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Self-adaptation and secure information flow
in multiparty communications
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1 INRIA Sophia Antipolis, Valbonne, France
2 Università di Torino, Turin, Italy
3 University of Groningen, Groningen, The Netherlands

Abstract. Wepresent a comprehensivemodel of structured communications inwhich self-adaptation and security
concerns are jointly addressed.More specifically,we propose amodel ofmultiparty, self-adaptive communications
with access control and secure information flow guarantees. In our model, multiparty protocols (choreographies)
are described as global types; security violations occur when process implementations of protocol participants
attempt to readorwritemessagesof inappropriate security levelswithindirected exchanges. Suchviolations trigger
adaptation mechanisms that prevent the violations to occur and/or to propagate their effect in the choreography.
Ourmodel is equippedwith local and global adaptationmechanisms for reacting to security violations of different
gravity; type soundness results ensure that the overall multiparty protocol is still correctly executed while the
system adapts itself to preserve the participants’ security.

Keywords: Concurrency, Behavioural types, Multiparty communication, Self-adaptation, Secure information
flow.

1. Introduction

1.1. Context and motivation

Large-scale distributed systems are nowadays conceived as heterogeneous collections of interconnected software
artefacts. Hence, communication plays a central role in their overall behaviour. In fact, ensuring that the different
components follow the stipulated communicationprotocols is a basic requirement in certifying systemcorrectness.
However, as communication-centric systems arise in different computing contexts, system correctness can no
longer be characterised solely in terms of protocol conformance. Several other aspects—for instance, security,
adaptability, explicit distribution, time—are becoming increasingly relevant in the specification of interacting
systems, and should therefore be integrated into their correctness analysis. In the context of analysis techniques
based on behavioural types [HLV+16], recent proposals have addressed some of these aspects (see, e.g., [BYY14,
CCDC14, CCDC15, DP15]), thus extending the applicability of known reasoning techniques over models of
communication-based systems. A pressing challenge consists in understanding whether such proposals, often
devised in isolation, can be harmoniously integrated into unified frameworks.
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Fig. 1. Safe behaviour (solid lines in black), minor leak (dashed lines in blue), major leak (dotted lines in red)

As an example of a scenario in which protocol conformance falls short, consider a multiparty interaction (or
choreography) supported by a web browser—this is a most common interface for accessing distributed services
nowadays. Browsers rely on protocols (such as those for encryption) which are unknown to most users; such
protocols are often sensitive to security threats of different magnitude. Suppose that a user, his bank, a store, and
a social network use the browser to execute an e-commerce protocol in which the user purchases an item from the
store, employing the bank to perform a payment subprotocol and the social network to publicly announce the
purchase. The browser may rely on plug-ins to integrate information from these different services. We would like
to ensure that the buying protocol works as expected, but also to avoid that sensitive information, exchanged in
certain parts of the protocol, is leaked—e.g., in a tweet that reveals the credit card used in the transaction. Such
an undesired behaviour should be corrected as soon as possible. In fact, we would like to exert a stronger control
on the (unreliable) participant in ongoing/future instances of the protocol. Depending on how serious the leak
is, however, we may also like to react in different ways:

• If the leak is minor (e.g., because the user interacted incorrectly with the browser), then we may simply
identify the source of the leak and postpone the reaction to a later stage, enabling unrelated participants in
the choreography to proceed with their exchanges.

• Otherwise, if the leak is serious (e.g., when the plug-in is compromised by a malicious participant) we may
wish to adapt the choreography as soon as possible, removing the plug-in and modifying the behaviour of the
involved participants. This form of reconfiguration, however, should only concern the participants involved
with the insecure plug-in; other participants should not be unnecessarily restarted.

In our example, since the unintended tweet concerns only the user, the bank, and the social network, the update
should not affect the behaviour of the store. A message sequence diagram showing these behaviours is given in
Fig. 1, where all communications are intended to be realised by means of a browser, and �������	
������ represents an unsafe
plug-in.

1.2. Our approach

To specify and analyse such choreographic scenarios, we propose a framework for self-adaptive, multiparty
communications which provides basic guarantees for access control and secure information flow. Building upon
multiparty sessions [HYC08, HYC16], our framework consists of a language for defining processes and networks,
equipped with global types but also with run-time monitors. Global types offer an overall description of a
structured protocol between two or more participants; since in our model they also contain specifications of the
intended security policies, we shall call them security global types. Run-time monitors are obtained as projections
of a global type onto individual participants; they describe the global scenario from the local perspective of a single
participant. Processes represent code that is coupled with monitors to implement participants; the compliance
relation between processes and monitors is called adequacy. A (well-typed) network is a collection of monitored
processes that realise the choreography described by the global type. Figure 2 gives a diagrammatical description
of the model.
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Fig. 2. Main ingredients of our model of multiparty, self-adaptive communications

Monitors enable the communication behaviour of participants in the choreography, but also define their
associated security policies. A distinctive aspect of our model of multiparty communication is that the monitor
of each participant stipulates its reading/writing permissions and boundaries for security violations; these two
pieces of information are represented by security levels (simply called “levels” in the following). While the reading
permission is an upper bound for the level of incoming messages, the writing permission is a lower bound
for the level of outgoing messages. The reading and writing boundaries extend the corresponding permissions,
respectively upwards and downwards.Writing permissions may change as a result of message exchanges. Reading
permissions may change when participants try to declassify values. Both permissions and boundaries can be
modified through reconfiguration, as will be explained below. A security violation occurs when a participant
attempts to read orwrite amessagewhose level is not allowed by the corresponding reading orwriting permission.
Security violations can be either soft or hard, depending on whether they involve levels within the corresponding
boundaries or not:

• A reading violation is soft when the security level of the incoming value is less than or equal to the reading
boundary, and hard otherwise.

• Dually, a writing violation is soft when the security level of the outgoing value is greater than or equal to the
writing boundary, and hard otherwise.

The operational semantics for networks specifies the interaction between monitored processes, following an
asynchronous (queue-based) communication discipline. It also couples security enforcement with adaptation
mechanisms. To be precise, our semantics checks that the reading/writing permissions are respected in protocol
exchanges and, in case such permissions are violated, ensures that an appropriate adaptation mechanism is
triggered to limit the impact of the violation. We consider local and global adaptation mechanisms, intended to
handle soft and hard violations, respectively:

• The local adaptation mechanism simply cancels the insecure action and continues with the rest of the protocol
specified by the monitor. In case of a reading violation, the behaviour of the monitor is modified so as to skip
the disallowed read, and the insecure receiver is replaced by a process compliant with the new monitor. The
case of a writing violation is similar: the disallowed write is skipped, which entails modifying the behaviour
of the monitor of the receiver, so as to ignore the attempted write.

• The global adaptation mechanism modifies the behaviour of all choreography participants involved in disal-
lowed exchanges. To this end, this mechanism relies on nonces, distinguished dummy values generated only
at run-time. When an attempt to leak a value is detected, the value is replaced in the communication with a
fresh nonce. This avoids improperly communicating the value and allows the whole system to make progress,
for the benefit of the participants not involved in the violation. The semantics may then trigger at any point
a reconfiguration which removes the whole group of participants that created the nonce or could propagate
it, and replaces it by a new choreography (global type). Thus, in this form of adaptation, one part of the
choreography is isolated and replaced. In order to keep track of the participants “tainted” with nonces, each
session is equipped with a store that records the participants that created the nonces.
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Returning to the e-commerce scenario discussed above, the interaction between the different participants and
the browser would be specified using a global type. Such a type would describe the communication sequences to
be performed by each participant (via the run-time monitors), but would also decree the security policies that the
different message exchanges must observe (via the security levels associated to each monitor). Different ways of
reacting to security violations can be specified by adjusting the security levels associated to each participant/mon-
itor. Our model leaves unspecified the exact reaction in case of a reconfiguration. This is for the sake of generality,
as different applications/scenarios may call for different criteria to replace a portion of the choreography, and for
different alternative choreographies.

1.3. Contributions and organisation

Themain contributionof this paper is a formalmodel ofmultiparty communications inwhichmonitoredprocesses
execute structured protocol interactions and enjoy access control and secure information flow guarantees. These
guarantees are formally expressed by technical results which establish that (i) multiparty protocols are respected
(subject reduction), (ii) messages are eventually delivered/received (progress), and (iii) communication actions
(possibly in combination with adaptation mechanisms) respect security levels and boundaries (access control
and secure information flow). To the best of our knowledge, ours is the first model that integrates concerns of
communication correctness, self-adaptation, and access control/secure information flow in a unifiedway, building
upon the approach of multiparty sessions [HYC08, HYC16].

The paper is structured as follows:

• Section 2 presents the syntactic ingredients of our model: it defines security global types and monitors (which
are obtained via projection), processes and networks (i.e., collections of monitored processes), and session
types for processes. It also defines the adequacy relation between a process and its monitor, exploiting sub-
typing.

• Section 3 defines the operational semantics of processes and networks, thus formalising the main novelties of
our approach, namely the local and global adaptation mechanisms outlined above.

• Section 4 illustrates further our framework with an example.
• Section 5 extends typability from monitored processes to networks and presents the technical results of the
paper. Namely, we prove that well-typed networks enjoy subject reduction and progress properties (Theo-
rems 5.20 and 5.21, respectively). Moreover, we show that our operational semantics ensures compliance with
reading/writing permissions and boundaries (Theorem 5.22).

• Section 6 discusses related approaches and Sect. 7 gives some concluding remarks.

This paper is a revised and extended version of the workshop paper [CDP14]. The current presentation
includes additional technical details and proofs, clarifies the use of local and global adaptation mechanisms by
introducing reading and writing boundaries, and offers additional examples (notably that of Sect. 4).

2. Syntax

Our framework is inspired by that of [CDCV15], where security issues were not addressed and adaptation was
determined by changes of a global state, which is not needed for our present purposes. We consider networks
with three active components: security global types, monitors and processes. A security global type represents
the overall communication choreography over a set of participants [HYC08, CHY12]. Moreover, it defines read-
ing/writing permissions and reading/writing boundaries for each participant. The reading permissions, already
used in [CCDC14], restrict the level of data a participant may receive from others. Similarly, the writing permis-
sions restrict the level of data a participant may send to others. The reading/writing boundaries are used to set
the limit between soft and hard violations of the corresponding permissions. By projecting the global type onto
participants, we obtain monitors: in essence, these are local types that define the communication protocols of
the participants. The association of a process with a “matching” monitor, dubbed monitored process, incarnates
a participant whose process implements the monitoring protocol. Notably, we exploit intersection types, union
types and subtyping to make this matching relation more flexible.
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Table 1. Soft and hard security violations for reading and writing a value v

Read value v Write value v

Safe behaviour lev (v ) � rp wp � lev (v )

Soft violation lev (v ) �� rp and lev (v ) � rb wp �� lev (v ) and wb � lev (v )

Hard violation lev (v ) �� rb wb �� lev (v )

To deal with security, we assume as usual a finite lattice of security levels [Den76], denoted by (L,�). We use
�, �′, . . . to range over elements of L. We denote by � and � the join (least upper bound) and meet (greatest lower
bound) operations on the lattice, respectively, and by ⊥ and � its bottom and top elements.

