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ABSTRACT

We consider the static linear panel data model with a single regressor. For
this model, we derive the LIML estimator. We study the asymptotic behavior
of this estimator under many-instruments asymptotics, by showing its consis-
tency, deriving its asymptotic variance, and by presenting an estimator of the
asymptotic variance that is consistent under many-instruments asymptotics.
We brie�y indicate the extension to the static panel data model with multiple
regressors.
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1. Introduction

Regression with endogeneity is at the core of econometrics. Using instrumental variables is the standard
approach. The expression “instrumental variables” is due to Reiersøl (1941). Theil (1953) developed
“repeated least squares,” pioneering more instruments than regressors. This later on became known as
two-stage least squares (2SLS), which is now a standard tool.

Just before the onset of 2SLS, Anderson and Rubin (1949, 1950) introduced the limited-information
maximum likelihood (LIML) estimator as a way to deal with endogeneity. Its small-sample qualities vis-
à-vis 2SLS got appreciated in the ��ies in the development of k-class estimators like LIML (Nagar, 1959),
but applied researchers showed little eagerness and LIML vanished from sight.

A revival of the LIML estimator had to wait till the development of “many-instruments asymptotics.”
The argument, adapted from Wansbeek and Meijer (2000), is as follows. The LIML estimator is the
maximum likelihood (ML) estimator of β in the model y = Xβ + u and X = Z5 + V , with Z of order
N × h exogenous instruments. The errors are independent and identically distributed (i.i.d.) normal.
Let, writing PC = C(C′C)−1C′ andMC = I − PC for any C of full column rank,

SP ≡ (y,X)′PZ(y,X),

SM ≡ (y,X)′MZ(y,X).

The LIML estimator β̂ follows from maximizing the likelihood. A�er concentrating out the nuisance
parameters, 5, and the joint covariance matrix of u and v, the �rst-order condition is

(
SP − λ̂SM

)(
1

−β̂

)
= 0, (1)

with λ̂ the smallest value for which SP − λ̂SM is singular. Let 6P ≡ E(SP) and 6M ≡ E(SM), and let
λ ≡ h/(N − h). If a and b are random N × 1 with E(ab′) = θIN for some θ , then E(a′PZb) = hθ and
E(a′MZb) = (N − h)θ . Hence E

(
a′(PZ − λMZ)b

)
= 0 and

(6P − λ6M)

(
1

−β

)
= E

(
(y,X)′(PZ − λMZ)(y,X)

) (
1

−β

)
= E

(
(y,X)′(PZ − λMZ)u

)
= 0.

(2)
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So, the LIML estimator satis�es a relation, (1), that is the sample analog of a major model implication,
(2). As Bekker (1994), Section 3, extensively argues, this observation has an implication when studying
the asymptotic distribution of the LIML estimator. In general, an asymptotic distribution is based on
parameter sequences. Their choice should be motivated by the quality of the approximation that the
asymptotic distribution provides to the exact distribution of the estimators. According to Bekker (1994),
“the sequence should be directed so that it generates acceptable approximations of known distributional
properties of related statistics. When an alternative sequence provides better approximations to these
known properties, it can also be expected to provide better approximations to the distributions of the
estimators p.661.” As statistics related to the estimators of β , Bekker (1994) considers the matrices PZ
andMZ ; known distributional properties of them are given by their expectations. This suggests to study

an asymptotic sequence where λ̂ does not vanish, i.e., where the number of instruments grows along
with the number of observations. This motivates the use of LIML with many-instruments asymptotics.

