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Abstract: Serotonin reuptake inhibitors (SRIs) are often prescribed during pregnancy. Previous
studies that found an increased risk of congenital anomalies, particularly congenital heart anomalies
(CHA), with SRI use during pregnancy have created concern among pregnant women and healthcare
professionals about the safety of these drugs. However, subsequent studies have reported conflicting
results on the association between CHA and SRI use during pregnancy. These discrepancies in
the risk estimates can potentially be explained by genetic differences among exposed individuals.
In this review, we explore the potential pharmacogenetic predictors involved in the pharmacokinetics
and mechanism of action of SRIs, and their relation to the risk of CHA. In general, the risk is
dependent on the maternal concentration of SRIs and the foetal serotonin level/effect, which can be
modulated by the alteration in the expression and/or function of the metabolic enzymes, transporter
proteins and serotonin receptors involved in the serotonin signalling of the foetal heart development.
Pharmacogenetics might be the key to understanding why some children exposed to SRIs develop a
congenital heart anomaly and others do not.

Keywords: congenital heart defects; heart abnormalities; antidepressive agents; teratogenesis;
serotonin reuptake inhibitors; drug-induced birth defects

1. Introduction

The use of antidepressants during pregnancy, particularly the use of selective serotonin reuptake
inhibitors (SSRIs), has increased globally over the last few decades with the percentage of pregnant
women users ranging between 1.2% and 6.2% up to 2005 [1–4]. SSRIs were considered to cause
fewer side effects compared to the first generation of antidepressants until 2005, when a warning
about the increased risk of foetal congenital heart anomalies (CHA) with SSRI use in pregnancy was
released by the US Food and Drug Administration. This warning was shown to cause a decline,
by 1.48 prescriptions per 1000 women per month, in the prescribing of SSRIs among pregnant women
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in the US and Canada between 2005 and 2007 [5]. Following this warning, many studies were carried
out to evaluate the risk of congenital anomalies in children exposed to SSRIs during the first trimester
of pregnancy. Most of these studies used data from healthcare monitoring systems and, while a large
number of studies were done, the results have been inconsistent. Some studies reported an association,
while other studies did not. With the emergence of genomic testing and personalized therapy, we now
have the opportunity to explore the pharmacogenetic parameters that may explain why some children
exposed to SSRIs develop a congenital heart anomaly and others do not.

This review presents our current knowledge about the associations between serotonin reuptake
inhibitors (SRIs) and CHA, about the pharmacogenetic predictors that are potentially involved in the
pharmacokinetics of SRIs during pregnancy and about the genetic predictors involved in the plausible
biological mechanisms linking CHA to SRIs exposure, taking into consideration maternal and foetal
factors. We use the classification of serotonin reuptake inhibitors (SRIs) because it includes SSRIs and
serotonin/noradrenaline reuptake inhibitors (i.e., venlafaxine and duloxetine), both of which are based
on the same mechanism of serotonin inhibition.

2. The Risk of Congenital Heart Anomalies (CHA) Associated with Maternal Use of Serotonin
Reuptake Inhibitors (SRIs) during the First Trimester of Pregnancy

To have an insight into the current knowledge about the association between maternal use
of SRIs during pregnancy and the risk of CHA, we performed a literature search for cohort and
case-control studies published between January 2005 and May 2015 using the PubMed database
(Figure S1). Among 27 articles that were selected for review, no consistent pattern has been observed
in the reported risk of CHA. A slight increase in risk was found, particularly for paroxetine, in a
number of studies in various countries (see Table S1) [6–22], but a number of other studies reported no
increased risk (see Table S2) [23–32]. The dose of SRIs may also be an important determinant of the
risk. A dose–effect relationship was observed for paroxetine in one study [21], but it was not replicated
in a subsequent study [33]. The results of a meta-analysis by Wurst and colleagues in 2010 indicate
an increased prevalence of cardiac malformations (odds ratio (OR) 1.46, 95% confidence interval
(CI) 1.17–1.82) after paroxetine use during the first trimester of pregnancy [34]. Another meta-analysis
by Grigoriadis and colleagues in 2013, using adjusted data and excluding studies below a specified
quality threshold, has also reported a significantly higher risk of cardiovascular malformations after
maternal paroxetine use (risk ratio (RR) = 1.43, 95% CI 1.08–1.88) [35]. Similar findings were also
reported in a meta-analysis performed by Myles and colleagues in 2013 (OR 1.44, 95% CI 1.12–1.86) [36].
The most recent meta-analysis, performed in 2015 including only prospective cohort studies, however,
found no association of first trimester exposure to overall SRIs with an increased risk of CHA [37].