2.1. Global types and monitors

Global types define overall schemes of labelled communications between session participants. In our setting,
they also prescribe the reading/writing permissions and the reading/writing boundaries of participants. The reading
permission is used for access control and represents, as usual, an upper bound for the level of data a participant
is authorised to read (or input). Dually, the writing permission is used for secure information flow and represents
a lower bound for the level of data a participant is authorised to write (or output). A reading/writing violation
occurs when a participant attempts to read/write a value whose level does not fall within the corresponding
bound. Reading/writing boundaries are a novelty of our approach. They are meant to relax the reading and
writing permissions, respectively. According to this intuition, for each participant the reading boundary will be
higher than the reading permission, and the writing boundary will be lower than the writing permission.1

We introduce boundaries to distinguish between two kinds of security violations, while sticking to a qualitative
approach to security: soft security violations, in case the level of the improperly read/written value is comprised
between the reading/writing permission and the corresponding boundary, and hard violations, otherwise.

Formally, we use r, r′, . . . to range over pairs of levels of the form (reading permission, reading boundary), and
w,w′, . . . to range over pairs of the form (writing permission, writing boundary). The first and second element of
r are denoted by rp and rb , and similarly for the elements of w, for which we use wp and wb . Given these notations
for permissions and boundaries, Table 1 summarises our proposal for distinguishing soft and hard violations. In
the table, we write lev (v ) to denote the security level of value v (see Sect. 2.2).

We assume base sets of participants, ranged over by p, q, k, . . .; labels, ranged over by λ, λ
′
, . . .; and recursion

variables, ranged over by t, t′, . . .. We also assume a set of basic sorts, ranged over by S :

S ::= bool || nat || . . ..
Our security global types, defined below, contain abstractions of structured protocols, as customary [HYC08];

they also include a pair of mappings that assigns to each protocol participant a pair r 	 (rp, rb), and a pair
w 	 (wp,wb). All these levels are used to enforce security and allow adaptation at run-time.

Definition 2.1 (Global Types and Security Global Types) Global types are defined by:

G ::	 p → q : {λi (Si ).Gi }i∈I || t || μ t.G || end

We use part(G) to denote the set of participants in G, i.e., all senders p and receivers q occurring in G. Let Lr and
Lw be mappings from part(G) to L × L, assigning to each participant in G respectively a pair r 	 (rp, rb) and a
pair w 	 (wp,wb) such that rp � rb and wp � wb . Let L 	 (Lr, Lw). Then the pair (G, L) is a security global type.

A global type describes a sequence of value exchanges. Each value exchange is directed between a sender
p and a receiver q, and characterised by a label λ, which represents a choice among different alternatives. In
writing p → q : {λi (Si ).Gi }i∈I we implicitly assume that p �	 q and λi �	 λj for all i �	 j . The global type
end denotes the completed choreography. To account for recursive protocols, we consider recursive global types.
As customary, we require guarded recursions and we adopt an equi-recursive view of recursion for all syntactic
categories, identifying a recursive definition with its unfolding.

1 The reader familiar with type systems for secure information flow will be probably reminded here of the security subtyping, which is
covariant for expressions (whose type is a read level) and contra-variant for programs (whose type is a write level). However, the analogy
should be takenwith some care because our reading permissions refer to participants rather than to data, our writing permissions are dynamic
(flow-sensitive), and boundaries are introduced to trespass the given bounds (permissions), rather than to comply with them.
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Table 2. Projection of a global type onto a participant

Monitors are obtained as projections of global types onto individual participants, following the definition
in [HYC08, CDCYP16] (see Table 2). The projection of a global type G onto participant p, denoted G � p ,
generates the monitor for p. As usual, in order forG�p to be defined, it is required that whenever p is not involved
in some directed communication ofG, it has equal projections on the different branchings of that communication.
We say G is well formed if the projection G � p is defined for all p ∈ part(G). In the following we assume that all
(security) global types are well formed.

Although monitors can be seen as local types (cf. [HYC08]), in our model they have an active role in the
dynamics of networks, since they guide and enable directed communications—see Sect. 3.

Definition 2.2 (Monitors) The set of monitors is defined by:

M ::	 p?{λi (Si ).Mi }i∈I || q!{λi (Si ).Mi }i∈I || t || μ t.M || end

An input monitor p?{λi (Si ).Mi }i∈I matches a process that can receive, for each i ∈ I , a value of sort Si ,
labelled by λi , and then continues as specified byMi . This corresponds to an external choice. Dually, an output
monitor q!{λi (Si ).Mi }i∈I matches a process which can send, for each i ∈ I , a value of sort Si , labelled by λi ,
and then continues as prescribed by Mi . As such, it corresponds to an internal choice. Monitors for recursive
and completed protocols, denoted μ t.M and end, respectively, are as expected.

2.2. Processes and networks

The syntax of processes relies on expressions and values. We assume a set E of expressions, ranged over by
e, e′, . . ., which includes booleans and naturals (with operations over them), and a denumerable set Nonces 	
{noncei || i ≥ 0}. Other expressions can be addedwithout problems according to the considered framework. A term
noncei—where i is fresh—is a dummy value, generated at run-time; it is to be used in place of some improperly
sent value to prevent security violations—see Sect. 3. We will use v , v ′ to range over ordinary values, and u, u ′ to
denote extended values, which are either values or nonces. Expressions evaluate to extended values: in particular,
expressions containing nonces evaluate nondeterministically to one of these nonces, as will be explained in more
detail in Sect. 3. Constants are assumed to be decorated with security levels: thus, for instance, true⊥ and true�
are two distinct values. Each ordinary expression e, not containing nonces, is equipped with a security level given
by the function lev : E → L: if v is a constant, then lev (e) is simply the level that decorates it, otherwise lev (e) is
the join of the levels of all subexpressions of e. Nonces have no security level, since they carry no information.

We now define our set of processes, which represent code that will be coupled with monitors to implement
participants. In our model, like in [CDCV15]—but unlike in other session calculi [HVK98, HYC08, BCD+13,
CDCYP16]—processes do not specify their partners in communication actions. It is the associated monitor
which determines the partner in a given communication. Thus, processes represent flexible code that can be
associated with different monitors to incarnate different participants. Communication actions are performed
through channels. Each process owns a unique channel, which by convention is denoted by y in the user code.
At run-time, channel y will be replaced by a session channel s[p], where s is the session name and p denotes the
participant. We use c to stand for a user channel y or a session channel s[p].

Definition 2.3 (Processes) The set of processes is defined by:

P ::	 c? λ(x ).P || c! λ(e).P || X || μX .P || if e then P else P || P + P || 0

The syntax of processes is rather standard: in addition to usual constructs for communication, recursion, con-
ditionals, and inactive behaviour, it includes the operator +, which represents external choice. For instance,
c! λ(e).P denotes a process which sends along c label λ and the value of the expression e and then behaves like
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P . We assume the following precedence among operators: prefix, external choice, recursion. In the following we
shall omit trailing 0’s in processes.

The previously introduced entities (global types,monitors, processes) are used to define networks. A network is
a collection of monitored processes which realise a choreography as described by a global type. The choreography
is initiated by the “new” construct applied to a security global type (G, L). This construct, akin to a session
initiator [CDCV15], is denoted new(G, L). In carrying on a multiparty interaction, a process is always controlled
by a monitor, which ensures that all process communications agree with the protocol prescribed by the global
type. Importantly, each monitor is equipped with a reading pair r and a writing pair w. The elements of the
reading pair are the reading permission and the reading boundary, the elements of the writing pair are the writing
permission and the writing boundary. A monitored process, writtenMr,w[P ], denotes a process P controlled by
a monitorM.

Data are exchangedamongparticipants asynchronously, bymeansofmessage queues, rangedover byh, h ′, . . ..
There is one such queue for each active session. The empty queue is denoted by ø. Messages in queues are of
the form (p, q, λ(u)), indicating that the label λ and the extended value u are communicated with sender p and
receiver q. Queue concatenation is denoted by “·”: it is associative and has ø as neutral element.

Each session is equipped with a store σ that records nonce creation, i.e.,

σ ::	 ∅ || σ, (p, noncei )

We dub named buffer the pair of the queue and the store associated with session s (notation s : 〈h;σ 〉).
The parallel composition of session initiators, monitored processes, and named buffers forms a network.

Networks can be restricted on session names.

Definition 2.4 (Networks) The set of networks is defined by:

N ::	 new(G, L) || Mr,w[P ] || s : 〈h;σ 〉 || N | N || (νs)N

As mentioned above, annotations r and w in Mr,w[P ] represent reading/writing permissions and boundaries for
process P . When the choreography is initialised, these levels are set according to the mappings Lr and Lw. The
actions performed by the process may determine dynamic modifications to the permissions, while the boundaries
may only change as a result of global adaptation. Since reading permissions can only be lowered and writing
permissions can only be raised, the order relations between permissions and boundaries are preserved. In writing
monitored processes we omit the levels when they are not used. Also, we shall sometimes writeMr,w

p [P ] (or simply
Mp[P ]) to indicate that the channel in P is s[p] for some s. Similarly Pp means that the channel in Pp is s[p]. Only
in the premise of Rule Init (see Table 6) the channel in Pp is y , but y will be replaced with s[p] in the conclusion
of the rule.

2.3. Session types for processes

We now introduce session types for processes and specify the relationship between processes, types, andmonitors.
As in [CDCV15], process types (called types when not ambiguous) describe process communication behaviours.
Types have prefixes corresponding to input and output actions. In particular, an input type (resp. output type)
has a prefix corresponding to an input (resp. output) action, followed by another type called its continuation. A
communication type is either an input or an output type. Inspired by [Pad11], we use intersection and union types
instead of standard branching and selection [HYC08], to take advantage from the subtyping induced by subset
inclusion.

The grammar of session types, ranged over by T, is then

T ::	 ∧
i∈I ? λi (Si ).Ti || ∨

i∈I ! λi (Si ).Ti || μ t.T || t || end

where we require that λi �	 λj for all i , j ∈ I such that i �	 j .
Intersection types are used to type external choices, since an external choice offers both behaviours of the

composing processes. Dually, union types are used to type conditional expressions (internal choices).
Wenow introduce the type system for processes.An environment� is a finitemapping fromexpression variables

to sorts and from process variables to types:

� ::	 ∅ || �, x : S || �,X : T

where the notation �, x : S (resp. �,X : T) means that x (resp. X ) does not occur in �.
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Table 3. Typing rules for processes

Table 4. Subtyping on process types

Typing rules for processes are given in Table 3. We assume that expressions are typed by sorts, as usual, and
a nonce has all sorts.

The compliance betweenprocess types andmonitors (adequacy) ismade flexible by using the subtyping relation
on types, denoted ≤. Intuitively, T1 ≤ T2 means that a process with type T1 has all the behaviours required by
type T2 but possibly more. Subtyping is monotone, for input/output prefixes, with respect to continuations,
and it follows the usual set theoretic inclusion of intersection and union. The top type is end, since it has no
requirement. Table 4 gives the subtyping rules: the double line in rules indicates that the rules are interpreted
coinductively [Pie02, 21.1]. Subtyping can be easily decided, see for example [GH05]. For reader convenience,
below we give the procedure S(�,T,T′), where � is a set of subtyping judgments.

