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Beyond the Third Dimension: Visualizing 
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Paulo E. Rauber and Alexandru C. Telea | University of Groningen, The Netherlands

M
any application � elds produce large amounts of 
multidimensional data. Simply put, these are da-
tasets where, for each measurement point (also 
called data point, record, sample, observation, or 

instance), we can measure many properties of the underlying 
phenomenon. � e resulting measurement values for all data 
points are usually called variables, dimensions, or attributes. 
A multidimensional dataset can thus be described as an n × m
data table having n rows (one per observation) and m
columns (one per dimension). When n is larger than 
roughly 5, such data is called high-dimensional. Such 
datasets are common in engineering (think of manufac-
turing speci� cations, quality assurance, and simulation 
or process control);  medical sciences and e-government 
(think of electronic patient dossiers [EPDs] or tax o�  ce 

records); and business intelligence (think of large tables in 
databases).

While storing multidimensional data is easy, understand-
ing it is not. � e challenge lies not so much in having a large 
number of observations but in having a large number of di-
mensions. Consider, for instance, two datasets A and B. Da-
taset A contains 1,000 samples of a single attribute, say, the 
birthdates of 1,000 patients in an EPD. Dataset B contains 
100 samples of 10 attributes, say, the amounts of 10 di� erent 
drugs distributed to 100 patients. � e total number of mea-
surements in the two datasets is the same (1,000). Yet, un-
derstanding dataset A is quite easy, and it typically involves 
displaying either a (sorted) bar chart of its single variable or a 
histogram showing the patients’ age distribution. In contrast, 
understanding dataset B can be very hard—for example, it 
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might be necessary to examine the correlations of 
any pair of two dimensions of the 10 available ones.

In this article, we discuss projections, a particu-
lar type of tool that allows the efficient and effective 
visual analysis of multidimensional datasets. Pro-
jections have become increasingly interesting and  
important tools for the visual exploration of high-di-
mensional data. Compared to other techniques, they 
scale well in the number of observations and dimen-
sions, are intuitive, and can be used with minimal 
effort. However, they need to be complemented by 
additional visual mechanisms to be of maximal add-
ed value. Also, as they’ve been originally developed 
in more formal communities, they’re less known or 
accessible to mainstream scientists and engineers. 
We provide here a compact overview of how to use 
projections to understand high-dimensional data, 
present a classification of projection techniques, and 
discuss ways to visualize projections. We also com-
ment on the advantages of projections as opposed to 
other visualization techniques for multidimensional 
data, and illustrate their added value in a complex 
visual analytics workflow for machine learning ap-
plications in medical science.

Exploring High-Dimensional Data
Before outlining solutions for exploring high-dimen-
sional data, we need to outline typical tasks that must 
be performed during such exploration. These can 
be classified into observation-centric tasks (which 
address questions focusing on observations) and 
dimension-centric tasks (which address questions fo-
cusing on the dimensions). Observation-centric tasks 
include finding groups of similar observations and 
finding outliers (observations that are very different 
from the rest of the data). Dimension-centric tasks 
include finding sets of dimensions that are strongly 
correlated and dimensions that are mutually inde-
pendent. There exist also tasks that combine observa-
tions and dimensions, such as finding which dimen-
sions make a given group of observations different 
from the rest of the data. Several visual solutions ex-
ist to address (parts of) these tasks, as follows. More 
details on these and other visualization techniques 
for high-dimensional data appear elsewhere.1,2

Tables
Probably the simplest method is to display the en-
tire dataset as a n × m table, as we do in a spread-
sheet. Sorting rows on the values in a given column 
lets us find observations with minimal or maximal 
values for that column and then read all their di-
mensions horizontally in a row. Visually scanning a 

sorted column lets us see the distribution of values 
of a given dimension. 

