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Abstract
Despite the success of genome-wide association studies in medical genetics, the underly-

ing genetics of many complex diseases remains enigmatic. One plausible reason for this

could be the failure to account for the presence of genetic interactions in current analyses.

Exhaustive investigations of interactions are typically infeasible because the vast number of

possible interactions impose hard statistical and computational challenges. There is, there-

fore, a need for computationally efficient methods that build on models appropriately captur-

ing interaction. We introduce a new methodology where we augment the interaction

hypothesis with a set of simpler hypotheses that are tested, in order of their complexity,

against a saturated alternative hypothesis representing interaction. This sequential testing

provides an efficient way to reduce the number of non-interacting variant pairs before the

final interaction test. We devise two different methods, one that relies on a priori estimated

numbers of marginally associated variants to correct for multiple tests, and a second that

does this adaptively. We show that our methodology in general has an improved statistical

power in comparison to seven other methods, and, using the idea of closed testing, that it

controls the family-wise error rate. We apply our methodology to genetic data from the PRO-

CARDIS coronary artery disease case/control cohort and discover three distinct interac-

tions. While analyses on simulated data suggest that the statistical power may suffice for an

exhaustive search of all variant pairs in ideal cases, we explore strategies for a priori select-
ing subsets of variant pairs to test. Our new methodology facilitates identification of new dis-

ease-relevant interactions from existing and future genome-wide association data, which

may involve genes with previously unknown association to the disease. Moreover, it

enables construction of interaction networks that provide a systems biology view of complex

diseases, serving as a basis for more comprehensive understanding of disease pathophysi-

ology and its clinical consequences.
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Author Summary

Many of our common diseases are driven by complex interactions between multiple
genetic factors. Disease-specific, genome-wide association studies have been the promi-
nent tool for cataloging such factors, by studying the genetic variation of a gene in a popu-
lation and its association with the disease. However, these studies often fail to capture
interactions between genes despite their importance. Interactions are notoriously difficult
to investigate, because testing the large number of possible interactions using contempo-
rary statistical methods requires very large sample sizes and computational resources. We
have taken a step forward by developing a new statistical methodology that significantly
reduces these requirements, making the study of interactions more feasible. We show that
our methodology makes it possible to study interactions on a large scale without
compromising the statistical accuracy. We further demonstrate the utility of our method-
ology on data relating to coronary artery disease and discover three distinct interactions
that might provides new clues to the pathophysiology. The study of genetic interactions
have the potential to link disease genes together into disease networks that provide a more
detailed description of the interaction between genes and how it drives the disease.

Introduction
Cardiovascular disease, cancers, diabetes and chronic obstructive pulmonary disease, account-
ing for almost 60% of the causes of death 2013, globally [1], are all examples of complex dis-
eases. A complex disease is characterized by an intricate system of interactions between
genetic, epigenetic, other intrinsic factors, and environmental factors, that constitutes its
pathophysiology. The genetic architecture of many common complex diseases is poorly under-
stood. For example, the 46 robustly associated variants that have been found for coronary
artery disease (CAD) only explain 10.6% of the estimated heritability; this was shown in a
recent meta-analysis of almost 200,000 individuals [2]. The same pattern of unexplained, or
missing, heritability is found in most common complex diseases [3]. Assuming that the esti-
mated heritability is correct, the possible explanations for the high ratio of missing heritability
include 1) a large number of causal genetic variants, each with a small effect, 2) sequence varia-
tion that is commonly excluded from analysis, e.g. copy number variation or rare variants, 3)
other commonly unmeasured heritable components, e.g. heritable epigenetic modifications,
and 4) interaction effects between common variants. Moreover, any combination of these
explanations is plausible. In this paper we focus on the inference of interaction in genetic asso-
ciation studies; this is sometimes called epistasis, epistatic interaction or genetic interaction;
here we will refer to it as genetic interaction or simply interaction.

Genetic interactions are characterized by two or more variants producing an unexpected
phenotype that is not easily explained by the marginal effects of the individual variants. Exten-
sive studies in model organisms have shown that genetic interactions are common phenomena
[4]. The field was pioneered by Bateson [5], who studied genetic interactions in plants and
chicken. More recently, synthetic lethal interactions (in which the simultaneous occurrence of
two mutations, by themselves without effect, lead to cell death) have been studied extensively
in yeast and Caenorhabditis [6–8] and interactions between quantitative trait loci have been
studied in mouse, Drosophila and Caenorhabditis [9–11]. Since interactions are widespread in
other organisms, it seems unlikely that such effects would not exist in humans. Furthermore,
genes are linked in metabolic, regulatory and signaling pathways and it is likely that this will be
reflected as interactions between variants, as has been shown for transcriptional regulation in
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Drosophila [12]. Therefore, studies of genetic interactions have a strong potential to provide
important insights about disease biology—specifically, interactions reflect dependencies in
pathophysiology and may allow predictions of effects (and side effects) that are relevant for dis-
ease prognosis and treatment.

Several approaches have been developed to study genetic interactions (see [13–15] for three
excellent methodology reviews). In medical genetics, the prevalent tool for modeling single vari-
ant association in unrelated individuals has been generalized linear models (GLM). The advan-
tages of GLMs are flexibility in modeling the phenotype, easy interpretation and straightforward
adjustment for confounders. Although the GLM framework can model both discrete and con-
tinuous outcomes; we will, in this work, concentrate on the case-control outcome. Studies of
interactions are, however, not without issues. Firstly, the identification of interactions depends
on the scale relating the genotypes to phenotypes. Secondly, because the GLMs are fitted by iter-
ative procedures, the computational burden is high. Thirdly, straightforward multiple testing
correction leads to low statistical power. We now elaborate briefly on these three issues.

The dependency of GLMs on a scale sometimes causes confusion [16, 17]. The scale is deter-
mined by a link function that maps the phenotype to the linear predictors. For example, for
two predictors a and b, the phenotype y can be determined by an additive (y = a + b) or by a
multiplicative (y = ea+b) model. A commonly used link function in case/control studies is the
logit, which is used in logistic regression. This displays a combination of mathematically favor-
able properties: it models the case/control selection bias, the parameters have minimal suffi-
cient statistics, and it is the maximum entropy null model [18]. However, the choice of scale is
to a large extent a modeling issue and should not be based on mathematical convenience alone.
For example, when, for a set of variants, the presence of a risk allele in any single variant is suf-
ficient to cause the disease, the log-complement link function yields an appropriate model [17,
19]. Ultimately, the best choice of scale depends on the unknown biological model that has
generated the data. The choice of scale is very problematic because, even if the true model
underlying the data displays interaction, it is often possible to select a scale that diminishes the
interaction effect [20]. Conversely, if the true model does not display interaction, then there is
another scale that, in the asymptotic case, will display interaction [17]. In response to this,
Knol and VanderWeele [21] suggest that the p-value of an interaction should be reported on a
set of reasonable scales to show whether the interaction seems invariant of scale. We follow this
suggestion and, furthermore, extend it by constructing a test for interaction that is invariant
over a set of link functions.

A different approach builds on the rationale that if, for interacting variants, certain combi-
nations of alleles affect disease risk, then this would be reflected in differential enrichment for
these allele combinations between cases and controls, and therefore a difference in their linkage
coefficients (LDcases and LDcontrols). The LD-contrast test [22] compares the normalized differ-
ence of LDcases and LDcontrols as a χ

2-distributed statistic for interaction. A recently been pro-
posed version of the LD-contrast test [23] uses genotypes recoded to a pair of binary variables
(according to model of inheritance).

