

 University of Groningen

Beyond the Third Dimension
Rodrigues Oliveira da Silva, Renato; Rauber, Paulo Eduardo; Telea, Alexandru

Published in:
Computing in Science & Engineering

DOI:
10.1109/MCSE.2016.90

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2016

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Rodrigues Oliveira da Silva, R., Rauber, P. E., & Telea, A. (2016). Beyond the Third Dimension: Visualizing
High-Dimensional Data with Projections. Computing in Science & Engineering, 18(5), 98-107. DOI:
10.1109/MCSE.2016.90

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 11-02-2018

http://dx.doi.org/10.1109/MCSE.2016.90
https://www.rug.nl/research/portal/en/publications/beyond-the-third-dimension(71cf8aaf-e053-4c97-86d1-f54f0838f3f9).html

SECTION TITLE
Editors: Konrad Hinsen, hinsen@cnrs-orleans.fr | Konstantin Läufer, laufer@cs.luc.edu

VISUALIZATION CORNER

98 Computing in Science & Engineering 1521-9615/16/$33.00 © 2016 IEEE Copublished by the IEEE CS and the AIP September/October 2016

Editors: Joao Comba, UFRGS, comba@inf.ufrgs.br, and Daniel Weiskopf, weiskopf@visus.uni-stuttgart.deEditors: Konrad Hinsen, hinsen@cnrs-orleans.fr | Konstantin Läufer, laufer@cs.luc.eduEditors: Joao Comba, UFRGS, comba@inf.ufrgs.br, and Daniel Weiskopf, weiskopf@visus.uni-stuttgart.deEditors: Konrad Hinsen, hinsen@cnrs-orleans.fr | Konstantin Läufer, laufer@cs.luc.edu

Beyond the Third Dimension: Visualizing
High-Dimensional Data with Projections

Renato R.O. da Silva | University of São Paulo, Brazil
Paulo E. Rauber and Alexandru C. Telea | University of Groningen, The Netherlands

M
any application � elds produce large amounts of
multidimensional data. Simply put, these are da-
tasets where, for each measurement point (also
called data point, record, sample, observation, or

instance), we can measure many properties of the underlying
phenomenon. � e resulting measurement values for all data
points are usually called variables, dimensions, or attributes.
A multidimensional dataset can thus be described as an n × m
data table having n rows (one per observation) and m
columns (one per dimension). When n is larger than
roughly 5, such data is called high-dimensional. Such
datasets are common in engineering (think of manufac-
turing speci� cations, quality assurance, and simulation
or process control); medical sciences and e-government
(think of electronic patient dossiers [EPDs] or tax o� ce

records); and business intelligence (think of large tables in
databases).

While storing multidimensional data is easy, understand-
ing it is not. � e challenge lies not so much in having a large
number of observations but in having a large number of di-
mensions. Consider, for instance, two datasets A and B. Da-
taset A contains 1,000 samples of a single attribute, say, the
birthdates of 1,000 patients in an EPD. Dataset B contains
100 samples of 10 attributes, say, the amounts of 10 di� erent
drugs distributed to 100 patients. � e total number of mea-
surements in the two datasets is the same (1,000). Yet, un-
derstanding dataset A is quite easy, and it typically involves
displaying either a (sorted) bar chart of its single variable or a
histogram showing the patients’ age distribution. In contrast,
understanding dataset B can be very hard—for example, it

www.computer.org/cise			 	� 99

might be necessary to examine the correlations of
any pair of two dimensions of the 10 available ones.

In this article, we discuss projections, a particu-
lar type of tool that allows the efficient and effective
visual analysis of multidimensional datasets. Pro-
jections have become increasingly interesting and
important tools for the visual exploration of high-di-
mensional data. Compared to other techniques, they
scale well in the number of observations and dimen-
sions, are intuitive, and can be used with minimal
effort. However, they need to be complemented by
additional visual mechanisms to be of maximal add-
ed value. Also, as they’ve been originally developed
in more formal communities, they’re less known or
accessible to mainstream scientists and engineers.
We provide here a compact overview of how to use
projections to understand high-dimensional data,
present a classification of projection techniques, and
discuss ways to visualize projections. We also com-
ment on the advantages of projections as opposed to
other visualization techniques for multidimensional
data, and illustrate their added value in a complex
visual analytics workflow for machine learning ap-
plications in medical science.

