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Optimal power dispatch in networks of high-dimensional models of
synchronous machines

Tjerk Stegink and Claudio De Persis and Arjan van der Schaft

Abstract— This paper investigates the problem of optimal
frequency regulation of multi-machine power networks where
each synchronous machine is described by a sixth order model.
By analyzing the physical energy stored in the network and
the generators, a port-Hamiltonian representation of the multi-
machine system is obtained. Moreover, it is shown that the
open-loop system is passive with respect to its steady states
which allows the construction of passive controllers to control
the multi-machine network. As a special case, a distributed
consensus based controller is designed that regulates the fre-
quency and minimizes a global quadratic generation cost in
the presence of a constant unknown demand. In addition, the
proposed controller allows freedom in choosing any desired
connected undirected weighted communication graph.

I. INTRODUCTION

The control of power networks has become increasingly
challenging over the last decades. As renewable energy
sources penetrate the grid, the conventional power plants
have more difficulty in keeping the frequency around the
nominal value, e.g. 50 Hz, leading to an increased chance of
a network failure or even a blackout.

The current developments require a better understanding
of more advanced models for the power network as the
grid is operating more often near its capacity constraints.
Considering high-order models of, for example, synchronous
machines, that better approximate the reality allows us to es-
tablish results on the control and stability of power networks
that are more reliable and accurate.

At the same time, incorporating economic considerations
in the power grid has become more difficult. As the scale of
the grid expands, computing the optimal power production
allocation in a centralized manner as conventionally is done
is computationally expensive, making distributed control far
more desirable compared to centralized control. In addition,
often exact knowledge of the power demand is required for
computing the optimal power dispatch, which is unrealistic
in practical applications. As a result, there is an increased
desire for distributed real-time controllers which are able to
compensate for the uncertainty of the demand.

In this paper, we propose an energy-based approach for the
modeling, analysis and control of the power grid, both for
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the physical network as well as for the distributed controller
design. Since energy is the main quantity of interest, the port-
Hamiltonian framework is a natural approach to deal with the
problem. Moreover, the port-Hamiltonian framework lends
itself to deal with complex large-scale nonlinear systems like
power networks [5], [13], [14].

The emphasis in the present paper lies on the modeling and
control of (networked) synchronous machines as they play an
important role in the power network since they are the most
flexible and have to compensate for the increased fluctuation
of power supply and demand. However, the full-order model
of the synchronous machine as derived in many power
engineering books like [2], [6], [8] is difficult to analyze,
see e.g. [5] for a port-Hamiltonian approach, especially when
considering multi-machine networks [4], [9]. Moreover, it is
not necessary to consider the full-order model when studying
electromechanical dynamics [8].

On the other hand of the spectrum, many of the recent op-
timal controllers in power grids that deal with optimal power
dispatch problems rely on the second-order (non)linear swing
equations as the model for the power network [7], [11],
[12], [18], [19], or the third-order model as e.g. in [16].
However, the swing equations are inaccurate and only valid
on a limited time interval up to the order of a few seconds
so that asymptotic stability results are often invalid for the
actual system [2], [6], [8].

Hence, it is appropriate to make simplifying assumptions
for the full-order model and to focus on multi-machine
models with intermediate complexity which provide a more
accurate description of the network compared to the second-
and third-order models [2], [6], [8]. However, for the re-
sulting intermediate-order multi-machine models the stability
analysis is often carried out for the linearized system, see
[1], [6], [8]. Consequently, the stability results are only valid
around a specific operating point.

Our approach is different as the nonlinear nature of the
power network is preserved. More specifically, in this paper
we consider a nonlinear sixth-order reduced model of the
synchronous machine that enables a quite accurate descrip-
tion of the power network while allowing us to perform a
rigorous analysis.