Most studies are population-based, linking drug exposure data from prescription databases with
foetal outcome data from hospitals or birth defect registries. This approach has many limitations
because these cohorts were not designed to investigate the foetal outcome following exposure to
specific drugs [8,17,18,21,23–25,29,31]. Consequently, many confounding factors cannot be addressed,
and biases in exposure and outcome definitions have always been major considerations [38]. While
there are no perfect studies, each represents a different population and different risk factor assessments,
and the study designs have improved over the years. A recent Bayesian analysis by the National Birth
Defects Prevention Study (NBDPS), based on the results of previous population-based studies and
new NBDPS data, has reported that paroxetine and fluoxetine use during pregnancy were associated
with a higher risk of several subtypes of CHA [39]. Paroxetine was associated with atrial septal defects
(ASDs) with posterior OR 1.8, 95% credible interval (CrI) 1.1–3.0 and right ventricular outflow tract
obstruction defects (RVOTO) (posterior OR 2.4, 95% CrI 1.4–3.9). Fluoxetine was also associated
with RVOTO (posterior OR 2.0, 95% CrI 1.4–3.1) and ventricular septal defects (VSDs) (posterior
OR 1.4, 95% CrI 1.0–1.9). Although VSDs and ASDs are the most common subtypes of CHA (34% and
13%, respectively, of total CHA cases worldwide) [40], the absolute risk among children who were
exposed to both SSRIs may still be considered low.
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There are concerns among the patients who were taking these medications when they became
pregnant, but there is still no definite answer if SRIs increase the risk of CHA in offspring. Because
congenital heart anomalies are not common diseases (8/1000 live-borns babies), and the number of
cases exposed to SRIs is low, this inevitably leads to difficulties in obtaining a large enough sample
to prove an association. Patients’ worry about the risk may lead to noncompliance of SRIs among
pregnant women, which may potentially cause serious consequences for their therapeutic management.
The best practice at present is to assess the individual risk factors before prescribing SRIs to pregnant
women. Studies on the pharmacogenetics of SRIs can contribute to the understanding of the variability
in risk estimates of SRI-induced CHA, and may assist in identifying mothers who are at a higher risk
of having a child with CHA.

3. Pharmacogenetic Predictors of SRI Pharmacokinetics

During pregnancy, the pharmacokinetics (absorption, distribution, metabolism and excretion) of
SRIs are known to be altered because of the physiological changes associated with pregnancy. These
changes include increased total body water (including blood volume), reduced albumin concentration
(by up to 10 g/L and crucial for SRIs with high protein binding, e.g., fluoxetine, sertraline, paroxetine,
duloxetine), modulation of metabolic enzymes by pregnancy hormones and increased renal function
and drug clearance [41,42]. These physiological adaptations influence the level of SRIs in the maternal
circulation, and subsequently affect the amount transferred to the foetus (Figure 1).
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Figure 1. Factors influencing foetal drug exposure divided into factors in the maternal circulation,
placenta layer and foetal circulation: *, substances that induce or inhibit the activity of
enzymes/transporters, which may include pregnancy hormones and other drugs taken by the mother;
¥, important for serotonin reuptake inhibitors (SRIs) with high protein binding (e.g., fluoxetine,
paroxetine, sertraline); † molecular size, polarity, charge, and lipophilicity of the drug; GFR, glomerular
filtration rate; the double headed arrows indicate passive diffusion of drugs.