Exploring High-Dimensional Data
Before outlining solutions for exploring high-dimen-
sional data, we need to outline typical tasks that must
be performed during such exploration. These can
be classified into observation-centric tasks (which
address questions focusing on observations) and
dimension-centric tasks (which address questions fo-
cusing on the dimensions). Observation-centric tasks
include finding groups of similar observations and
finding outliers (observations that are very different
from the rest of the data). Dimension-centric tasks
include finding sets of dimensions that are strongly
correlated and dimensions that are mutually inde-
pendent. There exist also tasks that combine observa-
tions and dimensions, such as finding which dimen-
sions make a given group of observations different
from the rest of the data. Several visual solutions ex-
ist to address (parts of) these tasks, as follows. More
details on these and other visualization techniques
for high-dimensional data appear elsewhere.1,2

Tables
Probably the simplest method is to display the en-
tire dataset as a n × m table, as we do in a spread-
sheet. Sorting rows on the values in a given column
lets us find observations with minimal or maximal
values for that column and then read all their di-
mensions horizontally in a row. Visually scanning a

sorted column lets us see the distribution of values
of a given dimension.

But while spreadsheet views are good for show-
ing detailed information, they don’t scale to data-
sets having thousands of observations and tens of
dimensions or more. To address such scalability,
table lenses refine the spreadsheet idea: they work
much like zooming out of the drawing of a large
table, thereby reducing every row to a row of pix-
els. Rather than showing the actual textual cell
content, cell values are now drawn as horizontal
pixel bars colored and scaled to reflect data values.
As such, columns are effectively reduced to bar
graphs. Using sorting, we can now view the varia-
tion of dimension values for much larger datasets.
However, reasoning about the correlation of differ-
ent dimensions isn’t easy using table lenses.

Scatterplots
Another well-known visualization technique for
multidimensional data is a scatterplot, which shows
the distribution of all observations with respect to
two chosen dimensions i and j. Finding correla-
tions, correlation strengths, and the overall distri-
bution of data values is now easy. To do this for m
dimensions, a so-called m × m scatterplot matrix
can be drawn, showing the correlation of each di-
mension i with each other dimension j. However,
reasoning about observations is hard now—an ob-
servation is basically a set of m2 points, one in each
scatterplot in the matrix. Also, scatterplot matri-
ces don’t scale well for datasets having more than
roughly 8 to 10 dimensions.

Parallel Coordinates
A third solution for visualizing multidimensional
data is parallel coordinates. Here, each dimension
is shown as a vertical axis, thus the name parallel
coordinates. Each observation is shown as a frac-
tured line that connects the m points along these
axes corresponding to its values in all the m dimen-
sions. Correlations of dimensions (shown by adja-
cent axes) can now be spotted as bundles of parallel
line segments; inverse correlations are shown by a
typical x-shaped line-crossing pattern. Yet, par-
allel coordinates don’t scale well beyond 10 to 15
dimensions. Also, they might require careful order-
ing of the axes to bring dimensions that one wants
to compare close to each other in the plot.

Multidimensional Projections
Projections take a very different approach to visual-
izing high-dimensional data. Think of the n data

Visualization Corner

100	 � September/October 2016

points in an m-dimensional space. The dataset can
then be conceptually seen as a point cloud in this
space. If we could see in m dimensions, we could
then (easily) find outliers as those points that are
far from all other points in the cloud and find im-
portant groups of similar observations as dense and
compact regions in the point cloud.

However, we can’t see in more than three di-
mensions. Note also that a key ingredient of per-
forming the above-mentioned tasks is reasoning in
terms of distances between the points in m dimen-
sions. Hence, if we could somehow map, or project,
our point cloud from m to two or three dimen-
sions, keeping the distances between point-pairs,
we could do the same tasks by looking at a 2D or
3D scatterplot. Projections perform precisely this
operation, as illustrated by Figure 1. Intuitively,
they can be thought of as reducing the unneces-
sary dimensionality of the data (the original m
dimensions), keeping the inherent dimensionality
(that which encodes distances, or similarities, be-
tween points). Additionally, we can color-code the
projected points by the values of one dimension, to
get extra insights.

