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ABSTRACT: Large-area tunneling junctions using eutectic
Ga−In (EGaIn) as a top contact have proven to be a robust,
reproducible, and technologically relevant platform for molec-
ular electronics. Thus far, the majority of studies have focused
on saturated molecules with backbones consisting mainly of
alkanes in which the frontier orbitals are either highly localized
or energetically inaccessible. We show that self-assembled
monolayers of wire-like oligophenyleneethynylenes (OPEs),
which are fully conjugated, only exhibit length-dependent
tunneling behavior in a low-O2 environment. We attribute this
unexpected behavior to the sensitivity of injection current on
environment. We conclude that, contrary to previous reports,
the self-limiting layer of Ga2O3 strongly influences transport
properties and that the effect is related to the wetting behavior of the electrode. This result sheds light on the nature of the
electrode−molecule interface and suggests that adhesive forces play a significant role in tunneling charge-transport in large-area
molecular junctions.

■ INTRODUCTION

This paper compares the electrical characteristics of large-area
Au/SAM/EGaIn (eutectic Ga−In) molecular junctions com-
prising self-assembled monolayers (SAMs) of oligo(phenylene
vinilene)s (OPEs) grown from mono- and bis-thioacetates in
different environmental conditions. EGaIn is a liquid metal
alloy that has, in recent years, been used in numerous
applications in the fields of soft electronics and micro-
fluidics.1−4 Many of its interesting properties are related to a
thin subnanometer layer of passivating Ga2O3, which EGaIn
rapidly grows when exposed to air5 and which confers the
particular non-Newtonian rheological properties that make
EGaIn useful.6 In molecular electronics, EGaIn can be used to
form stable, conformal, nondamaging contacts with SAMs7 due
to its ability to form sharp tips with a diameter of about 20 μm.
These tips form macroscopic contacts to a SAM supported by a
metal substrate enabling the formation of junctions in multiple
areas of a substrate rapidly and reproducibly, allowing the
collection of statistically significant data. Compared to single/
few-molecules techniques, the stability of the junctions also
allows more elaborate characterization of the electrical
properties of the samples, e.g., via impedance spectroscopy.8

Since the dawn of molecular electronics, more than 40 years
ago,9,10 a wide variety of molecules has been investigated in
molecular tunneling junctions of different configurations11−13

to probe the effects of different structures and chemical
functionalities on the flow of electrons. Most of the efforts have
been directed toward techniques involving single- or few-

molecule junctions such as mechanically controlled and STM
break junctions (MCBJ, STM-BJ) or conductive probe AFM
(CP-AFM), respectively,11 because results are relatively
straightforward to model in silico;12,14,15 yet, these experimental
platforms do not readily translate to devices, which carry the
practical constraints of needing to be integrated into a circuit
and be reliable and reproducible.16 Large-area junctions such as
those comprising EGaIn, on the other hand, better resemble
the possible architecture of an actual molecular electronic
device.11,17 Usually they make use of SAMs on metal electrodes
as the active element and the template to define the
unimolecular thickness of the junction in a bottom-up
fashion.18 Moreover, the use of SAMs can induce new
properties of the tunneling systems which are not present
when one or few molecules alone are investigated.19

Studies concerning large-area junctions typically make use of
saturated thiols on coinage metals.17,20,21 These SAMs are
straightforward to prepare/acquire and are extensively charac-
terized, and their transport characteristics are well-established;
for these reasons they are often used as test beds.13,17,22−27 Yet,
the frontier orbitals are far from the Fermi level of the
electrodes and do not strongly participate in the charge-
transport across the junction. On the other hand, conjugated
molecules, with more accessible frontier orbitals and the
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possibility to interact with the electrode on the electronic level,
have shown properties such a negative differential resist-
ance,28−33 conductance switching,34−36 memory effects,31

quantum interference,37,38 and the ability to modify the
Fermi energy and the electrostatics of the electrodes.19,39,40