In particular, we show that the port-Hamiltonian frame-
work is very convenient when representing the dynamics
of the multi-machine network and for the stability analysis.
Based on the physical energy stored in the generators and
the transmission lines, a port-Hamiltonian representation of
the multi-machine power network can be derived. More
specifically, while the system dynamics is complex, the in-



terconnection and damping structure of the port-Hamiltonian
system is sparse and, importantly, state-independent.

The latter property implies shifted passivity of the system
[17] which respect to its steady states which allows the
usage of passive controllers that steer the system to a desired
steady state. As a specific case, we design a distributed real-
time controller that regulates the frequency and minimizes
the global generation cost without requiring any informa-
tion about the unknown demand. In addition, the proposed
controller design allows us to choose any desired undirected
weighted communication graph as long as the underlying
topology is connected.

The main contribution of this paper is to combine dis-
tributed optimal frequency controllers with a high-order
nonlinear model of the power network, which is much more
accurate compared to the existing literature, and to prove
asymptotic stability to the set of optimal points by using
Lyapunov function based techniques.

The rest of the paper is organized as follows. In Section
II the preliminaries are stated and a sixth order model of
a single synchronous machine is given. Next, the multi-
machine model is derived in Section III. Then the energy
functions of the system are derived in Section IV, which
are used to represent the multi-machine system in port-
Hamiltonian form, see Section V. In Section VI the design of
the distributed controller is given and asymptotic stability to
the set of optimal points is proven. Finally, the conclusions
and the possibilities for future research are discussed in
Section VII.

II. PRELIMINARIES

Consider a power grid consisting of n buses. The network
is represented by a connected and undirected graph G =
(V, E), where the set of nodes, V = {1, ..., n}, is the set of
buses and the set of edges, E = {1, ...,m} ⊂ V × V , is the
set of transmission lines connecting the buses. The ends of
edge l ∈ E are arbitrary labeled with a ‘+’ and a ‘-’, so that
the incidence matrix D of the network is given by

Dil =


+1 if i is the positive end of l
−1 if i is the negative end of l
0 otherwise.

(1)

Each bus represents a synchronous machine and is as-
sumed to have controllable mechanical power injection and
a constant unknown power load. The dynamics of each
synchronous machine i ∈ V is assumed to be given by [8]

Miω̇i = Pmi − Pdi − VdiIdi − VqiIqi
δ̇i = ωi

T ′diĖ
′
qi = Efi − E′qi + (Xdi −X ′di)Idi

T ′qiĖ
′
di = −E′di − (Xqi −X ′qi)Iqi

T ′′diĖ
′′
qi = E′qi − E′′qi + (X ′di −X ′′di)Idi

T ′′qiĖ
′′
di = E′di − E′′di − (X ′qi −X ′′qi)Iqi,

(2)

see also Table I.

δi rotor angle w.r.t. synchronous reference frame
ωi frequency deviation
Pmi mechanical power injection
Pdi power demand
Mi moment of inertia
Xqi, Xdi synchronous reactances
X′qi, X

′
di transient reactances

X′′di, X
′′
qi subtransient reactances

Efi exciter emf/voltage
E′qi, E

′
di internal bus transient emfs/voltages

E′′qi, E
′′
di internal bus subtransient emfs/voltages

Vqi, Edi external bus voltages
Iqi, Idi generator currents
T ′qi, T

′
di open-loop transient time-scales

T ′′qi, T
′′
di open-loop subtransient time-scales

TABLE I: Model parameters and variables.

Assumption 1: When using model (2), we make the fol-
lowing simplifying assumptions [8]:
• The frequency of each machine is operating around the

synchronous frequency.
• The stator winding resistances are zero.
• The excitation voltage Efi is constant for all i ∈ V .
• The subtransient saliency is negligible, i.e. X ′′di =
X ′′qi,∀i ∈ V .

The latter assumption is valid for synchronous machines with
damper windings in both the d and q axes, which is the case
for most synchronous machines [8].

