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Matrix and cell phenotype differences in
Dupuytren’s disease
Marike M. van Beuge1*, Evert-Jan P. M. ten Dam1,2, Paul M. N. Werker2 and Ruud A. Bank1

Abstract

Background: Dupuytren’s disease is a fibroproliferative disease of the hand and fingers, which usually manifests as
two different phenotypes within the same patient. The disease first causes a nodule in the palm of the hand, while
later, a cord develops, causing contracture of the fingers.

Results: We set out to characterize the two phenotypes by comparing matched cord and nodule tissue from ten
Dupuytren’s patients. We found that nodule tissue contained more proliferating cells, CD68-positive macrophages
and α-smooth muscle actin (α-SMA)-positive myofibroblastic cells. qPCR analysis showed an increased expression of
COL1A1, COL1A2, COL5A1, and COL6A1 in nodule tissue compared to cord tissue. Immunohistochemistry showed
less deposition of collagen type I in nodules, although they contained more fibronectin, collagen type V, and
procollagen 1. Lower collagen levels in nodule were confirmed by HPLC measurements of the Hyp/Pro ratio.
PCOLCE2, an activator of BMP1, the main enzyme cleaving the C-terminal pro-peptide from procollagen, was also
reduced in nodule. Cord tissue not only contained more collagen I, but also higher levels of hydroxylysylpyridinoline
and lysylpyridinoline residues per triple helix, indicating more crosslinks.

Conclusions: Our results clearly show that in Dupuytren’s disease, the nodule is the active disease unit, although it
does not have the highest collagen protein levels. The difference in collagen type I deposition compared to mRNA
levels and procollagen 1 levels may be connected to a decrease in procollagen processing.

Keywords: Dupuytren’s disease, Fibroblast, Collagen biosynthesis, PCOLCE2

Background
Any fibrotic process is an interplay between cells and
matrix, with the matrix influencing cell proliferation, ad-
hesion, and migration, and the cells influencing matrix
composition and crosslinking [1]. This process is the ul-
timate consequence of a range of insults and can occur
in virtually all organs of the body, with many differences
and similarities between the organs. These differences
may depend on the regenerative capacity of the organ or
its capacity to compensate for the loss of function due to
the build-up of extracellular matrix. All fibrotic diseases
are characterized by the presence of myofibroblasts, a cell
type containing abundant actin fibers. These cells are cap-
able of producing and depositing large amounts of excess

extracellular matrix, and their presence is therefore con-
sidered a main cause of fibrotic disease [2].
Dupuytren’s disease is a very common (prevalence 0.6

to 31.6 % [3]) fibroproliferative disease of the hand and
fingers, which generally starts with the formation of a
nodule in the palm of the hand, and progresses with the
formation of a cord towards the fingers, which causes
eventual contraction and the inability to extend the fin-
gers. These two phenotypes commonly occur together in
the same patient [4].
Previous studies have addressed the differences between

cord and nodule and found that there are differences in
contractility of isolated fibroblasts, with cells isolated from
nodule being more contractile in vitro [5]. Furthermore,
these cells express more α-smooth muscle actin [6]. A
large majority of these studies however was performed on
isolated, subcultured fibroblasts, which may grossly distort
the phenotype of the cells [7]. Studies on complete tissue
have shown that cord and nodule have a different ra-
tio of expression of matrix metalloproteinases (MMPs)
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and tissue inhibitors of matrix metalloproteinases (TIMPs)
[8, 9]. Older studies have reported differences in the type
of extracellular matrix that is deposited in nodules or
cords, with the former containing more fibronectin, lam-
inin, collagen IV, and tenascin C, particularly in prolifera-
tive areas [10–12].
In a different classification, devised first by Luck [13],

Dupuytren’s tissue has also been reported to contain sev-
eral zones, which can be distinguished histologically as
the proliferative, involutional, and residual zone. The
proliferative zone is characterized by the presence of a
large number of (myo)fibroblasts, the involutional zone
contains large amounts of collagens and myofibroblasts,
and the residual zone is relatively poor in cells.
Dupuytren’s disease displays the relatively rare phe-

nomenon of two phenotypes (e.g., cord and nodule) at
the same time in the same patient, with much discussion
still going on in the field as to the origins of these tissues
[14]. We investigated the differences between these phe-
notypes at a molecular level. Specifically, we wanted to
address the question of whether the difference is a differ-
ence of the cell types present and/or a difference in the
composition and amount of extracellular matrix. Differ-
ences in extracellular matrix (ECM) constituents and
density between cord and nodule may account for patho-
genesis of the two phenotypes and may influence current
and future treatment options.

