�. The length of the other bar, that is,
a long bar, is set to a = 4.5 kpc and the axes ratios to b/a = 0.15 and
c/a = 0.026. The mass of the bar is fixed to Mb = 3.7 × 109 M�.
This bar is introduced adiabatically and its mass is subtracted from
the one of the Allen and Santillan bulge (Romero-Gómez et al.
2011). The total mass is, therefore, Mb = 1010 M�. In this case,
the bar rotates at a constant pattern speed of 50 km s−1 kpc−1.

3.3 Collisionless N-body models

The N-body simulations we use are the ones presented in Roca-
Fàbrega et al. (2013) as B5 and U5 models. All of them include a
live disc and live halo but not a gas component (Valenzuela & Klypin
2003). B5 model has an effective number of particles of nearly 400
million, five of them in the disc. We built the model ensuring the
formation of a strong bar and a bisymmetric spiral associated with
it. U5 model is similar to B5 but has a heavier disc and a smaller
halo, which inhibits the bar formation. As a consequence, in the U5
simulation a multi-armed structure dominates and resembles a late-
type galaxy with transient high-m spiral waves. Simulations like the
ones used here have been long tested to avoid numerical affects (see
Valenzuela & Klypin 2003; Avila-Reese et al. 2005; Klypin et al.
2009).

Fig. 1 shows the rotation frequency of the disc particle and the
spiral arm dominant mode (red dashed and red solid line, respec-
tively), and the ILR and OLR curves (red dotted and red dot–dashed,
respectively). The rotation frequency has been computed using the
method described in Roca-Fàbrega et al. (2013). Basically, we find
the spiral density structures using Fourier analysis and later on we

Figure 1. Disc (red dashed), and bar and spiral pattern (red solid line) rotation frequency as a function of radius for the N-body model B5 (left) and U5 (right).
The ILR and OLR curves are shown as red dotted and red dot–dashed, respectively.
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compute the rotation frequency from a finite differentiation of three
consecutive snapshots of the simulation. In the B5 model, a strong
bar is present up to 7.7 kpc, that is, where the spiral arm structure
begins. Left-hand panel of Fig. 1 shows how the bar (that ends at
CR ∼ 7.7 kpc) and the spiral arms rotate at the same nearly flat ro-
tation frequency (� = 24 ± 3 km s−1 kpc−1). In the U5 model, the
dominant mode is the m = 4 and as it can be seen in the right-hand
panel of Fig. 1, spirals nearly corotate with disc particles.

The high temporal and spatial resolutions, and the large number
of disc particles make U5 and B5 models one of the best available
simulations to measure kinematic quantities in the entire galactic
disc with enough resolution.

4 C R A N D O L R R A D I U S F RO M V E RT E X
D E V I ATI O N PAT T E R N S

In this section, we show the behaviour of lv across the galactic disc
in our different models. For that, we split the disc in cylindrical
sectors (integrated for |z| < 0.5 kpc). We select each region to have
a 	r = 200 pc and a 	θ = 6◦. Each region overlaps 100 pc and 3◦

with the contiguous ones. The expressions used for the computation
of lv and its error are given in Section 2.

In the polar plots of this section, the disc rotates from left to right.
In all plots, we overplot the locus of the bisymmetric spiral structure
as a thick solid black line. In the analytical analysis, this is given
directly by the equation of the density perturbation of the TWA. In
the simulations, we show the Fourier m = 2 mode locus computed
by applying a spatial Fourier analysis in radial bins (Roca-Fàbrega
et al. 2013). For the simulations, we also show density contours of
regions with density above the mean. We computed the overdensity
value of each region by subtracting the mean radial density to the
local value. We mark the spiral CR with a thick solid horizontal
black line and the OLR radius with a thick dashed horizontal black
line, if those are well defined. Note that for U5 model there is no
CR as the material is corotating with the spiral pattern and also that
we do not plot the m = 2 Fourier mode as this does not represent the
spiral structure (in this case, we have a four-armed spiral instead).
The white regions in the lv plots correspond to regions where the
relative error in lv is above 50 per cent.

4.1 TWA analytical approach

The results of our analytical development are presented in Fig. 2.
This map clearly shows that lv follows periodic patterns related to the
position of the spiral arms. In particular, it changes the sign when
moving from behind to in front of the spiral perturbation. Addi-
tionally, positions with maximum or minimum spiral arm potential
correspond to regions with almost null lv. This result confirms the
correlation between the mass density distribution and the lv, which
was already pointed out by Vorobyov & Theis (2006).

