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Stabilization of a planar slow-fast system at a non-hyperbolic point

H. Jardón-Kojakhmetov1 and Jacquelien M.A. Scherpen1

Abstract— In this document we study the stabilization prob-
lem of a planar slow-fast system at a non-hyperbolic point.
At these type of points, the classical theory of singular per-
turbations is not applicable and new techniques need to be
introduced in order to design a controller that stabilizes such
a point. We show that using geometric desingularization (also
known as blow up), it is possible to design, in a simple way,
controllers that stabilize non-hyperbolic equilibrium points of
slow-fast systems. Our results are exemplified on the van der
Pol oscillator.

I. INTRODUCTION

In this document we study the stabilization of a planar
slow-fast system at a non-hyperbolic point of its critical
manifold. By a slow-fast system (SFS), we mean a singularly
perturbed ordinary differential equation of the form

ẋ = f(x, z, ε)

εż = g(x, z, ε),
(1)

where x ∈ R, z ∈ R, and f and g are assumed to be C∞.
The parameter ε > 0 is assumed to be small, i.e., ε � 1.
Note that by this assumption z evolves much faster than x
and therefore we refer to z, resp. x, as the fast, resp. slow,
variable. For ε > 0 we can define a new time parameter τ
by τ = t/ε. With this new time (1) is rewritten as

x′ = εf(x, z, ε)

z′ = g(x, z, ε),
(2)

where now the prime denotes the derivative with respect to
the scaled time parameter τ . Note that for ε > 0 and f 6= 0,
the systems (1) and (2) are equivalent. In the limit ε → 0
we have that (1) and (2) become

ẋ = f(x, z, 0)

0 = g(x, z, 0),
(3)

and

x′ = 0

z′ = g(x, z, 0),
(4)

respectively. The system given by (3) is known as Differential
Algebraic Equation (DAE) (or also Constrained Differential
Equation (CDE) [24] ) while (4) is called the layer equation
[28]. Associated to these two systems, the following impor-
tant set is defined.

Definition 1: The critical manifold is defined by

S = {(x, z) ∈ Rm × Rn | g(x, z, 0) = 0} .
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Remark 1:
• In e.g. [1] it is proved that for generic maps g(x, z, 0),
S is indeed a smooth m-dimensional manifold.

• The critical manifold S serves as the phase space of
the DAE (3) and as the set of equilibrium points of the
layer equation (4).

Associated to the layer equation we now recall the defini-
tion of normal hyperbolicity.

Definition 2: Let Xε be an ε-parameter family of smooth
vector fields given by (2). Denote by S the set of equilibrium
points of X0. The manifold S is called normally hyperbolic
if each point of S is a hyperbolic equilibrium point of X0.

Remark 2: A hyperbolic point is also known as a singu-
larity of index-1 in the field of DAEs [6], [20].

In the context of SFSs, the importance of normal hyperbol-
icity is due to [5], [7], see also [11], [12]. Briefly put, if S0 ⊂
S is a compact, normally hyperbolic subset of S, then there
exists a manifold Sε (the slow manifold) which is invariant
under the flow of Xε. Moreover, Sε is diffeomorphic to S0,
lies within distance of order O(ε) from S0; and the flow of
(3) restricted to S0 provides a first approximation of the flow
of Xε along Sε. However, these conclusions are not valid
around non-normally hyperbolic points of S, and the analysis
of the corresponding dynamics is much more complicated
compared to the classical situation, see e.g. [4], [8], [17].

In the context of control theory, a lot of attention has been
given to problems of the form

ẋ = f(x, z, ε) + u(x, z, ε)

εż = g(x, z, ε) + v(x, z, ε),

where u and v are control functions and where the associated
critical manifold S, of the open-loop system, is normally
hyperbolic, see for example [13], [14]. Normal hyperbolicity
has been the key ingredient in order to design simplified
controllers in the slow and fast time scales, some examples
are given in [3], [15], [21], [23], [29]. Less attention has been
given to the situation where S is not normally hyperbolic,
especially in the nonlinear case. At non-hyperbolic points,
the dynamics of a certain system may change drastically via
jumps. This behavior is interesting as it is present in many
phenomena [2], [8], [16], [30], [22], [25], [26], [27], however
it is difficult to analyze.