The passage and metabolism of SRIs supposedly occur through the yolk sac in the early stage
of the first trimester up until the placenta forms in the late stage of the first trimester. Unlike other
species, little is known about the transporters and binding proteins in the human yolk sac relevant for
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the availability and toxicity of chemicals to the embryo [43,44]. Nevertheless, drug transport in early
pregnancy is postulated to be affected by pH gradients and protein binding between maternal and
foetal compartments [44].

SRIs, with molecular weights around 300 g/mol, are able to cross the placenta, although the
amount transferred in the first trimester is difficult to measure. In term placenta, the mean ratio of
umbilical cord concentration to maternal serum concentration varies among SRIs depending on their
molecular weight and polarity. The highest ratio was found for venlafaxine (range 0.72–1.1) and
citalopram (0.71–0.83), followed by fluoxetine (0.64–0.73). The transfer of paroxetine and sertraline
across the placenta seemed to be much lower (0.15–0.54 and 0.29–0.33, respectively) [45–47]. However,
term data may not be representative of the first trimester of pregnancy.

3.1. Maternal Metabolic Enzymes

The most important enzymes in SRI metabolism are the cytochrome P450 (CYP) enzymes,
including CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 isoenzymes. These enzymes
are responsible for the inactivation of SRIs, and are mainly expressed in the maternal liver, with the
exception of CYP3A4, which is also expressed in the small intestine [48]. In the placenta, mRNAs
were found for CYP1A2, CYP2D6, CYP3A4, CYP3A5 and CYP3A7 in the first trimester, but their
protein expression and functionality was not widely characterized. Meanwhile, for CYP1A1, the
mRNA, protein and functional activity were detected during the first trimester, but not in subsequent
trimesters [49,50]. In term placenta samples, high expression and functional activity were detected for
CYP19A1, which is responsible for the conversion of androgens to oestrogens [51].

The metabolism of each SRI agent varies depending on its affinity towards the isoenzymes.
Fluoxetine, paroxetine, venlafaxine and duloxetine are metabolized to a major extent by CYP2D6, and
to a lesser extent by CYP1A2 (for duloxetine), CYP2C9 and CYP3A4 (for fluoxetine), and CYP2C19
and CYP3A4 (for venlafaxine) [52–55]. CYP2C19 is the major metabolic enzyme for citalopram and
escitalopram (CYP3A4 and CYP2D6 to a lesser extent); CYP3A4 for sertraline (CYP2B6, CYP2C9,
CYP2C19, CYP2D6 to a lesser extent); and CYP2D6, CYP1A2 and CYP3A4 for fluvoxamine [52,53,56].
Unlike other SRIs, fluoxetine is a prodrug that will be metabolized to an active enantiomer,
norfluoxetine, to promote pharmacological action. As for CYP19A1, there is no data found for
the metabolism of SRIs with this enzyme.

The knowledge of genetic variation of CYP enzymes has been used in practice for dose
modification of certain drugs [57–59]. The polymorphisms of CYP2C9, CYP2C19 and CYP2D6 are well
documented and cause changes in protein expression and function, leading to alterations in the plasma
level of substrate drugs that consequently affect the clinical efficacy and toxicity (Table 1). A dosing
guideline for SSRIs (paroxetine, fluvoxamine, citalopram, escitalopram and sertraline) for CYP2D6
and CYP2C19 genotypes was recently introduced [59] based on the results of numerous clinical and
association studies [48,60]. Our great concern is for mothers with single nucleotide polymorphisms
(SNP) leading to a poor metabolizer phenotype (i.e., CYP2D6*3/*4, *4/*4, *5/*5, *5/*6 or CYP2C19*2/*2,
*2/*3, *3/*3), who are at a greater risk of SRI overdosing and side effects. The slower metabolism of
SRIs leads to a greater concentration of these drugs in the mother’s bloodstream, which could lead to
a higher concentration crossing the placental barrier. However, only a few studies have focused on
the effect of CYP enzyme genotypes on the SRI pharmacokinetics during pregnancy. The maternal
CYP2D6 genotype of intermediate and poor metabolizers showed an increase in plasma concentration
of paroxetine of 0.82 mg/L (95% CI 0.42–1.22) for each week over the course of pregnancy, which
is in contrast to the decline observed among extensive and ultra-rapid metabolizers [61]. CYP2C9*2
and CYP2C9*3 were associated with a lower activity of CYP2C9 enzymes, which are thought to be
responsible for the metabolism of fluoxetine, sertraline and venlafaxine, but these studies used minimal
data and found a low strength of association [62,63]. Furthermore, the effect of genetic polymorphisms
of CYP1A2 has been studied less and is thought to contribute little to the pharmacokinetics of SRIs [60].
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Apart from genetic polymorphisms, the inhibition or induction of CYP enzymes by certain drugs
taken together with SRIs will also affect the metabolism of SRIs. For example co-medication with a
CYP2D6 inhibitor was shown to be associated with increased plasma concentrations of citalopram,
sertraline and venlafaxine, similar to the effect of the poor metabolizer phenotype [64].