There are two main use cases for projections.
The first is to reduce the number of dimensions by
keeping only one dimension from a set of dimen-
sions which are strongly correlated, or by dropping
dimensions along which the data has a very low
variance. Essentially, this preserves patterns in the
data (clusters, outliers) but makes its usage simpler,

as there are fewer dimensions to consider next. The
simplified dataset can next be used instead of the
original one in various processing or analysis tasks.
The second use case involves reducing the number
of dimensions to two or three, so that we can vi-
sually explore the reduced dataset. In contrast to
the first case, this usually isn’t done by dropping
dimensions but by creating two or three synthetic
dimensions along which the data structure is best
preserved. We next focus on this latter use case.

Projection Techniques
Many different techniques exist to create a 2D or
3D projection, and they can be classified according
to several criteria, as follows.

Dimension versus distance. The dimension versus
distance classification looks at the type of informa-
tion used to construct a projection. Distance-based
methods use only the distances, or similarities, be-
tween m-dimensional observations. Typical distances
here are Euclidean and cosine, thus, the projection
algorithm’s input is an n × n distance matrix be-
tween all observation pairs. Such methods are also
known as multidimensional scaling (MDS) because
they intuitively scale the m-dimensional distances to
2D distances. Technically, this is done by optimizing
a function that minimizes the so-called aggregated
normalized stress, or summed difference between the
inter-point distances in m dimensions and 2D, re-
spectively. The main advantage of MDS methods is

Figure 1. From a multivariate data table to a projection. Projections can be thought of as reducing the unnecessary
dimensionality of the data (the original m dimensions) keeping the inherent dimensionality (that which encodes dis-
tances, or similarities, between points).

color map values of
a selected column

Data table 2D projection

a table row gets
mapped to a point

2D point distance reflects
nD row distance

www.computer.org/cise			 	� 101

that they don’t require the original dimensions—a
dissimilarity matrix between observations is suf-
ficient and extremely useful in cases where we can
measure the similarities in some data collections but
don’t precisely know which attributes (dimensions)
explain those similarities. The main disadvantage of
MDS methods is that they require storing (and ana-
lyzing) an n × n distance matrix. For n being tens of
thousands of observations, this can be very expen-
sive.3 Several MDS refinements have been proposed,
such as ISOMAP,4 Pivot MDS,5 and Fastmap,6
which can compute projections in (near) linear time
to the number of observations.

In contrast, dimension-based methods use as in-
put the actual m dimensions of all observations. For
datasets having many more observations than dimen-
sions (n much larger than n), this gives considerable
savings. However, we now need to have access to the
original dimension values. Arguably the best known
method in this class is principal component analysis
(PCA), whose variations are also known under the
names of singular value decomposition (SVD) or
Karhunen-Loève transform (KLT).7 Intuitively put,
the idea of 2D PCA is to find the plane, in m dimen-
sions, on which the projections of the n observations
have the largest spread. Visualizing these 2D projec-
tions will then give us a good way of understanding
the actual variance of the data in m dimensions.8
While simple and fast, PCA-based methods work
well only if the observations are distributed close to a
planar surface in m dimensions. To understand this,
consider a set of observations uniformly distributed
on the surface of the Earth (a ball in 3D). When pro-
jecting these, PCA will effectively squash the ball to
a planar disk, projecting diametrically opposed ob-
servations on the ball’s surface to the same location,
meaning the projection won’t preserve distances.
What we actually want is a projection that acts much
as a map construction process, where the Earth’s sur-
face is unfolded to a plane, with minimal distortions.

Global versus local. The global versus local classifica-
tion looks at the type of operation used to construct a
projection. Global methods define a single mapping,
which is then applied for all observations. MDS and
PCA methods fall in this class. The main disadvan-
tage of global methods is that it can be very hard
to find a single function that optimally preserves
distances of a complex dataset when projecting it
(as in the Earth projection example). Another dis-
advantage is that computing such a global mapping
can be expensive (as in the case of classical MDS).
Local methods address both these issues, selecting a

(small) subset of observations, called representatives,
from the initial dataset and then projecting these by
using a high-accuracy method. This isn’t expensive,
as the number of representatives is small. Finally,
the remaining observations close to each representa-
tive are fit around the position of the representative’s
projection. This is cheaper, simpler, and also more
accurate than using a global technique. Intuitively,
think of our Earth example as splitting the ball sur-
face into several small patches and projecting these
to 2D. When such patches have low curvature, fit-
ting them to a 2D surface is easier than if we were to
project the entire ball at once. Good local methods
include PLMP9 and LAMP.10 Using representatives
has another added value: users can arrange these as
desired in 2D, thereby controlling the projection’s
overall shape with little effort.