Besides, we notice here a novel result when studying the second-
order moments of the velocity distribution. We see that when cross-
ing the spiral arm overdensity in the direction of rotation, the sign of
the lv changes from positive to negative if we are inside the CR, but
the other way round between CR and OLR radius, and again from
positive to negative outside the OLR radius. Note here that Mayor
(1970) computed lv values only at the solar neighbourhood in a
model where the Sun was placed inside CR. Therefore, he could
not notice these patterns. In next sections, we use this analytical
result as a framework to understand the kinematics observed in our
test particle and N-body simulations.

Figure 2. Vertex deviation polar plots in a colour scale (red for positive
values, blue for negative) for the TWA analytical solution (see Section 3.1).
The solid and the dashed horizontal black lines show the position of CR and
OLR radius, respectively. The curved black solid lines show the position of
the spiral arms locus. The galaxy rotates from left to right.

A question that arises from the results presented in this section
is what the origin of the lv sign changes is. We deeply analysed
the analytical expression for the lv (see equation A18) presented
in Appendix to answer this question. We found that these sign
changes are driven by the term Re(iϑ1)D(1)

ν (x) in the numerator.
The part Re(iϑ1) drives the change that occurs when crossing the
density peak, and it corresponds to the imaginary part of the spiral
arm potential that is shifted π/2 from the spiral arm density. The
term D(1)

ν (x), which is a function of ν = m(�p−�)/κ , drives the
change at CR and is related to the fact that the rotation frequencies
of stars are larger or smaller than the patterns’ rotation. This is a
quantitative explanation, but a qualitative physical origin of these
sign changes remains unclear.

4.2 Results from test particle models

Here, we discuss the patterns of lv we obtained for all test particle
models presented in Section 3.2 and its connection with the analytic
results we show in Section 3.1.

4.2.1 TWA spiral arms potential

Fig. 3 shows the density distribution (top) and the lv values (bottom)
in polar coordinates across the whole disc for models TWA1 (left),
TWA2 (middle) and TWA3 (right) that differ only by their spiral
pattern rotation frequency. When we compare these plots with Fig. 2,
we see that the lv structures are not so sharp. We also see that due to
both the Poisson noise and that the velocity ellipsoid is so rounded,
the lv has a large uncertainty in some regions. As explained before,
these regions with a high error in the lv appear in white.

Here, we see the same behaviour of lv as seen in the analytical
expressions of previous section. This is consistent and expected
because the underlying spiral arm potential model is the TWA in
both cases. However, here we did not impose a certain distribution
function but computed the real orbits of particles in this potential.
In particular, we can clearly see this for TWA2 which is a test
particle simulation with similar initial conditions and parameters as
the analytical approach potential. For the other two cases, TWA1
and TWA3, where most of the disc is either inside or outside CR,
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Vertex deviation gradients as tracers of CR 1955

Figure 3. Density (top) and lv (bottom) polar plots for test particle models TWA1 (left), TWA2 (middle) and TWA3 (right) from Table 1. The thin black
lines show density contours of regions with density above the mean. The thick and dashed horizontal black lines show the position of CR and OLR radius,
respectively. The thick black lines show the position of the Fourier m = 2 mode locus. The white regions at the bottom panels correspond to regions where the
lv relative error is above 50 per cent.

we observe that the behaviour is the same as inside or outside CR,
respectively, in TWA2. Note also the reverse of lv sign beyond OLR
for TWA3.

To see all these results in more detail, we plot in Fig. 4 (top
panels) the lv and the overdensity (black) values, as a function of
angular distance to the spiral arm overdensity peak, for the models
TWA1 (left) and TWA3 (right). This distance is taken as positive
in the sense of rotation. Two error bars are overplotted to the lv
points. The blue ones show the root mean square of the errors
obtained from equation (4), so they reflect the Poisson noise (low
number of particles) and the uncertainty when the velocity ellipsoid
is almost circular. The red error bar is simply the error of the mean,
that is, the standard deviation divided by the square root of the
number of regions. It accounts for the spread on lv at a given angular
distance in the radial interval considered. The lv for TWA1 follows
an oscillation from negative values in front of the spiral arm (for
phases 0 to π/2), through null lv in the interarm region (π/2), to
positive values when approaching the next spiral arm from behind
(for phases π/2 to π). If we compare the lv oscillation with the
one of the overdensity, we can conclude that the former is shifted
about π/4 towards to smaller angles. An opposite shift is observed
for TWA3. Note also that a small shift is present at 0 phase: lv is
not exactly zero. This shift can be a consequence of the difficulty of
finding the density peak properly as it is not a simple sharp peak.