Remark 1: The effects of the damper windings is explic-
itly governed by the last two equations of (2). Consequently,
there is no asynchronous damping term appearing in the fre-
quency dynamics of the model (2), contrary to the classical
swing equations.
It is standard in the power system literature to represent
the equivalent synchronous machine circuits along the dq-
axes as in Figure 1, [6], [8]. Here we use the conventional
phasor notation E

′′
i = E

′′
qi + E

′′
di = E′′qi + jE′′di where

E
′′
qi := E′′qi, E

′′
di := jE′′di, j :=

√
−1, and the phasors Ii, V i

are defined likewise [8], [10]. Remark that internal voltages
E′q, E

′
d, E

′′
q , E

′′
d as depicted in Figure 1 are not necessarily

at steady state but are governed by (2), where it should be
noted that, by definition, the reactances of a round rotor
synchronous machine satisfy Xdi > X ′di > X ′′di > 0, Xqi >
X ′qi > X ′′qi > 0 for all i ∈ V [6], [8].

By Assumption 1 the stator winding resistances are neg-
ligible so that synchronous machine i can be represented
by a subtransient emf behind a subtransient reactance, see
Figure 2 [6], [8]. As illustrated in this figure, the internal
and external voltages are related to each other by [8]

E
′′
i = V i + jX ′′diIi, i ∈ V. (3)

III. MULTI-MACHINE MODEL
Consider n synchronous machines which are intercon-

nected by RL-transmission lines and assume that the network
is operating at steady state. As the currents and voltages of
each synchronous machine is expressed w.r.t. its local dq-
reference frame, the network equations are written as [10]

I = diag(e−jδi)Y diag(ejδi)E
′′
. (4)



Ef

j(Xd −X ′d) j(X ′d −X ′′d ) jX ′′d
Id

E
′
q E

′′
qT ′′dT ′d

j(Xq −X ′q) j(X ′q −X ′′q ) jX ′′q
Iq

E
′
d E

′′
d

T ′′qT ′q

V q

V d

Fig. 1: Generator equivalent circuits for both dq-axes [8].
For aesthetic reasons the subscript i is dropped.

E
′′
i

jX ′′di
Ii

V i

Fig. 2: Subtransient emf behind a subtransient reactance.

Here the admittance matrix1 Y := D(R+jX)−1DT satisfies
Yik = −Gik − jBik and Yii = Gii + jBii =

∑
k∈Ni

Gik +
j
∑
k∈Ni

Bik where G denotes the conductance and B ∈
Rn×n≤0 denotes the susceptance of the network [10]. In
addition, Ni denotes the set of neighbors of node i.

Remark 2: As the electrical circuit depicted in Figure 2 is
in steady state (3), the reactance X ′′di can also be considered
as part of the network (an additional inductive line) and
is therefore implicitly included into the network admittance
matrix Y , see also Figure 3.

E
′′
i

jX ′′di jXT
I l

jX ′′dk

E
′′
kV i V k

Fig. 3: Interconnection of two synchronous machines by a
purely inductive transmission line with reactance XT .

To simplify the analysis further, we assume that the
network resistances are negligible so that G = 0. By equating
the real and imaginary part of (4) we obtain the following

1Recall that D is the incidence matrix of the network defined by (1).

expressions for the dq-currents entering generator i ∈ V:

Idi = BiiE
′′
qi −

∑
k∈Ni

[
Bik(E′′dk sin δik + E′′qk cos δik)

]
,

Iqi = −BiiE′′di −
∑
k∈Ni

[
Bik(E′′qk sin δik − E′′dk cos δik)

]
,

(5)
where δik := δi − δk. By substituting (5) and (3) into (2)
we obtain after some rewriting a sixth-order multi-machine
model given by equation (6), illustrated at the top of the next
page.

Remark 3: Since the transmission lines are purely in-
ductive by assumption, there are no energy losses in the
transmission lines implying that the following energy conser-
vation law holds:

∑
i∈V Pei = 0 where Pei = Re(EiI

∗
i ) =

E′′diIdi + E′′qiIqi is the electrical power produced by syn-
chronous machine i.