3.2. Foetal Metabolic Enzymes

Little is known about the expression or activity of metabolic enzymes in the foetus. In the foetal
liver, CYP3A7 has previously been reported as the dominant isoenzyme, and its expression decreases
postnatally when it is substituted by CYP3A4 [65]. Genetic polymorphisms of CYP3A4 contribute to
a minor extent to drug pharmacokinetics and clinical therapy, including that of SRIs [66]. However,
more recent evidence suggests high phenotypic inter-individual variability in foetal expression of
CYP3A4 and CYP3A7, and that gestational age is not the most important covariate [67]. Foetal SNP
CYP3A7*1E has been clinically demonstrated to reduce the efficacy of betamethasone in stimulating
foetal lung maturity following maternal antenatal administration, although the exact mechanism
remains unknown [68]. Meanwhile, in adult liver and intestinal cells, the interindividual variability in
CYP3A7 expression was very pronounced, while the variant alleles of CYP3A7*1B and CYP3A7*1C
were found to be associated with an increase in enzyme expression [65]. However, with regard to
the metabolism of SRIs, there is no data so far indicating the role of CYP3A7 in the metabolism of
these drugs. Although CYP2C9 and CYP2C19 were also shown to have functional activity in some
foetal liver samples, there is a high variability in the expression profile between samples [69,70].
Among 60 foetuses aged less than 30 weeks of gestational age, CYP2D6 protein expression (5% as
of adult) and functional activity (1% as of adult) was detected in only 30 of all liver samples [71].
Overall, the expression and activity of CYP2D6 in the first and second trimester foetal samples were
either undetectable or very low, and the expression and activity increased in the third trimester [72].
In general, our knowledge of foetal metabolic enzymes is limited, and a high interindividual variability
in the expression profile was observed. As the activity of these enzymes in the foetal liver may need
further investigations, the contribution of these enzymes to the foetal metabolism of SRIs, particularly
in the first trimester, is probably minor.

3.3. Placental Transporter Proteins

The placenta expresses several transporter proteins that are involved in the regulation of the
chemical environment of the foetus by transporting and removing toxic substrates [73–75]. Meanwhile,
transporter proteins expressed in other organ cells, e.g., the intestine, kidney and liver, are important
for the absorption, distribution and excretion of SRIs and their metabolites. One of the most-studied
placental transporters is P-glycoprotein (P-gp), which is expressed in the maternal-facing membrane
of the placental syncytiotrophoblast [76,77]. P-gp facilitates the efflux transport of a wide range
of substrate drugs, including SRIs [78–81]. The expression of P-gp is highest in the early stages of
pregnancy [82,83] denoting the role of P-gp in limiting the foetal exposure to xenobiotics or other
harmful substances. Our previous study has shown that the inhibition of P-gp efflux activity of drug
substrates was associated with an increased risk of congenital anomalies for drugs that were associated
with certain types of congenital anomalies [84].