We also point out here that TWA1 and TWA3 models show a clear
antisymmetry with respect to interarm region (angular distance from
the spiral equal to π/2). This is a consequence of the symmetries of
the potential, similar to what happens in a barred model where there
is four-fold symmetry (Fux 2001). In this case, the symmetries are
related precisely to the phase with respect to the spiral arm and that
is why it appears in this maps.

After our exploration of parameters detailed in Section 3.2, we
conclude that the behaviour of the lv presented here is independent
of the parameters of the TWA potential and of the initial conditions.
We also observe that when imposing lower velocity dispersions in
the initial conditions, the lv signatures have a better definition than
when we use higher velocity dispersions.

4.2.2 PERLAS spiral arms potential

In Fig. 5, we show the density (top) and the lv (bottom) in polar plots
of the test particle models where we imposed the PERLAS spiral
arm potentials PER2 (left) and PER1 (right). This potential is more
complex than the cosine expression for the force of the TWA and,
as a consequence, the density structures appearing in these models
are more complex. One can see, for instance, a bar-like structure in
the inner radius for PER1 or the two overdensities outside the spiral
arms at a radius between 8 and 9 kpc for PER2.
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1956 S. Roca-Fàbrega et al.

Figure 4. Vertex deviation radial mean values with their errors (blue/red error bars) and spiral arm mean overdensity with respect to the mean disc density
(black points), as a function of angular distance to the spiral. The phase has been adjusted so that the spiral arm density peak is located at a phase of 0◦, while
the minimum is at 90◦). The blue error bars correspond to the root mean square of errors computed using equation (4), and the red error bars to the error of the
mean. The overdensity values have been normalized to fit in the lv plot for a better comparison of the curves. Left: values in regions inside CR (TWA1, top,
PER2, bottom). Right: regions outside CR (TWA3, top, PER1, bottom).

The lv analysis reveals that, as in the TWA models, there is a clear
relation between this parameter and the density structures. In PER1,
outside CR, we observe the same lv pattern as in TWA analytical
and test particle models in the same region: positive sign in front
of spirals and negative sign behind them. Inside CR, however, we
do not see a clear behaviour due to the fact that the lv values are
small and that in these regions there are many density substructures.
We point out that the presence of these density substructures (apart
from the main imposed spiral arms) explains the higher uncertainty
that exists around the CR.

For PER2, which is inside CR in the shown range of radius,
in general we observe the same lv behaviour as in the analytical
solution and in the TWA models inside CR. Note, however, that
between 8 and 9 kpc, where additional overdensities showed up, the
lv appears distorted. Note also that the magnitude of the lv is much
smaller for PER1 than for PER2, as corresponding to its smaller
force amplitude (see Section 3.2).

The results for PER models become more clear in Fig. 4, bottom
panels, where we plot lv values as a function of angular distance
to the spiral arm overdensity peak. The general behaviour of the
oscillation for PER1 is similar to TWA3 (outside CR), although the
magnitude of the lv is smaller as correspond to a smaller Qt(R) (Sec-
tion 4.2.2). For PER2, the oscillation resembles that of the TWA1
(inside RC) in a first approach. However, the detailed shapes of the
curves of models TWA and PER are slightly different. Again, this
must be due to the differences in the force fields, in particular in the
shape of the forces as a function of the position in the disc men-
tioned in Section 3.2. Note also that a comparison between these two
different models was done by Antoja et al. (2011) who concluded
that, even when models with the same spiral locus, amplitude of the
force and pattern speed were used, the obtained velocity field could
be significantly different in some parts due to the difference in the
force field. As an example, the antisymmetry in the lv distribution
observed in TWA models is clearly broken in the PER2 case. As

seen in Pichardo et al. (2003), in the PERLAS model forces are not
symmetric with respect to the spiral arm locus, that is, the ones in
front of the spiral are different from the ones behind.

4.2.3 Ferrers bar potential

Here, we analyse spiral arm structures that are produced as a re-
sponse of a 3D bar potential. In Fig. 6, we present the density (top)
and lv (bottom) polar maps for a test particle simulation where we
imposed an FBar. The spiral arms generated in this simulation can
be observed in the top panel as the diagonal structures. The vertical
straight structure between 3 and 4 kpc is the bar, whereas a ring-like
structure is formed between 4 and 6 kpc. As a consequence of its
nature, the spirals formed in these models have low amplitude and
are placed outside CR.