In this document we investigate the stabilization problem
of a SFS with two novel features: 1) The stabilization prob-
lem is developed at a non-hyperbolic point; in other words,
we do not make the classical assumption that (1) satisfies
∂g
∂z (0) 6= 0. In this sense we give the first steps towards an
extension of the theory of singular perturbations in control
systems. 2) The critical manifold S (see Definition 1) is left
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invariant. In practical terms, this means that the controller
to be designed does not modify the overall behavior of the
system, like rapid transitions between stable states or the
dynamics along normally hyperbolic parts of the critical
manifold, see Section V.

II. SETTING OF THE PROBLEM

In the rest of this document we study the stabilization
problem at the origin of the planar SFS

x′ = ε(Ax+Bz + u(x, z, ε))

z′ = −(z2 + x).
(5)

where A ∈ R and B ∈ R. The motivation behind studying
(5) is that it is one of the simplest systems to have a
non-hyperbolic point (at the origin) but yet it has linear
slow dynamics. Note the absence of control signal in the
equation of z′. The associated critical manifold is given by
S =

{
(x, z) ∈ R2 |x = z2

}
. To avoid working with an ε-

family of vector fields as (5), it is customary [4], [19], [18]
to incorporate the trivial equation ε′ = 0 and then consider
the three-dimensional vector field

X :


x′ = ε(Ax+Bz + u(x, z, ε))

z′ = −(z2 + x)

ε′ = 0.

(6)

Note that the origin is a nilpotent singularity of (6).
Remark 3:
• Any compact subset S0 ⊂ S around the origin is not

normally hyperbolic.
• The control problem (6) has the important characteristic

of leaving the critical manifold S invariant. Note a
linear feedback v = −z could be proposed so that the
closed loop system is of the form

ẋ = Ax+Bz + u(x, z, ε)

εż = −(z2 − x)− z.

In this way the ‘closed-loop critical manifold’ would
be normally hyperbolic in a compact neighborhood of
the origin. Hence, classical techniques could be used
to design a controller u. However in such a case the
topological properties of the critical manifold are lost.
More precisely, a jump at the origin (due to non-
hyperbolicity) would disappear due to the action of the
controller. Therefore, we emphasize that a novelty of
our approach is to propose a controller that does not
change S.

• The main goal of our contribution is to extend the
theory of singular perturbations for control systems to
non-hyperbolic points. An important ingredient in this
process is the geometric desingularization technique,
see Section III-B.

III. PRELIMINARIES

In this section we present the open loop dynamics of the
problem of interest and point-out the main properties of the
geometric desingularization technique.

A. The open-loop dynamics

First of all, note that the slow manifold S is a parabola as
depicted in Figure 1.

x

z

Fig. 1: The critical manifold S =
{

(x, z) ∈ R2 |x = −z2
}

.
The origin is also called the fold point.

The corresponding DAE and layer equations related to (6),
for u = 0, are given by

ẋ = Ax+Bz

0 = −(z2 + x),
(7)

and
x′ = 0

z′ = −(z2 + x),
(8)

respectively.
Remark 4: Our analysis is of local nature. Therefore we

assume that A and B are suitably chosen constants such that
in a sufficiently large neighborhood U of the origin, the fold
point (x, y) = (0, 0) is the only singularity of the vector field
x′ = Ax+Bz.

By a simple analysis it can be shown that the local phase
portraits (in a small neighborhood of the origin) of (7) and
(8) are as depicted in Figure 2.

B. Geometric desingularization

In order to design the controller u of (6) we propose
to use the geometric desingularization or blow up method.
This technique was introduced in the context of SFSs in [4]
(see also [18]). However, to the authors’ best knowledge,
geometric desingularization has not been used to design
controllers of singularly perturbed control systems around
non-hyperbolic points before.

Briefly speaking, geometric desingularization is a well
suited change of coordinates under which the non-hyperbolic
singularity (the fold point) of (6) is simplified. By this
we mean that after the coordinate transformation, the new
singularities of the induced vector field are hyperbolic or
semi-hyperbolic. Such a change of coordinates is of the form

x = rα1 x̄, z = rα2 z̄, ε = rα3 ε̄, (9)

where (x̄, z̄, ε̄) ∈ S2 and r ∈ [0,∞), and where α1, α2, α3

are suitable positive integers depending on the vector field.
Since we have assumed that ε > 0, we may also assume
that ε̄ ∈ [0,∞). Let Φ : S2 × [0,∞) → R3 denote the
blow up map (9). Note that Φ maps the the sphere S2×{0}
to the origin of R3. Moreover, the map Φ induces a vector
field X̃ defined by Φ∗X̃ = X (where X is given by (6)). It
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x

z

(a) Phase portrait of (7) for
B < 0

x

z

(b) Phase portrait of (7) for
B > 0

x

z

(c) Phase portrait of (8).