A third approach, the multi-factor dimensionality reduction (MDR) [24], uses dimensional-
ity reduction techniques to recode the 3 × 3 penetrance matrix into a binary variable that opti-
mally classifies cases and controls. This is then evaluated by cross-validation and a
permutation procedure is used to estimate significance. Several variants of MDR have been
developed [25, 26].

One common approach to improve the computational complexity, has been to introduce
the naive assumption that it is impossible for two variants to be simultaneously associated with
the phenotype unless they interact. Examples include the method of [27], using a log-linear
GLM, and many of the variations of the MDR method, including the original one [24, 25].

Stage-wise Likelihood Ratio Tests for Genetic Interactions

PLOS Genetics | DOI:10.1371/journal.pgen.1005502 September 24, 2015 3 / 24



Under this naive assumption it is, in the GLM setting, sufficient to compare three models: two
single variant association models and the saturated model, which will represent interaction.
The parameters of these models can be efficiently estimated since they all have closed form
solutions. Unfortunately, this simplification allows interactions to be incorrectly inferred
between two variants that both are associated with a main effect, but there is no interaction (we
will refer to this as double main association). As a consequence, genuine genetic interactions
may be obscured by these double main associations [28]. In this work, we will focus on infer-
ence of genuine interactions.

Finally, the reduction in statistical power implied by correction for multiple tests constitutes a
major limitation for performing interaction studies on a larger scale. For an investigation of inter-
action between all pairs of a set of n = 500,000 variants, a Bonferroni correction for n(n − 1)/2
tests gives a significance threshold of 4.0 � 10−13, which is considerably lower than the corre-
sponding significance level 1.0 � 10−7 for a standard single variant analysis. The burden of multi-
ple tests grows exponentially with the number variants involved in the tested interactions, and,
henceforth, we will limit ourselves to the case of pair-wise interactions. Various screening strate-
gies have been applied in attempts to improve power. These may use prior information that iden-
tify a smaller set of candidate variant pairs (we will investigate two such approaches in our
analysis of biological data) or they may be based on the data at hand. An example of the latter
include the screening test of Marchini [29], which removes variant pairs lacking a marginal effect
for one or both of the participating variants. Millstein et al. [30], using a reasoning similar to the
LD-contrast test above, suggested a LDcases screening test for significant linkage enrichment
among cases. However, observing that this induced a bias in the subsequent main test, they also
proposed a LDcohort screening test. The latter test relies on the linkage enrichment in cases also
showing as a linkage enrichment of the pooled cases and controls, but formally does not use any
prior information about disease state. Various combinations of screening and main tests have
been proposed: marginal screen with logistic GLMmain test [29], LDcohort screen with logistic
GLMmain test [30, 31], and LDcases screen with LD-contrast main test [23].

In this work we introduce a stage-wise multiple testing methodology that exhaustively tests
all variant pairs. In this methodology, a sequence of hypotheses is considered in order of
increasing complexity. Only variant pairs that cannot be explained better by a simpler hypothe-
sis compared to the most complex hypothesis (representing interaction) are tested at subse-
quent stages. This is conceptually different from the screening approach by Marchini [29],
which instead requires that a variant pair fits an intermediate screening hypothesis (of single
marginal association) better than the simplest hypothesis (of no association) for it to be tested
at the subsequent stage. Because the hypotheses considered are closed under intersection, we
show, in two situations, that the family-wise error rate is controlled. Furthermore, since the
models under the simpler hypotheses can be estimated efficiently, our methodology allows the
use of full GLMs. The multiple testing correction is alleviated and results in a substantial
increase of power compared to the Bonferroni correction. We also construct a scale-invariant
test for interaction using several link functions. Furthermore, we assess a set of statistical meth-
ods for inferring genetic interactions on synthetic data and show that our methodology
improves on these. Lastly, we discover three distinct interactions that are associated with CAD,
of which one includes a novel locus.

Results

Theory
In this section, we describe our multiple testing methodology, which is aimed at large-scale
pairwise interaction testing. We show that it gains additional power by separating a complex

Stage-wise Likelihood Ratio Tests for Genetic Interactions

PLOS Genetics | DOI:10.1371/journal.pgen.1005502 September 24, 2015 4 / 24



hypothesis into stages of simpler null models. We have derived two methods that rely on differ-
ent assumptions, having different effects on the bounds of the family-wise error rate (FWER).
We start by briefly reviewing general linear models (GLM), which we use to express our model
of interaction, as well as the simple null models. Frequently, when GLMs are applied in pair-
wise interaction testing, FWER is bounded using Bonferroni.

Interaction in the generalized linear model. In the framework of generalized linear mod-
els (GLM), the penetrance pab of two given genotypes X1 = a and X2 = b, where a, b 2 {0, 1, 2},
is modeled by

gðpabÞ ¼ aþ ba þ gb þ dab

where βa and γb represents themain effect on the phenotype of a and b, respectively, δab repre-
sents the interaction effect of a and b, and g is the link function. The link function is invertible
and determines the scale. Sometimes, this model is restricted by adding constraints forcing an
additive allele effect, that is, β2 = 2β1, γ2 = 2γ1, δ21 = δ12 = 2δ11, and δ22 = 4δ11. However, in the
present methods we will not assume an additive allele effect. Of note, to avoid over-parameteri-
zation, we set β0 = γ0 = δ00 = δ01 = δ02 = δ10 = δ20 = 0.

A standard likelihood ratio test of interaction can be obtained by comparing the likelihood
of this full model to that of a null model in which δab = 0 for all a, b. In our stage-wise method-
ology, we will use such tests for various null models, corresponding to subsets of the parame-
ters. The degrees of freedom are determined by the difference in the number of free
parameters; for example, if we want to test whether βa, γb or δab is different from 0 (i.e., the
reduced model is g(pab) = α), we would compare against a χ2 distribution with 9 − 1 = 8 degrees
of freedom.

Stage-wise testing for interactions. We now describe how to apply our GLM to a stage-
wise test of interaction to a set S of multiple variant pairs. We test the interaction hypothesis by
a stage-wise comparison of the full model

• HA : g(pab) = α + βa + γb + δab

to the following null models

• H1 : g(pab) = α

• H2 : g(pab) = α + βa

• H3 : g(pab) = α + γb

• H4 : g(pab) = α + βa + γb.

TheH1 null model represents no association, H2 and H3 represent the cases where one single
variant is associated (we will refer to this as single main association) and H4 represent the case
where both variants simultaneously have a main effect association without interaction (double
main association). The tests are performed sequentially. In the first stage, H1 is tested against
HA for all variant pairs, but subsequent stages only consider variant pairs for which the null
models in previous stages have been rejected. This allows us to vary the multiple testing correc-
tion across stages, and thereby improve power compared to Bonferroni correction, as shown,
below, in Results section Statistical power to detect interactions. The exact details of this correc-
tion constitute the difference between our two methods.

In the first method, the staticmethod, we assume that the exact number of variant pairs
belonging to each stage is known. Intuitively, a variant pair belongs to a stage if the null model
at this stage is the simplest model that is correct for the pair. To preserve the FWER, we intro-
duce weights {ws, s 2 [4] : ∑s2[4] ws = 1}, one for each stage, that adjust the p-value thresholds

Stage-wise Likelihood Ratio Tests for Genetic Interactions
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for the four stages of tests. Let Ks be the number of variant pairs belonging to a stage t� s, and
pis be the p-value of stage s for pair i. If pis < ws α/Ks, the pair i is tested for stage s + 1. The idea
is illustrated in Fig 1a and the algorithm is outlined in Fig 1b. A generalized version of the
closed testing principle [32] can be used to show that this method controls the FWER, a proof
is provided in S1 Text. The adjusted p-value is defined [33] and can be computed by

~pi ¼ max
s

Kspis
ws

:

The following is an example on how to estimate the number of hypotheses in each stage. Let N
be the number of genotyped variants andM be the number of marginally associated variants
(which, e.g., can be taken from a meta analysis). Then estimates of the staticmultiple testing

correction, Ks, for each stage are, in order, NðN�1Þ
2

, N �M, N �M and MðM�1Þ
2

.