As can be seen in Fig. 6 (bottom), the ring region presents a
complicated lv pattern. Out of it, that is at radius >7.0 kpc, the
spirals created as a response of the bar are faint (low amplitude) but
well defined. In Fig. 7, we present the oscillating pattern of the lv
and the overdensity induced by these spirals in the radial interval
7 < R < 9 kpc. We observe positive vertex deviation structures in
front of the spirals and negative deviation behind them, with almost
null values near the locus (0,π) and in the interarm region (∼π/2).
This pattern is clearly shifted ∼π/4 to the density pattern. This
behaviour is in agreement with the trend observed in TWA3 and
PER1 models (see Fig. 4, right).

4.3 Results from N-body models

In these models, we have a more complex scenario as the grav-
itational potential has not been imposed, but it is generated by
the system particles themselves. As a consequence, of this self-
generation there are several density structures interacting with each
other through gravity. Moreover, as discussed in Roca-Fàbrega et al.
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Vertex deviation gradients as tracers of CR 1957

Figure 5. Density (top) and lv (bottom) polar plots for test particle spiral arm models PER2 (left) and PER1 (right) from Table 1. See Fig. 3 for more details
on the lines.

(2013), these are time-dependent structures (e.g. spiral arms are
transient), which introduce an additional parameter when analysing
the lv maps.

As mentioned in Section 3.3, the B5 N-body simulation develops
a strong bar and a dominant bisymmetric spiral arm which rotates
roughly as a rigid body (see Fig. 1). The spirals in this simulation
are placed outside CR. In this model, we clearly observe that, in
agreement with the behaviour found in previous sections, positive
values are found in front of the spiral and negative values are found
behind (Fig. 8, left, and Fig. 9, top). Another interesting feature of
this model is the presence of a slow rotating m = 2 mode at large
galactic radius (R ∼ 12–14 kpc) (see Roca-Fàbrega et al. (2013).
This is seen in Fig. 8, left, where there seems to be a bifurcation
in the arms at outer radius or the presence of additional arms that
are not in phase with the main ones. These new arms rotate slower
than the disc with a frequency of about 8 km s−1 kpc−1, and they
produce their own signature in lv: see the additional two red regions
at φ ∼ −0.5 and 2.5 rad, and radius of R ∼ 12.5 kpc. These arms do
show the same behaviour as previous arms inside CR, i.e. negative
sign in front of the density perturbation and positive behind it.

The second model that we analyse here is the U5 simulation.
This simulation develops a multiple armed system with Fourier-
dominant mode being m = 4, without a bar, and it corotates with
the disc particles. The amplitude in the density of the arms in U5
is much smaller (A4/A0 ∼ 0.08) than in B5 (A2/A0 ∼ 0.5). We
present the results for U5 model in Figs 8, right, and 9, bottom.
Although the amplitude of the lv pattern is small in this case, the
small error bars allow us to provide indications that a periodicity is
also present. However, in this case, there is no clear relation between
the lv structures and density pattern. This behaviour is completely
different from the B5 presented before.

Finally, we make a first attempt to analyse the evolution of the lv
behaviour when the density structures evolve in time in our N-body
simulations.1 We find that each density structure generates its own
lv pattern. For model B5, we see that the conclusions presented
here are valid when strong spiral arms are present. Otherwise, when
complex density structures appear, the relation between them and

1 See movies in http://www.am.ub.edu/∼sroca/Nbody/movies/.
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Figure 6. Density (top) and lv (bottom) polar plots for model FBar from
Table 1. See Fig. 3 for more details on the lines.

Figure 7. Vertex deviation radial mean values with their errors (blue/red
points) and spiral arm overdensity (black points) as a function of distance
to the spiral arms density peak, for the Ferrers bar model, i.e. outside CR.
For more details see Fig. 4.

the lv is not straightforward. The same stands for model U5, with
corotating spirals.

5 C O N C L U S I O N S

In this paper, we analysed the lv in simulated galactic discs with
spiral structure. We mapped the lv all across the disc using a TWA
analytical solution, several test particle simulations with imposed
spiral or bar potentials and, for the first time, high-resolution N-body
simulations. Our main outcomes are as follows.

(i) We confirm that the lv is clearly related to the density structure
when the spiral arms are non-corotating.

(ii) In all cases with non-corotating spiral arms, the sign of the lv
changes when crossing the density peak of the spiral structure and
in the interarm region. When crossing the density peak, this change
is from negative to positive between CR and OLR radius and the
other way round inside CR and outside OLR.

(iii) When the spiral arms are corotating, there is no clear corre-
lation between the lv and the overdensity.