The polymorphisms of the ABCB1 gene encoding for P-gp have been studied extensively with
a focus on its effect on the pharmacokinetics, clinical efficacy and toxicity of antidepressants [85–88].
These studies focused on P-gp expression in the blood–brain barrier, which plays an important role in
the bioavailability of these antidepressants in the brain. Under normal conditions, P-gp effluxes the
substrates out of the brain cells, which can either lead to lower efficacy or reduced side effects of the
substrates. Several ABCB1 SNPs (3435C>T, 1236C>T, 2677G>T) previously associated with reduced
P-gp expression, have also been associated with increased efficacy or increased side effects that lead to
switching and discontinuation of therapy [89–91]. In the placenta, 3435C>T, 1236C>T and 2677G>T
SNPs were associated with a reduced mRNA and/or protein expression of P-gp in human placental
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samples, suggesting a weaker foetal protection against potential teratogens [92–94]. This finding was
supported by two clinical studies that found an increased risk of cleft lip [95] and CHA [96] associated
with a maternal 3435T variant allele in mothers taking any medication during the first trimester of
pregnancy. The risk was even higher in mothers who did not take folic acid supplements [95,96].
Several other ABCB1 SNPs relevant to the pharmacogenomics of SRIs were found to be associated
with SRI response and adverse events. In Table 1, the predicted effect on protein expression/activity in
the placenta and the predicted effect on foetal exposure to SRIs are shown.

Maternal metabolic CYP enzymes and placental transporters both play an important role in
determining the foetal SRI exposure. Metabolic enzymes affect the concentration of SRIs in the maternal
circulation, while placental P-gp determines the amount transported into the foetal circulation. Any
changes in the expression and function of these enzymes and transporters may lead to variation
in foetal SRI exposure. Despite the need to evaluate the extent of foetal SRI exposure, there are a
limited number of ways to measure it directly, e.g., using animal studies and in vivo, in vitro or ex vivo
placental transfer models [74,75,97]. When examining the genetic factors, one should take both the
mother and the foetus into consideration as both provide several mechanisms to limit foetal exposure
to SRIs.
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Table 1. Overview of polymorphisms significantly associated with serotonin reuptake inhibitors (SRIs) pharmacokinetics and their predicted effect on foetal
SRI exposure.

Gene SNPs rs Numbers
MAF (%) a Pharmacokinetics and/

or Clinical Effects
Phenotype (Predicted

Expression/Activity of CYP
Enzymes/Transporter Proteins)

Predicted
Effect on Foetal
SRI Exposure b

SRIs Likely to
Be AffectedCaucasians Asians Africans

CYP1A2

−3113G>A rs2069521 3 8 11 Increased severity of side effects of
escitalopram [98] Increased c

Reduced Fluvoxamine,
duloxetine

−10 + 103
T>G rs2069526 3 8 12 Increased severity of side effects of

escitalopram [98] Increased c

832 − 249
C>T rs4646425 3 8 0

Increased severity of side effects of
escitalopram [98], reduced efficacy of

paroxetine [99]
Increasedc

1253 + 81 T>C rs4646427 3 8 11 Increased severity of side effects of
escitalopram [98] Increased c

1042 + 43 G>A rs2472304 59 16 4 Increased efficacy of paroxetine [99] Reduced c
Increased

1548C>T rs2470890 59 16 3 Increased efficacy of paroxetine [99] Reducedc

CYP2C9
*2 rs1799853 11 0 4 Reduced metabolism of fluoxetine

[62,63] Reduced d Increased Fluoxetine,
sertraline,

venlafaxine
*3 rs1057910 7 3 2 Reduced metabolism of

fluoxetine [62,63] Reduced d Increased

CYP2C19

*2 rs4244285 15 33 17
Reduced tolerance to

citalopram [100] and reduced
metabolism of escitalopram [101]

Reduced c,d Increased Citalopram *,
escitalopram *,

sertraline,
venlafaxine*3 rs4986893 0 5 0 Reduced metabolism of

escitalopram [102] Reduced d Increased

*17 rs12248560 23 2 22
Increased metabolism of

citalopram [103],
escitalopram [102,104]

Increased d Reduced

CYP2D6

*3 rs35742686 2 0 0 Reduced metabolism of
escitalopram [104], venlafaxine [105] No activity d Increased Paroxetine *,

fluoxetine *,
venlafaxine *,
fluvoxamine,

sertraline

*4 rs3892097 19 0 6 Reduced metabolism of escitalopram
[104], venlafaxine [105,106] No activity d Increased

*5 whole gene
deletion 4 7.2 ND Reduced metabolism of

paroxetine [107] No activity d Increased

*10 rs1065852 20 52 9 Reduced metabolism of
paroxetine [107] Reduced d Increased
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Table 1. Cont.