Fig. 2: Phase portraits of (7) and (8) in a sufficiently small
neighborhood of the origin.

may happen that X̃ is degenerate along S2 × {0} in which
case one defines a new vector field X̄ by X̄ = 1/rmX̃ for a
suitable integer m such that X̄ is not degenerate at S2×{0}.
In this way, the dynamics of X̃ and X̄ are equivalent outside
S2 × {0} and thus it is equally useful to study X̄ . One then
obtains a complete description of the dynamics of X around
the origin by studying X̄ around S2 × [0, r0) for r0 > 0.

When studying SFSs of dimensions greater than 2 it is
more convenient to use charts [2], [4], [8], [17], [18]. A
chart is a parametrization of distinct hemispheres of S2 ×
[0, r0). More precisely in our particular problem, the charts
are defined by

K±x̄ = {x̄ = ±1} , K±z̄ = {z̄ = ±1} ,
Kε̄ = {ε̄ = 1} .

We show in the following section that a controller designed
for the blown up vector field X̄ induces a controller for X .
Moreover, the closed-loop characteristics of X̄ are carried
over X .

IV. CONTROLLER DESIGN VIA GEOMETRIC
DESINGULARIZATION

For the specific problem given by (6), the blow up map
reads as

x = r2x̄, z = rz̄, ε = r3ε̄. (10)

Next, the most important chart to consider is Kε̄ since in this
chart we desingularize the singular behavior induced by the
parameter ε. Moreover, the dynamics in Kε̄ are equivalent
to the dynamics of (10) in a small neighborhood Uε of the
origin of size O(ε2/3)×O(ε1/3).

Remark 5: The analysis of the remaining charts (K±x̄ and
K±z̄) is non-trivial and may provide insightful information
on the dynamics of (6) near the origin.

A. Analysis in the chart Kε̄

In this chart the blow up map is given by

x = r2x̄, z = rz̄, ε = r3. (11)

The corresponding blown up vector field X̄ reads as

X̄ :


r′ = 0

x̄′ = Ar2x̄+Brz̄ + ū(x̄, z̄, r)

z̄′ = −(z̄2 + x̄),

(12)

which is obtained after rescaling time by a factor of r and
where the prime denotes time derivative with respect to this
re-scaled time. Furthermore, ū denotes the transformation
of u under the blow up map (11) that is ū(x̄, z̄, r) =
u(r2x̄, rz̄, r3).

Theorem 1: Consider the ‘blown up’ control problem
(12). Let the controller ū be given by ū = −Ar2x̄−Brz̄ +
αx̄ + βz̄ with α < 0, β > 0. Then, the origin is a locally
asymptotically stable equilibrium point of the closed-loop
system.

Proof: The closed loop dynamics of (12) given by the
controller ū = −Ar2x̄ − Brz̄ + αx̄ + βz̄ are uniform in r
and read as

X̄cl :


r′ = 0

x̄′ = αx̄+ βz̄

z̄′ = −(z̄2 + x̄).

(13)

It is easy to verify that the eigenvalues of the Jacobian

DX̄cl(0) are λ1,2 =
α±
√
α2−4β

2 . It follows from classical
stability arguments that α < 0, β > 0 are necessary and
sufficient conditions to make the origin locally asymptoti-
cally stable.

The controller designed in Theorem 1 provides necessary
and sufficient conditions for local asymptotic stability of the
origin. For didactic purposes let us choose α and β in such a
way that the origin has a pair of complex-conjugated stable
eigenvalues1. Thus, let us choose α < −K < 0, with K >
0, and α2 − 4β < −Q < 0 with Q > 0. Next, note that
the closed-loop system has another equilibrium point p′ =(
−
(
β
α

)2

, βα

)
. We want to place this secondary equilibrium

point sufficiently away from the origin and therefore let us
further choose β > −α, compare with Remark 4. The phase
portrait of (13) is shown in Figure 3.

B. Region of attraction

It is interesting to see the qualitative properties of the
region of attraction of the origin in the closed loop system
(13). For this we study the local properties of the equilibrium

point p′ =

(
−
(
β
α

)2

, βα

)
.