Using test particle simulations, we have exhaustively checked
that these conclusions hold both for spiral arm potential (TWA and
PERLAS) and spiral arms that are the response to an imposed bar
potential (Ferrers and quadrupole). Furthermore, they are indepen-
dent of the initial parameters, thus of the changes of the pitch angle,
the amplitude of the spirals, the velocity dispersion of the popula-
tion or the total integration time. All these cases consist of a rigid
rotating pattern with well-defined CR and ILR and OLR resonances.
Moreover, for the first time we show here that our self-consistent
high-resolution N-body simulation with a rigid rotating bisymmet-
ric and well-defined two-armed spiral shows an lv behaviour with
the same main trends as observed in the test particle simulations.

From these models, we conclude that the changes on the sign in
lv when crossing the overdensities and underdensities of the spiral
arms give us robust and useful information about the position of
the main resonant radii, that is CR and OLR. Measuring the sign of
the lv in front or behind the spiral structure in a certain radius and
azimuth would indicate whether that region of the galaxy is inside
or outside of CR. A reverse of the sign behaviour at a certain radius
would mark the CR, and in turn, give an estimation of the pattern
speed of the spiral arms. As the position of spiral arms inside or
outside CR is related to their nature (e.g. manifold spiral arms are
generated always outside CR), the mapping of the lv would also
trace the nature of the spiral arms in a galaxy.

Second-order differences in the shape and magnitude of lv pat-
terns are observed when comparing all the models analysed here.
These irregularities may be due to the intrinsic differences among
their corresponding force fields. This is a matter that deserves fur-
ther investigation, but it is out of the scope of the present study.

One may wonder why models with different nature such as the
TWA (low amplitude approach), PERLAS (self-gravitating imposed
potential), response spirals in test particle barred models or N-body
simulations with a well-defined spiral pattern (transient structures,
self-consistent model) show the same general trends for the lv. The
explanation could come from the fact that the lv is a first-order effect
of the velocity field, so its behaviour is successfully reproduced in
all our models. We may require N-body simulations with a larger
number of particles in order to populate the velocity distribution
tails and disentangle the differences between models through higher
order momenta.

Other aspects should be addressed in a forthcoming paper in order
to use our proposal as a new method to find CR and OLR. First, an
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Figure 8. Density (top) and lv (bottom) polar plots for N-body models B5 (left) and U5 (right) at 1.06 Gyr of evolution. See Fig. 3 for more details on the
lines.

evident caveat is that the patterns in the sign of the lv are degenerate
for inside CR and outside OLR. In this case, one would need other
kinematic signatures to differentiate between those two cases. Sec-
ondly, when spiral arms coexist with other density structures (i.e.
rings, flocculent structures,...), the behaviour of the lv can be much
more complex. In these cases, it will be more difficult to apply the
method. Finally, as it is known that the mean velocities can also be
good tracers of the CR (see Binney & Tremaine 2008), it has to be
studied in which cases one method is better than the other and how
they can be used complementary.

In particular for our own Galaxy, where the spiral structure is one
of the main debated features in Galactic studies, it is still pending
if the Sun is inside or outside spirals’ CR. Measurements of the
lv at several kpc from the solar neighbourhood are expected with
forthcoming large surveys like Gaia (ESA; Perryman et al. 2001),
LSST or the APO Galactic Evolution Experiment (APOGEE-SDSS;
Majewski et al. 2010). The work presented here is offering new
strategies to exploit this data.

For external galaxies, as far as we know, there are no measure-
ments of the lv. In fact, in studies of the kinematics of external

galaxies, it is generally assumed that there is alignment of one of
the axis of the stellar velocity ellipsoid with the azimuthal coor-
dinate (i.e. there are no lv) in order to derive properties such as
the ratio between radial and azimuthal velocity dispersions from
line of sight velocity measurements (Westfall, Bershady & Verhei-
jen 2011; Gerssen & Shapiro Griffin 2012). Our simulations would
allow one to quantify how this assumption could bias their final re-
sults. Secondly, they can be used to establish the level of detection
of lv signals in external galaxies and to study which are the ob-
servational requirements and perspectives for detecting them with
current and future instruments like ELT in its spectroscopic phase
or possible nanoarcsecond post-Gaia missions.
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Figure 9. Vertex deviation radial mean values with their errors (blue/red
points) and spiral arm overdensity (black points). For more details see Fig. 4.
Top: B5 model, i.e. outside CR; values are plotted as a function of the angular
distance to the spiral arm density peak. Bottom: U5 model, i.e. corotating
structure; values are plotted for all the [0, 360] angular distance range, with
origin at an arbitrary angle.
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A P P E N D I X A : A NA LY T I C A L E X P R E S S I O N S FO R T H E V E RT E X D E V I AT I O N U S I N G T H E T WA
APPROACH

Here, we compute the analytical values for the vertex in the whole galactic disc plane (z = 0) when imposing Lin & Shu (1964) classical
spiral arms. We started from the classical definition (see equation 2) and we computed up to second-order moments of the velocity distribution
function. Finally, following Lin et al. (1969) we derived an expression similar to the one presented in Mayor (1970) (see equation A18).