The second method, the adaptivemethod, only corrects for the number of rejections in the
previous stage. This more flexible and powerful method is tailored for situations where an esti-
mate of the number of marginally associated variants is not available. Because the multiple test-
ing corrections become dynamic, the closed testing theorem cannot be directly applied. We
therefore need to make the additional assumption that alternative hypotheses are asymptoti-
cally rejected, which is true for any consistent test. A proof is provided in S1 Text.

The adaptivemethod is identical to the staticmethod, with the exception that Ks is replaced
by jRs−1j where Rs is the set of rejected hypotheses in stage s, and R0 is the total number of
pairs. The algorithm is outlined in Fig 1c. A conservative estimate of the adjusted p-value is

~pi ¼ max
s

jRs�1jpis
ws

;

Fig 1. Illustration of the rejection procedure. a) We have a set of four hypotheses that are closed under intersection. We start at stage 1 by testing the
simplest null hypothesisH1 for each variant pair; the p-value threshold α for this test is corrected for the total number of pairs. In the figure H1 is accepted in
the first and last pair, and these pairs will not be tested in the subsequent stages. We then continue through the null hypotheses from simple to complex but
correcting the α for each stage only for the expected number of pairs, in the staticmethod, or the actual number of pairs, in the adaptivemethod, that are
tested at this stage. Finally if all null hypotheses could be rejected for a specific pair i (e.g., snp2 and snp3 in the figure), we declare pair i to be interacting. b)
Pseudocode describing the static stage-wise testing method. Variant pairs are ordered from 1 to n. Null hypotheses are ordered from 1 tom in any order that
respects the partial order of how they are nested. Only pairs for which the null hypothesis was rejected in the previous step are considered in the current step.
The p-value for testing null hypothesis j for pair i is pij. Rejected hypotheses in stage j are contained in the set Rj, and α is the significance threshold. The
hypotheses of interaction for pair i is accepted only if the null hypotheses for allm tests could be rejected. c) Pseudocode describing the adaptivemethod.
The overall algorithm is the same as the static. However, the significance threshold is now determined by the total number of rejections in the previous stage
jRj−1j.
doi:10.1371/journal.pgen.1005502.g001
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since as you alter the significance threshold for a stage, different number of hypotheses, jR�j,
will be present on the following stages.

An advantage with our methodology is thatH1 to H3 can be efficiently computed [27]. The
tests for H1 to H3 is also invariant of the scale as shown in S1 Text. Moreover, key for the
improved power of our methodology is two assumptions relating to the test for H1: (1) that it
has high power to identify interactions, and (2) that it, at the same time, is effective in removing
false positives and thereby reducing the severity of multiple testing in the following stages. In
our simulation results assessing assumption (1), theH1 test is more powerful than that for H4,
despite the increase in degrees of freedom (cf. Results section Statistical power to detect interac-
tions). Moreover, for complex diseases, the number of associated variants identified in large
meta analyses is commonly less than 100 [3], suggesting that assumption (2) will not be a bot-
tleneck. We also investigate the practical performance of the methods.

Scale-invariance test. The choice of link function, g, has a substantial influence on any
study of interactions based on GLMs. Ideally, we want the inferred interaction to be invariant to
the scale, that is, the rejection the null model (of no interaction) should hold regardless of the
link function used [21]. We will now describe a scale-invariant test that formalizes this notion.

With slight abuse of notation, we replace hypothesis H4 in the previous section with

• H 0
4 :

S
g2G

gðpijÞ ¼ aþ bi þ gj
� �

,

where G is some set of pre-selected link functions (note that the models H1,H2 andH3 are satu-
rated and changing the link function will not have an effect). The test for H 0

4 is constructed
according to the intersection-union principle [34], that is, if qs is the p-value for scale s then the
combined p-value q is

q ¼ max
s

qs;

that is, the test requires significance for all link functions; we will refer to this test as the scale
invariance test. Notice that the choice of the set G of link functions will depend on the study.
For example, Gmay contain a single link function if there is strong prior evidence for this link
function. Furthermore, the study design will influence the choices of G; for example, an odds
ratio-based link function is unaffected by the sampling-bias introduced in case-control studies
and, omission of a such a link function may lead to the wrong conclusion. Here, we investigate
the impact of a set of commonly used link functions, shown in Table 1.

Statistical power to detect interactions
In this section, we will give an account of three investigations of statistical power that all indi-
cate the utility of our stage-wise methodology. The generation of simulated data used in these
investigations are described in Material and methods section Generation of synthetic data for
estimation of statistical power.

Table 1. Link functions, for a GLMwith a binary outcome, used in this study.

Link g(pij)

Additive penetrance (identity) pij
Multiplicative penetrance (log) log(pij)

Genetic heterogeneity (log-complement) log(1 − pij)

Additive odds (odds) pij
1�pij

Multiplicative odds (logit) log ð pij
1�pij

� �
Þ

doi:10.1371/journal.pgen.1005502.t001
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The intuitive idea behind the stage-wise methodology is that we aim to (1) reduce the num-
ber of tests in later stages compared to earlier, while (2) asserting that actual interactions
advance to later stages. We show in the Results section Analysis of biological data, below, that
the number of tests in the last stage is in fact substantially reduced, suggesting that aim (1) is
unlikely to be a problem. Here, we have investigated aim (2 by comparing the power of the
tests in the first and last stage. That is, for data generated from HA, we compare the power of
the likelihood ratio test of H1 againstHA to that of the test ofH4 againstHA. Indeed, the results
in Fig 2 (using data generated from a double dominant interaction model) suggests that the test
in the first stage, at least under these conditions, have substantially greater power than that in
the last stage. However, the test in the first stage can obviously not be used as a test for interac-
tion by itself, since it measures any kind of association to the phenotype, including, for exam-
ple, pairs for which only one of the variants is associated.

We further investigated the distribution of statistical power of seven methods using simu-
lated data generated from the spectrum of all possible interaction models, following the ideas
of [35] (see Material and methods section Generation of synthetic data for estimation of statis-
tical power for details). The first of these methods is our staticmethod, and the remaining
methods include four methods based on a logit-link GLM with different screening strategies,
Logistic (without screening),Marginal+logistic [29], CSS+logistic [30] and R2+logistic [31]) and
two methods based on the LD-contrast test with different screening strategies, LD-contrast
(without screening), and Sixpac [23] (a LDcases+LD-contrast method), for details, see Material
and methods section Comparison of statistical methods. It should be noted that none of the lat-
ter six methods are scale-invariant—one may expect that this property would enhance their

Fig 2. The power of the first and last test under a double dominant interaction model. The x-axis is the heritability of the model. The y-axis is the
statistical power. The colored lines correspond to two different tests: the one performed in the first stage that tests the null hypothesis of no interaction, H1,
(red), and the one performed in the last stage that specifically tests the interaction parameters,H2, (blue). The logit link function and a nominal significance
level of 0.05 was used for the analysis.

doi:10.1371/journal.pgen.1005502.g002
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power. For simplicity of simulations, we only evaluated the staticmethod here; however, since
the adaptivemethod is more powerful than the static, this can also be viewed as a conservative
estimate of the power of the adaptivemethod. As can be seen in Fig 3, the staticmethod consis-
tently has greater power than the other approaches. Themarginal+logisticmethod performs
best of the remaining methods, while the the LD-contrastmethod have the worst performance.
In S1–S4 Figs, we also report the result of a more computationally intensive power comparison,
including the above methods, as well as our adaptive stage-wise scale-invariance method and
the Model-based MDR (MB-MDR) method [26] (see S2 Text for details). These results corrob-
orate those above, that is, for most models our stage-wise methods performs better than the
other methods (see further discussion in S2 Text).