The situation is di�erent for the 2SLS estimator, β̃ = (X′PZX)−1X′PZy. A little bit of algebra shows
that it satis�es

(
SP − λ̃ e1e

′
1

) (
1

−β̃

)
= 0, (3)

with e1 the �rst unit vector and λ̃ ≡ (y−Xβ̃)′PZ(y−Xβ̃). The result of taking the expectation in (3) is at
variance with (2), and suggests a worse performance of 2SLS relative to LIML. Evidently, the di�erence
between 2SLS and LIML is small when λ ≈ 0, so when N is large relative to the number of instruments,
or when6M ≈ c · e1e

′
1, so when the instruments are not weak and explain the regressors well. But when

there are many instruments or when the instruments are weak, LIML should perform better.
Bekker (1994) was the �rst to fully describe such alternative asymptotics, now usually called many-

instruments asymptotics. He also gave a consistent estimator of the alternative asymptotic variance,
o�ering an inference procedure with o�en much better coverage rates than 2SLS. In his words, this was
“a remarkable result with practical implications.” The result is o�en known as “Bekker standard errors.”

To the best of our knowledge, LIML estimators have not yet been developed for panel data models, at
least not in the sense of estimators obtained frommaximizing the likelihood. LIML-like estimators have
been developed by, e.g., Alvarez and Arellano (2003), Akashi and Kunitomo (2012), and Moral-Benito
(2013) for the dynamic panel data model, but these are least-variance ratio estimators and not “true”
LIML estimators obtained from maximizing a likelihood function. So, there appears to be a gap in the
literature. The objective of our study is to �ll this gap by deriving the LIML estimator for the static linear
panel datamodel and investigating its properties, in a framework ofmany-instruments asymptotics since
the raison d’être of LIML lies there.

The article is organized as follows. We formulate our model in Section 2. We indicate what we mean
by “limited information.” The loglikelihood is formulated and maximized over the parameter space.
This yields the panel LIML estimator. In Section 3 we de�ne many-instruments asymptotics, and show
that our estimator is consistent under such asymptotics. We derive the asymptotic variance, and present
an estimator of this variance that is consistent under many-instruments asymptotics, leading to the so-
called “Bekker standard errors.” Section 4 deals with the static panel datamodel withmultiple regressors,
which appears to be relatively straightforward. In Section 5 we present someMonte Carlo results on the
median bias and the coverage rate of the panel LIML estimator relative to the 2SLS estimator. Section 6
concludes.

2. LIML in the panel datamodel

In this section we consider the case of a single regressor since this captures the essential elements, and
the notation can be kept simple. The extension to the the static panel datamodel withmultiple regressors
is dealt with in Section 4. We �rst formulate the model and derive the loglikelihood. We next maximize
the loglikelihood to arrive at the panel LIML estimator.
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2.1. Themodel and the loglikelihood

As in the case of a single cross-section, themodel is given by two equations, one containing the structural
relation under study and the second one relating the endogenous regressor to exogenous instruments:

yn = β xn + un, (4)

xn = 5′zn + vn, (5)

for n = 1, . . . ,N, where xn, yn, un, and vn are T-vectors and zn is an h-vector; 5 is of order h × T. In
matrix form, with X,Y ,U, and V (N × T) and Z (N × h), we get for (4) Y = βX + U and for (5)
X = Z5 + V . The error terms satisfy

en ≡

(
un
vn

)
i.i.d.
∼ N (0,�), � =

(
�uu �uv

�vu �vv

)
.

The estimationmethod is limited-information in the sense that we do not exploit any structure that may
be present in 5 (e.g., due to wave-speci�c instruments) or in � (e.g., due to random e�ects). When
a speci�cation with �xed-e�ects is deemed appropriate, we assume that they have been eliminated by
an appropriate data transformation like taking �rst di�erences or the within-transformation, where one
wave of the panel has to be discarded to avoid singularity of �.

We now turn to inference in this model. Let Se ≡
∑

n ene
′
n/N. The logarithm of the joint density of

the en is, apart from constants,

log f = log |�| + tr(�−1Se).

Substitution of yn − βxn for un and xn − 5′zn for vn turns this into the logarithm of the likelihood, L,
as the Jacobian of the transformation from un and vn to yn and xn is 1. We maximize the likelihood in a
few steps, using the same symbol L throughout and neglecting constants.