Polyphenylenes, OPEs, and similar conjugated structures have
long been proposed as active elements in molecular
electronics.13,15,30,32,41−45 In particular, OPEs can be easily
functionalized without distorting the conjugated back-
bone,41,46−49 yet they are rarely investigated in large-area
junctions.20 This scarcity of experimental data may be due to
difficulties in growing densely packed SAMs from rigid
molecules with an extended π-system21,38 or their sensitivity
to oxidation; that is, saturated molecules are simply easier to
handle.
One of the principal advantages of using thiols and coinage

metals in molecular electronics is that Au is essentially inert and
the Au−S bond is sufficiently strong to compete with
advantageous adsorbates, however, the details of the surface
chemistry of the Ga2O3 layer remain a mystery. Barber et al.
studied the influence of the environment on the transport
properties of saturated SAMs in Ag/SAM//EGaIn junctions
(where / and // represent covalent and van der Waals contacts,
respectively) and found no effect provided sufficient O2 was
present to form the Ga2O3 layer.27 In an effort to facilitate
working with sensitive π-conjugated molecules, we built an
EGaIn measurement setup inside a large flowbox capable of
maintaining a low-O2 environment such that the Ga2O3 can
form, but that sensitive compounds and SAMs can still be
handled without appreciable oxidation. Surprisingly, we found a
large influence of the environmental conditions on the electrical
properties of junctions comprising SAMs of OPEs, in stark
contrast to SAMs of alkanethiolates, which showed only a
systematic shift in injection current.

■ RESULTS AND DISCUSSION
We first investigated the OPEs shown in Figure 1 under
ambient conditions on template-stripped Au (AuTS).50 The

resulting data were characterized by unusually large dispersion,
low current values, and low yield of working junctions,
rendering them uninterpretable (Figure 2A). We then grew
SAMs from the same compounds inside the flowbox from a
toluene solutions using 1,8-diazabicyclo[5.4.0]undec-7-ene
(DBU) as an in situ deprotecting agent (see Experimental
Section) and measured them without any exposure to ambient
conditions. These results are shown in Figure 2B; in an
atmosphere of N2 maintained at 1−3% O2 and <15% relative
humidity (RH), the yields of working junctions increased
dramatically, the current-densities increased by approximately 2
orders of magnitude, and a clear length-dependence emerged.

Figure 3 shows a comparison of the histograms of log|J| at
−0.5 V from SAMs prepared inside the flowbox and measured
in the same controlled environment and under ambient
conditions. Ambient data are characterized by broader
histograms and by a systematically lower current. Although
the peaks of the histograms shift somewhat, they do not follow
an obvious trend. Flowbox data, however, yield narrow
histograms with well-defined peaks that follow a clear trend
in molecular length. Additionally, the yield of the nonshorting
junctions increased from ∼75% in ambient to >90% in the
flowbox. These data are summarized in Table 1.
We analyzed the data using a simplified version of Simmons’

equation51 (eq 1) for a more quantitative description of the
electrical properties and to facilitate comparisons with studies
of OPEs in other platforms. From the flowbox data we
calculated a value of β = 0.23 ± 0.01 Å−1 at 0.5 V using the
theoretical end-to-end distances of the minimized geometries
(Table S1.) This value is in agreement with theoretical
predictions15 and those reported by Lu et al.52 and Kaliginedi
et al.42 using MCBJ and Liu et al.53 using CP-AFM (Table 2).
The same analysis was not possible with ambient data.