Distance versus neighborhood preserving. A final classi-
fication looks into what a projection aims to preserve.
When it’s important to accurately assess the similar-
ity of points, distance preservation is preferred. All
projection techniques listed above fall into this class.
However, as we’ve seen, getting a good distance pres-
ervation for all points can be hard. When the number
of dimensions is very high, the Euclidean (straight-
line) distances between all point-pairs in a dataset
tend to become very similar, so accurately preserving
such distances has less value. In such cases, it’s often
better to preserve neighborhoods in a projection—this
way, the projection can still be used to reason about
the groups and outliers existing in the high-dimen-
sional dataset. Actually, the depiction of groups could
get even clearer because the projection algorithm has
more freedom to place observations in 2D, as long as
the nearest neighbors of a point in 2D are the same
as those of the same point in m dimensions. The best-
known method in this class is t-stochastic neighbor
embedding (t-SNE), which is used in many applica-
tions in machine learning, pattern recognition, and
data mining, and has a readily usable implementation
(https://lvdmaaten.github.io/tsne).

Type of data. Most projection methods handle
quantitative dimensions, whose values are typically
continuously varying over some interval. Examples
are temperature, time duration, speed, volume, or
financial transaction values. However, projection
techniques such as multiple correspondence analy-
sis (MCA) can also handle categorical data (types)
or mixed datasets of quantitative and categorical
data. A good description of MCA and related tech-
niques is given by Greenacre.11

Visualization Corner

102	 � September/October 2016

The Projection Explorer is a very good place to
start working with projections in practice.12 This
tool implements a wide range of state-of-the-art
projection techniques that can handle hundreds
of thousands of observations with hundreds of di-
mensions and provides several visualizations to in-
teractively customize and explore projections. The
tool is freely downloadable from http://infoserver.
lcad.icmc.usp.br/infovis2/Tools.

Visualizing Projections
The simplest and most widespread way to visu-
alize a projection is to draw it as a scatterplot.
Here, each point represents an observation, and
the 2D distance between points reflects the
similarities of the observations in m dimensions.
Points can be also annotated with color, labels,

or even thumbnails to explain several of their
dimensions.

Figure 2a shows this for a dataset where ob-
servations are images. The projection shows image
thumbnails, organized by similarity. We can eas-
ily see here that our image collection is split into
two large groups; we can get more insight into
the composition of the groups by looking at the
thumbnails.

However, in many cases, there’s no easy way to
draw a small thumbnail-like depiction of all the m
attributes of an observation. Projections will then
show us groups and outliers, but how do we ex-
plain what these mean? In other words, how do we
put the dimension information back into the pic-
ture? Without this, the added value of a projection
is limited.

Figure 2. Projection visualizations with (a) thumbnails, (b) biplot axes, (c) and (d) axis legends, and (e) key local dimensions.

axis 2

axis 4

axis 1

axis 7
axis 8

axis 0

axis 6

axis 5

axis 6

axis 3

axis 2

axis 1axis 7 axis 4

maximum value
minimum value

Male Female

y legend

y legend

x legend

x legend

error legend

selected
dimension
for color
mapping
(gender)

7: H– mass abundance

5: He+ mass abundance
variable 7

color: variable 5

spike

variable 5

(a) (b)

(d) (e)

(c)

6: He++ mass abundance

www.computer.org/cise			 	� 103

There are several ways of explaining projec-
tions. By far the simplest, and most common, is to
color code the projection points by the value of a
user-chosen dimension. If we next see strong col-
or correlations with different point groups in the
projection, we can explain these in terms of the
selected dimension’s specific values or value rang-
es. However, if we have tens of dimensions, using
each one to color code the projection is tedious at
best. Moreover, it could be that no single dimen-
sion can explain why certain observations are simi-
lar. Tooltips can be shown at user-chosen points,
which does a good job explaining a few outliers one
by one, but it doesn’t work if we want to explain a
large number of points together.