2.2. Maximizing the loglikelihood

First, we concentrate out �. As ∂ logL/∂� = �−1 − �−1Se�
−1, the optimal value for � is �̂ = Se, and

the concentrated loglikelihood can be simpli�ed to

L = |Se| = |(U,V)′(U,V)| = |U ′U| |V ′MUV|, (6)

using the formula for the determinant of a partitioned matrix. We next concentrate out 5, using
M(U,Z) = MU −MUZ(Z′MUZ)−1Z′MU and 5̃ ≡ (Z′MUZ)−1Z′MUX so 5̃−5 = (Z′MUZ)−1Z′MUV ,
to obtain

V ′MUV = V ′M(U,Z)V + V ′MUZ(Z′MUZ)−1Z′MUV

= X′M(U,Z)X + (5̃ − 5)′Z′MUZ(5̃ − 5).

On taking5 = 5̃ in (6), we get in the optimumL = |U ′U| |X′M(U,Z)X|, depending only onβ . Applying

the formula for the determinant of a partitioned matrix in two ways to
(
X′MZX X′MZU
U ′MZX U ′MZU

)
gives

|X′MZX| |U ′M(X,Z)U| = |U ′MZU| |X′M(U,Z)X|,

where X′MZX does not depend on β ; neither does U ′M(X,Z)U as it is equal to Y ′M(X,Z)Y . So

L = |U ′U| |X′M(U,Z)X| ∝
|U ′U|

|U ′MZU|
or logL = log|U ′U| − log|U ′MZU|. (7)

Using the general result, for 9 a positive-de�nite matrix and θ a scalar parameter,

∂ log |9|

∂θ
= tr

(
9−1 ∂9

∂θ

)
,
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we can di�erentiate logL with respect to β and set the result equal to zero. This gives

β̂ =
tr[(Û ′Û)−1Y ′X − (Û ′MZÛ)−1Y ′MZX]

tr[(Û ′Û)−1X′X − (Û ′MZÛ)−1X′MZX]
, (8)

with Û ≡ Y − Xβ̂ ; hence this equation is nonlinear in β̂ . Solving it is numerically easy by substitution
of the 2SLS estimator of β in Û,

β̂2SLS =
tr[Y ′PZX]

tr[X′PZX]
,

yielding a new value of β̂ , and iteration until convergence. In the simulations below, iteration took but
a few steps, nearly always less than ten, and in most cases less than �ve. Notice that the panel LIML
estimator is not the solution to an eigenequation, unlike in the case of a single cross-section, T = 1.

3. Asymptotic properties

In this section we study the asymptotic properties of the panel LIML estimator. The interesting and
relevant case is the one of many-instruments asymptotics. We �rst indicate what we mean by that,
and present the simple calculus implied. We next prove the consistency of the panel LIML estimator
undermany-instruments asymptotics.We conclude this section by deriving the asymptotic variance and
present a consistent estimator of this variance. Derivations for the cross-sectional multiple-regressors
case have been given by Bekker (1994) and Newey (2004).

3.1. Many-instruments asymptotics

We will consider the properties of the panel LIML estimator under asymptotics characterized by

N → ∞,
h

N
→ α,

1

N
5′Z′Z5 → Q ≥ 0.

This means that the explanatory power of the instruments remains constant as N → ∞ although the
number of instruments grows along with N. We indicate many-instruments asymptotics by an asterisk
to distinguish it from the usual asymptotics with N → ∞ only. For example, with

E
(
X′MZU

)
= E

(
V ′MZU

)
= E

∑

n

vn(MZ)nnu
′
n =

∑

n

(MZ)nn�vu = tr(MZ)�vu = (N − h)�vu,

we have plimN→∞ X′MZU/N = �vu with the usual large-N asymptotics. But with many-instruments
asymptotics, we have tr(MZ)/N = 1 − h/N → 1 − α, so

plim∗ 1

N
X′MZU = (1 − α) �vu.