Intuitively, when more variants are associated with the phenotype in our stage-wise meth-
odology, the multiple testing correction in the intermediate stages becomes larger, and there-
fore statistical power is reduced. For this reason, we investigated how the statistical power
depends on the number of associated variants using data simulated from the double-dominant
interaction model (see Material and methods section Generation of synthetic data for estima-
tion of statistical power). As shown in Fig 4, the power decreases as the number of associated

Fig 3. The exceedence distribution of power over all possible interaction models with a specific heritability. For each plot, the x-axis shows a
threshold, t, for power to detect an interaction among 1012 variant pairs, and the corresponding y-axis shows the fraction of models that have a power greater
than or equal to t. The rows correspond to the sample size of a balanced design e.g. 2000 indicates 2000 cases and 2000 controls. The columns correspond
to the heritability of the models. Six methods for inference of interactions Logistic,Marginal+logistic, CSS+marginal, R2+marginal, LD-contrast, and Sixpac;
see text for details), are compared to our static stage-wise scale-invariant method. The line colors used to denote the different methods are shown in the
legend to the right.

doi:10.1371/journal.pgen.1005502.g003
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variants increases. Because of the additional penalty of the weight, the staticmethod can have
lower power than directly testing interaction using a Bonferroni correction, precisely whenM
(M − 1)> w4 N(N − 1) (where N is the total number of variants andM is the number of associ-
ated variants). It can be noted that for our biological data,M(M − 1) = 306� w4 N(N − 1) =
346,035,421.8 (based on the N = 33,963 tested variants and theM = 18 robustly associated
CAD variants present on the IBC-chip, cf. S1 Table).

Family-wise error rate on the class of null models
Both the static and adaptive stage-wise methods are based on the likelihood ratio test, which is
asymptotically correct. As we show in S1 Text, the adaptivemethod controls the FWER asymp-
totically. For the staticmethod on the other hand, we can even show that the FWER is con-
trolled for any data size. Consequently, it is interesting to investigate the behavior of both
methods on finite data and compare it with that of the same seven methods as in the power
comparison (Logistic,Marginal+logistic, CSS+logistic, R2+logistic, LD-contrast, Sixpac, and
MB-MDR). We considered two cases, one close to the assumptions of our methods, and one
designed to be challenging. We investigated these two cases using simulated data (see further
Material and methods section Generation of synthetic data for estimation of statistical power).

In the first case, we used each of our null models, H1: no association, H2/H3: single main
association, and five models for double main association (H4) with the identity, log, log-com-
plement, odds and a logit link functions, respectively, to generate the phenotype based on a sin-
gle pair of variants. The first seven rows in Table 2 show that both the static and adaptive

Fig 4. The dependence of power on the estimated number of associated variants. The x-axis is the heritability and the y-axis is the estimated power.
The colored dashed lines correspond to our stage-wise test using different number of associated variants, as indicated by the legend to the right. The black
solid line corresponds to the logistic regression method using Bonferroni correction (which does not depend on the estimated number of associated variants).
The power estimates are based on data simulated from the double dominant interaction model.

doi:10.1371/journal.pgen.1005502.g004
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methods accurately control the FWER under these circumstances (i.e., FWER is below or close
to the expected value of 0.05). All seven other methods control the FWER for the no association
and single mainmodels. However, for the double mainmodels, they control FWER only on the
multiplicative scale (i.e., with the log, logit and log complement link functions). For the remain-
ing models (double main:identity and double main:odds) these methods fail to control FWER,
with the exception of the R2+logistic that controls FWER for the double main:identity model.

In the second case, where we attempted to construct instances that challenge the additional
asymptotic assumptions made in the adaptivemethod. The phenotype was here determined by
an multivariate additive GLM with logit link function on a set of L 2 {10, 20, 30} markers. The
parameter distributions were chosen with the intention to let only a small and difficult subset of
the variant pairs to reach the stage they belong to. The last three rows in Table 2 show that the
staticmethod controls the FWER, but suggest that for the adaptivemethod, FWER is inflated by
approximately a factor 3 compared to the desired rate. The remaining methods controls FWER
in this setting, possibly an effect of the data being generated on a multiplicative scale.

Analysis of biological data
We applied our stage-wise methodology on genome-wide CAD case-control data from the
PROCARDIS study, using our five link functions. To enhance such a large-scale analysis, we
explore three strategies for selecting subsets of variant pairs to test. The first strategy represents
a genome-wide approach, while the latter two strategies were designed to a priori enrich for
pairs likely to exhibit interaction. For the same reason, our main focus will be on the more
powerful adaptive method, combined with validation of any significant discoveries in a sepa-
rate cohort.

In the first strategy all 229,050,992 pairs, for which the product of the minor allele
frequencies > 0.04, were selected. The stage-wise methodology subsequently reduced the num-
ber of pairs to 15269, 7712 and 93. This analysis resulted in seven variant pairs that were signif-
icant for at least one link function, see Table 3. We used genomic proximity to coarsely
estimate genes corresponding to these variant pairs. One variant pair, indicating an interaction
between IL1R1 and CDNK2B-AS1, was significant on the additive odds scale, only. The p-

Table 2. Estimated family-wise error rate for all methods under different null models, using a significance threshold of 0.05.

Model 1 Adaptive Static Logistic Marginal+logistic CSS+logistic R2+logistic LD-contrast Sixpac MB-MDR

No association 0.005 0.005 0.005 0.015 0.02 0.015 0.045 0.005 0.015

Single2 0 0 0.02 0.015 0.025 0.05 0.045 0.005 0.02

Double3:identity 0.02 0.025 0.275 0.355 0.145 0.075 0.08 0.22 0.31

Double:log 0.01 0.01 0.025 0.035 0.035 0.035 0.03 0.01 0.035

Double:odds 0.035 0.02 0.955 0.975 0.54 0.16 0.66 0.985 0.99

Double:logit 0.015 0.015 0.04 0.03 0.035 0.07 0.035 0.005 0.035

Double:log-compl 0.03 0.025 0.03 0.045 0.035 0.035 0.03 0.01 0.04

Multi4:10 0.15 0.015 0.035 0.03 0.025 0.05 0.055 0.015 0.06

Multi:20 0.145 0.015 0.025 0.05 0.025 0.07 0.055 0.005 0.055

Multi:30 0.135 0.035 0.01 0.03 0.03 0.025 0.045 0 0.015

1 Model from which data was generated
2 Single main association
3 Double main association
4 Multivariate additive GLM

doi:10.1371/journal.pgen.1005502.t002
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values for the other scales were quite far from significance, indicating that this association is
not scale-invariant. In other words, this interaction should be interpreted with care, as we can-
not exclude the possibility that this is the effect of double main association, e.g., on the logit
scale, without interaction. The remaining six variant pairs indicated an interaction between the
genes MIA3 and CDNK2B-AS1. None of these passed the scale-invariance test (i.e., was signifi-
cant for all link functions). However, for most of these variant pairs, the p-values for all scales
are of the same magnitude and reasonably close to the significance level of 0.05 (see, e.g., the
rs4846770–rs518394 variant pair), perhaps suggesting that this could be an effect of insufficient
power rather than scale dependency.