But while spreadsheet views are good for show-
ing detailed information, they don’t scale to data-
sets having thousands of observations and tens of 
dimensions or more. To address such scalability, 
table lenses refine the spreadsheet idea: they work 
much like zooming out of the drawing of a large 
table, thereby reducing every row to a row of pix-
els. Rather than showing the actual textual cell 
content, cell values are now drawn as horizontal 
pixel bars colored and scaled to reflect data values. 
As such, columns are effectively reduced to bar 
graphs. Using sorting, we can now view the varia-
tion of dimension values for much larger datasets. 
However, reasoning about the correlation of differ-
ent dimensions isn’t easy using table lenses.

Scatterplots
Another well-known visualization technique for 
multidimensional data is a scatterplot, which shows 
the distribution of all observations with respect to 
two chosen dimensions i and j. Finding correla-
tions, correlation strengths, and the overall distri-
bution of data values is now easy. To do this for m 
dimensions, a so-called m × m scatterplot matrix 
can be drawn, showing the correlation of each di-
mension i with each other dimension j. However, 
reasoning about observations is hard now—an ob-
servation is basically a set of m2 points, one in each 
scatterplot in the matrix. Also, scatterplot matri-
ces don’t scale well for datasets having more than 
roughly 8 to 10 dimensions.

Parallel Coordinates
A third solution for visualizing multidimensional 
data is parallel coordinates. Here, each dimension 
is shown as a vertical axis, thus the name parallel 
coordinates. Each observation is shown as a frac-
tured line that connects the m points along these 
axes corresponding to its values in all the m dimen-
sions. Correlations of dimensions (shown by adja-
cent axes) can now be spotted as bundles of parallel 
line segments; inverse correlations are shown by a 
typical x-shaped line-crossing pattern. Yet, par-
allel coordinates don’t scale well beyond 10 to 15 
dimensions. Also, they might require careful order-
ing of the axes to bring dimensions that one wants 
to compare close to each other in the plot.

Multidimensional Projections
Projections take a very different approach to visual-
izing high-dimensional data. Think of the n data 
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points in an m-dimensional space. The dataset can 
then be conceptually seen as a point cloud in this 
space. If we could see in m dimensions, we could 
then (easily) find outliers as those points that are 
far from all other points in the cloud and find im-
portant groups of similar observations as dense and 
compact regions in the point cloud. 

However, we can’t see in more than three di-
mensions. Note also that a key ingredient of per-
forming the above-mentioned tasks is reasoning in 
terms of distances between the points in m dimen-
sions. Hence, if we could somehow map, or project, 
our point cloud from m to two or three dimen-
sions, keeping the distances between point-pairs, 
we could do the same tasks by looking at a 2D or 
3D scatterplot. Projections perform precisely this 
operation, as illustrated by Figure 1. Intuitively, 
they can be thought of as reducing the  unneces-
sary dimensionality of the data (the original m 
dimensions), keeping the inherent dimensionality 
(that which encodes distances, or similarities, be-
tween points). Additionally, we can color-code the 
projected points by the values of one dimension, to 
get extra insights.

There are two main use cases for projections. 
The first is to reduce the number of dimensions by 
keeping only one dimension from a set of dimen-
sions which are strongly correlated, or by dropping 
dimensions along which the data has a very low 
variance. Essentially, this preserves patterns in the 
data (clusters, outliers) but makes its usage simpler, 

as there are fewer dimensions to consider next. The 
simplified dataset can next be used instead of the 
original one in various processing or analysis tasks. 
The second use case involves reducing the number 
of dimensions to two or three, so that we can vi-
sually explore the reduced dataset. In contrast to 
the first case, this usually isn’t done by dropping 
dimensions but by creating two or three synthetic 
dimensions along which the data structure is best 
preserved. We next focus on this latter use case.

Projection Techniques
Many different techniques exist to create a 2D or 
3D projection, and they can be classified according 
to several criteria, as follows.