Along these lines,

1

N

(
U ′

X′

)
(U,X)

p∗

−→

(
�uu �uv

�vu �vv

)
+

(
0 0
0 Q

)
, (9)

1

N

(
U ′

X′

)
MZ(U,X)

p∗

−→ (1 − α)

(
�uu �uv

�vu �vv

)
. (10)

This directly yields

A ≡ (U ′U)−1U ′X − (U ′MZU)−1U ′MZX
p∗

−→ 0, (11)

B ≡ (U ′U)−1X′X − (U ′MZU)−1X′MZX
p∗

−→ �−1
uuQ. (12)

We are now in a position to study the asymptotic properties of the panel LIML estimator.
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3.2. Consistency

Consistency can be shown by adapting the approach of Newey (2004) for the single-equation case to the
case of panel data. The essential step is to show that L = |U ′U|/|U ′MZU| converges to a function of β
with a unique minimum in the true value β0, say. With U = Y − βX = Y − β0X − (β − β0)X we get

9 ≡ plim∗ 1

N
U ′U = �uu − (β − β0)(�uv + �vu) + (β − β0)

2(Q + �vv)

9⊥ ≡ plim∗ 1

N
U ′MZU = (1 − α)

[
�uu − (β − β0)(�uv + �vu) + (β − β0)

2�vv

]
.

So 9⊥ = (1 − α)
[
9 − (β − β0)

2Q
]
, hence

plim∗
L = plim∗ |U ′U|

|U ′MZU|
=

|9|

|9⊥|
=

(1 − α)T

|IT − 9− 1
2Q9− 1

2 (β − β0)2|
.

This function has a unique minimum in β = β0.
It is of some interest to compare this with the behavior of the 2SLS estimator,

β̃ =
tr(X′PZY)

tr(X′PZX)
= β +

tr(X′PZU)

tr(X′PZX)
.

From (9) and (10), we obtain

plim∗ 1

N
X′PZU = α �vu,

plim∗ 1

N
X′PZX = Q + α �vv.

So with many-instruments asymptotics the 2SLS estimator is inconsistent,

plim∗ β̃ = β +
α tr(�vu)

tr(Q) + α tr(�vv)
6= β . (13)

With large-N asymptotics, α = 0, and the 2SLS estimator is consistent, the textbook case.

3.3. Asymptotic variance

Consider the (infeasible) estimator

β̃ =
tr

[
(U ′U)−1Y ′X − (U ′MZU)−1Y ′MZX

]

tr
[
(U ′U)−1X′X − (U ′MZU)−1X′MZX

] =
tr [A]

tr [B]
.

It has the same asymptotic variance as β̂ , so

V(β̂) = plim∗ N(β̃ − β)2 =
plim∗ N [tr(A)]2

[
plim∗ tr(B)

]2 . (14)

As to A,

A = (U ′U)−1U ′X − (U ′MZU)−1U ′MZX

= (U ′U)−1U ′Z5 + (U ′U)−1U ′V − (U ′MZU)−1U ′MZV

= (U ′U)−1U ′Z5 + (U ′U)−1U ′Ṽ − (U ′MZU)−1U ′MZṼ

for any Ṽ and Ŵ with Ṽ = V + UŴ. We choose Ŵ = −�−1
uu �uv, cf. Nagar (1959), which makes U and

Ṽ independent. There holds

1

N
E(Ṽ ′Ṽ) = �vv·u ≡ �vv − �vu�

−1
uu �uv.
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Next, let

q ≡ N



vec(Û ′Û)−1

vec(Û ′Û)−1

vec(Û ′MZÛ)−1


 p∗

−→




1
1
1

1−α


 ⊗ vec(�−1

uu )

u ≡ vec(U ′)

d ≡




5′Z′ ⊗ IT
Ṽ ′ ⊗ IT
−Ṽ ′MZ ⊗ IT


 u.