One early way to explain projections is to draw
so-called biplot axes.13 For PCA projections and
variants, lines indicate the directions of maximal
variation in the 2D space of all m dimensions. In-
tuitively put, biplot axes generalize the concept of
a scatterplot, where we can read the values of two
dimensions along the x and y axes, to the case where
we have m dimensions. Moreover, strongly corre-
lated dimensions appear as nearly parallel axes, and
independent dimensions appear as nearly orthogo-
nal axes. Finally, the relative lengths of the axes
indicate the relative variation of the respective di-
mensions. Biplots can also be easily constructed for
any other projection, including 3D projections that
generate a 3D point cloud rather than a 2D scat-
terplot.14 In such cases, the biplot axes need not be
straight lines. Figure 2b shows an example of biplot
axes for a dataset containing 2,814 abstracts of
scientific papers. Each observation (abstract) has
nine dimensions, indicating the frequencies of the
nine most used technical terms in all abstracts. The
projection, created using a force-based technique,
places points close to each other if the respective ab-
stracts are similar. Labels can be added to the axes
to tell their identity and also indicate their signs
(extremities associated to minimum and maximum
values). The curvature of the biplot axes tells us that
the projection is highly nonlinear—intuitively, we
can think that the nine-dimensional space gets dis-
torted when squashed into the resulting 3D space.
This is undesirable because reading the values of the
dimensions along such curved axes is hard.

Still, interpreting biplot axes can be challeng-
ing, especially when we have 10 or more variables,
as we get too many lines drawn in the plot. More-
over, most users are accustomed to interpreting a
point cloud as a Cartesian scatterplot—that is,
they want to know what the horizontal (x) and ver-

tical (y) axes of the plot mean. For a projection, this
isn’t easy because these axes don’t straightforwardly
map to data dimensions but, rather, to combina-
tions of dimensions. Luckily, we can compute the
contribution of each of the original m data dimen-
sions to the spread of points along the projection’s
x and y axes. Next, we can visualize these contri-
butions by standard bar charts (see Figure 2c): for
each dimension, the x and y axis legends show a
bar indicating how much that dimension is visible
on the x and y axes. Long bars, thus, indicate di-
mensions that strongly contribute to the spread of
points along the horizontal and vertical directions.
Figure 2c shows how this works: the dataset con-
tains 583 patient records, each having 10 dimen-
sions describing patients’ gender, age, and eight
blood measurements. The projection shows two
clusters placed aside each other.

How do we explain these? In the x axis legend,
we see a tall orange bar, which tells us that this
dimension (gender) is strongly responsible for the
points’ horizontal spread. If we color the points by
their gender value, we see that, indeed, gender ex-
plains the clusters. Axis legends can also be used for
3D projections, as in Figure 2d, which shows a 3D
projection of a 200,000-sample dataset with 10 di-
mensions coming from a simulation describing the
formation of the early universe.14 As we rotate the
3D projection, the bars in the axis legends change
lengths and are sorted from longest to shortest, in-
dicating the best-visible dimensions from a given
viewpoint (dimensions 5 and 7, in our case). A third
legend (Figure 2d, top right) shows which dimen-
sions we can’t see well in the projection from the
current viewpoint. These dimensions vary strongly
along the viewing direction, so we shouldn’t use the
current viewpoint to reason about them.

Biplot axes can also be inspected to get more
detail. For example, we see that the projection’s
saddle shape is mainly caused by variable 7 and
that the spike outlier is caused by a combination
of dimensions 5 and 6. This interactive viewpoint
manipulation of 3D projections effectively lets us
create an infinite set of 2D scatterplot-like visual-
izations on the fly. Both biplot axes and axis leg-
ends explain a projection globally. If well-separated
groups of points are visible, we can’t directly tell
which variables are responsible for their appearance
without visually correlating the groups’ positions
with annotations, which can be tedious. Local
explanations address this by explicitly splitting the
projection into groups of points that admit a single
(simple) explanation, depicting this explanation atop

Visualization Corner

104	 � September/October 2016

the groups. Figure 2e shows this for a dataset contain-
ing 6,773 open source software projects, each having
11 quality metrics, along with their download count.15
The projection, constructed with LAMP, shows a
concave shape but no clearly separated clusters.