A1 Notation

Here, we detail the notation we will use in next sections.
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 = Total velocity distribution function,
0 = Schwarzschild velocity distribution function,
σ 0∗ = Non-perturbed surface density (M� kpc−2),
σ� = Total surface density (M� kpc−2),
m� = Stellar mass. We assume it is the same for all stars (M�),
� = Distance to the galactic centre in the disc plane (kpc),
θ = Azimuthal angle in the disc plane (rad.),
θ = Time (s),
� = Angular velocity of a particle in a circular orbit in the axisymmetric averaged potential of the galactic disc (km s−1 kpc−1),
� = Radial velocity (km s−1),
� = Azimuthal velocity (km s−1),
Z = Vertical velocity (km s−1),

c� = � : radial residual velocity (km s−1),
cθ = � − �� : azimuthal residual velocity (km s−1),
cz = Z : vertical residual velocity (km s−1),

V� , Vθ = Radial and azimuthal mean systematic movements (km s−1),

σ� =
√

μ
(0)
200: dispersion of the non-perturbed radial residual velocities (km s−1),

lv = Vertex deviation (rad.),

κ = 2�

√
1 + �

2�
d�
d�

: epicyclic frequency (km s−1 kpc−1),

γ = 2�
κ

i = Pitch angle of the spiral (rad.),
m = Number of spiral arms,
ω = Rotation frequency of the spiral (km s−1 kpc−1),

�p = Re(ω)/m Angular velocity of the spiral arm pattern (km s−1 kpc−1),
R0 = Initial radius for the spiral perturbation (kpc),

� = − 2
tan i

ln
(

�
R0

)
: spiral arm locus,

K = d�
d�

: Wavenumber (kpc−1),
Asp = Spiral arms potential amplitude normalization (km2 s−2 kpc−1),
R� = Spiral arms radial scalelength (kpc),

A = −Asp� exp−�/R� : amplitude of the spiral arms potential (km2 s−2),
ϑ1 = A expi(ωt−2θ+�(� )) : spiral arm potential (km2 s−2),

x = K2 σ 2
�

κ2 : Toomre number,

ν = m(�p−�)
κ

;
V1 = (2�)(��)

κ
;

a = (K� )
(

2�2
)

κ2 ;

μ0 = V 2
1

σ 2
�

ξ = c�
V1

;η = cθ
��

: dimensionless velocities referred to local values,
〈f〉 = m∗

σ 0∗

∫ ∫ ∫
f 0dc� dcθ dcz : weighed average with respect to 0

A2 Velocity distribution function

To compute the moments, we used the velocity distribution function first presented in Lin et al. (1969). This function (equation A1) is a direct
summation of a classical Schwarzschild distribution (0) and a small perturbation due to the presence of a tightly wound spiral (1). For
details on the derivation of 1 see appendix A in Lin et al. (1969).

 = 0 + 1

0 = P0(� ) exp− μ0
2 (ξ2+η2)

1 = −ϑ1

σ 2
�

0 (1 − q) ,

where

q = νπ

sin (νπ)

1

2π

∫ π

−π

expi[να−a·ξ sin α+a·η(1+cos α)] dα (A1)

A3 Computation of the moments

The equations presented in this section have been obtained imposing the perturbed velocity distribution function (equation A1) to the general
expression for the moments, equation (1). To get the final expressions shown here, we used the relations proposed in Section A3.5 and also
that the first-order moments and the crossed second-order moments of a non-perturbed Schwarzschild velocity distribution function are 0
(μ(0)

100 = μ
(0)
010 = μ

(0)
110 = 0). The epicyclic approximation was used to link the second-order moments of the non-perturbed Shchwarzschild

velocity distribution function (μ(0)
020 = μ

(0)
200(2�/κ)−2). A detailed example of how we obtain the final expressions can be seen in equations

(A3) and (A4).
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A3.1 Zero-order moments

To obtain the expressions for the zero-order moments, we used the equation (A12).