Dimension versus distance. The dimension versus 
distance classification looks at the type of informa-
tion used to construct a projection. Distance-based 
methods use only the distances, or similarities, be-
tween m-dimensional observations. Typical distances  
here are Euclidean and cosine, thus, the projection 
algorithm’s input is an n × n distance matrix be-
tween all observation pairs. Such methods are also 
known as multidimensional scaling (MDS) because 
they intuitively scale the m-dimensional distances to 
2D distances. Technically, this is done by optimizing 
a function that minimizes the so-called aggregated  
normalized stress, or summed difference between the 
inter-point distances in m dimensions and 2D, re-
spectively. The main advantage of MDS methods is 

Figure 1. From a multivariate data table to a projection. Projections can be thought of as reducing the unnecessary 
dimensionality of the data (the original m dimensions) keeping the inherent dimensionality (that which encodes dis-
tances, or similarities, between points).
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nD row distance 
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that they don’t require the original dimensions—a 
dissimilarity matrix between observations is suf-
ficient and extremely useful in cases where we can 
measure the similarities in some data collections but 
don’t precisely know which attributes (dimensions) 
explain those similarities. The main disadvantage of 
MDS methods is that they require storing (and ana-
lyzing) an n × n distance matrix. For n being tens of 
thousands of observations, this can be very expen-
sive.3 Several MDS refinements have been proposed, 
such as ISOMAP,4 Pivot MDS,5 and Fastmap,6 
which can compute projections in (near) linear time 
to the number of observations.

In contrast, dimension-based methods use as in-
put the actual m dimensions of all observations. For 
datasets having many more observations than dimen-
sions (n much larger than n), this gives considerable 
savings. However, we now need to have access to the 
original dimension values. Arguably the best known 
method in this class is principal component analysis 
(PCA), whose variations are also known under the 
names of singular value decomposition (SVD) or 
Karhunen-Loève transform (KLT).7 Intuitively put, 
the idea of 2D PCA is to find the plane, in m dimen-
sions, on which the projections of the n observations 
have the largest spread. Visualizing these 2D projec-
tions will then give us a good way of understanding 
the actual variance of the data in m dimensions.8 
While simple and fast, PCA-based methods work 
well only if the observations are distributed close to a 
planar surface in m dimensions. To understand this, 
consider a set of observations uniformly distributed 
on the surface of the Earth (a ball in 3D). When pro-
jecting these, PCA will effectively squash the ball to 
a planar disk, projecting diametrically opposed ob-
servations on the ball’s surface to the same location, 
meaning the projection won’t preserve distances. 
What we actually want is a projection that acts much 
as a map construction process, where the Earth’s sur-
face is unfolded to a plane, with minimal distortions.

Global versus local. The global versus local classifica-
tion looks at the type of operation used to construct a 
projection. Global methods define a single mapping, 
which is then applied for all observations. MDS and 
PCA methods fall in this class. The main disadvan-
tage of global methods is that it can be very hard 
to find a single function that optimally preserves 
distances of a complex dataset when projecting it 
(as in the Earth projection example). Another dis-
advantage is that computing such a global mapping 
can be expensive (as in the case of classical MDS). 
Local methods address both these issues, selecting a 

(small) subset of observations, called representatives, 
from the initial dataset and then projecting these by 
using a high-accuracy method. This isn’t expensive, 
as the number of representatives is small. Finally, 
the remaining observations close to each representa-
tive are fit around the position of the representative’s 
projection. This is cheaper, simpler, and also more 
accurate than using a global technique. Intuitively, 
think of our Earth example as splitting the ball sur-
face into several small patches and projecting these 
to 2D. When such patches have low curvature, fit-
ting them to a 2D surface is easier than if we were to 
project the entire ball at once. Good local methods 
include PLMP9 and LAMP.10 Using representatives 
has another added value: users can arrange these as 
desired in 2D, thereby controlling the projection’s 
overall shape with little effort.