IV. ENERGY FUNCTIONS

When analyzing the stability of the multi-machine system
one often searches for a suitable Lyapunov function. A
natural starting point is to consider the physical energy as a
candidate Lyapunov function. Moreover, when we have an
expression for the energy, a port-Hamiltonian representation
of the associated multi-machine model (6) can be derived,
see Section V.

Remark 4: It is convenient in the definition of the Hamil-
tonian to multiply the energy stored in the synchronous
machine and the transmission lines by the synchronous
frequency ωs since a factor ω−1s appears in each of the energy
functions. As a result, the Hamiltonian has the dimension of
power instead of energy. Nevertheless, we still refer to the
Hamiltonian as the energy function in the sequel.

In the remainder of this section we will first identify the
electrical and mechanical energy stored in each synchronous
machine. Next, we identify the energy stored in the trans-
mission lines.

A. Synchronous Machine

1) Electrical Energy: Note that, at steady state, the energy
(see Remark 4) stored in the first two reactances2 of generator
i as illustrated in Figure 1 is given by

Hedi =
1

2

(
(E′qi − Efi)2

Xdi −X ′di
+

(E′qi − E′′qi)2

X ′di −X ′′di

)

Heqi =
1

2

(
(E′di)

2

Xqi −X ′qi
+

(E′di − E′′di)2

X ′qi −X ′′qi

)
.

(7)

Remark 5: The energy stored in the third (subtransient)
reactance will be considered as part of the energy stored in
the transmission lines, see also Remark 2 and Section IV-B.

2In both the d- and the q-axes.



Mi∆ω̇i = Pmi − Pdi +
∑
k∈Ni

Bik

[
(E′′diE

′′
dk + E′′qiE

′′
qk) sin δik + (E′′diE

′′
qk − E′′qiE′′dk) cos δik

]
δ̇i = ∆ωi

T ′diĖ
′
qi = Efi − E′qi + (Xdi −X ′di)(BiiE′′qi −

∑
k∈Ni

[
Bik(E′′dk sin δik + E′′qk cos δik)

]
)

T ′qiĖ
′
di = −E′di + (Xqi −X ′qi)(BiiE′′di −

∑
k∈Ni

[
Bik(E′′dk cos δik − E′′qk sin δik)

]
)

T ′′diĖ
′′
qi = E′qi − E′′qi + (X ′di −X ′′di)(BiiE′′qi −

∑
k∈Ni

[
Bik(E′′dk sin δik + E′′qk cos δik)

]
)

T ′′qiĖ
′′
di = E′di − E′′di + (X ′qi −X ′′qi)(BiiE′′di −

∑
k∈Ni

[
Bik(E′′dk cos δik − E′′qk sin δik)

]
)

(6)

2) Mechanical Energy: The kinetic energy of syn-
chronous machine i is given by

Hmi =
1

2
Miω

2
i =

1

2
M−1i p2i ,

where pi = Miωi is the angular momentum of synchronous
machine i with respect to the synchronous rotating reference
frame.

B. Inductive Transmission Lines

Consider an interconnection between two synchronous
machines with a purely inductive transmission line (with
reactance XT ) at steady state, see Figure 3. When expressed
in the local dq-reference frame of generator i, we observe
from Figure 3 that at steady state one obtains3

jXlI l = E
′′
i − e−jδikE

′′
k , (8)

where the total reactance between the internal buses of
generator i and k is given by Xl := X ′′di + XT + X ′′dk.
Note that at steady state the modified energy of the inductive
transmission line l between nodes i and k is given by
Hl = 1

2XlI
∗
l I l, which by (8) can be rewritten as

Hl = −1

2
Bik

(
2
(
E′′diE

′′
qk − E′′dkE′′qi

)
sin δik

−2
(
E′′diE

′′
dk + E′′qiE

′′
qk

)
cos δik

+E′′2di + E′′2dk + E′′2qi + E′′2qk

)
,

(9)

where the line susceptance satisfies Bik = − 1
Xl

< 0 [10].