S(�,T,T′) 	

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

true if T ≤ T′ ∈ � or T′ 	 end

&i∈I S(� ∪ {T ≤ T′},Ti ,T
′
i ) if (T 	 ∧

i∈I∪J
? λi (Si ).Ti and T′ 	 ∧

i∈I
? λi (Si ).T

′
i ) or

if (T 	 ∨

i∈I
! λi (Si ).Ti and T′ 	 ∨

i∈I∪J
! λi (Si ).T

′
i )

false otherwise

This procedure is a decision procedure for the subtyping ordering. It terminates since unfolding of session
types generates regular trees, so � cannot grow indefinitely and we have only a finite number of subtyping
judgments to consider. Clearly S(∅,T,T′) is equivalent to T ≤ T′.

An input monitor corresponds to an external choice, while an output monitor corresponds to an internal
choice. Thus, intersections of input types are adequate for input monitors; unions of output types are adequate
for output monitors. Formally, adequacy is defined as follows:

Definition 2.5 (Adequacy) Let the mapping | · | from monitors to types be defined as

| p?{λi (Si ).Mi }i∈I | 	 ∧
i∈I ? λi (Si ). | Mi | | q!{λi (Si ).Mi }i∈I | 	 ∨

i∈I ! λi (Si ). | Mi |
| t | 	 t | μ t.M | 	 μ t. | M | | end | 	 end

We say that type T is adequate for a monitor M, notation T ∝ M, if T ≤ | M |.
In the following we will omit security levels, labels, brackets, unions and intersections whenever suitable.

3. Semantics

In this section, we define the operational semantics for monitors, processes, and networks. The semantics of
networks makes use of a collection P of pairs (P ,T) composed of a user process P (namely, a process without
session channels) togetherwith its typeT. This collectionwill be used in session initialisations, in local adaptations,
and in reconfigurations in order to provide processes whose types match the new monitors.



Self-adaptation and secure information flow in multiparty communications 677

Table 5. LTS of processes

The semantics of monitors and processes is given by labelled transition systems (LTS); relying on these two
LTSs, the semantics of networks, parametrised on the collection P , is given in the style of a reduction semantics.
Local and global adaptation mechanisms are therefore formalised as reduction steps.

A monitor guides the communications of a process by choosing its partners in labelled exchanges, and by
allowing only some actions among those offered by the process. The LTS for monitors uses labels p? λ and p! λ,
and formalises the expected intuitions:

p?{λi (Si ).Mi }i∈I
p? λj−−→ Mj q!{λi (Si ).Mi }i∈I

q! λj−−→ Mj j ∈ I

The LTS for processes is also fairly simple. It is given in Table 5, omitting symmetric rules. It relies on labels
s[p]? λ(u) (input), s[p]! λ(u) (output), and � (security levels for expressions). The labels s[p]? λ(u) and s[p]! λ(u) are
ranged over by α. We use e ↓ u to indicate that expression e evaluates to the extended value u, assuming that each
expression containing nonces evaluates nondeterministically to one of these nonces and that u ↓ u. For example,
nonce1&nonce2 ↓ nonce1 and nonce1&nonce2 ↓ nonce2. In order to track information flow, when reducing a conditional
we record the level of the tested expression e. If the tested expression evaluates to a nonce, the conditional behaves
as an external choice. In this way the monitors select the branch and the process will not be stuck. There are two
rules for external choice, which specify that a choice may be resolved only via a communication action by one of
the summands. As long as these perform only internal computations, the choice remains available. In other words,
choices are tied to communication actions and are not affected by the testing activity that goes on in conditional
expressions. Notice that nonces are generated only when networks are reduced.

We now describe the reduction semantics for networks. It relies on a structural equivalence for which the
parallel operator is commutative and associative:

N1 | N2 ≡ N2 | N1 (N1 | N2) | N3 ≡ N1 | (N2 | N3)

and session restriction behaves as usual:

(νs)N1 | N2 ≡ (νs)(N1 | N2) (νs)(νs′)N ≡ (νs′)(νs)N (νs)(s : 〈ø;σ 〉) | N ≡ N

Moreover, the structural equivalence erases any monitored process with end monitor, since it is idle:

end[P ] | N ≡ N

For message queues, the structural equivalence is very simple. Two consecutive messages in a queue are
dependent if they have the same sender and the same receiver; they are independent otherwise. The structural
equivalence for queues allows independent messages to be commuted.

h · (p, q, λ(u)) · (p′, q′, λ′(u ′)) · h ′ ≡ h · (p′, q′, λ′(u ′)) · (p, q, λ(u)) · h ′ if p �	 p′ or q �	 q′

Note that the structural equivalence allows a requestmessage fromp toq and the reply fromq top to be commuted.
This is because the message queue may be viewed as a merge of all participants’ reading queues, which are all
independent from each other. Here the request message from p to q belongs to the reading queue of q, while the
reply from q to p belongs to the reading queue of p.

The equivalence on message queues induces an equivalence on named buffers in the expected way:

h ≡ h ′ implies s : 〈h;σ 〉 ≡ s : 〈h ′;σ 〉.
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The rules of the reduction semantics rely on some auxiliary definitions, which we detail next. The following two
definitions are handy to formalise the local adaptation mechanism.

Given a message queue and two participants p and q, the function # below computes the list of labels of
messages from p to q in the queue. We use 	 to range over lists of labels. By a slight abuse of notation, we shall
use ø and · to denote the empty list and list concatenation, respectively.

Definition 3.1 (Function #) Given a queue h and two participants p, q, we define #(h, p, q) by induction on h:

#(ø, p, q) 	 ø

#((p′, q′, λ(u)) · h ′, p, q) 	
{

λ ·#(h ′, p, q) if p 	 p′ and q 	 q′,
#(h ′, p, q) otherwise.

The second definition “strips off” from a monitor M the occurrence of an input prefix which refers to a given
participant p and follows a given list 	 of labels. The branchings with sender p and labels alternative to 	 are
also erased.

Definition 3.2 (Monitor with Skipped Input) Given amonitorM and a list of labels	, we define<M,	>\?(p, λ)
inductively as follows:

<q?{λi (Si ).Mi }i∈I ,	>\?(p, λ) 	
⎧
⎨

⎩

Mi if p 	 q and λ 	 λi and 	 	 ø,

p? λ
′(Si ).(<Mi ,	

′ >\?(p, λ)) if p 	 q and λ
′ 	 λi and 	 	 λ

′ ·	′,
q?{λi (Si ).(<Mi ,	>\?(p, λ))}i∈I if p �	 q.

<q!{λi (Si ).Mi }i∈I ,	>\?(p, λ) 	 q!{λi (Si ).(<Mi ,	>\?(p, λ))}i∈I
<μ t.M,	>\?(p, λ) 	 μ t.(<M,	>\?(p, λ))

Notice that < M,	 >\?(p, λ) is defined only when M prescribes the reception from participant p of messages
with labels in 	 · λ in the specified order.

Let us now introduce a couple of notations that will be useful for defining the global adaptation mechanism.
We first define an operation that eliminates from a queue all messages whose receiver belongs to a given set of
participants:

Definition 3.3 (Restriction of a Queue wrt a Set of Participants)
Let 
 be a set of participants. Given the message queue h, we define h\
 as follows:

ø\
 	 ø

(q, p, λ(u)) · h\
 	
{
h\
 if p ∈ 


(q, p, λ(u)) · (h\
) otherwise.

We now define the “range of contamination” of a given nonce, namely the set of participants that can contain
that nonce, plus the participant that generated that nonce. A participant p can be contaminated by a participant
q only if p communicates with q and q in turn can be contaminated.

Definition 3.4 (Set of Participants Affected by a Nonce) Given a set of monitored processes {Mp[Pp] | p ∈ 
}, a
store σ , and a nonce noncei , we define

A({Mp[Pp] | p ∈ 
}, σ, noncei ) 	 ⋃
j∈N Aj ({Mp[Pp] | p ∈ 
}, σ, noncei )

where Aj is defined as:

A0({Mp[Pp] | p ∈ 
}, σ, noncei ) 	 {p ∈ 
 | noncei ∈ Pp} ∪ {q | (q, noncei ) ∈ σ }
Aj+1({Mp[Pp] | p ∈ 
}, σ, noncei ) 	 {p ∈ 
 | ∃q ∈ Aj ({Mp[Pp] | p ∈ 
}, σ, noncei ). q ∈ Mp}
Finally, to define the semantics of networks we will use evaluation contexts, as standard:

Definition 3.5 (Evaluation Contexts) Evaluation contexts are defined as follows:

E ::	 [ ] || E | N || (νs)E
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Table 6. Reduction rules for networks

The reduction of networks is denoted N −→P N ′, where P is the collection of pairs (P ,T) used to find
processes with adequate types for monitors (cf. Definition 3.7). We also write N −→∗

P N ′ with the expected
meaning. The reduction rules for networks are given in Table 6. We briefly describe them. The first four and the
last two rules in the table describe the “normal” execution of a network:

• Rule Init initialises a choreography denoted by global type G. The network new(G, L) evolves into a composi-
tion of monitored processes and a fresh named buffer. For each p ∈ part(G), type Tp must be adequate for the
monitor obtained by projecting G onto p, and there must be a pair (Pp,Tp) in the collection P . Then process
Pp (where channel y has been replaced by s [p]) is coupled with the corresponding monitor, whose security
permissions and boundaries are initialised using the mapping L. Lastly, the empty named buffer s : 〈ø;∅〉 is
created, and the name s is restricted.

• Rule UpLev modifies the writing permission of a monitor whose associated process tests a value. Indeed, by
the semantics of processes (Table 5), we know that the label � is the level associated to a conditional expression.
The writing permission is updated to the join of � and the current writing permission (noted wp , assuming
w 	 (wp,wb)). This is to prevent classical implicit information leaks in conditionals.

• Rule In defines the secure input of an extended value u present in the queue; this action must be enabled
by the monitor. If u is a proper value v , we further require its associated level to be lower than or equal to
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the reading permission rp of the monitor. Nothing is required in case u is a nonce, since nonces provide no
information.

• Rule Out defines the secure output of an extended value u by adding it to the queue. If u is a proper value v ,
we require that the output be allowed by the monitor, i.e., that the level associated with v be higher than or
equal to the writing permission wp of the monitor. Nothing is required in case u is a nonce, as in the case of
input.

• Rules Equiv and Ctx are standard: they allow the interplay of reduction with structural congruence and
enable the reduction within evaluation contexts, respectively.

The remaining rules in Table 6 concern the novel local and global adaptation mechanisms:

• Rule InLoc defines the local adaptationmechanism for a soft reading violation, i.e., when the level of the value
in the queue is not less than or equal to permission rp , but it is still less than or equal to boundary rb . To deal
with such an “admissible” reading violation, this rule ignores the insecure input: the message is removed from
the queue and the process implementation is replaced with new code, where the input action is not present.
This code replacement considers themonitor resulting after the input action (noted M̂p in the rule), and picks
up a process P ′ in the collection P that agrees with this monitor.