= β−J J e d
0 (1)

In addition to reporting a value of β, Lu et al. observed a
change in the transport mechanism on going from OPE1 to
OPE4 for Au/SAM/Au junctions comprising a series of bis-
amino-terminated OPEs using STM-BJ and CP-AFM (though
in the latter case the transition was not well-pronounced). A
similar transition in the EGaIn junctions was reported more
recently by Sangeeth et al.56 for a series of oligo-
(phenyleneimine) wires; in particular, they reported a transition
from tunneling to hopping for junctions comprising molecules
with a molecular backbone longer than 25−30 Å. In both cases,
a hopping mechanism was distinguished via variable temper-
ature conductance data; hopping is a thermally activated
process that follows the Arrhenius reltionship, while tunneling
does not depend on temperature.57 To test for this transition in
Au/SAM//EGaIn junctions we performed variable temperature
studies on SAMs prepared in the flowbox and measured in
microfluidic EGaIn junctions under an inert atmosphere. (Low-
temperature measurements are incompatible with O2 and H2O
vapor.) Figure 4 shows no dependence of conductance on
temperature from which we conclude that there is no thermally
activated process, and therefore, no tunneling to hopping
transition.
The presence of some O2 is necessary to form the self-

limiting Ga2O3 skin responsible for the non-Newtonian
behavior of EGaIn that permits it to retain sharp tips instead
of relaxing to a Gaussian geometry.6 Figure 5 shows tips formed
in ambient and in the flowbox; 1−3% O2 is sufficient to form
tips in a reproducible fashion and collect reproducible data.
While atomistic detail of the surface of EGaIn/Ga2O3 is
currently experimentally inaccessible, the tips formed in the
flowbox differ qualitatively from those formed in ambient. In
particular, in the low-O2, low-RH flowbox environment, EGaIn
does not appear to wet the metal of the syringe needle, leading
to the formation of a long column of liquid metal before the
hourglass shape between the needle, and the surface ruptures to
form the tips used for measurements. The tips formed inside
the flowbox also appear sharper and smoother, and the surface
shows less buckling compared to tips formed in ambient. The
apparent sharpness does not necessarily affect the apex of the

Figure 1. OPE compounds used to prepare self-assembled
monolayers.
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tip, which is typically on the order of 20 μm in diameter. These
are qualitative observations based on optical micrographs;
however, we speculate that they could be due to a systematic
difference in the wetting and/or mechanical properties of the
Ga2O3 skin due to the different conditions under which they
form. There is both a significantly reduced amount of O2 and
lower RH, and either or both could influence the kinetics and/
or thermodynamics of the formation of Ga2O3 and/or its
chemical composition, crystal structure, surface states,
electronic properties, thickness, etc.; it is a complex system,

and further study will be required to elucidate the exact
mechanism. Irrespective of these microscopic details, there are
clear qualitative differences in the tips of EGaIn and clear
quantitative differences in the J/V characteristics of tunneling
junctions comprising OPEs.
To confirm that the dramatic environmental effects seen with

OPEs are not generalizable, we measured AgTS/SAM//EGaIn
junctions comprising alkanethiolates in ambient conditions and
in the flowbox environment. We chose these SAMs and AgTS

substrates because they have been studied extensively in EGaIn
junctions and are widely considered to be a benchmark in
molecular electronics.13,22,24−27 The resulting data are
summarized in Table 3, revealing a systematic shift to lower
values of log|J| and higher yields of working junctions in the
flowbox compared to ambient conditions. There are two
important findings: (i) a clear trend in log|J| with molecular
length is present in both sets of data, and (ii) log|J| shifts in the
opposite direction compared to the SAMs of OPEs.
Using eq 1, we calculated values of β for the series of

alkanethiols: β = 0.79 ± 0.02 and 0.71 ± 0.05 Å−1 in ambient

Figure 2. Semilog plot of J vs V for EGaIn/Ga2O3//OPE/Au
TS junctions: OPE1 (black), OPE2 (red), OPE3 (blue), and OPE4 (dark cyan). (A)

Data collected in ambient conditions. (B) Data collected in a flowbox environment of N2, 1−3% O2 and RH < 15%. Error bars are per-junction
confidence intervals calculated using α = 0.95.

Figure 3. Histograms of all J/V data for OPE1, OPE2, OPE3, and
OPE4 in ambient (red) and in the flowbox environment (black) at
−0.5 V. y-axes are counts. The histograms in ambient environment are
broad, and the peak values show no obvious trend, while the
histograms in the flowbox are sharp and the peaks follow a clear trend
with molecular length.