C. Total Energy

The total physical energy of the multi-machine system is
equal to the sum of the individual energy functions:

H =
∑
i∈V

(Hedi +Heqi +Hmi) +
∑
l∈E

Hl. (10)

V. PORT-HAMILTONIAN REPRESENTATION
Using the energy functions from the previous section, the

multi-machine model (6) can be put into a port-Hamiltonian
form. To this end, we derive expressions for the gradient of
each energy function.

3The mapping from dq-reference frame k to dq-reference frame i in the
phasor domain is done by multiplication of e−jδik [10].

A. Transmission Line Energy

Recall that the energy stored in transmission line l between
internal buses i and k is given by (9). It can be verified that
the gradient of the total energy HL :=

∑
l∈E Hl stored in

the transmission lines takes the form
∂HL

∂δi
∂HL

∂E′′qi
∂HL

∂E′′di

 =

E′′diIdi + E′′qiIqi
−Idi
Iqi

 =

 Pei−Idi
Iqi

 ,
where Idi, Iqi are given by (5). Here it is used that the self-
susceptances satisfy Bii =

∑
k∈Ni

Bik for all i ∈ V .
1) State transformation: In the sequel, it is more con-

venient to consider a different set of variable describing
the voltage angle differences. Define for each edge l ∈ E
ηl := δik where i, k are respectively the positive and negative
ends of l. In vector form we obtain η = DT δ ∈ Rm, and
observe that this implies D ∂H

∂η = D ∂HL

∂η = Pe.

B. Electrical Energy of the Synchronous Generator

Further, notice that the electrical energy stored in the
equivalent circuits along the d- and q-axis of generator i
is given by (7) and satisfies[

Xdi −X ′di Xdi −X ′di
0 X ′di −X ′′di

] [∂Hedi

∂E′qi
∂Hedi

∂E′′qi

]
=

[
E′qi − Efi
E′′qi − E′qi

]
[
Xqi −X ′qi Xqi −X ′qi

0 X ′qi −X ′′qi

][∂Heqi

∂E′di
∂Heqi

∂E′′di

]
=

[
E′di

E′′di − E′di

]
.

By the previous observations, and by aggregating the states,
the dynamics of the multi-machine system can now be
written in the form (11), see next page, where the Hamil-
tonian is given by (10) and X̂di := Xdi − X ′di, X̂

′
di :=

X ′di−X ′′di, X̂d = diagi∈V{X̂di} and X̂ ′d, X̂q, X̂
′
q are defined

likewise. In addition, T ′d = diagi∈V{T ′di} and T ′d, Tq, T
′
q

are defined similarly. Observe that the multi-machine system
(11) is of the form

ẋ = (J −R)∇H(x) + gu

y = gT∇H(x)
(12)

where J = −JT , R = RT are respectively the anti-
symmetric and symmetric part of the matrix depicted in (11).



ẋ =



ṗ
η̇

Ė′q
Ė′d
Ė′′q
Ė′′d

 =



0 −D 0 0 0 0
DT 0 0 0 0 0

0 0 −(T ′d)
−1X̂d 0 −(T ′d)

−1X̂d 0

0 0 0 −(T ′q)
−1X̂q 0 −(T ′q)

−1X̂q

0 0 0 0 −(T ′′d )−1X̂ ′d 0

0 0 0 0 0 −(T ′′q )−1X̂ ′q

∇H + g(Pm − Pd),

y = gT∇H= M−1p = ω, g =
[
I 0 0 0 0 0

]T
.