1The case where the origin has a pair of purely real stable eigenvalues is
completely similar to the one presented here.
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x̄

z̄

Fig. 3: Phase portrait of (13) for α = −1, β = 2 .

Proposition 1: The equilibrium point p′ is a saddle point

with eigenvalues λ1,2 =
−ρ±
√
ρ2+4β

2 , where ρ = 2β
α − α.

The stable (Es) and unstable (Eu) eigenspaces are given by

Es =

{[
v−

1

]}
, Eu =

{[
v+

1

]}
,

where v± = −α2 −
β
α ∓

√
4β2

α2 +α2

2 . Moreover we have 0 <
v+ < v−.

Proof: The result follows from standard linear analysis
at the equilibrium point p′ and the assumption that βα < −1.

It follows from Proposition 1 that there exist 1-
dimensional stable (W s(p′)) and unstable (Wu(p′)) invariant
manifolds intersecting at p′.

Let S̄ denote the manifold S̄ =
{
z̄2 + x̄ = 0

}
. We have

that W s(p′) intersects transversally S̄ as shown by the
following Lemma.

Lemma 1: Let s > 0 denote the slope of the tangent line
of the manifold S̄ at p′. Then 1

v− < s.
Proof: First, it is straightforward to show that the slope

s is given by s = − 1
2
α
β . On the other hand, the slope of

W s(p′) at p′ is 1
v− . Next, recall that β

α < −1 and note that

v− = −α
2
− β

α︸ ︷︷ ︸
>0

+

√
4β2

α2 + α2

2

=

√
α2

4
+
β2

α2
+ β +

√
α2

4
+
β2

α2
> −2

β

α
> 1.

The proof is concluded by noting that 1
v− < − 1

2
α
β = s.

From the results of this section it follows that the region
of attraction of the origin is bounded by the stable manifold
W s(p′) as shown in Figure 4.

C. The induced controller

From the blow up map (11), it follows that the correspond-
ing controller u obtained from ū is u = ū ◦Φ−1. Therefore,
due to Theorem 1, the induced controller in coordinates
(x, z, ε) is given by

u = −Ax−Bz + αε−2/3x+ βε−1/3z.

x̄

z̄

W s(p′)

p′

Fig. 4: Region of attraction of the closed-loop system X̄cl.

The rational powers in the controller are important and
depend on the blow up map (11). Note that εu is well defined
in the limit ε → 0. Moreover, the closed loop system (6)
reads as

X :


x′ = αε1/3x+ βε2/3z

z′ = −(z2 + x)

ε′ = 0.

(14)

The corresponding phase portrait of (14) is shown in Figure
5

Remark 6 (On Lyapunov functions): Even though we
used the direct Lyapunov Method to design the controller,
recall that Lyapunov functions are invariant under change
of coordinates. In fact, let X be a smooth vector field on a
manifold M and Φ : N →M a blow up map. Let X̄ be the
induced blown up vector field on N defined by Φ∗X̄ = X
(up to equivalence). Let W be a Lyapunov function for the
vector field X̄ . Let V = W ◦ Φ−1. Let ζ̄ and ζ be local
coordinates on the manifolds N and M respectively. By
definition, the Lyapunov function W satisfies
• W (ζ̄∗) = 0

• W (ζ̄) > 0, ∀ζ̄ ∈ Ū\ {0}
• W ′(ζ̄) ≤ 0, ∀ζ̄ ∈ Ū

where Ū is some neighborhood of ζ̄∗ = Φ−1(0). It follows
that
• V (0) = W ◦ Φ−1(0) = 0

x

z

Fig. 5: Phase portrait of (14) for α = −1, β = 2, ε = 0.05.
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• V (ζ) = W ◦ Φ−1(ζ) > 0, ∀ζ ∈ U\{0}
• V ′(ζ) = d

dt

(
W ◦ Φ−1(ζ)

)
≤ 0, ∀ζ ∈ U ,

where U is a neighborhood of 0 ∈M defined by U = Φ(Ū).
The last equality is true since the blow up map restricted to U
has positive definite Jacobian. Note that the same conclusion
holds for asymptotic stability, i.e., for W ′(ζ̄) < 0.