Let’s consider next every projected point and sev-
eral of its close neighbors—that is, a small circular
patch of projected points. Because these points are
close in the projection, they should also be similar in
m dimensions. We can analyze these points to find
which dimension is most likely responsible for their
similarity. By doing this for all points in turn, we
can rank all m dimensions by the number of points
whose neighborhoods they explain. If we color code
points by their best-explaining dimension, the pro-
jection naturally splits into several clusters. We can
next add labels with the names of their explaining di-
mensions. Finally, we can tune the points’ brightness
to show how much of a point’s similarity is explained
by the single selected dimension. In Figure 2e,
we see, for instance, that the lines of code metric
(purple) explains two clusters of points—by interac-
tive brushing, we can find that one contains small
software projects and the other has large software
projects. The bright-to-dark color gradient shows
how it’s increasingly hard to explain a point’s similar-
ity with its neighbors once we approach the cluster
border, that is, the place where another dimension
becomes key to explaining local similarity. Doing
this visual partitioning of the projection into groups
explained by dimensions would have been hard us-
ing global methods only, such as biplot axes or axis
legends. Besides explaining groups in a projection via
single dimensions, we can also use tag clouds to show
the names of several dimensions.16

Interpreting Projections
As already explained, projections can be used as
visual proxies of high-dimensional spaces that en-
able reasoning about a dataset’s structure. For this
to work, however, a projection should faithfully
preserve those elements of the data structure that
are important for the task at hand. As such, before
using a projection, it’s essential to check its quality.

The easiest way to do this is to compute the ag-
gregated normalized stress. Low values of this stress
tell us that the projection preserves distances well.
However, if this single figure indicates low qual-
ity, we don’t know what that precisely means or
which observations are affected. More insight can
be obtained by showing scatterplots of the original
distances in m dimensions versus distances in the
projection. Figure 3a illustrates this for several da-
tasets and projection techniques.10 The ideal pro-
jection behavior is shown with red diagonal lines;
figures in each scatterplot show the aggregated nor-
malized stress, telling us that LAMP is generally
better than the other two studied projections. Yet,
we don’t know what this means precisely. Looking
at the scatterplots’ deviations from the red diago-
nals, we get more insight in the nature of the er-
rors: points under the diagonal tell us that original
distances are subestimated in the projection, that
is, that the projection compressed the data. Note
that this is quite a typical phenomenon: projections
have to embed points in a much lower-dimensional
space, so crowding occurs very likely. For the isolet
dataset, we see, for example, that small 2D distanc-
es can mean a wider range of high-dimensional
distances than large 2D distances, so close points
in a projection may or may not be that close in m
dimensions. For the viscontest dataset, we see that
LAMP has a constant spread around the diagonal,
indicating a uniform error distribution for all dis-
tance ranges. In contrast, Glimmer shows a much
worse error distribution.

While useful to reason about distances, such
scatterplots don’t tell us where in the projection we
have errors. For this, we can use observation-cen-
tric error metrics.17 The aggregate error shows the
normalized stress, aggregated per point rather than
for all points. Figure 3b shows this for a projection
created with LAMP. As we see, the projection over-
all is of good quality, with the exception of four
small hot spots. Figure 3c shows errors created by
false neighbors—that is, points close in 2D but far
in m dimensions, or zones where the projection
compressed the high-dimensional space. We see

Looking at the scatterplots’ deviations from the red
diagonals, we get more insight in the nature of the errors:
points under the diagonal tell us that original distances are
subestimated in the projection, that is, that the projection
compressed the data.

www.computer.org/cise			 	� 105

here only three hot spots, meaning that the fourth
one in Figure 3b wasn’t caused by false neighbors.
Figure 3d shows errors created by missing neigh-
bors—that is, points close in m dimensions but
far in 2D. The missing neighbors of the selected
point of interest are connected by lines, which are
bundled to simplify the image. The discrepancy
between the 2D and original distances is also color
coded on the points themselves. In this image, we
see that the missing neighbors of the selected point
are quite well localized on the other side of the pro-
jection. This typically happens when a closed sur-
face in m dimensions is split by the projection to
be embedded in 2D. Finally, Figure 3e shows for
a selected group of points all the points that are
closer in m dimensions to a point in the group than
to any other point but closer to points outside that
group in 2D. This lets us easily see if groups that
appear in the projection are indeed complete or if
they actually miss members.

Using Projections in Visual Analytics
Workflows
So far, we’ve shown how we can construct projec-
tions, check their quality, and visually annotate
them to explain the contained patterns. But how
are projections used in complex visual analytics
workflows? The most common way is to visually
explore them while searching for groups, and when
such groups appear, to use tools like the ones pre-
sented so far to explain them in terms of dimen-
sions and dimension values.2 This is often done in
data mining and machine learning.