Then E(uu′) = IN ⊗ �uu and

lim∗ 1

N
E(dd′) =




Q 0 0
0 �vv·u −(1 − α) �vv·u

0 −(1 − α) �vv·u (1 − α) �vv·u


 ⊗ �uu.

Using

(1, 1
1−α

)

(
1 −(1 − α)

−(1 − α) 1 − α

) (
1
1

1−α

)
= α

1−α
,

we obtain, since tr(Â) = 1
N q

′d,

plim∗ N
[
tr(Â)

]2
= (plim∗ q)′

{
lim∗ 1

N
E(dd′)

}
(plim∗ q)

= tr [�−1
uu (Q + α

1−α
�vv·u)]. (15)

So the asymptotic variance of β̂ is given by (14), with (12) and (15) inserted, thus generalizing the result
for the cross-sectional case as given by Newey (2004).

3.4. Bekker standard errors

In order to make this formula operational and obtain Bekker standard errors, it remains to �nd an
estimator V̂(β̂) of V(β̂) that is consistent under many-instruments asymptotics. With α̂ = h/N and

H ≡ (1 − α̂) PZ − α̂ MZ

W ≡ (1 − α̂)2 PZ + α̂2 MZ − α̂(1 − α̂) PÛ ,

one such expression is

V̂(β̂) =
tr[(Û ′Û)−1X′WX]

[tr((Û ′Û)−1X′HX)]2
. (16)

By way of comparison, the usual estimator for the variance of the 2SLS estimator β̃ can be written as

V̂(β̃) =
1

tr[(Û ′Û)−1X′PZX]
. (17)

The consistency of (16) under many-instruments asymptotics follows from

1

N
X′PZX

p∗

−→ Q + α �vv,

1

N
X′MZX

p∗

−→ (1 − α) �vv,

1

N
X′PÛX

p∗

−→ �vu�
−1
uu �uv.
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On substitution, this readily gives

1

N
X′HX

p∗

−→ (1 − α) (Q + α �vv) − α(1 − α) �vv

= (1 − α) Q,

1

N
X′WX

p∗

−→ (1 − α)2 (Q + α �vv) + α2(1 − α) �vv − α(1 − α) �vu�
−1
uu �uv

= (1 − α)2
{
Q + α �vv + α2

1−α
�vv − α

1−α
�vu�

−1
uu �uv

}

= (1 − α)2
{
Q + α

1−α
�vv·u

}
,

from which the many-instruments consistency of V̂(β̂) in (16) follows directly.

4. Multiple regression

Up till now, we considered the case of a single regressor. We presently turn to the case where there are K
regressors, all related to the same set of instruments. Model (4)–(5) then generalizes to

yn = x1nβ1 + . . . + xKnβK + un,

x1n = 5′
1zn + v1n,

...

xKn = 5′
Kzn + vKn.

With β ≡ (β1, . . . ,βK)′,X ≡ (X1, . . . ,XK),E ≡ (E1, . . . ,EK),5 ≡ (51, . . . ,5K),V ≡ (V1, . . . ,VK),
we get for all n

Y = X(β ⊗ IT) + U,

X = Z5 + V .

The notion of limited information is stretched as, for each n, all elements of X and all elements of Z are
related, over regressors and over time.

The derivation of the LIML estimator above for the single-regressor case is hardly a�ected when
there are multiple regressors. This is evident from the algebra from Section 2.2; we only need to read
U = Y − X(β ⊗ IT) rather than U = Y − β X. So the panel LIML estimator is the solution of

β̂ = Ĝ−1ĝ,

where

(Ĝ)kℓ ≡ tr[(Û ′Û)−1X′
kXℓ − (Û ′MZÛ)−1X′

kMZXℓ],

(ĝ)k ≡ tr[(Û ′Û)−1Y ′Xk − (Û ′MZÛ)−1Y ′MZXk],

for k, ℓ = 1, . . . ,K. The generalization carries through in a straightforward way all the way to Bekker
standard errors; (16) generalizes to

V̂(β̂) = Ã−1B̃Ã−1,

with
(
Ã
)
kℓ

= tr[(Û ′Û)−1X′
kHXℓ],(̃

B
)
kℓ

= tr[(Û ′Û)−1X′
kWXℓ],

with H andW as in (16).
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This extension covers the case where there are multiple endogenous variables. When there are, in
addition, multiple exogenous variables, the derivation is highly similar. Again, the algebra in Section 2.2
remains the core, and the only adaptation again is a further rede�nition of U to include the exogenous
regressors and their coe�cients.