Gene SNPs rs Numbers
MAF (%) a Pharmacokinetics and/

or Clinical Effects
Phenotype (Predicted

Expression/Activity of CYP
Enzymes/Transporter Proteins)

Predicted
Effect on Foetal
SRI Exposure b

SRIs Likely to
Be AffectedCaucasians Asians Africans

ABCB1
(P-gp)

3435C>T rs1045642 53 40 15

Increased efficacy of
escitalopram [108,109],

venlafaxine [109], increased
concentration of fluvoxamine [110], a

group of antidepressants [89]

Reduced c,d Increased
Paroxetine,
fluoxetine,

venlafaxine,
fluvoxamine,

sertraline,
venlafaxine,
citalopram,

escitalopram

1236C>T rs1128503 43 66 14 Increased concentration and side
effects of antidepressants [89] Reduced c,d Increased

3489 +
1573G>A rs1882478 26 57 63 Increased efficacy of

escitalopram [108] Reduced c Increased

2677G>T rs2032582 43 45 3
Reduced concentration and efficacy

of citalopram [111], increased
efficacy of paroxetine [90]

Increase or reduced c,d Increased or
reduced

2493 + 49T>C rs2035283 13 6 22 Increased efficacy of paroxetine [112]
and side effects of SSRIs [113] Reduced c Increased

2481 + 24G>A rs2235040 13 6 20 Increased efficacy of paroxetine [112]
and side effects of SSRIs [113] Reduced c Increased

2482 −
236A>G rs4148739 13 6 22 Increased efficacy of SSRIs [114] Reduced c Increased

61A>G rs9282564 9 0 0 Increased efficacy of paroxetine [115] Reduced c Increased

287 −
1234G>C rs10256836 29 15 8 Reduced efficacy of

escitalopram [108] Increased c Reduced

2927 +
314G>A rs28401781 13 6 20 Increased efficacy of SSRIs [114] Reduced c Increased

Abbreviations: MAF, minor allele frequency; ND, no data; CYP, cytochrome P450; P-gp, P-glycoprotein; SSRIs, selective serotonin reuptake inhibitors. * Causes dose modification in
patients with polymorphic variants [57–59]; a MAFs from SNPedia, www.cypalleles.ki.se, PharmGkb, 1000 Genomes, HapMap; b predicted effect on foetal SRI exposure: the exposure
is predicted to be increased if the expression/activity of CYP enzymes is reduced, leading to an increase in SRI concentration in the maternal circulation and more SRI transported
through the placenta (and vice versa); c based on clinical data; d based on pharmacokinetic data.
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4. Pharmacogenetic Predictors of CHA Associated with Exposure to SRIs

Serotonin (5-HT) is a neurotransmitter that also acts as a growth factor and is an important
regulatory factor during a critical period of embryo development. The period of about 20–70 days
following fertilization involves the formation of the brain [43,116]. The foetal heart also undergoes
gross morphological changes within the first 112 days of development, including septation (between
35 and 53 days), formation of the valve components (between 49 and 56 days) and delamination of
the leaflets into the tricuspid valve (between 56 and 112 days) [117]. The cardiac morphogenesis is
dependent on the migration, survival and proliferation of neural crest cells, which are regulated by
5-HT, mainly via the 5-HT2B receptor [118,119]. 5-HT is also one of the factors in the signalling cascade
driving the establishment of laterality in heart cells. Disruptions in the laterality cascade result in
laterality defects of the heart such as atrial isomerism, transposition of the great arteries, double outlet
right ventricle and common truncus arteriosus [120]. The pathology of heart defects has also been
postulated to be associated with the pattern of intracardiac blood flow [121], which is another link
between 5-HT and heart development because 5-HT acts as a potent vasoconstrictor and is important
in maintaining an optimal uteroplacental blood flow [122].