In the second strategy 314,445 pairs were selected based on loci previously associated with
CAD. This is based on the common hypothesis that some robust CAD associations may be the
marginal effects of interacting variant pairs. Candidate pairs were formed by taking each of the
previously associated CAD variants, see S1 Table, and combining it with each other variant.
Interestingly, similar to the results from the all-vs-all strategy above, one variant pair indicating
an interaction between MIA3 and CDNK2B-AS1 was significant for several link functions, but
again, just, failed the scale-invariance test, see Table 3. Somewhat unexpectedly, this variant
pair did not coincide with any of those in the all-vs-all analysis. However, it turns out that,
while variants for both MIA3 and CDNK2B-AS1 have previously been robustly associated to
CAD (see S1 Table), these variants did not include any member of the top-scoring variant pairs
in the all-vs-all analysis. This enrichment strategy might therefore have been suboptimal.

In the third strategy, we used prior information from HumanNet [36], a probabilistic func-
tional gene network that links genes for which significant evidence of interaction have been

Table 3. Significant pairs using different strategies.

All vs all strategy Odds Penetrance

SNP 11 SNP 21 Locus 12 Locus 22 Add3,4 Mul3,5 Add3,6 Mul3,7 Het3,8

rs3917245 rs1412832 IL1R1 CDKN2B-AS1 0.03746 0.1463 0.1412 0.2855 0.07222

rs4846770 rs518394 MIA3 CDKN2B-AS1 0.06048 0.03391 0.03419 0.0299 0.0468

rs17163313 rs518394 MIA3 CDKN2B-AS1 0.08093 0.04386 0.04438 0.03136 0.0617

rs17163313 rs2069418 MIA3 CDKN2B-AS1 0.1422 0.06734 0.06773 0.04921 0.1015

rs2378584 rs518394 MIA3 CDKN2B-AS1 0.08615 0.04893 0.04929 0.04398 0.06707

rs4846770 rs2069418 MIA3 CDKN2B-AS1 0.09625 0.04741 0.04753 0.04296 0.06983

rs17163301 rs518394 MIA3 CDKN2B-AS1 0.08487 0.04869 0.04899 0.0457 0.06637

CAD loci vs all strategy Odds Penetrance

SNP 1 SNP 2 Locus 1 Locus 2 Add Mul Add Mul Het

rs17465637 rs518394 MIA3 CDKN2B-AS1 0.08232 0.04734 0.04769 0.03447 0.06405

HumanNet strategy Odds Penetrance

SNP 1 SNP 2 Locus 1 Locus 2 Add Mul Add Mul Het

rs4694178 rs583104 IL8,CXCL6 PSRC1 0.04876 0.04876 0.04876 0.04876 0.04876

rs4694178 rs602633 IL8,CXCL6 PSRC1 0.006329 0.006329 0.006329 0.006329 0.006329

1Variant pairs that are statistically significant on at least one scale.
2The loci most close, in genomic proximity, to the corresponding variant.
3Adjusted p-values; significant p-values are indicated by bold face; significance on all scales is required to pass the scale-invariance test.
4Additive odds ratio
5Multiplicative odds ratio
6Additive penetrance
7Multiplicative penetrance
8Genetic heterogeneity

doi:10.1371/journal.pgen.1005502.t003
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provided in one or more omics experiments; this resulted in 2,319,906 variant pairs. We found
two variant pairs that were significant for all five link functions, thereby passing the scale-
invariance test, see Table 3. For each of these two pairs, genomic proximity suggests that an
interaction between PSRC1 and CXCL6 is associated to CAD, and, thus, may play a role in its
pathophysiology. The exact mechanism of the interaction is, however, unknown, and the evi-
dence for it in HumanNet was merely reported as co-expression between human genes.

The maximal effect size for each discovered interaction range from 0.4718 to 1.379 (S2
Table); as a reference, the effect sizes for robustly CAD-associated single variants are com-
monly around 0.285 [37]. While, after adjustment for age, sex, smoking, and population strati-
fication, most effect sizes were reduced, this was not the case for the CXCL6-PSRC1-related
interactions (see S3 Table). The penetrance pattern of one of the CXCL6-PSRC1 variant pairs,
rs4694178 and rs602633, is shown in S5 Fig. Of note, it shows a marked directional change in
risk for individuals carrying the major rs4694178 homozygote and the minor rs602633
homozygote.

We then investigated the reproducibility of the CXCL6-PSRC1-related interaction on a
non-overlapping sub-cohort of PROCARDIS. This sub-cohort consists of 1797 cases and 2677
controls, which were genotyped on the Illumina Human1M Quad chip. The exact variants of
the significant pair were not genotyped, and was therefore imputed (and hard-called) using the
1000 Genomes phase 3 reference panel. We tested interaction directly using a GLM combined
with our link functions. This resulted in the p-values 0.174, 0.241, 0.103, 0.056, 0.156, for the
identity, log, log-complement, odds and logit link functions respectively. We note that, while
the p-value for the odds scale is close to significance, the replication clearly did not pass the
scale-invariance test. Despite this, the penetrance patterns for different allele combinations
were very consistent between discovery and replication analyses, compare S5 and S6 Figs. Of
note, is that the minor allele frequency for rs602633 is relatively different between the two
cohorts, see S4 Table. We, furthermore, expanded the search to the ten closest variants on both
sides of both significant variants. The best variant pair, rs11730560 and rs1277930, reached
nominal significance, and the p-values were 0.023, 0.0311, 0.014, 0.0084, 0.0209, again for the
identity, log, log-complement, odds and logit link functions respectively. It did, however, not
pass multiple testing accounting for all the 380 tested variant pairs.

We also performed analyses using the staticmethod assuming 100 marginally associated
variants with the same search strategies, but no variant pair was significant on any scale for any
of the strategies. This may be a consequence of the expected lower power of the staticmethod.

Discussion
We have introduced a new stage-wise methodology that is statistically and computationally
efficient for large-scale inference of genetic interactions. We have derived two separate meth-
ods: The first is the staticmethod that uses a priori estimated multiple testing correction fac-
tors; here we have used the number of published robustly associated CAD SNPs to obtain such
an estimate. The second adaptivemethod does not rely on the assumption of known correction
factors, but uses the number of associated variant pairs at each stage to compute the multiple
testing factors. To the best of our knowledge, this is the first method that uses the idea of a
closed set of hypotheses to perform an exhaustive pairwise scan of interactions. We have
shown that this stage-wise method performs better on a large number of interaction models
compared to other statistical methods. The basic idea is that instead of directly testing all possi-
ble variant pairs for interaction, we use a sequence of more general association tests as a filter
to reduce the number of pairs until only potential interactions remains. This shifts much of the
multiple testing burden from the final interaction test to the preceding general tests. Because

Stage-wise Likelihood Ratio Tests for Genetic Interactions

PLOS Genetics | DOI:10.1371/journal.pgen.1005502 September 24, 2015 13 / 24



the tests leading up to the interaction test in general are more powerful (i.e., interactions will
not be discarded), this results in higher overall power.

Our simulation results show that our new methods in general have higher statistical power
than other common interaction inference methods. For certain specific models and low MAFs,
the Sixpacmethod [23] perform relatively well, but its performance over the spectrum of all
possible interaction models is low. The simulations suggest that, in ideal cases, it may be possi-
ble to infer interactions using our stage-wise methodology even when correcting for 1012 pairs,
since each stage greatly reduces the number of tested interactions. However, we conjecture
that, in practice, it will be important to take advantage of prior information in order to reduce
the number of tested interactions; for example, we used information from the HumanNet data-
base to select candidate interactions. Moreover, the methodology presented in this paper can
also be combined with screening procedures such as LDcohort [30, 31] or the efficient probable
approximate complete search algorithm of [23]. This may give even further gains in power and
computational speed.