Table 1. Summary of Electrical Data on SAMs of OPEs

compd

measurement OPE1 OPE2 OPE3 OPE4

log|J| @ −0.5 V (flowbox) [A cm−2] −2.25 −3.04 −3.65 −4.24
log|J| @ −0.5 V (ambient) [A cm−2] −5.14 −5.65 −4.68 −5.65

yield of working junctions
(flowbox) [%]

92 90 93 97

yield of working junctions
(ambient) [%]

75 74 67 84

Table 2. Comparison of Values of β for OPEs Determined by
Different Methods

ref technique atmosphere β [Å−1]

15 theoretical 0.25
54 theoretical 0.19
53 CP-AFM ambient 0.20 ± 0.07
52 MCBJ ambient 0.202 ± 0.002
42 MCBJ inert 0.34 ± 0.01
55 STMa inert 0.32 ± 0.1
55 STMb inert 0.05 ± 0.01
this work EGaIn N2 + 1−3% O2, RH < 15% 0.23 ± 0.01

aThiol linkers. bCarbodithioate linkers.

The Journal of Physical Chemistry C Article

DOI: 10.1021/acs.jpcc.6b07089
J. Phys. Chem. C 2016, 120, 20437−20445

20439

http://dx.doi.org/10.1021/acs.jpcc.6b07089


and flowbox conditions, respectively, in perfect agreement with
literature values (acquired under ambient conditions).25,58

These data are plotted in Figure 6; there is a negligible change
to the distance-dependence, strongly suggesting that the
transport mechanism is insensitive to environmental conditions
for alkanethiols.14 There is, however, a difference in the values
of J0, which appears to be larger for the measurements
performed in ambient conditions (i.e., the contact resistance
increases in the flowbox). Simeone et al. reported a value of log|
J0[A cm−2]| = 3.6 ± 0.3 @ 0.5 V for AgTS/SAM//EGaIn
junctions in ambient conditions.25 We found log|J0[A cm−2]| =
2.9 ± 0.1 in ambient conditions and log|J0[A cm−2]| = 0.5 ± 0.3
in the flowbox. That the injection current, J0, is 3 orders of
magnitude lower in the flowbox, yet the decay constant, β, is
unaffected, suggests that the environmental effects on SAMs of
alkanethiolates are confined to an interface. Also, since the
AgTS/SAM and AuTS/SAM interfaces do not change between
ambient and flowbox conditions, it is reasonable to assume that
the effects of a low-O2, low-RH are confined to the SAM//
EGaIn interface and that the effects of the different environ-
ments are affecting the formation/properties of the Ga2O3
layer. This hypothesis is consistent with the observation that
the same substrate measured first in the flowbox and then in

ambient and then measured again in the flowbox will exhibit
the characteristic histograms shown in Figure 3 in the
respective environments (Figure S4). The effect, however,
does not reduce to an increase in contact resistance in a low-N2,
low-RH atmosphere because SAMs of OPEs can only be
measured in the flowbox, where the values of J increase
compared to ambient conditions, lowering the contact
resistance. An alternative hypothesis is simply that the
differences in the geometries of the tips introduces a systematic
underestimation of the areas of the junctions in the flowbox
(and/or an overestimation in ambient), but the differences in

Figure 4. Arrhenius plots of low-bias conductance vs temperature for
junctions comprising OPE3 (blue ▲) and OPE4 (dark cyan ▼). The
invariance with temperature is characteristic of tunneling transport and
indicates a lack of thermally activated processes. The low-bias
conductance is reported as the slope of the J−V traces in the 0.1 V/
−0.1 V window. Data are shown down to the temperatures at which
the majority of the junctions failed. Full J−V traces are shown in
Figure S2.

Figure 5. Formation of tips of EGaIn in ambient conditions (top) and in a flowbox kept at 2.5% O2, RH < 15% (bottom). The yellow scale bar is
500 μm. Although the process of necking into an hourglass shape and severing into sharp tips is the same in both cases, in the flowbox EGaIn does
not wet the metallic syringe needle.