• RuleOutLoc defines the local adaptationmechanism for a soft writing violation, i.e., when the level of the sent
value is not greater than or equal to permission wp , but it is still greater than or equal to boundary wb . As in
InLoc, the monitor of the receiver is modified and the implementation is replaced with one that conforms to
the modified monitor. In the rule, the monitor< Mq,#(h, p, q) >\?(p, λ) is obtained fromMq by erasing the
input action dual to the shown output and choosing the corresponding branch (cf. Definitions 3.1 and 3.2).
This is achieved by taking into account the fact that the queue h can containmessages of the shape (p, q, λ(u)).
We illustrate this rule by means of an example.

Example 3.6 Consider the following network (where, according to our convention, we omit the level of the
constant true in the queue, since this level does not matter here):

q! λ(nat).end[s[p]! λ(5�)] | p? λ(bool).p? λ(nat).end[s[q]? λ(x ).s[q]? λ(y)] | s : 〈(p, q, λ(true));σ 〉
If Lw(q) 	 (�1, �2) and �1 �� � and �2 � �, then Rule OutLoc applied to the network can give

end[0] | p? λ(bool).end[s[q]? λ(x )] | s : 〈(p, q, λ(true));σ 〉.
Assuming the same security levels, another interesting example is the application of this rule to the network:

q! λ(nat).end[s[p]! λ(5�)] | p?{λ′(bool).p? λ(nat).end, λ(nat).end}[s[q]? λ
′(x ).s[q]? λ(y) + s[q]? λ(z )]

| s : 〈(p, q, λ′(true));σ 〉
resulting in

end[0] | p? λ
′(bool).end[s[q]? λ

′(x ) + s[q]? λ(z )] | s : 〈(p, q, λ′(true));σ 〉.

• Rule InGlobdefines the global adaptationmechanism for a hard reading violation, i.e., when the level associated
with the value in the queue is not lower than or equal to boundary rb (and a fortiori not lower than or equal to
permission rp). As already explained, this mechanism is based on nonce creation: a reduction is still enabled,
but since the monitored process is not allowed to input the provided value, an adaptation is realised by: (a)
inputting a fresh nonce instead of the value, and (b) removing the unreadable value from the queue. In this
rule and in the next one the function next(σ ) is used to obtain a nonce not occurring in σ . Observe that the
store is updated to account for the newly created nonce.

• Rule OutGlob defines the global adaptation mechanism for a hard writing violation, i.e., when the level of
the sent value v is not greater than or equal to boundary wb (and a fortiori not greater than or equal to
permission wp). Observe that no writing violation may occur with nonces. As in the previous rule, in this
case a reduction is enabled; adaptation is realised by adding a fresh nonce to the queue. To formalise the fact
that p is responsible for the hard writing violation, by trying to “declassify” value v from its original level to
the reading permission r′p of the monitor controlling the receiver (noted q in the rule), we update its current
reading permission rp to the meet of rp and r′p . Hence, the reading permission of p is downgraded to that of q
(or lower), accounting for the fact that p attempted to leak information to q. This is intended to counter any
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possible “recidivism” in p’s offending behaviour, by preventing new values of level � �� r′p to be received by p
and then leaked again to q. As in the previous case, the store is updated to account for the new nonce.

• Rule Reconf defines a reconfiguration and goes hand-in-hand with Rules InGlob and OutGlob. It chooses
a particular nonce (noncei ) and it adapts the whole set of participants affected by this nonce. This choice
can be guided by various criteria, such as the number of occurrences of nonces, the number of affected
participants etc. The reconfiguration is realised by extracting the creator of noncei (using the store) and the
set of participants whose processes can send noncei , which are the processes that contain noncei and all those
which (transitively) may communicate with them. This set is obtained as the least fixed point of the mapping
A of Definition 3.4. For the set of participants affected by noncei , a new global type is obtained via a function
F which considers these participants and the store. This function is left unspecified, for we are interested in
modelling the mechanism of adaptation, and not the way in which the new security global type is chosen.
The reduction step starts the new choreography and continues the execution of the unaffected participants.
To avoid orphan messages we must erase from the queue all messages with affected participants as receivers,
using the mapping h\
 of Definition 3.3. In the store we erase the unique pair whose second component is
noncei ; we denote by σ\noncei the resulting store.

Note that, although the choice between local and global adaptation is deterministic, network reduction can be
nondeterministic, since Rule Reconf can be applied at any point of execution. We could render our semantics
more deterministic by introducing some alert threshold below which adaptation mechanisms are applied, and
starting from which reconfiguration is applied instead.

Rules Init, InLoc, OutLoc and Reconf take processes from a complete collection P :

Definition 3.7 (Complete Collection) A collection P of processes and types is complete for a given set G of global
types if, for everyG ∈ G, there are processes inP whose types are adequate for themonitors obtained by projecting
G onto its participants and then possibly applying the input erasure of Definition 3.2 to all sub-monitors.

The existence of processes with types adequate to the monitors (obtained by projecting global types) ensures that
each session initiator can reduce (Rules Init and Reconf). The other condition ensures that we can find suitable
processes when Rules InLoc and OutLoc are applied.

It is interesting to notice that in the present calculus we can reduce without problems networks which would
not be typable in the type system of [CCDC14] and which would produce an error in the monitored semantics
of [CCDC15]. For example, let G 	 p → q : bool.q → p : bool and Lr(q) 	 (�,�) and Lw(q) 	 (⊥,⊥). Then
new(G, L) can reduce to the network:

(νs)(q!bool.q?bool.end[s[p]!(true�).s[p]?(x )] | p?bool.p!bool.end[s[q]?(z ).s[q]!(false⊥)])
which reduces in a number of steps to end[0]. The process representing participant p is not typable in the system
of [CCDC14], since it first receives a secret value and then sends a public value, thus realising a “level drop”. For
the same reason, the monitored semantics of [CCDC15] raises an error while reducing the whole process. We give
further comparisons with [CCDC14, CCDC15] in Sect. 6.

Looking back at the web browser example in Sect. 1, we could think of the dotted red line in Fig. 1 as
representing a hard writing violation due to the fact that the malicious plug-in tests some personal information
of the user before attempting to send his cc-number, thereby making the writing level of the user monitor exceed
its writing boundary.

4. Example: a travel agency network

In this section, we illustrate the main features of our approach with a simple network example.We first informally
describe the expected behaviour of the network, as well as the soft and hard security violations that could occur.
We then show how these different violations can be formalised using reading andwriting boundaries, and how the
corresponding adaptation mechanisms are enforced by our semantics. Finally, we describe some of the processes
that implement the network. To start with, we only mention the reading permissions of participants. Writing
permissions and boundaries will be introduced later, in a gradual way.
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Fig. 3. Lattice of security levels for the Travel Agency example of Sect. 4

Consider a Travel Agency with reading permission �, which employs two sales agents Agent1 and Agent2
whose reading permissions are high1 and high2. These agents are in charge of handling travel requests coming
from single clients client i and corporate clients (groups of clients) gclientj , respectively. Assume there are n
clients andm corporate clients, with reading permissions priv1, . . . , privn and gpriv1, . . . , gprivm , all pairwise
incomparable. Each client i is assigned two numbers: his client number cnumber i of level privi , and his statusi ∈
{1, 2, 3, 4} of level low1 (we may interpret the numbers 1, 2, 3, 4 as typical client fidelity statuses like ivory,
silver, gold and platinum). A corporate client gclientj is given similar numbers gcnumberj of level gprivj and
gstatusj ∈ {1, 2, 3, 4} of level low2. Finally, there are two services Stat Serv1 and Stat Serv2, with reading
permissions low1 and low2, which compute weekly statistics about the trips organised by the agency, for single
and corporate clients respectively. These services donot have access to the private informationof clients (contained
in their client numbers), but only to their statuses. Both these services compute also annual statistics, where the
distinction between single and corporate clients disappears, as well as their status information. These annual
statistics are then transmitted to a public statistics office StatOff, whose reading permission is ⊥.

Assume that �i privi 	 high1, �j gprivj 	 high2, high1 �high2 	 �, �i privi 	 low1, �j gprivj 	 low2 and
low1 � low2 	 ⊥. Thus the lattice of security levels (which happens to coincide with that of reading permissions)
may be pictured as in Fig. 3.

We only describe some parts of the network behaviour, namely those that are relevant to illustrate our
approach. After returning from a trip, each client i is invited to rate the destination and the service provided
by the agency, by sending to Agent1 a report report i of level lowi . Now Agent1 forwards this report, preceded
by cnumber i , to the travel agency with client i in cc. She also forwards the report to Stat Serv1, preceded this
time by statusi (in place of cnumber i ). So the agency receives a named report, while the statistics service receives
an anonymised report together with a status.

A similar interaction goes on between gclientj , Agent2 and Stat Serv2.
Assuming each client i and gclientj have writing permission ⊥, and Agent1 and Agent2 have writing per-

missions low1 and low2, the described behaviour is in keeping with both reading and writing permissions of the
involved participants.

Let us see now what could go wrong if this behaviour were slightly altered, and how our different adaptation
mechanisms could be of help. Suppose that Agent i has writing boundary lowi (equal to its writing permission)
and Stat Serv1 has reading boundary high1, while Stat Serv2 has reading boundary low2 (equal to its reading
permission). The reason for restricting Stat Serv2 more than Stat Serv1 is that it is more damageable to unduly
receive private information about a whole group of clients than about a single client.

• Soft reading violation. Suppose that Agent1 sends to Stat Serv1 the number cnumber i instead of the number
statusi . In this case there is no writing violation for Agent1 but there is a reading violation for Stat Serv1. This
is a soft reading violation since privi � high1, so it is handled by local adaptation (Rule InLoc), by cancelling
Agent1’s dangerous message from the queue and advancing by one step the monitor of Stat Serv1. Indeed,
Stat Serv1 continues towork evenwithout themissing status information, although in slightly degradedmode,
since it will not be able to compute the exact number of reports for each status, but only a lower bound for it.
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• Hard reading violation. Suppose it is now Agent2 who sends gcnumberj instead of gstatusj to Stat Serv2.
Again, there is no writing violation for Agent2 but there is a reading violation for Stat Serv2. This time,
however, the reading violation is hard, because gprivj �� low2. Therefore it is handled by global adaptation
(Rule InGlob), turning Agent2’s dangerous message into some noncek .

• Soft writing violation. Suppose now that Agent1, instead of sending cnumber i to the agency and client i ,
sends them some general information geninfoi of level privi , allegedly concerning only client i , but computed
after testing all clients’ reports. For instance, geninfoi could be: “clienti is the first client from New Zealand
to travel to Madagascar”. In this case there is a writing violation for Agent1, because the level of the tested
expression is the join of all levels privk , thus the writing permission of Agent1 is raised to high1, while the
sent information geninfoi is of level privi . On the other hand, this is a soft writing violation since the writing
boundary of Agent1 is low1 and low1 � privi . Hence this violation is handled by local adaptation (Rule
OutLoc).

• Hard writing violation. Suppose finally that Agent2 owns some information infoi about a single client i (this
could happen, for instance, if client i also belongs to some group gclientj ) and, instead of sending gcnumberj
to the agency and gclientj , she sends them the information infoi of level privi . Again, this is awriting violation
since low2 �� privi . However, in contrast to the previous case, now the writing violation is hard because the
writing boundary is also low2. Therefore, Rule OutGlob is used. Since Agent2 is deemed responsible for
this hard writing violation, her reading level is downgraded to gprivj . This will reduce the nuisance capacity
of Agent2 in further interactions, by preventing her from leaking again to the corporate client gclientj any
information about the other clients. Indeed, Agent2 will not be able to receive any new information from the
other corporate clients, and therefore only a reconfiguration of the system (via Rule Reconf) will restore its
expected functionality.