Deciding which scale to work on (i.e., which link function to use, see Table 1) can be trou-
blesome and many researchers advocate a favorite scale for statistical or biological reasons.
Testing on a single scale will improve the statistical power for interactions that fit that scale
compared to testing multiple scales. However, if pairs of variants are additive on another scale,
this approach will lead to an increased number of false positives, in the sense that there exists
simpler models that explain the data. In our framework we offer a compromise: we display all
pairs that are significant on at least one scale, but also provide a test that require significance
on multiple scales. In this way, a researcher can interpret the significance of an individual scale
in the context of the other scales. From our analyses of biological data, no particular scale
appear to consistently be the critical one for the scale-invariance test.

We note that the scale-invariance test provides an advantage in terms of FWER control.
While most other methods failed to control FWER for data generated with a link function that
was sufficiently dissimilar from that underlying the method, the scale-invariance test allowed
our methods to control FWER for data generated with any tested link function. Although the
staticmethod could be derived using closed testing, the derivation of the adaptivemethod
relied on additional assumptions that may be difficult to satisfy in practice. We observed that
this could cause inflation of the FWER under a specifically designed additive model with multi-
ple weakly associated variants. We note that, while analytically straight-forward to work with,
the FWER is known to be a conservative control of the experimental error at the expense of
power [38]. One future direction could therefore be to investigate other error control measures,
for example the false discovery rate (FDR) [38]. Moreover, there are several cases where the
advantages, in terms of computational efficiency and statistical power, of the adaptivemethod
may compensate for a relatively modest inflation in the FWER. Specifically, as validation is
conventionally required in genetics studies, the adaptivemethod can be used as a powerful tool
in the discovery phase of large-scale studies.

Our biological analysis identifies the well known CDKN2B-AS1 locus, or ANRIL, which
encodes an anti-sense RNA [39]. The region contains several variants that are robustly associ-
ated with CAD but the pathophysiology of ANRIL is unknown. Interestingly, we detect an
interaction between CDKN2B-AS1 and MIA3, another established CAD locus [2], potentially
indicating a new lead on CAD pathophysiology. Variants in the CELSR2-PSRC1-SORT1 gene
cluster have previously been shown to be associated to CAD and lipid traits [2], although the
exact causal relation of the genes is unclear. Our results suggest that HumanNet’s co-expres-
sion-based connection between CXCL6 and PSRC1 in fact mirrors a genetic interaction in
CAD, supporting a role of PSRC1 in CAD (in line with recent results [40]). Moreover, inflam-
mation has long been seen as an important component of the pathology of atherosclerosis, but

Stage-wise Likelihood Ratio Tests for Genetic Interactions

PLOS Genetics | DOI:10.1371/journal.pgen.1005502 September 24, 2015 14 / 24



few inflammation genes have been implicated by genome-wide association studies [41], and
only in meta-analyses. It is therefore interesting that in the two sets of variant pairs unbiased
with respect to CAD, we find interactions involving genes clearly implicated in regulation of
inflammation, i.e., the interleukin- and chemokine-related genes IL1R1 and CXCL6 (IL8). Of
course, follow-up functional investigations are required to fully understand the potential
pathophysiological consequences of these interactions.

Complex diseases are multi-gene and multi-factorial diseases characterized by complex
interactions between genetic, regulatory, metabolic and environmental factors. The majority of
complex disease genome-wide association studies have employed traditional association analy-
ses of single genetic markers, which only have been able to explain a small fraction of the dis-
ease heritability. A perhaps more conclusive approach would be to reconstruct the complex
dependencies between factors as an interaction network reflecting the disease pathophysiology.
This approach, however, has so far been hampered by the lack of efficient methods for infer-
ence of interactions associated to disease. The static and adaptivemethods are two effective
ways to discover genetic interactions, and the flexibility of GLMs allows them to be applied to a
wide range of different phenotypes. Genetic interactions, and in particular the construction of
interaction networks explaining the pathophysiology of the disease, have a potential for clinical
relevance, both in terms of prognosis, treatment and drug development. The ideas of stage-
wise testing is furthermore applicable outside medical genetics, whenever a large number of
complex hypotheses are tested.

Materials and Methods

Ethics statement
The PROCARDIS study was carried out in accordance with the Helsinki Declaration and
approved by the Institutional Review Board (IRB) at each one of the 4 recruiting centers: the
Regional Ethics Review Board at Karolinska Institutet, Stockholm in Sweden (approval number
98-482 and 03-491), the IRB at the University of Munster, Munster, in Germany, the IRB at the
Mario Negri Institute, Milano in Italy and the IRB at the University of Oxford, Oxford, United
Kingdom. All study participants provided their written informed consent to participate in the
study, a procedure approved by each one of the local ethical committees.

Biological data—the PROCARDIS cohort
A subset of the PROCARDIS cohort has previously [42] been genotyped with the Illumina IBC
chip, a iSelect Custom Genotyping BeadChip [43]. This chip contains 48,742 variants in
approximately 2,100 candidate genes that are believed to be involved in vascular disease pro-
cesses. The subset of PROCARDIS used in this study are 3,162 cases and 3,353 controls of
which 3,865 are males and 2,650 are females. The disease phenotype is CAD (including myo-
cardial infarction). Multidimensional factor analysis indicated no significant population
structure.

The following quality control was performed. We removed variants with a minor allele
frequency< 0.05, with significant deviation from Hardy-Weinberg equilibrium p< 10−6, and
removed the variants from the X-chromosome to avoid confounding with gender, leaving us
with 33,963 variants.

We performed simulations of all possible weight combinations with a precision of 0.1, the
results can be seen in S5 Table. The choice seems to have little impact, and the best weight com-
bination was 0.1, 0.3, 0.3 and 0.3, which is the one we used on biological data.

Strategies for the selection of variant pairs to test. We have considered three a priori
determined strategies for selecting sets of variant pairs to investigate for genetic interaction.
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Firstly, we considered all possible pairs of variants. We removed pairs for which the product of
the minor allele frequencies was less than 0.04, as the likelihood ratio approximations become
unstable for small minor allele frequencies. We also removed pairs in which the variants were
less than 1 Mbp from each other, since the GLMmodels fail in presence of LD. Secondly, we
considered pairs that contain at least one previously robustly associated variant. These robustly
associated variants were taken from 46 published CAD-associated variants found in large-scale
meta analyses [2], 18 of these were available on the IBC chip and can be found in S1 Table.
Thirdly, we considered variant pairs whose corresponding genes have an edge in the HumanNet
interaction database [36]. We downloaded HumanNet version 1.0 from the HumanNet web
page. The genes in HumanNet is indexed by UniProt Ids and we therefore associated UniProt
IDs to variants, as follows: Variants were annotated with ANNOVAR [44] and mapped to their
nearest genes by genomic proximity; if there were more than one then the variant was mapped
to both. We downloaded Uniprot IDs for all genes that were downloaded from Ensembl Bio-
mart [45]. We then combined this information to assign each variant to one or more Uniprot
IDs. A variant pair was then formed if the corresponding genes had an edge in HumanNet.