We illustrate this with a visual analytics work-
flow for building classifiers for medical diagnosis.18
The advent of low-cost, high-accuracy imaging de-
vices has enabled both doctors and the public to
generate large collections of skin lesion images.
Dermatologists want to automatically classify these
into benign (moles) and potentially malignant
(melanoma), so they can focus their precious time

Figure 3. Projection visualized with (a) distance-centric methods and (b) through (e) observation-centric methods. The ideal projection
behavior is shown with red diagonal lines. Figures in each scatterplot show the aggregated normalized stress, telling us that LAMP is
generally better than the other two studied projections.

(b) (c)

selected point

missing neighbors
of selected point

selected
group

missing
members

p
ro

je
ct

ed
 d

is
ta

nc
e

(2
 d

im
en

si
on

s)

original distance (m dimensions)

(a)

vi
sc

on
te

st
is

ol
et

w
db

c

LAMP PLMPGlimmer

0.0494 0.0970 0.1556

0.0023 0.1478 0.0016

0.2414
0.63s

0.2324
4.32s

0.2253
10.03s

(d) (e)

Visualization Corner

106	 � September/October 2016

on analyzing the latter. For this, image classifiers
can be used: each skin image is described in terms
of several dimensions, or features, such as color his-
tograms, edge densities and orientations, texture
patterns, and pigmentation. Next, dermatologists
manually label a training dataset of images as be-
nign or malignant, using it to train a classifier so it
becomes able to label new images. Other applica-
tions of machine learning include algorithm opti-
mization, designing search engines, and predicting
software quality.

Designing good classifiers is a long-standing
problem in machine learning and is often re-
ferred to as the “black art” of classifier design.19
The problem is multiple-fold: understanding
discriminative features; understanding which
observations are hard to classify and why; and
selecting and designing features to improve clas-
sification accuracy. Projections can help all these
tasks, via the workflow in Figure 4. Given a set of
input observations, we first extract features that
are typically known to capture their essence (step
1). This yields a high-dimensional data table with
observations as rows and features as columns.
We also construct a small training set by manual
labeling. Next, we want to determine how easy
the classification problem ahead of us will be. For
this, we project the training set and color obser-
vations by class labels (step 2). If the classes we
wish to recognize are badly separated, it makes

little sense to spend energy on designing and
testing a classifier, since we seem to have a poor
feature choice (step 4) We can then interactively
select the desired class groups in the projection
and see which features discriminate them best,18
repeating the cycle with a different feature subset
(step 5). If, however, classes are well separated in
the projection (step 3), our features discriminate
them well, so the classification task isn’t too hard.
We then proceed to design, train, and test the
classifier (step 6). If the classifier yields a good
performance, we’re done: we have a production-
ready system (step 7). If not, we can again use
projections to see which are the badly classified
observations (step 8), which features are respon-
sible for this (step 9), and engineer new features
that separate these better (step 10). In this work-
flow, projections serve two key tasks: predicting
the ease of building a good classifier ahead of the
actual construction (T1), thereby saving us from
designing a classifier with unsuitable features,
and showing which observations are misclassified
and their feature values (T2), thereby helping us
design better features in a targeted way.

P rojections are the new emerging instrument
for the visual exploration of large high-dimen-

sional datasets. Complemented by suitable visual
explanations, they’re intuitive, easy to use, visually

Figure 4. Using projections to build and refine classifiers in supervised machine learning.

Input objects Features Projection Classifier design Classifier testing

Feature set
redesign

Classification
system ready

Use in
production

Feature vs. observation study

Iterative feature selection

Feature
extraction

Feature
subset

Project
Good
separation?

Bad
separation?

Too low
performance?

Study problem
causes

Repeat cycle with newly
designed features

Good
performance?

Classifier
tool

Training
data

Validation
data

T1

T2

1 2

5

4

3 6

8 7

910

www.computer.org/cise			 	� 107

compact, and easy to learn for users familiar with
scatterplots. Recent technical developments allow
their automatic computation from large datasets
in seconds, helping users avoid complex parameter
settings or needing to understand the underlying
technicalities. As such, they’re part of the visual
data scientist’s kit of indispensable tools.

But as projections become increasingly more
useful and usable, several new challenges have
emerged. Users require new ways to manipulate a
projection to improve its quality in specific areas,
to obtain the best-tuned results for their datasets
and problems. Developers require consolidated
implementations of projections that would let
them integrate them in commercial-grade applica-
tions such as Tableau. And last but not least, users
and scientists require more examples of workflows
showing how projections can be used in visual an-
alytics sensemaking to solve problems in increas-
ingly diverse application areas.