(11)

Notice that the dissipation matrix of the electrical part is
positive definite (which implies R ≥ 0) if2

Xdi−X′di
T ′di

Xdi−X′di
T ′di

Xdi−X′di
T ′di

2
X′di−X

′′
di

T ′′di

 > 0, ∀i ∈ V,

which, by invoking the Schur complement, holds if and only
if

4(X ′di −X ′′di)T ′di − (Xdi −X ′di)T ′′di > 0, ∀i ∈ V. (13)

Note that a similar condition holds for the q-axis.
Proposition 1: Suppose that for all i ∈ V the following

holds:
4(X ′di −X ′′di)T ′di − (Xdi −X ′di)T ′′di > 0

4(X ′qi −X ′′qi)T ′qi − (Xqi −X ′qi)T ′′qi > 0.
(14)

Then (11) is a port-Hamiltonian representation of the multi-
machine network (6).

It should be stressed that (14) is not a restrictive assump-
tion since T ′′di � T ′di, T

′′
qi � T ′qi for a typical generator, see

also Table 4.2 of [6] and Table 4.3 of [8].
Because the interconnection and damping structure J −R

of (11) is state-independent, the shifted Hamiltonian

H̄(x) = H(x)− (x− x̄)T∇H(x̄)−H(x̄) (15)

acts as a local storage function for proving passivity in a
neighborhood of a steady state x̄ of (12), provided that the
Hessian of H evaluated at x̄ (denoted as ∇2H(x̄)) is positive
definite4.

Proposition 2: Let ū be a constant input and suppose
there exists a corresponding steady state x̄ to (12) such
that ∇2H(x̄) > 0. Then the system (12) is passive in a
neighborhood of x̄ with respect to the shifted external port-
variables ũ := u− ū, ỹ := y − ȳ where ȳ := gT∇H(x̄).

Proof: Define the shifted Hamiltonian by (15), then we
obtain
ẋ = (J −R)∇H(x) + gu

= (J −R)(∇H̄(x) +∇H(x̄)) + gu

= (J −R)∇H̄(x) + g(u− ū)

= (J −R)∇H̄(x) + gũ

ỹ = y − ȳ = gT (∇H(x)−∇H(x̄)) = gT∇H̄(x).

(16)

As ∇2H(x̄) > 0 we have that H̄(x̄) = 0 and H̄(x) > 0
for all x 6= x̄ in a sufficiently small neighborhood around x̄.
Hence, by (16) the passivity property automatically follows
where H̄ acts as a local storage function.

4Observe that ∇2H(x) = ∇2H̄(x) for all x.

VI. MINIMIZING GENERATION COSTS

The objective is to minimize the total quadratic generation
cost while achieving zero frequency deviation. By analyzing
the steady states of (6), it follows that a necessary condition
for zero frequency deviation is 1TPm = 1TPd, i.e., the total
supply must match the total demand. Therefore, consider the
following convex minimization problem:

min
Pm

1

2
PTmQPm

s.t. 1TPm = 1TPd,
(17)

where Q = QT > 0 and Pd is a constant unknown power
load.

Remark 6: Note that that minimization problem (17) is
easily extended to quadratic cost functions of the form
1
2P

T
mQPm + bTPm for some b ∈ Rn. Due to space limi-

tations, this extension is omitted.
As the minimization problem (17) is convex, it follows

that Pm is an optimal solution if and only if the Karush-
Kuhn-Tucker conditions are satisfied [3]. Hence, the optimal
points of (17) are characterized by

P ∗m = Q−11λ∗, λ∗ =
1TPd

1TQ−11
(18)

Next, based on the design of [16], consider a distributed
controller of the form

T θ̇ = −Lcθ −Q−1ω
Pm = Q−1θ −Kω

(19)

where T = diagi∈V{Ti} > 0,K = diagi∈V{ki} > 0 are
controller parameters and θ ∈ Rn is the controller variable.
In addition, Lc is the Laplacian matrix of some connected
undirected weighted communication graph.

The controller (19) consists of three parts. Firstly, the term
−Kω corresponds to a primary controller and adds damping
into the system. The term −Q−1ω corresponds to secondary
control for guaranteeing zero frequency deviation on longer
time-scales. Finally, the term −Lcθ corresponds to tertiary
control for achieving optimal production allocation over the
network.