Showing only the required communications, a network producing the hard reading violation above could be:

N 	 Stat Serv2!report(string × nat).M[s[Agent2]!report("nice travel", 25). · · · ]| Agent2?report(string × nat).M′[s[Stat Serv2]?report(x , y).P ]
| s : 〈h;σ 〉 | . . .

where 25 is a client number of level priv25.
By Rule Out, N reduces to the following (where we omit some terms):

Agent2?report(string × nat).M′[s[Stat Serv2]?report(x , y).P ]
| s : 〈(Agent2, Stat Serv2, report("nice travel", 25)) · h;σ 〉 | . . .

Then Rule InGlob must be applied, yielding:

M′[P{nonce3/(x , y)}] | s : 〈h;σ, (Stat Serv2, nonce3)〉 | . . .

where nonce3 	 next(σ ).
Consider now the case of a soft writing violation. If Agent1 tests an expression involvingmore than one client:

Travel Agency!report(string × nat).
M[if e(client1, . . . , clientn ) then s[Agent1]!report("first NZ-MG", 1).P else . . .]

| Agent1?report(string × nat).M′[s[Travel Agency]?report(x , y).Q ] | . . .

then her writing permission is raised to high1. As a consequence the network obtained by evaluating the condi-
tional:

Travel Agency!report(string × nat).M[s[Agent1]!report("first NZ-MG", 1).P ]
| Agent1?report(string × nat).M′[s[Travel Agency]?report(x , y).Q ] | . . .

will incur a soft writing violation since the information sent in the report has level privi (remember that this
information will also be sent to client i ). Therefore the next rule to be applied is OutLoc, yielding:

M[P ] | M̂[Q ′{s[Travel Agency]/y}] | . . .

where M̂ 	< M′,∅ >\?(Agent1, report) and T ∝ M̂ and (Q ′,T) ∈ P .
Having presented and illustrated our framework, we now move on to establish its properties.
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5. Well-typed networks: main properties

In this section, we extend typability from processes to networks and present the technical results of the paper.
First, we prove subject reduction and progress theorems for networks (Theorems 5.20, 5.21). In the proofs we
closely follow the strategy of [CDCV15]. Themain novelties of our calculus—the local and globalmechanisms for
adaptation—are the key technical difficulties in proving that well-typed, monitored processes always behave in a
type-safe way. Then, we show that reduction of well-typed networks always respects reading/writing permissions
and boundaries (Theorem 5.22). Thus, besides respecting the choreographies described by global types, well-
typed networks do not contain insecure accesses to data nor insecure information flows. The combined effect of
communication and security guarantees for networks formally realises the integration of concerns that was one
of the main motivations of our work.

The first step in our development consists in extending types to deal with networks. Next we introduce typing
rules for networks, which associate types with session channels.

5.1. Preliminaries

The main issue in typing networks is relating the type of a monitored process with the type of its message queue.
Given a session s, both these types are defined relatively to each session channel s[p]; to this purpose, we introduce
generalised types for session channels. On the one hand, to abstractly describe the message queue of swe associate
with each channel s[p] a queue type: this is built by recording, for each message (p, q, λ(u)) with sender p in the
queue, the message type q! λ(S ), where S is the sort of u when u is a value, and an arbitrary sort when u is a nonce.
On the other hand, the type of a monitored process M[P ] simply associates the monitor M with the session
channel s[p] owned by P . To sum up, message types specify the destination and the sort of a message, queue
types are sequences of message types, and generalised types are either a queue type (for queues), a monitor (for
monitored processes), or a pair made of a queue type and a monitor. This pair is used to define session typings, in
which the association between the queue types and the monitors of all participants of the same session is finally
realised via their composition.

We now proceed to formalise these intuitions.

Definition 5.1 (Message Types, Queue Types and Generalised Types) Message types, queue types and generalised
types are defined by:

Message Types m ::= q! λ(S )
Queue Types H ::= ε || H ; m
Generalised Types τ ::= M || H || 〈H,M〉

where in queue types, concatenation “ ;” is associative and ε is the type of the empty sequence of messages, such
that ε ; H 	 H ; ε 	 H.

Example 5.2 An example of a generalised type is

τ 	 〈p! λ1(bool); q! λ2(nat) , μ t.q?{λ3(bool).t, λ4(bool).end}〉
This type says that a participant has sent a boolean to p with label λ1 and a natural to q with label λ2. This
participant will receive from q a boolean with either label λ3 or label λ4. In the first case he will continue receiving
booleans from q, in the second case he will stop.

The typing judgements for networks are of the shape

�� N � 

where � is a set of session names (the buffer names which occur free in the network) and  is a session typing,
defined next.

Definition 5.3 (Session Typings) Session typings  are maps from session channels to generalised types:

 ::	 ∅ || , s[p] : τ

Session typings are subject to the same conventions as environments �. In particular, a session typing 1,2 is
defined only if the domains of 1 and 2 are disjoint.
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Table 7. Projection of generalised types onto participants

Table 8. Duality between projections of generalised types onto participants

To ensure type safety it is essential that the communications are performed in a consistent way, i.e., that
appropriately typed values are exchanged in the prescribed order. The formal definition of consistent session
typings (Definition 5.5) relies on the projection of generalised types and on duality, given in Tables 7 and 8,
respectively.

Given a session channel s[p], the projection of its generalised type τ onto participant q represents the sequence
of communications offered by p to q. It uses the projection of queue types and of monitors, denoted H �q and
M�q , respectively. The projection of a generalised type τ 	 〈H,M〉 onto q (denoted τ �q ) is the concatenation
of the projections of H and M. Here, H � q represents the sequence of messages already sent by p to q and
M�q the further communications between p and q. Formally, the projections of generalised types, ranged over
by �,�′, . . ., are given by the syntax:

� ::	 � || � || �.� generalised type projections

� ::	 ε || ! λ(S ).� queue type projections

� ::	 ε || ?{λi (Si ).�i }i∈I || !{λi (Si ).�i }i∈I || μ t.� || t monitor projections

We assume ε.� 	 �.ε 	 �, since ε represents no communication.
The relation of duality expresses the fact that two participants p and q have matching communication behav-

iours. We say that two projections � and �′ are dual whenever � �� �′ holds, where �� is the symmetric closure
of the partial operator in Table 8, defined only on projections of generalised types. The duality of projections
exploits the duality between messages in queues and inputs in monitors (Line 1) and the duality between outputs
and inputs in monitors (Line 2). The relation� �� �′ makes sense when� and�′ are mutual projections, namely
one of them is the projection of the generalised type of s[p] on q and the other is the projection of the generalised
type of s[q] on p.

Example 5.4 The projection of the generalised type τ of Example 5.2 on participant q is

! λ2(nat). μ t.?{λ3(bool).t, λ4(bool)}
This projection is dual to the generalised type projection ? λ2(nat). μ t.!{λ3(bool).t, λ4(bool)}.

We now define consistency of session typings:

Definition 5.5 (Consistent Typing) A session typing  is consistent for the session s, notation cons(, s), if

s[p] : τ ∈  and s[q] : τ ′ ∈ with p �	 q imply τ �q �� τ ′ �p .

A session typing is consistent if it is consistent for all sessions which occur in it.
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Example 5.6 The session typing

 	 {s[p] : q?λ(bool).q?λ′(nat).end, s[q] : 〈p!λ(bool), p!λ′(nat).end〉}
is consistent, while the session typings

′ 	 {s[p] : q?λ(bool).q?λ′(bool).end, s[q] : 〈p!λ(bool), p!λ′(nat).end〉}
and

′′ 	 {s[p] : q?λ(bool).q?λ′(nat).end, s[q] : p!λ(bool)}
are not. Example 5.17 gives networks typed by  and ′′.

It is easy to check that projections of the same global type onto two different participants are always dual.

Proposition 5.7 Let G be a global type and p �	 q. Then (G�p )�q �� (G�q )�p .

This proposition assures that session typings obtained by projecting global types are consistent.
We now move on to define the typing rules for networks. To this end, we first define partial operators for

concatenation and composition of session typings. The concatenation of session typings is naturally inherited
from the concatenation of queue types (Definition 5.1). The composition of two generalised types is defined only
when one of them is a queue type and the other is a monitor. Its extension to session typings is as expected. While
concatenation is required for typing named buffers, composition is used for typing parallel composition within
networks.

Definition 5.8 (Partial Operations on Typings) Let  and ′ be session typings (cf. Definition 5.3).

1. The extension of concatenation ; to session typings is defined by:

 ; ′ 	 {s[p] : H ; H′ | s[p] : H ∈  & s[p] : H′ ∈ ′}∪
{s[p] : H | s[p] : H ∈  ∪ ′ & s[p] �∈ dom() ∩ dom(′)}

2. The composition ∗ of queue types and monitors is defined by:

H ∗ M 	 M ∗ H 	 〈H,M〉
3. The extension of composition ∗ to session typings is defined by:

 ∗ ′ 	 {s[p] : τ ∗ τ ′ | s[p] : τ ∈  & s[p] : τ ′ ∈ ′}∪
{s[p] : τ | s[p] : τ ∈  ∪ ′ & s[p] �∈ dom() ∩ dom(′)}

Notice that both ; and ∗ are partial operators on session typings, since they can be undefined when applied to
arbitrary generalised types.

Example 5.9 Let , ′ and ′′ be as in Example 5.6. Composing ′′ with {s[q] : p!λ′(nat).end} we get , while
there is no way of obtaining a consistent typing from ′ by means of composition.

The last ingredient needed for typing networks is a notion of equivalence on queue types. Intuitively, the
equivalence captures possible reorderings of messages associated with different pairs of participants. Like con-
catenation and composition, this equivalence extends to session typings.

Definition 5.10 (Equivalence on Queue Types and Session Typings)
We write ≈ to denote the equivalence relation on queue types induced by the following rule:

H; q! λ(S ); q′! λ′(S ′); H′ ≈ H; q′! λ′(S ′); q! λ(S ); H′ if q �	 q′

This equivalence relation on queue types extends to generalised types by:

M ≈ M H ≈ H′ implies 〈H,M〉 ≈ 〈H′,M〉
Two session typings  and ′ are said to be equivalent (notation  ≈ ′) if s[p] : τ ∈  implies s[p] : τ ′ ∈ ′
with τ ≈ τ ′ and vice versa.
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Table 9. Typing rules for networks

We are now ready to give the typing rules for networks, which are collected in Table 9. A session initiator is
typed with the empty set of session names and with the empty session typing (Rule New). To type a monitored
process, we distinguish two cases. If the monitor is end, then the session typing is empty for any P (Rule endP).
Otherwise, the channel owned by the process is associated with the monitor, provided that the type of the process
(Table 3) is adequate for the monitor, according to Definition 2.5 (RuleMP). Notice that this typing rule applies
to closed processes. For example, we get

�∅ p! λ(nat).end[s[q]! λ(5)] � {s[q] : p! λ(nat).end} (1)

since� s[q]! λ(5)�s[q] :! λ(nat).end and ! λ(nat).end ∝ p! λ(nat).end. Instead the network p! λ(bool).end[s[q]! λ(5)]
is not typable, since ! λ(nat).end �∝ p! λ(bool).end.