5. AMonte Carlo study

In this section, we examine by means of a Monte Carlo experiment the quality of asymptotic inference
based on LIMLwith Bekker standard errors.We �rst describe the design used and then report the results.

5.1. Design

The design that we employ extends, to the case ofT = 2, the design introduced by Bekker andWansbeek
(2014) for the case of a single cross-section:

(
yn1
yn2

)
=

(
xn1
xn2

)
β +

(
εn1
εn2

)
,

(
xn1
xn2

)
= 5′zn + ω

(
εn1
εn2

)
+

(
ṽn1
ṽn2

)
.

Since the number of instruments is h, the parameter matrix 5 is of order h × 2. The number of
observations is N = 500, all variables have mean zero, and we further make the following choices.
We let β = 1 and

5 =

(
π 0 · · · 0
π 0 · · · 0

)′

.

The random vectors (εn1, εn2)
′ and (ṽn1, ṽn2)

′ are i.i.d. N(0, I2). The elements of zn are i.i.d. N(0, 1).
The implications of this design are as follows. The covariance matrix of the error terms is

� =

(
1 ω

ω ω2 + 1

)
⊗ I2,

and Q = π2
(
1 1
1 1

)
. The OLS estimator of β converges to ω/(π2 + ω2 + 1), and from (13) we see that

the bias of 2SLS under many-instruments asymptotics is αω/[π2 + α(ω2 + 1)].
In our simulations, we are interested in the e�ect of the following issues:

• The number of instruments. We let h = 10 and h = 30. With N = 500, this means α = 0.02 and
α = 0.06, respectively.

• The degree of endogeneity. This is driven by ω, where ω = 0 corresponds with absence of
endogeneity. We let ω = 0.5 and ω = 2.

• The strength of the instruments. This is measured by the F value of the regression of x on z. We let
F = 3, F = 5, and F = 10, obtained by appropriate choices of π ; in the population, there holds for
the regression of x on z

R2 =
π2

π2 + ω2 + 1
.

The way π drives F then follows directly from F = (N − h)R2/h(1 − R2).
We consider two estimators, LIML and 2SLS. For each parameter con�guration, we report for LIML the
median bias (in absolute value) and two �gures for the coverage rate, one based on many-instruments
asymptotics and one on large-N asymptotics. For 2SLS, we report the absolute median bias and just a
single �gure for the coverage rate, based on the textbook expression for its asymptotic variance. We use
the median rather than the mean since the mean of the LIML estimator does not exist in the cross-
sectional case, and we conjecture that this also holds in the panel case. A comparison of the two �gures
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for the coverage rate with LIML allows us to disentangle the �rst-order e�ect from the second-order
e�ect: do the results for LIML di�er from those for 2SLS due to a di�erence in centering or to the use of
a di�erent expression for the standard errors? In any case, the coverage rate is computed as the fraction
of cases (in 50,000 replications) where the computed con�dence interval contained the true value.

5.2. Results

The upper half of Table 1 presents the results for themedian bias, in absolute value. As expected, it shows
better performance of LIML relative to 2SLS when there are many instruments (right half) or when the
instruments are weak (low F).

The lower half of the table presents the results for the 95% coverage rates. The performance of LIML
is almost perfect, across all parameter combinations. By contrast, the performance of 2SLS ranges from
reasonably good (90%) to extremely poor (4%); when there are many instruments that hardly explain
the regressor, 2SLS cannot be trusted for inferential purposes.