Note that (19) admits the port-Hamiltonian representation

ϑ̇ = −Lc∇Hc −Q−1ω

Pm = Q−1∇Hc −Kω, Hc =
1

2
ϑTT−1ϑ,

(20)



where ϑ := Tθ. By interconnecting the controller (20) with
(11), the closed-loop system amounts to[

ẋ

ϑ̇

]
=

[
J −R−RK GT

−G −Lc

]
∇He −

[
g
0

]
Pd

G =
[
Q−1 0 0 0 0 0

] (21)

where J −R is given as in (11), He := H +Hc, and RK =
blockdiag(0,K, 0, 0, 0, 0). Define the set of steady states of
(21) by Ω and observe that any xe := (x, ϑ) ∈ Ω satisfies
the optimality conditions (18) and ω = 0.

Assumption 2: Ω 6= ∅ and there exists x̄e ∈ Ω such that
∇2He(x̄e) > 0.

Remark 7: While the Hessian condition of Assumption
2 is required for proving local asymptotic stability of (21),
guaranteeing that this condition holds can be bothersome.
However, while we omit the details, it can be shown that
∇2He(x̄e) > 0 if
• the generator reactances are small compared to the

transmission line reactances.
• the subtransient voltage differences are small.
• the rotor angle differences are small.
Theorem 1: Suppose Pd is constant and there exists x̄e ∈

Ω such that Assumption 2 is satisfied. Then the trajectories of
the closed-loop system (21) initialized in a sufficiently small
neighborhood around x̄e converge to the set of optimal points
Ω.

Proof: Observe by (16) that the shifted Hamiltonian
defined by (15) satisfies

˙̄He = −(∇H̄e)
T blockdiag(R+RK , Lc)∇H̄e ≤ 0

where equality holds if and only if ω = 0, T−1ϑ = θ = 1θ∗

for some θ∗ ∈ R, and ∇EH̄e(xe) = ∇EHe(xe) = 0. Here
∇EHe(xe) is the gradient of He with respect to the internal
voltages E′q, E

′
d, E

′′
q , E

′′
d . By Assumption 2 there exists a

compact neighborhood Υ around x̄e which is forward invari-
ant. By invoking LaSalle’s invariance principle, trajectories
initialized in Υ converge to the largest invariant set where
˙̄He = 0. On this set ω, η, θ, E′q, E

′
d, E

′′
q , E

′′
d are constant and,

more specifically, ω = 0, θ = 1λ∗ = 1 1TPd

1TQ−11
corresponds

to an optimal point of (17) as Pm = Q−11λ∗ where λ∗

is defined in (18). We conclude that the trajectories of the
closed-loop system (21) initialized in a sufficiently small
neighborhood around x̄e converge to the set of optimal points
Ω.

VII. CONCLUSIONS

We have shown that a much more advanced multi-machine
model than conventionally used can be analyzed using the
port-Hamiltonian framework. Based on the energy functions
of the system, a port-Hamiltonian representation of the
model is obtained. Moreover, the system is proven to be
incrementally passive which allows the use of a passive
controller that regulates the frequency in an optimal manner,
even in the presence of an unknown constant demand.

The results established in this paper can be extended in
many possible ways. Current research has shown that the

third, fourth and fifth order model as given in [8] admit a
similar port-Hamiltonian structure as (11). It is expected that
the same controller as designed in this paper (or other passive
optimal controllers as considered in our previous work [13],
[14], [15]) can also be used in these lower order models.

While the focus in this paper is about (optimal) frequency
regulation, further effort is required to investigate the possi-
bilities of (optimal) voltage control using passive controllers.
Another extension is to consider the case where inverters and
frequency dependent loads are included into the network as
well. Finally, one could look at the possibility to include
transmission line resistances in the network.
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