During embryogenesis, the embryo is supplied with 5-HT from the maternal blood. 5-HT in the
maternal circulation can be transported to the foetal circulation by the serotonin transporter (SERT)
expressed in the placenta, and signals through serotonin receptors in the foetus [123]. However, in
depressed mothers, there is an abnormally reduced function of the serotonergic system in the brain. It
is commonly agreed that for women who took antidepressants during pregnancy, the effect on foetal
outcome is difficult to measure and disentangle from the effect of depression itself, since there is a
lack of evidence to conclude whether depression itself poses an increased risk for CHA [8,124,125].
Therefore, we are looking for other possible factors, for instance the polymorphisms of SERT and foetal
serotonin receptors that might possibly be among the predictors of the risk of CHA.

4.1. Serotonin Transporter in Foetal Cardiac Cells and in the Placenta

Based on animal and in vitro studies, the effect of SRIs on embryonic heart development can
occur via modulation of serotonin transporter levels and prenatal 5-HT levels [126,127]. In humans,
this effect occurs via direct exposure to SRIs, which are readily passed through the placenta, to the
foetal serotonergic system. In the foetus, SRIs inhibit SERT expressed in the foetal cardiac cells, which
subsequently reduce the transport of 5-HT into the cells and could, in theory, disturb the normal
development of the heart. In addition, SRIs can also inhibit SERT expressed in the placenta, which
will limit the transport of 5-HT and/or other important growth factors through the placenta for foetal
use [116].

Polymorphisms of the SLC6A4 gene encoding for SERT may also play a role in the serotonin
signalling in foetal heart development. The genetic variation in the SERT promoter gene region,
SERTPR (formerly 5-HTTLPR), was previously associated with SRI response and adverse risk events
(Table 2). This insertion/deletion polymorphism includes a short (S) and a long (L) allele, and the S
allele is associated with reduced activity in placental tissue and increased risk of adverse neonatal
outcome events associated with SRI use [128,129]. Another polymorphism, rs25531 is putatively
located in the sixth repeat of the SERTPR, with LA or LG alleles. The expression of SERT is known to be
higher in the LA allele, while it is reduced in the LG allele to a level similar to the SERTPR S allele [130].
Since the SRIs inhibit SERT, less expression of this transporter may increase the inhibition rate. That
is, foetuses with S or LG genotype are likely to receive a higher “effective” dose, considering there
is less SERT to be blocked. As a consequence, a lower amount of 5-HT is permitted into the foetal
circulation [128] to regulate normal cardiac morphogenesis.
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4.2. Foetal Serotonin Receptors

5-HT activates seven distinct families of 5-HT receptors with 16 subtypes, and most of the
receptors are G-protein coupled [131]. Several SNPs of genes encoding for 5-HT1A, 1B, 2A and 3B were
reported to be correlated with SRI response and side effects, which might be related to the alteration
in receptor expression or activity in the nervous system. Some polymorphisms were associated with
a better response to SRIs, for example, of the HTR2A rs6314, rs1928040, rs7997012, rs6311 [132–137],
and of the HTR1A rs1364043 and of the HTR1B rs6296 in the treatment of citalopram [138]. Other
polymorphisms, on the other hand, were shown to reduce the response of several SRIs, e.g., HTR1A
rs6295 in the treatment of fluoxetine, fluvoxamine, and citalopram [138–141] Furthermore, an increase
in side effects of paroxetine was reported among patients with HTR2A rs6313, HTR3B rs1176744 and
HTR3B rs3831455 [132,142,143]. Unlike other genes, there are limited data on the polymorphisms of the
gene encoding for the 5-HT2B receptor, which is more important, in this regard, in the developmental
stage of the foetal heart [118,119,144].