Table 3. Summary of Electrical Data on SAMs of
Alkanethiolates

CH3(CH2)nSH

measurement n = 9 n = 11 n = 13 n = 15

log|J| @ +0.5 V flowbox [A cm−2] −3.48 −4.10 −4.81 −5.95
log|J| @ +0.5 V ambient [A cm−2] −1.52 −2.44 −3.31 −4.82

yield of working junctions
flowbox [%]

70 75 79 90

yield of working junctions
ambient [%]

60 50 93 74

Figure 6. Plots of ln J @ +0.5 V vs molecular length in Å for AgTS/
SAM//EGaIn junctions comprising CH3(CH2)9SH, CH3(CH2)11SH,
CH3(CH2)13SH, and CH3(CH2)15SH. The data collected in the
flowbox environment (N2 atmosphere with 1−3% O2, RH < 15%) are
reported in red, while those obtained in ambient conditions are in
black. Error bars are per-junction confidence intervals calculated using
α = 0.95. The straight lines are linear fits of the data.

The Journal of Physical Chemistry C Article

DOI: 10.1021/acs.jpcc.6b07089
J. Phys. Chem. C 2016, 120, 20437−20445

20440

http://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.6b07089/suppl_file/jp6b07089_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.6b07089/suppl_file/jp6b07089_si_001.pdf
http://dx.doi.org/10.1021/acs.jpcc.6b07089


the magnitude in J would require a systematic error in the
measured diameters of a factor of 5−15 between the flowbox
and ambient conditions. That hypothesis is also unable to
explain the inability to resolve a length-dependence from OPEs
or the commensurate broadening of the histograms in ambient
conditions.
Barber et al. studied the effects of the composition of the

atmosphere on AuTS/SAM//EGaIn junctions comprising
aliphatic SAMs and found negligible effects for dodecanethiol
and 12-thiododecanoic acid as well as for alkanethiols.27 Their
methodology differed somewhat from ours; the tips used to
form the junctions were prepared in air or pure O2 before being
transferred in different environments, while we prepared the
SAMs, formed the tips, and performed the measurements in
either ambient or in the flowbox. Thus, our observation that
there is a negligible effect on β for SAMs of alkanethiolates is
consistent as well as our observation that SAMs of OPEs are
affected dramatically and that J0 is affected for SAMs of
alkanethiolates.
To explore the hypothesis that the environmental effects can

be ascribed to the SAM//EGaIn interface, we measured SAMs
formed from symmetric dithioacetate (diSAc) derivatives of
OPE2, OPE3, and OPE4 (denoted diSAc-OPE2, diSAc-
OPE3, and diSAc-OPE4, respectively) in AuTS/SAM//EGaIn
junctions in ambient conditions and in the flowbox. (diSAc-
OPE1 does not form densely packed, upright SAMs.) Figure 7
clearly shows that the same environmental effect is present for
this series; a trend in J molecular length is evident only when
the molecules are measured in the controlled atmosphere of the
flowbox, but it collapses when the same experiments are

performed in ambient conditions. The in situ deprotection
procedure results in predominantly free thiol (SH) groups at
the SAM//EGaIn interface, with some residual thioacetate
(SC(O)CH3) groups.

21 Thus, the interaction is chemically very
different than for the OPE series, which presents a bare phenyl
group. Thiols, by comparison, have a higher surface free-energy
(lower contact angle with water) and can be considered more
strongly interacting by virtue of the lone pairs of the sulfur
atoms present at the SAM//EGaIn interface for the diSAc-OPE
series, yet the data acquired from SAMs of diSAc-OPEs and
OPEs in ambient conditions are virtually indistinguishable.
The values of log|J| acquired in the flowbox show clear

length-dependence and are systematically higher for the diSAc-
OPE series as compared to the (mono-diSAc) OPE analogues,
meaning that there is a higher injection current (and lower
contact resistance) when a thiol is present at the SAM//EGaIn
interface; log|J0[A cm−2]| = −1.6 ± 0.1 and log|J0[A cm−2]| =
−0.3 ± 0.3 for the mono-SAc and diSAc OPEs, respectively.
Using eq 1, we found β = 0.23 ± 0.01 Å−1 and β = 0.23 ± 0.05
Å−1 for the OPE and diSAc-OPE series, respectively (Figure 8).