References
1.	 S. Liu et al., “Visualizing High-Dimensional Data:

Advances in the Past Decade,” Proc. EuroVis–
STARs, 2015, pp. 127–147.

2.	 C. Sorzano, J. Vargas, and A. Pascual-Montano, “A
Survey of Dimensionality Reduction Techniques,”
2014; http://arxiv.org/pdf/1403.2877.

3.	 W.S. Torgeson, “Multidimensional Scaling of
Similarity,” Psychometrika, vol. 30, no. 4, 1965, pp.
379–393.

4.	 J.B. Tenenbaum, V. de Silva, and J.C. Langford,
“A Global Geometric Framework for Nonlinear
Dimensionality Reduction,” Science, vol. 290, no.
5500, 2000, pp. 2319–2323.

5.	 U. Brandes and C. Pich, “Eigensolver Methods
for Progressive Multidimensional Scaling of Large
Data,” Proc. Graph Drawing, Springer, 2007, pp.
42–53.

6.	 C. Faloutsos and K.-I. Lin, “FastMap: A Fast Algo-
rithm for Indexing, Data-Mining and Visualization
of Traditional and Multimedia Datasets,” SIG-
MOD Record, vol. 24, no. 2, 1995, pp. 163–174.

7.	 K. Fukunaga, Introduction to Statistical Pattern
Recognition, Academic Press, 1990.

8.	 I.T. Jolliffe, Principal Component Analysis, Springer,
2002, p. 487.

9.	 F.V. Paulovich, C.T. Silva, and L.G. Nonato, “Two-
Phase Mapping for Projecting Massive Data Sets,”
IEEE Trans. Visual Computer Graphics, vol. 16, no.
6, 2010, pp. 1281–1290.

10.	 P. Joia et al., “Local Affine Multidimensional Pro-
jection,” IEEE Trans. Visual Computer Graphics,

vol. 17, no. 12, 2011, pp. 2563–2571.
11.	 M. Greenacre, Correspondence Analysis in Practice,

2nd ed., CRC Press, 2007.
12.	P. Pagliosa et al., “Projection Inspector: Assessment

and Synthesis of Multidimensional Projections,”
Neurocomputing, vol. 150, 2015, pp. 599–610.

13.	M. Greenacre, Biplots in Practice, CRC Press,
2007.

14.	 D. Coimbra et al., “Explaining Three-Dimensional
Dimensionality Reduction Plots,” Information Visu-
alization, vol. 15, no. 2, 2015, pp. 154–172.

15.	 R. da Silva et al., “Attribute-Based Visual Explana-
tion of Multidimensional Projections,” Proc. Eu-
roVA, 2015, pp. 134–139.

16.	 F.V. Paulovich et al., “Semantic Wordification of
Document Collections,” Computer Graphics Forum,
vol. 31, no. 3, 2012, pp. 1145–1153.

17.	 R.M. Martins et al., “Visual Analysis of Dimen-
sionality Reduction Quality for Parameterized
Projections,” Computers & Graphics, vol. 41, 2014,
pp. 26–42.

18.	 P.E. Rauber et al., “Interactive Image Feature Se-
lection Aided by Dimensionality Reduction,” Proc.
EuroVA, 2015, pp. 54–61.

19.	 P. Domingos, “A Few Useful Things to Know
about Machine Learning,” Comm. ACM, vol. 10,
no. 55, 2012, pp. 78–87.

Renato R.O. da Silva is a PhD student at the University
of São Paulo, Brazil. His research interests include mul-
tidimensional projections, information visualization,
and high-dimensional data analytics. Contact him at
rros@icmc.usp.br.

Paulo E. Rauber is a PhD student at the University of
Groningen, the Netherlands. His research interests in-
clude multidimensional projections, supervised classifier
design, and visual analytics. Contact him at p.e.rauber@
rug.nl.

Alexandru C. Telea is a full professor at the University
of Groningen, the Netherlands. His research interests
include multiscale visual analytics, graph visualization,
and 3D shape processing. Telea received a PhD in com-
puter science (data visualization) from the Eindhoven
University of Technology, the Netherlands. Contact
him at a.c.telea@rug.nl.

Selected articles and columns from IEEE Computer
Society publications are also available for free at

http://ComputingNow.computer.org.