The next two rules (QInit and QSendV) type named buffers. The store is transparent for the typing. In these
rules the turnstile is decorated with the name of the buffer. An empty buffer 〈ø;σ 〉 is typed with the empty session
typing (Rule QInit) for all σ . Rule QSendV uses the extension of “ ; ” to session typings given in Definition 5.8.
When a new message (p, q, λ(u)) is added to the queue s : 〈h;σ 〉, Rule QSendV appends the message type q! λ(S )
to the queue type of s : 〈h;σ 〉, where S is the sort of u. For example:

�{s} s : 〈(q, p, λ(true));σ 〉 � {s[q] : p! λ(bool).end}. (2)

The typing rule for parallel composition of networks (Rule NPar) prescribes that no buffer name occurs more
than once (condition �1 ∩ �2 	 ∅). The session typing for the resulting network is obtained by composing the
typings of the components, as specified in Definition 5.8. Note that two monitored processes M[P ] and M′[Q ]
can be composed in parallel if and only if their session typings  	 {s[p] : M} and ′ 	 {s′[q] : M′} are such
that s �	 s′ or p �	 q; the composition  ∗ ′ is undefined otherwise.

As a simple example, if �� N �  then we get �� end[P ] | N � ∅ ∗  (by rules endP and NPar) and
∅ ∗  	 ; this fits with the structural equivalence end[P ] | N ≡ N .

As another example, consider the parallel composition of the abovemonitored process p! λ(nat).end[s[q]! λ(5)]
with the named buffer 〈(q, p, λ(true));σ 〉. Applying Rule NPar to the premises (1) and (2), we get:

�{s} p! λ(nat).end[s[q]! λ(5)] | s : 〈(q, p, λ(true));σ 〉 � {s[q] : 〈p! λ(bool).end, p! λ(nat).end〉}
Finally, Rule SEquiv defines typing modulo the equivalence ≈, and Rule Res requires the session typing to be
consistent for the session s in order to type the restriction on s.

5.2. Main properties

We are now ready to state and prove the main properties of our typed framework. As usual we may establish an
inversion lemma for networks, by induction on the derivations.

Lemma 5.11 (Inversion Lemma) Given the typing rules in Table 9, we have:

1. If �� new(G, L) � , then � 	  	 ∅.
2. If �� end[P ] � , then � 	  	 ∅.
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Table 10. Reduction of session typings

3. If �� M[P ] �  and M �	 end, then � 	 ∅ and  	 {s[p] : M} and � P � s[p] : T and T ∝ M.
4. If �� s : 〈ø;σ 〉 � , then � 	 {s} and  	 ∅.
5. If �� s : 〈h · (p, q, λ(u));σ 〉�, then � 	 {s} and ≈ ′ ; {s[p] : q! λ(S )} and �{s} s : 〈h;σ 〉�′ and � u : S .
6. If �� N1 | N2 � , then � 	 �1 ∪ �2 and  	 1 ∗ 2 and ��1 N1 � 1 and ��2 N2 � 2 and �1 ∩ �2 	 ∅.
7. If �� (ν s)N � , then � 	 �′\{s} and  	 ′\s and ��′ N � ′ and cons(′, s).

We also need to take into account how the typing depends on the first message in the queue. This is the task
of the next lemma, whose proof follows immediately from the typing rules for queues.

Lemma 5.12 Suppose �� s : 〈(p, q, λ(u)) · h ;σ 〉 � . Then � 	 {s} and  ≈ {s[p] : q! λ(S )} ; ′ and �{s} s :
〈h;σ 〉 � ′ and � u : S .

The LTS for monitors is useful to reveal a monitor’s shape, as detailed in the next lemma, whose proof follows
by a straightforward case analysis.

Lemma 5.13 Let M be a monitor as in Definition 2.2.

1. IfM p? λ−−→ M′, thenM 	 p?{λi (Si ).Mi }i∈I and λ 	 λj and M′ 	 Mj for some j ∈ I .

2. IfM q! λ−→ M′, thenM 	 q!{λi (Si ).Mi }i∈I and λ 	 λj and M′ 	 Mj for some j ∈ I .

The next lemma relates the actions of a process (as given by the LTS for processes) with its type.

Lemma 5.14 Let P be a process as in Definition 2.3.

1. If P
s[p]? λ(u)−−−−−→ P ′ and � P � s[p] : T, then either T 	? λ(S ).T′ or T 	? λ(S ).T′ ∧ T′′, and � P ′ � s[p] : T′ and

� u : S .

2. If P
s[p]! λ(u)−−−−→ P ′ and � P � s[p] : T, then either T 	! λ(S ).T′ or T 	! λ(S ).T′∨ T′′, and � P ′ � s[p] : T′ and

� u : S .

Proof. The proof is by induction on the LTS of processes (Table 5). We show only (1), as the proof for (2) is

similar. If P
s[p]? λ(u)−−−−−→ P ′, then either P 	 s[p]? λ(x ).P0 and P ′ 	 P0{u/x } or P 	 P1 + P2 and Pi

s[p]? λ(u)−−−−−→ P ′ for
i 	 1 or i 	 2. In the first case P must be typed by Rule rcv and the thesis follows immediately. In the second
case P must be typed by Rule choice. Then T 	 T1 ∧ T2 and � Pi � s[p] : Ti for i 	 1, 2. By induction either
Ti 	? λ(S ).T′ or Ti 	? λ(S ).T′ ∧ T′

i for i 	 1 or i 	 2, and � P ′ � s[p] : T′ and � u : S . This concludes the
proof. �

Our final lemma relates monitors with processes whose types are adequate for the monitors after a commu-
nication action.

Lemma 5.15 Let M be a monitor.

1. IfM q? λ−−→ M′ and P
s[p]? λ(u)−−−−−→ P ′ and � P � s[p] : T and T ∝ M, then � P ′ � s[p] : T′ and T′ ∝ M′.

2. IfM q! λ−→ M′ and P
s[p]! λ(u)−−−−→ P ′ and � P � s[p] : T and T ∝ M, then � P ′ � s[p] : T′ and T′ ∝ M′.

Proof. Easy consequence of Lemmas 5.13 and 5.14. �
Session types are not preserved under network reduction: this is expected, for they evolve according to the

actions performed by the corresponding participants. This is formalised by the reduction rules given in Table 10,
where queue types are considered modulo the equivalence ≈ given in Definition 5.10. The rules in the first line
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allow us to create monitors offering no communications and empty queue types. The rules in the second line
allow us to discard types carrying no information. The rules in the third line deal with the local adaptation of
senders and receivers in Rules InLoc and OutLoc (cf. Table 6). The rule in the fourth line represents the addition
of a message to a queue, whereas the rule in the fifth line stands for the reading of a message from a queue. In both
cases the content of the message can be a nonce, so these rules deal with Rules In, Out, InGlob and OutGlob.
The last line closes reduction up to concatenation and composition. No rule is needed for reduction via Rule
Reconf, since both session typings of the left- and right-hand sides are the empty set.

Notice that a generalised type of the form 〈H, end〉 will never be derived for a channel, but for example by
reducing {s[p] : 〈H, q! λ(S ).end〉} we get {s[p] : 〈H ; q! λ(S ), end〉} and then {s[p] : H ; q! λ(S )}. This also shows
that a single step in the reduction of processes may correspond to more than one step in the reduction of session
typings.

The next lemma shows that typings for networks are invariant under structural equivalence, as expected.

Lemma 5.16 If �� N �  and N ≡ N ′, then �� N ′ � .

Proof. The proof is by induction on the definition of structural equivalence, observing that �∅ end[P ] � ∅ and
using typing rule SEquiv. �

A crucial observation is that not all the left-hand sides of the reduction rules for networks are typed by
consistent session typings.

Example 5.17 Consider the following typing judgment:

�{s} M[s[p]?λ(x ).s[p]?λ′(y).0] | s : (q, p, λ(true)) � ′′

whereM 	 q?λ(bool).q?λ′(nat).end and ′′ is as defined in Example 5.6. Observe that

M[s[p]?λ(x ).s[p]?λ′(y).0] | s : (q, p, λ(true))

matches the left-hand side of the Rule In and ′′ is not consistent. The network obtained by putting this network
in parallel with the monitored process p!λ′(nat).end[s[q]!λ′(7).0] has the consistent session typing  defined in
Example 5.6.

It is then easy to show that if the left-hand side of a reduction rule is typed by a session typing, which is
consistent when composed with some session typing, then the same property holds for the right-hand side too.
This is formalised in Lemma 5.19, which uses Lemma 5.18 that connects projections and skipping of inputs.

We extend the function # (cf. Definition 3.1) to queue types in a natural way. Given a queue type H and a
participant p, we define #(H, p) by induction on H:

#(ε, p) 	 ø

#(q! λ(S ); H′, p) 	
{

λ ·#(H′, p) if p 	 q

#(H′, p) otherwise.

Lemma 5.18 If 〈H, q!{λi (Si ).Mi }i∈I 〉�q �� M�p then 〈H,Mi 〉�q �� (< M,#(H, q) >\?(p, λi ))�p .
Proof. The proof is by induction on H and M and by cases on their shapes. Notice that by definition

〈H, q!{λi (Si ).Mi }i∈I 〉�q 	<H�q , !{λi (Si ).(Mi �q )}i∈I > .

We analyse the different cases:

• If #(H, q) 	 ø, then M � p 	?{λi (Si ).�i }i∈I and Mi � q �� �i . Moreover, by Definition 3.2 we have
(< M, ø >\?(p, λi ))�p 	 �i .

• IfH 	 k! λ(S ).H′ and k �	 q, thenH�q 	 H′ �q and we are done by induction.
• If M 	 k!{λ′

j (S
′
j ).M′

j }j∈J or M 	 k?{λ′
j (S

′
j ).M′

j }j∈J and k �	 q, then M �q 	 M′
j �q for all j ∈ J and we

are done by induction.
• IfH 	 q! λ(S ).H′ and M 	 p?{λ′

j (S
′
j ).M′

j }j∈J , then by duality λ 	 λ
′
j0
for some j0 ∈ J and

〈H′, q!{λi (Si ).Mi }i∈I 〉�q �� M′
j0

�p .
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By induction, we have 〈H′,Mi 〉 � q �� (< M′
j0
,#(H′, q) >\?(p, λi )) � p . While by Definition 3.1 we have

#(H, q) 	 λ ·#(H′, q), Definition 3.2 gives
< M,#(H, q) >\?(p, λi ) 	 p? λ(S ′

j0
). < M′

j0
,#(H′, q) >\?(p, λi )

which in turn implies
〈H,Mi 〉�q �� (< M,#(H, q) >\?(p, λi ))�p

and this concludes the proof. �
Lemma 5.19 Let �� N � , and N −→P N ′, and  ∗ 0 be consistent for some 0. Then there is ′ such that
�� N ′ � ′ and  	⇒∗ ′ and ′ ∗ 0 is consistent.

Proof. The proof is by cases on network reduction rules. It is sufficient to consider the reduction rules which do
not contain network reductions as premises, i.e., which are the leaves in the reduction trees. We only consider two
cases, representative of our model (Rules OutLoc and Reconf).