Thus, modifying the SAM//EGaIn interface chemically and
measuring SAMs of OPEs in the flowbox affects the J/V data
analogously to changing the environment for SAMs of
alkanethiols without altering the SAM//EGaIn interface
chemically. This observation further supports the hypothesis
that the Ga2O3 layer present at the surface of EGaIn is affected
by the environment; however, this interface does not appear to
be more strongly coupled to the SAM in the flowbox since
chemically increasing the interaction between the SAM and
EGaIn mimics the effect of measuring SAMs of alkanethiolates
in ambient conditions. That is, the difference between a Ph-H
and Ph-SH interface is analogous to Ga2O3 prepared in flowbox
and ambient conditions, respectively.
In the absence of the ability to acquire experimental data on

the atomistic details of the oxide layer, we can estimate the
influence of the low-O2 atmosphere by considering the
thermodynamics and kinetics. The change in the free-energy
of formation of Ga2O3 is negligible; ΔrG goes from −998 kJ
mol−1 under ambient conditions to roughly −981 at 1% O2.

59

Figure 7. Histograms of all J/V data for diSAc-OPE2 (top), diSAc-
OPE3 (middle), and diSAc-OPE4 (bottom) in ambient (red) and in
the flowbox environment (black; N2 atmosphere with 1−3% O2, RH <
15%) at −0.5 V. y-axes are counts. The data acquired in air and
characterized by broad distributions with no obvious trend while the
data acquired in the flowbox are distributed more narrowly and the
peak values follow a clear trend with molecular length.

Figure 8. Plots of ln |J| @0.5 V vs molecular length in Å for AuTS/
SAM//EGaIn junctions formed from mono- (black) and di- (red)
thioacetate derivatives of OPEs of varying length in the flowbox
environment (structures are shown in Figure 1). Error bars are per-
junction confidence intervals calculated using α = 0.95. The straight
lines are linear fits of the data.
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Also, the frequency of collisions between O2 molecules and the
surface of EGaIn at 1% O2 is on the order of 1015 s−1, excluding
O2 as a rate-limiting step in the formation of the oxide
(assuming a conical tip with diameter of 0.5 mm, a height of 1
mm and perfect gas behavior of O2). Finally, the non-
Newtonian properties of EGaIn are retained in the flowbox
with oxygen levels as low as 300 ppm, although under such
conditions the reproducible formation of tips becomes
prohibitively difficult. Doudrick et al. reported that in the
case of Galistan (a Ga/In/Sn ternary liquid alloy) a partial-
pressure of O2 of 0.03 mPa is sufficient for the oxide to form.60

Thus, we are confident that the thickness of the surface of
EGaIn/Ga2O3 is unaffected by the reduction in O2. It is also
unlikely that the effect originates entirely from RH, as it varies
seasonally and geographically and EGaIn junctions have been
studied year-round and on at least three continents.18,27 It is
possible that surfaces of EGaIn/Ga2O3 formed in a controlled
atmosphere may have a different contact resistance because
they are free of contaminants and dopants from the ambient
environment;61 however, that explanation is inconsistent with
experiments that find SAM/EGaIn interfaces formed in
ambient conditions comparable to SAM//Au62 and mole-
cule/Au63 interfaces. Although we cannot rule out a micro-
scopic difference in the surface of the EGaIn tip affecting a
change in effective contact area, we can exclude the possibility
that such error is systematic. We performed conductivity
measurements using the EGaIn tips formed identically to those
used to measure SAMs on an n-doped Si wafer bearing a native
oxide (cleaned with O2 plasma) and exfoliated highly oriented
pyrolytic graphite (HOPG). In ambient conditions, the
conductivity (at −0.5 V) was a factor of 2 and 6 times higher
than in the flowbox for Si and HOPG, respectively. The
differences in J for SAMs of alkenthiolates are on the order of
100, and therefore, experimental error in determining the
effective contact area is not responsible for the difference in J0.
The effects on J0 (and presumably on the ability to measure
SAMs of OPEs) are specific to SAMs of alkanethiolates and do
not reduce to a difference in the geometry/topology of the tip.
Given that the environmental effects are localized to the