Distance versus neighborhood preserving. A final classi-
fication looks into what a projection aims to preserve. 
When it’s important to accurately assess the similar-
ity of points, distance preservation is preferred. All 
projection techniques listed above fall into this class. 
However, as we’ve seen, getting a good distance pres-
ervation for all points can be hard. When the number 
of dimensions is very high, the Euclidean (straight-
line) distances between all point-pairs in a dataset 
tend to become very similar, so accurately preserving 
such distances has less value. In such cases, it’s often 
better to preserve neighborhoods in a projection—this 
way, the projection can still be used to reason about 
the groups and outliers existing in the high-dimen-
sional dataset. Actually, the depiction of groups could 
get even clearer because the projection algorithm has 
more freedom to place observations in 2D, as long as 
the nearest neighbors of a point in 2D are the same 
as those of the same point in m dimensions. The best-
known method in this class is t-stochastic neighbor 
embedding (t-SNE), which is used in many applica-
tions in machine learning, pattern recognition, and 
data mining, and has a readily usable implementation 
(https://lvdmaaten.github.io/tsne).

Type of data. Most projection methods handle 
quantitative dimensions, whose values are typically 
continuously varying over some interval. Examples 
are temperature, time duration, speed, volume, or 
financial transaction values. However, projection 
techniques such as multiple correspondence analy-
sis (MCA) can also handle categorical data (types) 
or mixed datasets of quantitative and categorical 
data. A good description of MCA and related tech-
niques is given by Greenacre.11
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The Projection Explorer is a very good place to 
start working with projections in practice.12 This 
tool implements a wide range of state-of-the-art 
projection techniques that can handle hundreds 
of thousands of observations with hundreds of di-
mensions and provides several visualizations to in-
teractively customize and explore projections. The 
tool is freely downloadable from http://infoserver.
lcad.icmc.usp.br/infovis2/Tools.

Visualizing Projections
The simplest and most widespread way to visu-
alize a projection is to draw it as a scatterplot. 
Here, each point represents an observation, and 
the 2D distance between points reflects the 
similarities of the observations in m dimensions. 
Points can be also annotated with color, labels, 

or even thumbnails to explain several of their 
dimensions.

Figure 2a shows this for a dataset where ob-
servations are images. The projection shows image 
thumbnails, organized by similarity. We can eas-
ily see here that our image collection is split into 
two large groups; we can get more insight into 
the composition of the groups by looking at the 
thumbnails.

However, in many cases, there’s no easy way to 
draw a small thumbnail-like depiction of all the m 
attributes of an observation. Projections will then 
show us groups and outliers, but how do we ex-
plain what these mean? In other words, how do we 
put the dimension information back into the pic-
ture? Without this, the added value of a projection 
is limited. 

Figure 2. Projection visualizations with (a) thumbnails, (b) biplot axes, (c) and (d) axis legends, and (e) key local dimensions.
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There are several ways of explaining projec-
tions. By far the simplest, and most common, is to 
color code the projection points by the value of a 
user-chosen dimension. If we next see strong col-
or correlations with different point groups in the 
projection, we can explain these in terms of the 
selected dimension’s specific values or value rang-
es. However, if we have tens of dimensions, using 
each one to color code the projection is tedious at 
best. Moreover, it could be that no single dimen-
sion can explain why certain observations are simi-
lar. Tooltips can be shown at user-chosen points, 
which does a good job explaining a few outliers one 
by one, but it doesn’t work if we want to explain a 
large number of points together.

One early way to explain projections is to draw 
so-called biplot axes.13 For PCA projections and 
variants, lines indicate the directions of maximal 
variation in the 2D space of all m dimensions. In-
tuitively put, biplot axes generalize the concept of 
a scatterplot, where we can read the values of two 
dimensions along the x and y axes, to the case where 
we have m dimensions. Moreover, strongly corre-
lated dimensions appear as nearly parallel axes, and 
independent dimensions appear as nearly orthogo-
nal axes. Finally, the relative lengths of the axes 
indicate the relative variation of the respective di-
mensions. Biplots can also be easily constructed for 
any other projection, including 3D projections that 
generate a 3D point cloud rather than a 2D scat-
terplot.14 In such cases, the biplot axes need not be  
straight lines. Figure 2b shows an example of biplot  
axes for a dataset containing 2,814 abstracts of 
scientific papers. Each observation (abstract) has 
nine dimensions, indicating the frequencies of the 
nine most used technical terms in all abstracts. The 
projection, created using a force-based technique, 
places points close to each other if the respective ab-
stracts are similar. Labels can be added to the axes 
to tell their identity and also indicate their signs 
(extremities associated to minimum and maximum 
values). The curvature of the biplot axes tells us that 
the projection is highly nonlinear—intuitively, we 
can think that the nine-dimensional space gets dis-
torted when squashed into the resulting 3D space. 
This is undesirable because reading the values of the 
dimensions along such curved axes is hard.