Generation of synthetic data for estimation of statistical power
We used two different simulation strategies for the power estimation. The first of these was
used to compare the stage-wise scale-invariance method to other methods, see further next sec-
tion. Models were constructed by enumerating all possible penetrance matrices displaying
interaction for a single variant pair [35], as follows: The models were initially restricted to com-
plete penetrance, that is, the penetrance is either 0 or 1, which allowed us to enumerate all 29 =
512 penetrance matrices. Only models considered to interact were included, here a model was
defined as an interaction if the penetrance matrix could not be decomposed according to
Risch’s [19] definition of genetic heterogeneity. That is, formally, let P be 3 × 3 binary pene-
trance matrix. Then P is not an interaction if and only if there exists two 3 × 3 binary matrices,
R with identical rows, and C with identical columns, and P cannot be written as the logical OR
between R and C. The genetic heterogeneity definition was chosen because it excludes most
marginal effect-only models, thereby reducing noise in the power estimation, and because it
can easily be evaluated for complete penetrance matrices. The penetrance matrix was then
reduced to continuous values by changing the 0’s to a specified base risk of β0 and the 1’s to β0
+ β1. To enhance comparison of models, we used heritability, H2, as a summary measure of all
genetic effects in a model, where heritability was defined as

H2 ¼
X
i;j

ðPrðY ¼ 1Þ � PrðY ¼ 1 j X1 ¼ i;X2 ¼ jÞÞ2PrðX1 ¼ i;X2 ¼ jÞ
PrðY ¼ 1Þð1� PrðY ¼ 1ÞÞ :

For each model, the parameter β1 was adjusted to obtain heritabilities of 0.005, 0.010 and
0.015. Using this enumeration we obtain a set of models, each defined by a matrix of pene-
trances for each genotype combination Pr(Y = 1jX1 = i, X2 = j) (cf. S7, S8 and S9 Figs and S2
Text). The genotypes for cases and controls were then generated using Bayes’ theorem

PrðX1 ¼ i;X2 ¼ j j Y ¼ 1Þ ¼ PrðY ¼ 1 j X1 ¼ i;X2 ¼ jÞPrðX1 ¼ iÞPrðX2 ¼ jÞP
k;lPrðY ¼ 1 j X1 ¼ k;X2 ¼ lÞPrðX1 ¼ kÞPrðX2 ¼ lÞ

to get the multinomial distribution over genotypes. We generated 1,000 data sets from each of
these models. We assumed a balanced design (i.e., same number of cases and controls), the
sample size for each group was varied over 2,000, 3,000, and 4,000, the heritability was varied
over 0.015, 0.020 and 0.025, and the minor allele frequency was fixed to 0.3. Each data set
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comprised a single interacting variant pair, and to model multiple testing, we assumed that
there were 106 variants and 1012 variant pairs tested. For each model and each parameter com-
bination, the power of a method to detect interaction was estimated over the 1,000 replicates.
The method’s power over the spectrum of tested interaction models were then summarized in
an exceedence plot.

We performed two additional power analyses using a second simulation strategy, where we
used data simulated from a specific interaction model, the double dominant model (described
in S2 Text.1), in which α = β1 = β2 = γ1 = γ2 = 0 and δ11 = δ12 = δ21 = δ22 = x, and a logit link
function was used. The value x was then varied to get the heritability 0.01, 0.02 and 0.03. This
analysis used a fixed sample size of 3,000 cases and 3,000 controls. The minor allele frequency
was set to 0.3 at both loci.

In the first of these two power analyses, we investigated how the relative power in detecting
an associated variant pair generated under an interaction model varies over the different indi-
vidual stages in the stage-wise approach, specifically we compared the power in the first and
the last stages (i.e., using the null models H1 and H4). The parameters of the double dominant
model can be seen in S6 Table.

In the second power analysis, where we studied the power of the staticmethod to detect an
interacting pair as a function of the estimated number of marginally associated variants, we set
the total number of variants tested, N = 1,000,000, and the number of marginally associated
variants was varied,M 2 {10, 20, 100}. For the staticmethod the corrections for each stage, in
order, then was set to N(N − 1)/2,M � N,M � N andM � (M − 1)/2. The parameters of the dou-
ble dominant model can be seen in S7 Table.

Generation of synthetic data for FWER estimation
The FWER estimation was based on simulated data. We generated data from ten different null
models representing two different cases: The first case corresponds to the null models in our
stage-wise methodology: no association, single main association and five null models with dou-
ble main effects corresponding to the link functions in Table 1; the second case represents a
more challenging scenario and comprise three null models with multiple main effects.

For each null model we generated 200 data set replicates that contained 500 − L unassoci-
ated and L associated variants, where L depends on the null model, L = 0 for the no association,
L = 1 for the single association, L = 2 for the double main models, and L = 10, 20, 30 for the
multivariate model. For each data set there was therefore L associated variants according to the
null model. For each replicate this resulted in 124,750 pairs. The minor allele frequency was
sampled uniformly between 0.2 and 0.4. We sampled individuals until we obtained 4000 cases
and 4000 controls. The parameters used in each null model can be seen in S8 Table.

For the null models with multiple main effects, we used an additive logistic regression
model to generate the phenotype. Let L 2 {10, 20, 30} be the number of variants to include
from the chromosome, then the model was defined

log
p

1� p

� �
¼ b0 þ

XL

i¼1

bixi

where xi 2 {0, 1, 2} and βi * N(0.15, 0.01). The intercept was set to −9.0.

Comparison of statistical methods
We evaluated the power of our static stage-wise scale-invariant method in comparison to six
other statistical methods. In our main, large-scale analysis using data generated from an
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enumeration of all possible interaction models (see Material and methods section Generation
of synthetic data for estimation of statistical power), we restricted ourselves to statistical meth-
ods that could efficiently compute a p-value with enough precision to test how they performed
in realistic scenarios: Four methods based on a direct interaction test (i.e., in our framework
description above, testing hypothesisH4 againstHA) with a logistic link function GLM, but
employing different screening strategies: Logistic—no screening.Marginal+logistic—the mar-
ginal screening method described by [29], which uses a GLM that tests the marginal effect of
each variant at an optimistic significance level 0.1 for screening. The screening approaches
used in CSS+logistic [30] and R2+logistic [31] are both LDcohort-based, but differ in the defini-
tion of the χ2-based statistic, and the choice of significance threshold used for the screening: χ2

� 3 (corresponding to p� 0.39) and p� 10−4, respectively. Thirdly, we test two methods
based on the LD-contrast test with different filtering strategies: LD-contrast—no screening. Six-
pac—the method of [23], which recodes variant genotypes into two binary variables (according
to dominant and recessive coding) and then combines LDcases screening with a LD-contrast
main test. The significance level was set to 0.05. We assumed that there were 1012 variant pairs
present on the chip and that there existed one interacting pair. For the methods without screen-
ing (Logistic and LD-contrast), as well as for the Sixpacmethod, we corrected for 1012 pairs. For
the remaining screening methods, we corrected for the expected number of null variant pairs
passing the screening, by taking the product of the p-value threshold and the total number of

pairs (i.e., Marginalþ logistic : ð0:1 � 106

2
Þ � 5 � 109, CSS+logistic: 0.39 � 1012 = 3.9 � 1011,

and R2+logistic: 10−4 � 1012 = 108). A pair was declared significant if it passed the significance
level of both the screening and the main test. For all these methods we used the Holm-Bonfer-
roni correction for multiple testing, which is more powerful than the classic Bonferroni correc-
tion. For the Static stage-wise method we corrected for 1012 pairs, 100 � 106 pairs, 100 � 106
pairs and 4950 pairs in each of the four stages respectively, to simulate the situation with 100
associated variants.

We also performed a second, smaller-scaled, but computationally more demanding, power
comparison using data generated from specific interaction models and null models (described
in detail in S2 Text). In addition to the seven methods enumerated above, this comparison also
included our adaptive stage-wise, scale-invariant method and the Model-Based MDR
(MB-MDR) method [26], which is a parametric extension of the MDR method that addresses
some shortcomings of the original MDR method, in particular adjustment for main effects
(these methods require the generation of data sets complete with both null and interaction
pairs and could not be evaluated in the main power comparison above).