SAM//EGaIn interface and that they cannot be ascribed to a
thinner or chemically different Ga2O3 layer altering the
coupling and/or contact resistance and that the differences in
injection currents cannot be explained by experimental error in
the determination of the area of the junction, we conclude that
the effects can be ascribed to a difference in wetting. The
qualitative differences in the tips shown in Figure 5 suggest very
different wetting behavior of EGaIn (but probably not the
SAMs, see Figure S5) in different environments. This difference
could lead to differences in the mechanical stresses at the SAM/
EGaIn interface arising from adhesive forces; a “gentler”
contact may be necessary to measure fragile SAMs of OPEs.
Likewise, such a contact could explain the increase in the yields
of working junctions and increased injection currents of SAMs
of alkanethiolates. Moreover, increasing the surface free-energy
of SAMs of OPEs by introducing thiol groups mimics the
behavior of measuring SAMs of alkanethiols in ambient
conditions, which is consistent with the hypothesis that
injection currents scale with wetting and that tips of EGaIn
formed in ambient conditions wet SAMs better than those
prepared in the flowbox.

■ CONCLUSIONS

The environment under which SAMs and junctions of large-
area AuTS/SAM//Ga2O3/EGaIn junctions comprising SAMs of
mono- and dithiol OPEs and AgTS/SAM//Ga2O3/GaIn
junctions comprising SAMs of alkanethiolates are formed has
a pronounced, systematic effect on tunneling charge-transport.
The resistance of SAMs of OPEs decreases in low-O2, low-
humidity environments, while the resistance of SAMs of
alkanethiolates increases. The quantifiable effect is the injection
current of the latter; SAMs of mono- and dithiol OPEs do not
produce meaningful trends under ambient conditions. By
comparing SAMs of OPEs that present either a bare phenyl
group (Ph) or a thiophenol group (Ph-SH) to the EGaIn
interface and SAMs of alkanethiolates under ambient
conditions and a controlled atmosphere of N2 with 1−3% O2
and RH < 15%, we unambiguously ascribe the effects to the
nature of the SAM/Ga2O3; injection currents (J0), but not
decay constants (β), are influenced by the environment under
which measurements are performed and by the chemistry of the
interface. Variable temperature measurements establish the
mechanism of transport through OPEs, which can only be
measured at low-O2 and low-RH, as tunneling.
This work identifies the wetting properties of the SAM//

Ga2O3/EGaIn interface as a critical component that can
become limiting in the case for π-conjugated molecules with
small values of β (relative to n-alkanes). This observation may
also explain the statistical variance of injection currents of
SAMs of alkanethiolates measured with EGaIn. The ability to
adjust the injection current sufficiently to measure conjugated
molecules underscores the universality of EGaIn as a top
contact for the formation of large-area tunneling junctions and
enables future studies on more exotic molecular systems.

■ EXPERIMENTAL SECTION

Flowbox. The flowbox was realized using a Terra Universal
stainless steel glovebox series 400 SS (60 in. × 33 in. × 37 in.)
equipped with a Dual Purge flow regulator (Terra Universal)
connected to the house nitrogen. To keep the levels of O2 and
RH under established limits (3% and 15%, respectively), the
flow regulator was connected to a NitroWatch RH controller
equipped with a Humex Sensor (Terra Universal) and to an
oxygen analyzer (Illinois Instruments model 810). The nitrogen
flow was kept at approximately 0.25 L min−1 when the box was
not used (to preserve the atmosphere inside) and was increased
to 2.4 L min−1 during the measurements and the handling of
chemicals and substrates. The entire EGaIn measurement setup
was housed inside the flowbox.