Still, interpreting biplot axes can be challeng-
ing, especially when we have 10 or more variables, 
as we get too many lines drawn in the plot. More-
over, most users are accustomed to interpreting a 
point cloud as a Cartesian scatterplot—that is, 
they want to know what the horizontal (x) and ver-

tical (y) axes of the plot mean. For a projection, this 
isn’t easy because these axes don’t straightforwardly 
map to data dimensions but, rather, to combina-
tions of dimensions. Luckily, we can compute the 
contribution of each of the original m data dimen-
sions to the spread of points along the projection’s 
x and y axes. Next, we can visualize these contri-
butions by standard bar charts (see Figure 2c): for 
each dimension, the x and y axis legends show a 
bar indicating how much that dimension is visible 
on the x and y axes. Long bars, thus, indicate di-
mensions that strongly contribute to the spread of 
points along the horizontal and vertical directions. 
Figure 2c shows how this works: the dataset con-
tains 583 patient records, each having 10 dimen-
sions describing patients’ gender, age, and eight 
blood measurements. The projection shows two 
clusters placed aside each other. 

How do we explain these? In the x axis legend, 
we see a tall orange bar, which tells us that this 
dimension (gender) is strongly responsible for the 
points’ horizontal spread. If we color the points by 
their gender value, we see that, indeed, gender ex-
plains the clusters. Axis legends can also be used for 
3D projections, as in Figure 2d, which shows a 3D 
projection of a 200,000-sample dataset with 10 di-
mensions coming from a simulation describing the 
formation of the early universe.14 As we rotate the 
3D projection, the bars in the axis legends change 
lengths and are sorted from longest to shortest, in-
dicating the best-visible dimensions from a given 
viewpoint (dimensions 5 and 7, in our case). A third 
legend (Figure 2d, top right) shows which dimen-
sions we can’t see well in the projection from the 
current viewpoint. These dimensions vary strongly 
along the viewing direction, so we shouldn’t use the 
current viewpoint to reason about them.

Biplot axes can also be inspected to get more 
detail. For example, we see that the projection’s 
saddle shape is mainly caused by variable 7 and 
that the spike outlier is caused by a combination 
of dimensions 5 and 6. This interactive viewpoint 
manipulation of 3D projections effectively lets us 
create an infinite set of 2D scatterplot-like visual-
izations on the fly. Both biplot axes and axis leg-
ends explain a projection globally. If well-separated 
groups of points are visible, we can’t directly tell 
which variables are responsible for their appearance 
without visually correlating the groups’ positions 
with annotations, which can be tedious. Local  
explanations address this by explicitly splitting the 
projection into groups of points that admit a single 
(simple) explanation, depicting this explanation atop 
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the groups. Figure 2e shows this for a dataset contain-
ing 6,773 open source software projects, each having 
11 quality metrics, along with their download count.15 
The projection, constructed with LAMP, shows a 
concave shape but no clearly separated clusters. 

Let’s consider next every projected point and sev-
eral of its close neighbors—that is, a small circular 
patch of projected points. Because these points are 
close in the projection, they should also be similar in 
m dimensions. We can analyze these points to find 
which dimension is most likely responsible for their 
similarity. By doing this for all points in turn, we 
can rank all m dimensions by the number of points 
whose neighborhoods they explain. If we color code 
points by their best-explaining dimension, the pro-
jection naturally splits into several clusters. We can 
next add labels with the names of their explaining di-
mensions. Finally, we can tune the points’ brightness 
to show how much of a point’s similarity is explained 
by the single selected dimension. In Figure 2e,  
we see, for instance, that the lines of code metric 
(purple) explains two clusters of points—by interac-
tive brushing, we can find that one contains small 
software projects and the other has large software 
projects. The bright-to-dark color gradient shows 
how it’s increasingly hard to explain a point’s similar-
ity with its neighbors once we approach the cluster 
border, that is, the place where another dimension 
becomes key to explaining local similarity. Doing 
this visual partitioning of the projection into groups 
explained by dimensions would have been hard us-
ing global methods only, such as biplot axes or axis 
legends. Besides explaining groups in a projection via 
single dimensions, we can also use tag clouds to show 
the names of several dimensions.16