D. The induced region of attraction

Let us denote by Ū the region of attraction found in
Section IV-B, see Figure 4. Following the arguments of
Section IV-C we have that Ū is also mapped (via the blow-
up map (11)) to a region U of attraction in the original
coordinates (x, z), that is U = Φ(Ū). This induced region
depends on ε and has a well defined limit as ε → 0. Just
as in Section IV-B, it is bounded by the stable manifold of
the induced equilibrium point p = Φ(p′). The corresponding
region of attraction and its limit as ε → 0 are shown in
Figure 6.

Remark 7: The regions of attraction Ū and U are topo-
logically equivalent. Moreover, they are diffeomorphic for
ε > 0. The difference on their shape is due to the dependence
of U on ε.

V. APPLICATION: TRIGGER CONTROL OF THE VAN DER
POL OSCILLATOR

Let us consider the van der Pol oscillator given by

ẋ = z − a+ u

εż = −(z3 − z + x),
(15)

where a ∈ R is a parameter that defines the position of the
equilibrium point of the slow dynamics. For simplicity let
a = 0, in this way there is no equilibrium point along the
stable branch of the slow manifold S =

{
z3 − z + x = 0

}
.

In turn, there exists a unique stable limit cycle as shown in
Figure 7.

By using geometric desingularization we want to design a
controller that stabilizes one of the fold points, in particular

p = (x∗, z∗) =

((
4

27

)1/2

,

(
1

3

)1/2
)
.

Moreover, we shall provide a trigger signal that, together
with the controller, decides when the system oscillates.

x

z

W s(p)

p

x

z

Fig. 6: Left: Region of attraction U of the closed-loop system
(14). The point p is given by p = Φ(p′), compare with Figure
4. Right: limit of the region of attraction as ε→ 0

p

x

z

0 30
t [seconds]

x(t)

z(t)

Fig. 7: Left: Phase portrait of the open-loop dynamics of
(15). Right: Signals x(t) and z(t), the dashed line represents
the values of the fold point p.

Proposition 2: Consider the van der Pol oscillator (15).
The controller

u = −z + αε−2/3
(
x− (4/27)

1/2
)

+ βε−1/3
(
z − (1/3)

1/2
)
,

with α < 0 and β > 0 makes the fold point p locally
asymptotically stable.

Proof: The proof follows from the exposition of Section
IV, so let us provide only a sketch. The proof can be divided
in three steps: 1) Move the origin to the singular point
p = (x∗, z∗); in this way, the local system is of the form
studied above. 2) Design the controller following Section
IV. 3) Return to the original coordinates.

In Figure (8) we show a simulation of Proposition 2.
The controller u is applied at certain intervals to allow the
trajectories reach the equilibrium point. After a while the
controller is turned off to allow a rapid transition to the lower
stable branch of the critical manifold. Then the trajectories
converge again to the fold point p.

VI. CONCLUSIONS AND FINAL REMARKS

In this document we have studied the stabilization problem
of a planar SFS at a non-hyperbolic point. We have applied
the technique called geometric desingularization. Several
advantages are carried from this method:
• The control problem of a SFS at a non-hyperbolic point

(where classical techniques do not apply) is translated
to the control problem of a non linear vector field via
geometric desingularization.

• The local stability properties of the blown up system are
equivalent to those of the original (slow-fast) system.

• Although we have studied the planar case, it is evident
from our analysis that the results are immediately ap-
plicable to slow-fast control systems of the form

Xε :

{
x′ = ε(L(x, z) + u(x, z, ε))

z′ = −(z2 + x1),
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x(t)

z(t)

0 550
t [seconds]

0

1

tr
ig

ge
r

z(t) =
(
1
3

)1/2

x(t) =
(

4
27

)1/2

Fig. 8: Top and middle: the corresponding x(t) and z(t)
signals of (15). Bottom: the trigger signal for the controller
u. Note that when the controller is active, the trajectories
(x(t), z(t)) converge to the non-hyperbolic equilibrium point
p. However, when the controller is off, we allow a fast
transition towards the lower branch of S.

where x ∈ Rm, z ∈ R, L : Rm+1 → Rm is a linear
map and u : Rm+2 → Rm.

• The controller design is not only valid at non-hyperbolic
points but also within arbitrarily small neighborhoods of
such points.

• Remark 6 suggests that Lyapunov based controllers are
also applicable to SFS even at non-hyperbolic points,
see also [10].

• The analysis of more general slow-fast control systems
near non-hyperbolic points is an ongoing research topic.
A general treatment and results shall appear in [9].
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