Lastly, we also used the same nine methods in a FWER comparison using simulated data
generated as described in Material and methods section Generation of synthetic data for
FWER estimation.

Software availability
A C++ implementation of all methods and source code for all experiments is available at:
https://github.com/mfranberg/besiq.

Supporting Information
S1 Text. Proofs.Mathematical proofs for the FWER control of the static and adaptivemethod
and the proof that the likelihood of models H1,H2, H3 and HA is invariant of the link function.
(PDF)
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S2 Text. Supplemental simulations, analyses, and methods. Supplemental power-analyses
using simulated data generated from specific interaction models and from null models (shown
in S1–S4 Figs). Parameter information for all simulations for power analyses (cf., e.g., S7–S8
Figs). Methods used in the investigation of the impact of weights in the stage-wise methodology
(S2 Table). Implementation details of published methods for detection of interaction, used in
all power and FWER comparisons.
(PDF)

S1 Fig. Statistical power as a function of sample size and minor allele frequency under the
double dominant model. The x-axis is the effect level (i.e., categorized effect sizes, cf. S2 Text),
and the y-axis is the power. The columns correspond to different minor allele frequencies. The
rows correspond to different sample sizes under a balanced design e.g. 2000 indicates 2000
cases and 2000 controls. (Notice that the red line for the adaptivemethod is often hidden
behind the black line for the staticmethod.)
(TIF)

S2 Fig. Statistical power as a function of sample size and minor allele frequency under the
double recessive model. The x-axis is the effect level (i.e., categorized effect sizes, cf. S2 Text),
and the y-axis is the power. The columns correspond to different minor allele frequencies. The
rows correspond to different sample sizes under a balanced design e.g. 2000 indicates 2000
cases and 2000 controls. (Notice that the red line for the adaptivemethod is often hidden
behind the black line for the staticmethod.)
(TIF)

S3 Fig. Statistical power as a function of sample size and minor allele frequency under the
XORmodel. The x-axis is the effect level (i.e., categorized effect sizes, cf. S2 Text), and the y-
axis is the power. The columns correspond to different minor allele frequencies. The rows cor-
respond to different sample sizes under a balanced design e.g. 2000 indicates 2000 cases and
2000 controls. (Notice that the red line for the adaptivemethod is often hidden behind the
black line for the staticmethod.)
(TIF)

S4 Fig. Statistical power as a function of sample size and minor allele frequency under the
side model. The x-axis is the effect level (i.e., categorized effect sizes, cf. S2 Text), and the y-
axis is the power. The columns correspond to different minor allele frequencies. The rows cor-
respond to different sample sizes under a balanced design e.g. 2000 indicates 2000 cases and
2000 controls.
(TIF)

S5 Fig. Estimated penetrances for the rs602633 (PSRC1) and rs4694178 (IL8, CXCL6)
interaction in the discovery cohort. The x-axis is the number of minor alleles of the first vari-
ant and the y-axis is the estimated penetrance under the different models. The colors corre-
spond to the number of minor alleles of the second variant. The error bars indicate the
estimated confidence interval.
(EPS)

S6 Fig. Estimated penetrances for the rs602633 (PSRC1) and rs4694178 (IL8, CXCL6)
interaction in the replication cohort. The x-axis is the number of minor alleles of the first var-
iant and the y-axis is the estimated penetrance under the different models. The colors corre-
spond to the number of minor alleles of the second variant. The error bars indicate the
estimated confidence interval.
(EPS)
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S7 Fig. The estimated density of effect sizes for models evaluated in the main power experi-
ment represented on the logit scale. The rows correspond to sample sizes, and the columns to
heritabilities. The differently colored lines correspond to the estimated density of different
parameters in the models. The label “a” refers to the intercept α, “b1” and “b2” to the main
effects of the first variant β1 and β2, “c1” and “c2” to the main effects of the second variant γ1
and γ2, and “d11”, “d12”, “d21” and “d22” to the interaction effects δ11, δ12, δ21 and δ22.
(TIF)

S8 Fig. The estimated density of effect sizes for models evaluated in the main power experi-
ment represented on the penetrance scale. The rows correspond to sample sizes, and the col-
umns to heritabilities. The differently colored lines correspond to the estimated density of
different parameters in the models. The label “a” refers to the intercept α, “b1” and “b2” to the
main effects of the first variant β1 and β2, “c1” and “c2” to the main effects of the second variant
γ1 and γ2, and “d11”, “d12”, “d21” and “d22” to the interaction effects δ11, δ12, δ21 and δ22.
(TIF)

S9 Fig. The cumulative distribution function of marginal heritability fraction for the main
power experiment. The x-axis represents a threshold for the marginal heritability fraction, and
y-axis the fraction models with a marginal heritability fraction greater than this threshold. The
blue line represents the empirical cumulative distribution function. The black line represents
the cumulative distribution for a uniform distribution. The marginal heritability fraction was
computed as the sum of the marginal heritabilities divided by the total heritability.
(TIF)

S1 Table. Robustly associated variants genotyped on the IBC chip. A list of the top variants
in each of the published CAD loci associated in large-scale meta analyses [2], that are also pres-
ent on the IBC-chip.
(PDF)

S2 Table. Parameters, for the CAD-associated variant pairs, estimated under a logistic
regression model. Variant pairs that displayed significant interaction on at least one scale for
each strategy in the original analysis of the PROCARDIS cohort are listed. The intercept is α.
The main effects are β1, β2, γ1, and γ2. The interaction parameters are δ11, δ12, δ21, and δ22. LR
is the likelihood ratio which measures the degree of evidence for the interaction model com-
pared to the additive model on the logistic scale.
(PDF)

S3 Table. Parameters, for the CAD-associated variant pairs, estimated under a logistic
regression model after adjustment for population stratification (3 MDS components), age,
sex and smoking. Variant pairs that displayed significant interaction on at least one scale for
each strategy in the original analysis of the PROCARDIS cohort are listed. The intercept is α.
The main effects are β1, β2, γ1, and γ2. The interaction parameters are δ11, δ12, δ21, and δ22. LR
is the likelihood ratio which measures the degree of evidence for the interaction model com-
pared to the additive model on the logistic scale.
(PDF)

S4 Table. The genotype frequencies of the significant variant pairs for the discovery and
replication analyses. The MAF1 and MAF2 columns denote the minor allele frequency for
variant 1 and variant 2 respectively. The counts nij is the number of individuals with genotype i
at the first variant and genotype j at the second variant.
(PDF)
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S5 Table. Evaluation of how different weight combinations affect the statistical power of
the static and adaptive stage-wise methods. The weight for a stage i 2 [4] is indicated by wi.
The list is sorted in ascending order by the power obtained for the static stage-wise method and
the weight combination selected for all remaining analyses in this paper is indicated by bold
face.
(PDF)

S6 Table. The penetrance matrices used for the double dominant model when comparing
the statistical power between stages. The value pij denotes the penetrance for genotype ij. The
rows correspond to the sequence of effect sizes used, sorted in ascending order of the effect
size.
(PDF)

S7 Table. The penetrance matrices used for the double dominant model when investigating
the statistical power for the static method. The value pij denotes the penetrance for genotype
ij. The rows correspond to the sequence of effect sizes used, sorted in ascending order of the
effect size.
(PDF)

S8 Table. Parameters used for the generation of simulated data from seven different GLMs
used to estimate FWER. The GLMS corresponds to the null models used in the stage-wise
methodology. The intercept is α. The main effects are β1, β2, γ1, and γ2.
(PDF)
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