Interpreting Projections
As already explained, projections can be used as 
visual proxies of high-dimensional spaces that en-
able reasoning about a dataset’s structure. For this 
to work, however, a projection should faithfully 
preserve those elements of the data structure that 
are important for the task at hand. As such, before 
using a projection, it’s essential to check its quality. 

The easiest way to do this is to compute the ag-
gregated normalized stress. Low values of this stress 
tell us that the projection preserves distances well. 
However, if this single figure indicates low qual-
ity, we don’t know what that precisely means or 
which observations are affected. More insight can 
be obtained by showing scatterplots of the original 
distances in m dimensions versus distances in the 
projection. Figure 3a illustrates this for several da-
tasets and projection techniques.10 The ideal pro-
jection behavior is shown with red diagonal lines; 
figures in each scatterplot show the aggregated nor-
malized stress, telling us that LAMP is generally 
better than the other two studied projections. Yet, 
we don’t know what this means precisely. Looking 
at the scatterplots’ deviations from the red diago-
nals, we get more insight in the nature of the er-
rors: points under the diagonal tell us that original 
distances are subestimated in the projection, that 
is, that the projection compressed the data. Note 
that this is quite a typical phenomenon: projections 
have to embed points in a much lower-dimensional 
space, so crowding occurs very likely. For the isolet 
dataset, we see, for example, that small 2D distanc-
es can mean a wider range of high-dimensional 
distances than large 2D distances, so close points 
in a projection may or may not be that close in m 
dimensions. For the viscontest dataset, we see that 
LAMP has a constant spread around the diagonal, 
indicating a uniform error distribution for all dis-
tance ranges. In contrast, Glimmer shows a much 
worse error distribution.

While useful to reason about distances, such 
scatterplots don’t tell us where in the projection we 
have errors. For this, we can use observation-cen-
tric error metrics.17 The aggregate error shows the 
normalized stress, aggregated per point rather than 
for all points. Figure 3b shows this for a projection 
created with LAMP. As we see, the projection over-
all is of good quality, with the exception of four 
small hot spots. Figure 3c shows errors created by 
false neighbors—that is, points close in 2D but far 
in m dimensions, or zones where the projection 
compressed the high-dimensional space. We see 

Looking at the scatterplots’ deviations from the red 
diagonals, we get more insight in the nature of the errors: 
points under the diagonal tell us that original distances are 
subestimated in the projection, that is, that the projection 
compressed the data.
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here only three hot spots, meaning that the fourth 
one in Figure 3b wasn’t caused by false neighbors. 
Figure 3d shows errors created by missing neigh-
bors—that is, points close in m dimensions but 
far in 2D. The missing neighbors of the selected 
point of interest are connected by lines, which are 
bundled to simplify the image. The discrepancy 
between the 2D and original distances is also color 
coded on the points themselves. In this image, we 
see that the missing neighbors of the selected point 
are quite well localized on the other side of the pro-
jection. This typically happens when a closed sur-
face in m dimensions is split by the projection to 
be embedded in 2D. Finally, Figure 3e shows for 
a selected group of points all the points that are 
closer in m dimensions to a point in the group than 
to any other point but closer to points outside that 
group in 2D. This lets us easily see if groups that 
appear in the projection are indeed complete or if 
they actually miss members.