− Rule OutLoc:

Mp

q! λ−→ M̂p P
s[p]! λ(v )−−−−→ P ′ wp �� lev (v ) wb � lev (v )

M̂q 	< Mq,#(h, p, q) >\?(p, λ) T ∝ M̂q (Q ′,T) ∈ P
Mr,w

p [P ] | Mr′,w′
q [Q ] | s : 〈h;σ 〉 −→P M̂ r,w

p [P ′] | M̂ r′,w′
q [Q ′{s[q]/y}] | s : 〈h;σ 〉

Here the Inversion Lemma (Lemma 5.11) applied to

�� Mp[P ] | Mq[Q ] | s : 〈h;σ 〉 � 

gives � 	 {s} and  	 {s[p] : 〈Hp,Mp〉, s[q] : 〈Hq,Mq〉} ∪ 1 and �{s} s : 〈h;σ 〉 � {s[p] : Hp, s[q] : Hq} ∪ 1.
Consistency of  ∗ 0 and the definition of composition imply 〈Hp,Mp〉�q �� 〈Hq,Mq〉�p . Since 〈Hp,Mp〉�
q starts with an output, we get 〈Hp,Mp〉 � q �� Mq � p . Lemma 5.13(2) and Mp

q! λ−→ M̂p give Mp 	
q!{λi (Si ).Mi }i∈I and λ 	 λj and M̂p 	 Mj for some j ∈ I . It is easy to verify that #(h, p, q) 	 #(Hp, q): we put
	 	 #(Hp, q). By Lemma 5.18, 〈Hp,Mj 〉�q �� (< Mq,	 >\?(p, λ))�p . Notice that Mp differs from Mj only
for an output to q with label λ, and thatMq differs from < Mq,	 >\?(p, λ) only for branchings with receiver p
without corresponding selections in Hp and for an input from p with label λ. Let M̂q 	<Mq,	>\?(p, λ) and

′ 	 {s[p] : 〈Hp,M̂p〉, s[q] : 〈Hq ,M̂q〉} ∪ 1.

By Lemma 5.15(2), we have � P ′ � s[p] : T′ and T′ ∝ M̂p. By assumption � Q ′ � y : T and T ∝ M̂q. So using
Rules MP, QInit, QSendV, and NPar we derive

�{s} M̂p[P ′] | M̂q[Q ′{s[q]/y}] | s : 〈h;σ 〉 � ′.
Consistency of  ∗ 0 implies consistency of ′ ∗ 0. Finally, notice that  	⇒∗ ′ by the fifth and sixth rules
in Table 10.
− Rule Reconf:

A({Mp[Pp] | p ∈ 
}, σ, noncei ) 	 
′ F ({Mp[Pp] | p ∈ 
′}, σ ) 	 (G, L)

(ν s) (
∏

p∈


Mp[Pp] | s : 〈h;σ 〉) −→P (ν s) (
∏

p∈
\
′
Mp[Pp] | s : 〈h\
′;σ\noncei 〉) | new(G, L)

In this case, the Inversion Lemma (Lemma 5.11) applied to

�� (ν s) (
∏

p∈


Mp[Pp] | s : 〈h;σ 〉) � 

gives � 	  	 ∅ and �{s}
∏

p∈
 Mp[Pp] | s : 〈h;σ 〉 � {s[p] : τp | p ∈ 
}. Lemma 5.11(7) implies τp �q �� τq �p
for all p, q ∈ 
. Definition 3.4 gives Mp �q 	 ε whenever p ∈ 
′ and q ∈ 
\
′ or vice versa. By Definition 3.3
all receivers of the messages in the queue h\
′ belong to 
\
′. Therefore {s[p] : τp | p ∈ 
\
′} is consistent and
we can derive �{s}

∏
p∈
\
′ Mp[Pp] | s : 〈h\
′;σ 〉 � {s[p] : τp | p ∈ 
\
′}. We can then conclude

�∅ (ν s) (
∏

p∈
\
′
Mp[Pp] | s : 〈h\
′;σ\noncei 〉) | new(G, L) � ∅

by Rules Res, New and NPar. �
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Our first main result is:

Theorem 5.20 (Subject Reduction) If �� N �  with  consistent and N −→∗
P N ′, then �� N ′ � ′ for some

consistent ′ such that  	⇒∗ ′.

Proof. It is enough to show the statement for the caseN ≡ E [N0] andN ′ ≡ E [N ′
0], whereN0 −→P N ′

0 by one of
the rules considered in Lemma 5.19. By the structural equivalence on networks we can assume E 	 (−→νs)([ ] | N1)
without loss of generality. Lemma5.16 and 5.11(7) and (l6) applied to�� N� give��0 N0�0 and��1 N1�1,
where � 	 (�0 ∪ �1)\−→s and  	 (0 ∗ 1)\−→s . The consistency of  implies the consistency of 0 ∗ 1 by
Lemma 5.11(7). By Lemma 5.19 there is ′

0 such that ��0 N
′
0 � ′

0 and 0 	⇒∗ ′
0 and ′

0 ∗ 1 is consistent.
Therefore, we derive �� N ′ �′, where ′ 	 (0 ∗′

1)\−→s by applying typing rulesNPar and Res. Observe that
 	⇒∗ ′ and ′ is consistent. �

We say that a network is initial when it is a parallel composition of session initiators, which is always typable.
The type system can guarantee progress provided that the collection of processes and types contains at least
one process for each monitor which is created at runtime in the adaptations. This can be statically checked (cf.
Definition 3.7).

Theorem 5.21 (Progress) Let G be a set of global types and P be a complete collection for it. Suppose that the
co-domain of the adaptation function F (cf. Rule Reconf) is contained in G. If N is an initial network with global
types in G, and N −→∗

P N ′, then N ′ has progress, i.e.,

1. Every input monitored process will eventually receive a message, and
2. Every message in a queue will eventually be received by an input monitored process.

Proof. As proved in [CDCYP16], a single multiparty session in a standard calculus with global and session types,
like the calculus in [HYC08], always enjoys progress whenever it is well typed. In fact, by the Subject Reduction
Theorem (Theorem 5.20), reduction preserves well-typedness of sessions and the consistency of session typings.
Moreover, all required session participants are present. Thus, all communications among participants in a unique
session will take place, in the order prescribed by the global type.

It is easy to see that our calculus could be mapped to the calculus of [HYC08] while maintaining typability,
the main difference being in the reduction rules. In our networks, several sessions may run in parallel, since an
initial configuration can have many initiators. Moreover, Rule Reconf splits one session into two, provided the
required processes can be found, which is ensured by the completeness of P . However, there is no interleaving
between sessions, since each monitored process implements a participant in a single session. Hence, the only rules
that could jeopardise progress are OutLoc and OutGlob. This does not happen, since the required process is in
P by completeness, and the reductions only modify:

• the monitors of the two participants, preserving the consistency of session typings, and
• the processes of the two participants, ensuring agreement of their types with the new monitors.

Therefore, our calculus has progress under the required conditions. �
As regards security, the main properties of our calculus are given by the following theorem, which ensures

that both reading and writing respect the security permissions and the boundaries of session participants.

Theorem 5.22 (Access Control and Information Flow) Let Mr,w
p [P ] be a monitored process.

1. If Mr,w
p [P ] | s : 〈(q, p, λ(v )) · h;σ 〉 −→P Mr,w[P ′] | s : 〈h;σ ′〉, then either lev (v ) � rp or P ′ is not obtained

by consuming the message (q, p, λ(v )). Moreover P ′ may contain a fresh nonce only if lev (v ) �� rb .
2. IfMr,w

p [P ] | s : 〈h;σ 〉 −→P Mr,w[P ′] | s : 〈h · (p, q, λ(v ));σ 〉, then wp � lev (v ).

3. If Mr,w
p [P ] | N | s : 〈h;σ 〉 −→P Mr′,w

p [P ′] | N ′ | s : 〈h · (p, q, noncei );σ, (p, noncei )〉, then P
s[p]! λ(v )−−−−→ P ′

and wb �� lev (v ).

Proof. The proof follows easily by inspecting the reduction rules of Table 6. �
Theorem 5.22(1) says that the reading permission of a monitor is either (i) respected and the reading from
the queue takes place, or (ii) not respected and the operational semantics ensures that the disallowed value is
never read from the queue—by virtue of the runtime mechanisms implemented by Rules InLoc and InGlob.
Analogously, Theorem 5.22(2) says that if a value is added to a session queue, then it is always the case that
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this is allowed by the writing permission of the given monitor. Here again it is worth observing that adaptation
mechanisms defined by Rules OutLoc and OutGlob can always be triggered to handle the situations in which
the given value does not respect the lower bound defined by the writing permission —that is, the situations in
which the value should not be admitted in the session queue. Moreover, Theorem 5.22(1) and (3) assure that the
creation of nonces is always triggered by exchanges of values that do not only violate permissions, but also do
not respect the boundaries.

6. Related work

To the best of our knowledge, the framework presented here integrates for the first time two distinct concerns
within formal models of structured communications, namely (self-)adaptation and security—here understood
as the interplay of policies for access control and secure information flow. As a consequence, our framework
can be related to several previous works on (typed) process formalisms tailored to either concern. In particular,
as already mentioned, our approach owes much to [CDCV15], where a model of self-adaptation for multiparty
communication is put forward based on networks of monitored systems. However, the framework in [CDCV15]
does not address issues of access control and secure information flow. Our work goes well beyond [CDCV15]
in that it proposes to use adaptation/reconfiguration mechanisms to mitigate the effect of security violations
both in reading and in writing (see below for more detailed comparisons). Next we review some related works,
distinguishing between the adaptation and security dimensions.
Adaptation There have been several studies on adaptive systems in various application contexts, approaching the
concept of adaptation from different perspectives. The paper [BCG+12] provides a thorough discussion on this
issue and an interesting classification of various approaches. A recent survey on service choreography adaptation
is presented in [LON+13]. A process calculus of adaptable processes is proposed in [BDPZ12]; it includes so-
called located processes that can be modified by “update patterns”. Based on a fragment of CCS, the calculus
in [BDPZ12] is not equipped with types for structured communications. A variant of the adaptable processes
of [BDPZ12], recast in a session typed setting, is developed in [DP13, DP15]; it combines the constructors for
adaptable processes of [BDPZ12] with the session type system proposed in [GCDC06] for the Boxed Ambient
calculus [BCC04]. The type discipline in [DP13, DP15] ensures a basic consistency between adaptation actions
and session communications, but it does not account for multiparty protocols.

Works addressing adaptation for multiparty communications include [BCH+14, DGL+14] and [CDCV15].
The work [BCH+14] enhances a choreographic language with constructs defining adaptation scopes and dynamic
code update; an associated endpoint language for local descriptions, and a projection mechanism for obtaining
(low-level) endpoint specifications from (high-level) choreographies are also described. A typing discipline for
these languages is left for future work. The paper [DGL+14] proposes a choreographic language for distributed
applications. Adaptation follows a rule-based approach, in which all interactions, under all possible changes
producedby the adaptation rules, proceedasprescribedbyanabstractmodel. Inparticular, the system is deadlock-
free by construction. The adaptive system is composed by interacting participants deployed on different locations,
each executing its own code.