Materials. Benzenethiol (OPE1), 1-decanethiol (C10SH),
1-dodecanethiol (C12SH), 1-tetradecanethiol (C14SH), and 1-
hexadecanethiol (C16SH) were obtained from Sigma-Aldrich
and purified by column cromatography (silica, hexane) with the
excaption of OPE1 which was used as received. The synthesis
of OPE2, OPE3, diSAc-OPE2, diSAc-OPE3, and diSAc-
OPE4 is described elsewhere.42 All compounds were stored in
nitrogen-flushed vials and in the dark. Their structures were
verified by acquiring 1H NMR and IR spectra immediately prior
to use and comparing them with the spectra acquired
immediately after purification. OPE4 was prepared starting
from 1-ethynyl-4-((4-(phenylethynyl)phenyl)ethynyl)benzene
as described in the Supporting Information.

SAM Formation. SAMs of the OPE series compounds were
formed by incubating the thioacetate precursors with 1 × 1 cm2
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template-stripped Au surfaces (100 nm-thick) overnight in 3
mL of 50 μM solution of the respective compound in freshly
distilled toluene followed by addition of 0.05 mL of 17 mM
diazabicycloundec-7-ene (DBU) solution in toluene 1 h prior
to the measurement. The substrates were then rinsed with
ethanol and left to dry for 15 min. This procedure was used for
both mono- and di-SAc terminated OPEs and performed in the
flowbox controlled environment. SAMs of alkanethiols on AgTS

(200 nm thick, 1 × 1 cm2 surface) were grown from 3 mM
solutions of the respective alkanethiol in degassed EtOH
overnight; they were then rinsed and dried as previously
described. More information can be found in the Supporting
Information. Sample preparation and handling were performed
in a nitrogen flowbox with a controlled O2 level between 1%
and 3% (some O2 is necessary to form tips of EGaIn) and
humidity below 10%, in the case of the OPE series, both mono-
SAc and di-SAc, and the alkanethiol series measured in the low-
O2 environment.
EGaIn J−V Measurement. EGaIn measurements were

carried on two identical setups, one positioned on a laboratory
bench (ambient conditions) and one positioned in the flowbox
described above. The details of the EGaIn setup are described
elsewhere.38 For each compound, 3−4 substrates were
prepared, and at least 15 AuTS/SAM//Ga2O3/EGaIn junctions
per sample were measured (10 scans from 0 V → 1 V → −1 V
→ 0 V, steps of 0.05 V) for a total of at least 450 traces per
SAM for the OPE series and at least 100 for the alkanethiols. A
new EGaIn tip was prepared every 5−8 junctions and flattened
by gently pushing it on a Si wafer a few times according to the
procedure reported by Simeone et al.25

J−V Data Processing. Data were acquired as described and
then parsed in a “hands-off” manner using Scientific Python to
produce histograms of J for each value of V and the associated
Gaussian fits (using a least-squares fitting routine). The
confidence intervals for μlogJ (Gaussian mean) depicted as
error bars in the J−V plots were calculated using α = 0.95 from
σlogJ (standard deviation) taken from Gaussian fits and a
number of degrees of freedom equal to the number of junctions
− 1. The number of traces used for the statistical analysis can
be found in the Supporting Information.
Ellipsometry. The SAMs were characterized by ellipsom-

etry. These measurements were acquired on fresh samples in air
on a V-Vase Rotating Analyzer equipped with a HS-190
monochromator ellipsometer and calculated via a two-layer
model consisting of a bottom Au layer, for which optical
constants were calculated from freshly prepared template-
stripped Au surfaces, and a Cauchy layer with a chosen value of
n = 1.5 and k = 0 at all wavelengths (A = 1.5, B = C = 0).21
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