Using Projections in Visual Analytics  
Workflows
So far, we’ve shown how we can construct projec-
tions, check their quality, and visually annotate 
them to explain the contained patterns. But how 
are projections used in complex visual analytics 
workflows? The most common way is to visually 
explore them while searching for groups, and when 
such groups appear, to use tools like the ones pre-
sented so far to explain them in terms of dimen-
sions and dimension values.2 This is often done in 
data mining and machine learning. 

We illustrate this with a visual analytics work-
flow for building classifiers for medical diagnosis.18 
The advent of low-cost, high-accuracy imaging de-
vices has enabled both doctors and the public to 
generate large collections of skin lesion images. 
Dermatologists want to automatically classify these 
into benign (moles) and potentially malignant 
(melanoma), so they can focus their precious time 

Figure 3. Projection visualized with (a) distance-centric methods and (b) through (e) observation-centric methods. The ideal projection 
behavior is shown with red diagonal lines. Figures in each scatterplot show the aggregated normalized stress, telling us that LAMP is 
generally better than the other two studied projections.
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on analyzing the latter. For this, image classifiers 
can be used: each skin image is described in terms 
of several dimensions, or features, such as color his-
tograms, edge densities and orientations, texture 
patterns, and pigmentation. Next, dermatologists 
manually label a training dataset of images as be-
nign or malignant, using it to train a classifier so it 
becomes able to label new images. Other applica-
tions of machine learning include algorithm opti-
mization, designing search engines, and predicting 
software quality.

Designing good classifiers is a long-standing 
problem in machine learning and is often re-
ferred to as the “black art” of classifier design.19 
The problem is multiple-fold: understanding 
discriminative features; understanding which 
observations are hard to classify and why; and 
selecting and designing features to improve clas-
sification accuracy. Projections can help all these 
tasks, via the workflow in Figure 4. Given a set of 
input observations, we first extract features that 
are typically known to capture their essence (step 
1). This yields a high-dimensional data table with 
observations as rows and features as columns. 
We also construct a small training set by manual 
labeling. Next, we want to determine how easy 
the classification problem ahead of us will be. For 
this, we project the training set and color obser-
vations by class labels (step 2). If the classes we 
wish to recognize are badly separated, it makes 

little sense to spend energy on designing and 
testing a classifier, since we seem to have a poor 
feature choice (step 4) We can then interactively 
select the desired class groups in the projection 
and see which features discriminate them best,18 
repeating the cycle with a different feature subset 
(step 5). If, however, classes are well separated in 
the projection (step 3), our features discriminate 
them well, so the classification task isn’t too hard. 
We then proceed to design, train, and test the 
classifier (step 6). If the classifier yields a good 
performance, we’re done: we have a production-
ready system (step 7). If not, we can again use 
projections to see which are the badly classified 
observations (step 8), which features are respon-
sible for this (step 9), and engineer new features 
that separate these better (step 10). In this work-
flow, projections serve two key tasks: predicting 
the ease of building a good classifier ahead of the 
actual construction (T1), thereby saving us from 
designing a classifier with unsuitable features, 
and showing which observations are misclassified 
and their feature values (T2), thereby helping us 
design better features in a targeted way.

P rojections are the new emerging instrument 
for the visual exploration of large high-dimen-

sional datasets. Complemented by suitable visual 
explanations, they’re intuitive, easy to use, visually 

Figure 4. Using projections to build and refine classifiers in supervised machine learning.
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compact, and easy to learn for users familiar with 
scatterplots. Recent technical developments allow 
their automatic computation from large datasets 
in seconds, helping users avoid complex parameter 
settings or needing to understand the underlying 
technicalities. As such, they’re part of the visual 
data scientist’s kit of indispensable tools.

But as projections become increasingly more 
useful and usable, several new challenges have 
emerged. Users require new ways to manipulate a 
projection to improve its quality in specific areas, 
to obtain the best-tuned results for their datasets 
and problems. Developers require consolidated 
implementations of projections that would let 
them integrate them in commercial-grade applica-
tions such as Tableau. And last but not least, users 
and scientists require more examples of workflows 
showing how projections can be used in visual an-
alytics sensemaking to solve problems in increas-
ingly diverse application areas. 
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