The �gures in italic are the coverage rates for LIML based on the textbook expression for the standard
error. The results are between the LIML �gures with many-instruments asymptotics and the �gures for
2SLS. Overall, they are quite acceptable, suggesting that the better performance of LIML over 2SLS is
primarily due to better centering, and less to better variance estimation.

The results were derived with data generated from the normal distribution, on which LIML is based,
unlike 2SLS. Hence the results might be biased in a favor of LIML. To investigate this conjecture, we
repeated the above analysis with data generated from the t-distribution, in order to get more mass in

Table 1. Median bias and coverage rate of LIML (in bold) and 2SLS, with data generated from the normal distribution; in italics, the
coverage rate of LIML based on large-N asymptotics.

h = 10, α = 0.02 h = 30, α = 0.06

ω = 0.5 ω = 2 ω = 0.5 ω = 2

abs. median bias×1000

F = 3 0 94 1 96 1 95 1 94
F = 5 0 63 1 63 1 63 0 63
F = 10 0 34 0 34 0 34 0 34

95% coverage rate

F = 3 96 81 95 38 95 59 95 4
88 90 87 91

F = 5 95 86 95 56 95 70 95 17
91 92 91 92

F = 10 95 90 95 74 95 81 95 43
93 93 93 94

Table 2. Median bias and coverage rate of LIML (in bold) and 2SLS, with data generated from the t distribution; in italics, the coverage
rate of LIML based on large-N asymptotics.

h = 10, α = 0.02 h = 30, α = 0.06

ω = 0.5 ω = 2 ω = 0.5 ω = 2

abs. median bias×1000

F = 3 16 184 6 188 1 185 1 184
F = 5 6 140 2 138 0 137 0 135
F = 10 1 84 0 84 1 84 0 83

95% coverage rate

F = 3 95 65 92 9 95 30 95 0
72 81 71 81

F = 5 95 73 94 21 95 42 95 1
81 87 80 87

F = 10 96 81 95 44 95 61 95 8
89 91 88 91
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the tails of the distribution. We did so for the extreme case of three degrees of freedom (increasing this
number to in�nity leads to the normal distribution) and report the results in Table 2. It appears that there
is a slight increase in themedian bias of LIML but even in themost extreme case is is negligible. However,
the already poor perfomance of 2SLS becomes twice as bad. The coverage rate of LIML remains almost
perfect, while the coverage rate of 2SLS deteriorates compared to the case of normality, where it already
was poor. We conclude that, in this very limited sensitivity analysis, LIML is robust to a deviation from
normality.

6. Concluding remarks

We have derived the LIML estimator for the static linear normal panel data model, thus �lling an
apparent gap in the literature.We presented all derivations for the panel LIML estimator and its variance
undermany-instruments asymptotics. In simulations, LIML appeared to have an excellent coverage rate,
also in the cases where 2SLS is (highly) o� the mark.

There are various topics for further research. One is to develop an LIML version of the Hausman-
Taylor estimator (Hausman and Taylor, 1981). This is not only a widely used, instruments-based panel
data estimator, but also one where there are variants with many instruments, becoming available when
the time dimension of the data is exploited (Amemiya and MaCurdy, 1986, and Breusch et al., 1989).

Another topic concerns heteroskedasticity. In the case of a single cross-section, heteroskedasticity has
recently been the focus of LIML research, e.g., Hausman et al. (2012). Heteroskedasticity in a panel data
setting is a topic deserving attention.

A �nal challenge is to see how far the material of this article, in particular on many-instruments
asymptotics, remains relevant when the model is dynamic. We already referred to Alvarez and Arellano
(2003), Akashi and Kunitomo (2012), and Moral-Benito (2013). Another starting point could be to
adapt the maximum likelihood analysis of the linear panel data model by Hsiao et al. (2002) for many-
instruments asymptotics.
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