σ 0
∗ = μ

(0)
000 = m∗

∫ ∫ ∫
0dc� dcθ dcz (A2)

σ∗ = μ000m∗ = m∗

∫ ∫ ∫
dc� dcθ dcz = m∗

∫ ∫ ∫
0 + 0

−ϑ1

σ 2
�

(1 − q)dc� dcθ dcz

= σ 0
∗

(
1 − ϑ1

σ 2
�

〈(1 − q)〉
)

= σ 0
∗

[
1 − ϑ1

σ 2
�

(
1 − νπ

sin (νπ)

1

2π

∫ π

−π

cos (να) exp− a2
μ0

(1+cos α) dα

)]
(A3)

A3.2 First-order moments

We obtained the expressions for the first-order moments using equations (A13) and (A14), after changing the residual velocities (c� , cθ ) for
the dimensionless velocities referred to local values (ξ , η). We also used that μ

(0)
100 = μ

(0)
010 = 0.

V� = μ100 = m∗
σ∗

∫ ∫ ∫
c� dc� dcθ dcz

= σ 0
∗

σ∗

[
m∗
σ 0∗

∫
dcz

∫ ∫
c� 0dc� dcθ − ϑ1

σ 2
�

m∗
σ 0∗

∫
dcz

∫ ∫
c� 0 (1 − q) dc� dcθ

]

= −σ 0
∗

σ∗

ϑ1

σ 2
�

2� (��)

κ
〈ξ (1 − q)〉 = σ 0

∗
σ∗

ϑ1K

κ

νπ

sin (νπ)

1

2π

∫ π

−π

sin (να) sin α exp− a2
μ0

(1+cos α) dα (A4)

Vθ = μ010 = m∗
σ∗

∫ ∫ ∫
cθdc� dcθ dcz = −i

σ 0
∗

σ∗

ϑ1K

2�

νπ

sin (νπ)

1

2π

∫ π

−π

(1 + cos α) cos (να) exp− a2
μ0

(1+cos α) dα (A5)

A3.3 Second-order moments

Here, we obtained the expressions for the second-order moments using equationa (A15), (A16) and (A17), after changing the residual
velocities (c� , cθ ) for the dimensionless velocities referred to local values (ξ , η). We also used that μ

(0)
110 = 0 and μ

(0)
020 = μ

(0)
200(2�/κ)−2.

μ110 = m∗
σ∗

∫ ∫ ∫
cθc� dc� dcθ dcz = σ 0

∗
σ∗

(
μ0

110 − ϑ1

σ 2
�

2�

κ
(��)2 〈ξη(1 − q)〉

)

= σ 0
∗

σ∗

(
ϑ1κ

2�

a2

μ0

νπ

sin (νπ)

i

2π

∫ π

−π

sin (να) sin α (1 + cos α) exp− a2
μ0

(1+cos α) dα

)
(A6)

μ200 = m∗
σ∗

∫ ∫ ∫
c2

� dc� dcθ dcz = σ 0
∗

σ∗

(
μ0

200 − ϑ1

σ 2
�

(
2�

κ

)2

(��)2
〈
ξ 2(1 − q)

〉)

= σ 0
∗

σ∗

( κ

2�

)2
(

σ 2
� − ϑ1

[
1 − νπ

sin (νπ)

1

2π

∫ π

−π

(
1 − a2

μ0
− 2

a2

μ0
cos α − a2

μ0
cos2 α

)
cos (να) exp− a2

μ0
(1+cos α) dα

])
(A7)

μ020 = m∗
σ∗

∫ ∫ ∫
c2

θ dc� dcθ dcz = σ 0
∗

σ∗

(
μ0

020 − ϑ1

σ 2
�

(��)2
〈
η2(1 − q)

〉)

= σ 0
∗

σ∗

( κ

2�

)2
(

σ 2
� − ϑ1

[
1 − νπ

sin (νπ)

1

2π

∫ π

−π

(
1 − a2

μ0
− 2

a2

μ0
cos α − a2

μ0
cos2 α

)
cos (να) exp− a2

μ0
(1+cos α) dα

])
(A8)

A3.4 Centered second-order moments

Expressions for the centred second-order moments have been obtained using the equations obtained in the previous sections (A2–A8).