When a woman in the first trimester of pregnancy is required to take SRIs, we can assume
a reduced amount of 5-HT may be transferred into the foetal circulation following the inhibition
of placental SERT. The reduced concentration of 5-HT in the foetal circulation, together with the
changes in the expression and/or activity of the 5-HT receptors, may subsequently affect the normal
development of the foetal heart.

4.3. Other Genes

Most CHA have a complex aetiology, with some caused by a Mendelian trait or a chromosomal
aberration. The genetic aetiology of CHA is not yet well understood, and the known genetic causes of
CHA account for less than 20% of CHA cases [121,145] The genetic variations of other genes involved
in the pathway of foetal heart development are not emphasized in this review, but should also be
taken into consideration in determining the true causal relationship between SRI exposure and CHA.
A recent study found that the placenta of SSRI-treated mothers had a lower expression of the ROCK2
gene, which is thought to play a role in the development of the cardiovascular system of the foetus, as
compared to untreated depressed and healthy mothers [125]. In contrast, a study with a similar setting,
but focused on the neurotrophic growth factor signalling pathway, found an increased level of the
ROCK2 gene and of phosphorylated ROCK2 in SSRI-treated women in comparison to depressed and
healthy women [146]. Despite the contrary findings, both studies speculated that ROCK2 expression
could be altered in the placenta of SSRI-treated women, and might disturb the normal development
of the foetal cardiovascular system. Another aspect to be considered is the effect of foetal epigenetic
programming, which is currently being investigated as the candidate molecular mechanism underlying
physiological alterations in exposed foetuses [125].
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Table 2. Polymorphisms of the serotonin transporter (SERT) and their predicted effect on congenital heart anomalies (CHA) risk in offspring exposed in utero.

Gene SNPs
rs

Numbers
MAF (%) a

Clinical Effects
Phenotype (Predicted

Enzyme/Protein
Expression or Activity)

Predicted
Effect on

CHA Risk b

SRIs Likely
to Be

AffectedCaucasians Asians Africans

SLC6A4
(SERT)

SERTPR or 5-HTTLPR
(S and L alleles) rs4795541 40 (S) 80 (S) 17 (S)

S-allele: poor response to venlafaxine
[147], fluoxetine [139,148], increase side
effects of fluvoxamine [137], citalopram

[149], escitalopram [150], paroxetine
[151] and overall SSRIs [152,153]

Reduced with S allele Increased Fluoxetine,
citalopram,
sertraline,

paroxetine,
escitalopram,
fluvoxamine

−1936A>G (SERTPR
LA/LG allele) rs25531 9 8 21

LG allele: increased risk of side effects
and poor response citalopram [149] and

overall SSRIs [153]
Reduced with LG allele Increased

5HTT VNTR
(9,10 or 12 repeat) rs57098334 47 (10) 10 (10) 26 (10) 12 allele was associated with higher rates

of side effects of SSRIs [153]
Increased transcription

with 12 repeats Reduced

Abbreviations: MAF, minor allele frequency; S, short allele; L, long allele. a MAFs from SNPedia, www.cypalleles.ki.se, PharmGkb, 1000 Genomes, HapMap; b predicted effect on CHA
risk: based on hypothetical conditions (see text).
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Our understanding of the biological plausibility, corroborated by the evidence, may indicate that
prenatal use of SRIs causes an alteration in the signalling pathway important for the development of
the foetal heart. This alteration is also dependent on the pharmacokinetics of SRIs in maternal and
foetal circulation. Moreover, any alteration in the expression and/or function of the enzymes, proteins,
transporters and receptors involved in the signalling, modulated by the genetic polymorphisms, may
theoretically alter the risk of CHA.

5. Conclusions

The scope of research on the risk of CHA associated with prenatal exposure to SRIs should be
extended to include the role of pharmacogenetics in pregnancy. While implementing the results in
clinical practice may still seem a distant prospect, we need to begin developing theories and doing
model simulations that will help us understand the complex interactions between maternal and foetal
genetics and their effect on foetal SRI exposure and the risk of CHA. A better understanding of these
interactions is a crucial step toward considering personalized drug treatment models for pregnant
women with depression.
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