As already mentioned, our work builds on [CDCV15], where a calculus based on global types, monitors and
processes similar to ours was introduced. There are two main points of departure from that work. First, the
calculus of [CDCV15] relied on a global state, and the global types described only finite protocols; adaptation
was triggered after the execution of the communications prescribed by a global type, in reaction to changes of
the global state. Second, adaptation in [CDCV15] involved all session participants. In contrast, in our calculus
adaptation is triggered by security violations, and an adaptation may be either local or global. In conclusion, we
consider our adaptation mechanism to be more flexible than that of [CDCV15] in two respects. First, adaptation
is dynamically triggered in reaction to security violations (whose occurrence is hard to predict) rather than at fixed
points of computation. Second, adaptation may be restricted to a subset of participants (those directly involved
in the security violation), thus resulting in a lighter procedure, which does not affect well-behaved participants.
Security The integration of security requirements into process calculi with structured communication (such as
session calculi) is still at an early stage. Enforcement of integrity properties in multiparty sessions, using session
types, has been studied in [BCD+09, PCF09]. These papers propose a compiler which, given a multiparty session
description, implements cryptographic protocols that guarantee session execution integrity.

In the present work, we have been concerned with confidentiality rather than integrity. To this end, we targeted
two security properties: access control (AC) and secure information flow (SIF) [SM03]. It is well known that AC
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and SIF are complementary properties, both of which are necessary to ensure end-to-end confidentiality. In our
setting, the classical argumentation may be rephrased as follows:

• With AC but without SIF, a participant could test any high information she is entitled to receive, and then
leak it to a participant with a lower reading permission by sending her different low values depending on the
result of the high test.

• With SIF but without AC, a participant could receive and forward (retransmit without testing it) information
of any level to any participant. This would not per se constitute a security violation, since in any case only
observers of the appropriate level would be able to read the information, but it would lead to uncontrolled
dissemination of sensitive information, making the system as a whole more vulnerable (more fragility points
for an attacker to break through). Although in most research on SIF such dissemination is not considered
harmful, in a distributed setting thewide-spreading of sensitive information could constitute a serious security
weakness.

Our treatment of access control (AC) is similar to that in [CCDC14], since in both cases participants are
assigned reading permissions that limit their capacity to receive data from the other participants. There are some
important differences, though. In [CCDC14], reading permissions are fixed once and for all and they appear in
the types; then, the targeted result is that well-typed processes satisfy the AC policy. In our case, instead, the initial
reading permissions of participants may decrease during the computation by effect of their insecure behaviour,
and conformance with the AC policy is checked dynamically. In this sense, our approach is closer to that of the
subsequent paper [CCDC15], where the calculus of [CCDC14] is equipped with a monitored semantics, which
blocks the execution of processes as soon as they attempt to perform an insecure communication.

As regards secure information flow (SIF), it is worth noticing that the SIF property we enforce here is
incomparable with that of [CCDC14], as already illustrated by the example at the end of Sect. 3. Indeed, in one
sense our SIF property is stronger than the one of [CCDC14], because it is a safety property, ensuring the absence
of a “level drop” between a test and the following communications in every possible computation. For instance,
we rule out a conditional statement which tests a high expression and performs two equal low outputs in its
branches. In another sense, our SIF property is weaker than that of [CCDC14], since it allows a high input to
be followed by a low output (as shown by the Example at the end of Section 3), a situation that was considered
insecure in [CCDC14] on the grounds that the high input was not guaranteed to occur. In fact, based on this very
observation, it could be shown that our SIF property is strictly weaker than the safety property of [CCDC15].

Notice that our choice of using a monitored semantics to enforce both AC and SIF, through the use of
similar (permission, boundary) pairs, enables a fully symmetric treatment of these properties. Indeed, a reading
permission violation is an AC violation, while a writing permission violation is a SIF violation. The adaptation
mechanisms also deal with reading and writing violations in a symmetric way, except for the case of a hard
writing violation, where the transgressing sender is treated as a culprit and penalised by a decrease of her reading
permission.

Finally, one novelty of our work with respect to both [CCDC14, CCDC15] is that possible infringements to
the security requirements are envisaged and not considered catastrophic: indeed, adaptation and reconfiguration
mechanisms are provided to fix breaches or mitigate their effects (in different ways according to their degree
of gravity), so that the interaction is not blocked and may proceed according to the protocol, although in a
possibly degraded mode. Indeed, the present work focuses on ensuring that the overall protocol can carry on
notwithstanding the possibility of security breaches, rather than on giving absolute confidentiality guarantees to
individual participants.

In recent years there have been a number of studies on security monitoring (often in combination with
types), mainly aimed at dynamically enforcing the SIF property of noninterference in sequential languages, and
particularly in JavaScript [LBJS06, Bou09, SR10, RSC09, DP10, AF12]. For instance, [LBJS06] proposes an
automaton-based monitoring mechanism, which combines static and dynamic analyses, for a sequential impera-
tive while-language with outputs. The work [Bou09] defines a monitored semantics for an ML-like language that
ensures noninterference, while [AS09] presents a combination of monitoring and static analysis for a sequential
language with dynamic code evaluation, enforcing information-release policies, which are relaxations of nonin-
terference. In a slightly different direction, the earlier works [ML00, ZM07] considered dynamic security policies
and proposed means for expressing them via security labels.

Dynamic analysis techniques induce a safety property which is an approximation of the targeted security
property. Therefore, they are bound to produce false alarms, leading to rejection of secure programs. Hence, an
important issue is that of the precision of the dynamic analysis. While some monitored semantics are “fail-stop”,
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namely they block the execution of a program when a potential leak is detected, others are more permissive,
allowing a program to proceed beyond an offending statement, but instrumenting the program in such a way that
the leak cannot be actually realised. We shall give a brief account of the latter semantics, which are closer to our
approach.

The work [DP10] proposes a technique called secure multi-execution for a deterministic language with I/O
operations. This technique is shown to enforce a time-sensitive noninterference property with a good precision.
The idea is to execute a program multiple times, one time for each security level, using special rules for I/O
operations: in the execution associated with a given security level, the inputs of higher or incomparable level are
replaced by default values, and only the outputs of the given security level are delivered. This way, if the outputs
produced at a given level are independent of the inputs of higher or incomparable level, they will be observed with
their correct value. Otherwise, they will be observed with a meaningless value (the default value), but in any case
no information leak will occur. The subsequent work [AF12] improves on [DP10] by introducing faceted values:
with this mechanism, closely related to the work of [PS03], it is possible to use a unique process to simultaneously
and efficiently simulate multiple executions for different security levels. The faceted-value technique is shown to
achieve termination-insensitive noninterference.

Monitored semantics that do not necessarily block but possibly adapt the behaviour of unsafe programs are
referred to as edit automata [LBW05]. Such automata, an evolutionof Schneider’s security automata [Sch00], allow
sequences of program actions that deviate from a security policy (in a given class of policies) to be transformed by
means of operations of truncation and action insertion/deletion.Note that unlike the above-described approaches,
our framework allows the distinction between two kinds of leaks, soft and hard ones, and provides different
responses for each of them. In the same spirit, although the technical treatment is quite different from ours, the
work [BM11] advocates a flexible response to security violations by distinguishing two classes of non-critical
security errors: venial errors, which can be tolerated up to a certain number of occurrences without transforming
the computation, and amendable errors, which may be neutralised by transforming the computation by means
of edit automata. In this approach there still remains a category of non-amendable errors, which cannot be fixed
and thus require the computation to be aborted.

To conclude, let usmention that various approaches for enforcing security into calculi and languages for struc-
tured communications have been recently surveyed in the state-of-the art report produced by the SecurityWorking
Group of the COSTAction BETTY, entitled “Combining Behavioural Types with Security Analysis” [BCD+15].

7. Concluding remarks

Framed in the setting of formal models and analysis techniques for communication-centric systems [HLV+16], we
have introduced a framework for multiparty protocols (choreographies) in which the analysis of communication
correctness is coupled with the run-time enforcement of self-adaptation and secure information flow policies.
One leading motivation for our development is the observation that as communication-centric systems operate
in dynamic and heterogeneous environments, correctness analysis for the underlying structured protocols must
account for a range of different issues that influence the interactive behaviour of protocol participants. We have
shown how two such issues, self-adaptation and security, exhibit an appealing complementarity and admit a
unified treatment based on global types, monitors (i.e., local types with security levels), monitored processes, and
a suitably instrumented operational semantics.

Based on the framework defined in [CDCV15], our approach relies on elementary assumptions on the nature
of typed processes. Processes in our model are well-typed with respect to a simple discipline (based on intersec-
tion and union types) which does not mention security policies nor adaptation requirements. The relationship
between choreographic specifications (global types) and the processes implementing such specifications is then
indirect, but made formal by the notion of adequacy, which relates process types (which describe “pure” commu-
nication behaviours) and monitors (which maintain run-time information on security permissions/boundaries).
This degree of independence between a global specification and its process implementations distinguishes our
approach from the original multiparty session types of [HYC08], in which participants’ types correspond directly
to projections of global types. Since in our framework security and adaptation policies appear only at the level of
global types andmonitors, in principle one may, e.g., modify or upgrade such policies without altering associated
implementations, or consider legacy implementations not directly related to any policy—in both cases, the types
of the implementations would need to be adequate to the run-time monitors. Investigating how this kind of mod-
ular modifications to security and adaptation policies can be precisely expressed in extensions of our framework
is an interesting direction for future work.
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The semantics associated with the reconfiguration mechanism is admittedly simple, as it is nondeterministic
and abstracts from the function that determines the next choreography to be installed. We prefer leaving these
choicesunspecified, for the sakeof generality, as inouropiniondifferent application scenariosmaycall fordifferent
adaptation functions and alternative strategies to cope with system degradation due to nonce generation. For
instance, reputationmechanisms [BCCD12] could be added in order to refine/guide the reaction tomajor security
violations based on a nonce record for each participant. It would be also interesting to define adaptation functions
which depend on the current (type)state of the monitors; this mechanism has been developed in [DP16] for
structured protocols using type-directed checks and event-based adaptation. In general, it would be interesting
to consider application-driven instances of our global adaptation mechanisms in which concrete adaptation
functions are used.

Acknowledgments

We are grateful to the anonymous reviewers of BEAT’14 and of the present paper for their useful suggestions,
which led to substantial improvements. This work was supported by COSTAction IC1201 BETTY (Behavioural
Types for Reliable Large-Scale Software Systems) via a Short-Term Scientific Mission grant (funding a visit
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[DP15] Di Giusto C, Pérez JA (2015) Disciplined structured communications with disciplined runtime adaptation. In: Sci Comput

Programm 97:235–265
[DP16] Di Giusto C, Perez JA (2016) An event-based approach to runtime adaptation in communication-centric systems. In: Web

services, formal methods, and behavioral types. LNCS, vol 9421. Springer, Berlin, pp 67–85 (Extended version to appear in
Formal Aspects of Computing)

[GCDC06] Garralda P, Compagnoni AB, Dezani-Ciancaglini M (2006) BASS: boxed ambients with safe sessions. In: PPDP 2006. ACM
Press, New York, pp 61–72

[GH05] Gay S, Hole M (2005) Subtyping for session types in the pi calculus. Acta Informatica 42(2/3):191–225
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