μ̃110 = m∗
σ∗

∫ ∫ ∫
 (cθ − Vθ ) (c� − V� ) dc� dcθ dcz

= m∗
σ∗

(∫
dcz

∫ ∫
cθc� dc� dcθ − Vθ

∫
dcz

∫ ∫
c� dc� dcθ − V�

∫
dcz

∫ ∫
cθ dc� dcθ + VθV� σ∗

)

= σ 0
∗

σ∗

(
ϑ1κ

2�

a2

μ0

νπ

sin (νπ)

i

2π

∫ π

−π

sin (να) sin α (1 + cos α) exp− a2
μ0

(1+cos α) dα − VθV�

σ∗
σ 0∗

)
(A9)
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μ̃200 = m∗
σ∗

∫ ∫ ∫
 (c� − V� )2 dc� dcθ dcz

= m∗
σ∗

(∫
dcz

∫ ∫
c2

� dc� dcθ + V 2
� σ∗ − 2V�

∫
dcz

∫ ∫
c� dc� dcθ

)

= σ 0
∗

σ∗

(
σ 2

� − ϑ1

[
1 − νπ

sin (νπ)

1

2π

∫ π

−π

(
1 − a2

μ0
sin2 α

)
cos (να) exp− a2

μ0
(1+cos α) dα

]
− V 2

�

σ∗
σ 0∗

)
(A10)

μ̃020 = m∗
σ∗

∫ ∫ ∫
 (cθ − Vθ )2 dc� dcθ dcz

= m∗
σ∗

(∫
dcz

∫ ∫
c2

θ dc� dcθ + V 2
θ σ∗ − 2Vθ

∫
dcz

∫ ∫
cθ dc� dcθ

)

= σ 0
∗

σ∗

( κ

2�

)2
(

σ 2
� − ϑ1

[
1 − νπ

sin (νπ)

1

2π

∫ π

−π

(
1 − a2

μ0
− 2

a2

μ0
cos α − a2

μ0
cos2 α

)
cos (να) exp− a2

μ0
(1+cos α) dα

]
− V 2

θ

σ∗
σ 0∗

)
(A11)

A3.5 Useful weighed averages with respect to 0

Next, we present some useful relations that can be easily obtained using the expression for the weighed averages with respect to 0 presented
in Section A1, 〈f〉, and the Schwarzschild velocity distribution function (0 in equation A1):

〈(1 − q)〉 = 1 − νπ

sin (νπ)

1

2π

∫ π

−π

cos (να) exp− a2
μ0

(1+cos α) dα (A12)

〈ξ (1 − q)〉 = − a

μ0

νπ

sin (νπ)

1

2π

∫ π

−π

sin (να) sin α exp− a2
μ0

(1+cos α) dα (A13)

〈η(1 − q)〉 = ia

μ0

νπ

sin (νπ)

1

2π

∫ π

−π

cos (να) (1 + cos α) exp− a2
μ0

(1+cos α) dα (A14)

〈
ξ 2(1 − q)

〉 = σ 2
�

V 2
1

− 1

μ0

νπ

sin (νπ)

1

2π

∫ π

−π

cos (να)

(
1 − a2

μ0
sin2 α

)
exp− a2

μ0
(1+cos α) dα (A15)

〈
η2(1 − q)

〉 =
( κ

2�

)2 σ 2
�

(��)2 − 1

μ0

νπ

sin (νπ)

1

2π

∫ π

−π

cos (να)

(
1 − a2

μ0
− 2

a2

μ0
cos α − a2

μ0
cos2 α

)
exp− a2

μ0
(1+cos α) dα (A16)

〈ξη(1 − q)〉 = − a2

μ2
0

νπ

sin (νπ)

i

2π

∫ π

−π

sin (να) sin α (1 + cos α) exp− a2
μ0

(1+cos α) dα (A17)

A4 Analytical expression for vertex deviation

Using the expressions we obtained for the centred second-order moments (Section A3.4), we find the analytical formula for the lv we present
here.

1

2
tan (2 · lv) = μ̃110

μ̃200 − μ̃020
=

Re(iϑ1)
γ

D(1)
ν (x) − V� Vθ

σ∗
σ 0∗(

σ 2
� − Re(ϑ1)

) (
1 − 1

γ 2

)
+ Re(ϑ1)

(
D

(2)
ν − D

(3)
ν

γ

)
− (

V 2
� − V 2

θ

)
σ∗
σ 0∗

, (A18)

where

D(1)
ν (x) = x

νπ

sin (νπ)

1

2π

∫ π

−π

sin (να) sin α (1 + cos α) exp−x(1+cos α) dα

D(2)
ν (x) = νπ

sin (νπ)

1

2π

∫ π

−π

cos (να)
(
1 − x sin2 α

)
exp−x(1+cos α) dα

D(3)
ν (x) = νπ

sin (νπ)

1

2π

∫ π

−π

cos (να)
(
1 − x − 2x cos α − x cos α2

)
exp−x(1+cos α) dα
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