Results
Proliferation and cell types in cord versus nodule
In order to determine whether the differences between
cord and nodule are determined by the number, type,
and activity of the cells present, we performed several
immunohistochemical stainings. Staining for Ki-67, which
is expressed in the nuclei of proliferating cells, showed
that the number of proliferating cells was significantly
higher in nodule tissue compared to cord tissue of the
same patients (Fig. 1a). Furthermore, nodular tissue con-
tained more α-smooth muscle actin (α-SMA), a marker
for myofibroblasts (Fig. 1b), and more CD68-positive cells
(Fig. 1c), which denotes mainly macrophages. We found
no significant difference in the area of CD31-positive cells,
indicating that there is no difference in the number of
blood vessels between cord and nodule (Fig. 1d).

Extracellular matrix production
To study the differences in the production of extracellu-
lar matrix between cord and nodule of Dupuytren’s pa-
tients, we first performed a gene expression analysis on
extracellular matrix components and biosynthesis mole-
cules. In total, we examined the expression of 44 genes;
full results of this analysis can be found in Table 1; not-
able findings are discussed below.

We found a significantly higher expression of COL1A1,
COL1A2, COL5A1, and COL6A1 messenger RNA (mRNA)
in nodule tissue (Fig. 2a). There were no significant differ-
ences in gene expression of COL3A1 and COL4A1. In
addition, five non-collagenous extracellular matrix mole-
cules were studied; of these, there was only a significant
difference in the expression of FN1, which was higher in
nodule (Fig. 2b). There were no differences in the expres-
sion of BGN, DCN, ELN, and FMOD.

Extracellular matrix deposition
To study whether the differences we found in mRNA
levels of ECM molecules also resulted in differences in the
composition of the deposited ECM, we performed immu-
nohistochemical analyses. We found significantly more
fibronectin deposition in nodules compared to cords
(Fig. 3a), whereas there was no difference in levels of
tenascin C, which was earlier reported to be increased in
nodules as well (Fig. 3b, [10]). However, we found more
elastin present in nodules compared to cords (Fig. 3c).
Analysis of collagen deposition showed that, in contrast

to the mRNA data, collagen type I deposition in cord was
significantly higher than in nodule (Fig. 4a), whereas there
was no difference in the deposition of collagen type III
(Fig. 4b), and a significant increase in collagen type V in
nodule compared to cord (Fig. 4c). Contrary to collagen, a
higher expression of procollagen type I is seen in nodule
than in cord (Fig. 4d), which does correspond to the
mRNA results. To verify our immunohistochemical data
on collagen, we quantified the total amount of collagen in
the tissues by measuring the Hyp/Pro ratio using HPLC.
Increased collagen levels result in increased Hyp levels
compared to Pro, giving rise to higher Hyp/Pro ratios
[15]. Since collagen type I is the major collagen type in
cords and nodules, one would expect (based on the colla-
gen type I immunohistochemistry staining) in cord sam-
ples a higher Hyp/Pro ratio compared to nodule samples.
This was indeed the case (Fig. 4e).

Collagen I processing
In view of the discrepancy between the mRNA levels of
COL1A1 and COL1A2, which were higher in nodule and
the observed deposition of collagen I which was higher in
cord, we decided to further investigate this phenomenon.
Analysis of mRNA expression of enzymes involved in
collagen synthesis revealed an upregulation of LEPREL2,
which has prolyl-3-hydroxylation activity, and P4HB,
which catalyzes the formation of 4-hydroxyproline, both
in nodule (Fig. 5a). Therefore, collagen synthesis may be
slightly higher in nodule, depending on the relative ac-
tivities of the different 3- and 4-hydroxylation enzymes.
We then investigated procollagen processing and found
that the expression of ADAMTS14 was significantly
higher in nodule but very variable among patients. Levels
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of ADAMTS2 and ADAMTS3 were unchanged (Fig. 5b).
There was no difference in the expression of BMP1, either
at mRNA or protein level (Fig. 5c, d). However, we found
a consistently lower mRNA expression of PCOLCE2,
which activates BMP1, in nodules compared to cord
(Fig. 5c), which was also confirmed at protein level by im-
munohistochemistry (Fig. 5e).

Crosslinked collagen
The composition of the deposited collagen was exam-
ined by HPLC analysis of crosslinks, corrected for the
amount of collagen present, expressed as number of
hydroxylysylpyridinoline (HP) and lysylpyridinoline (LP)
residues per triple helix. We found a significant increase
of both types of crosslinks in cord tissue compared to
nodule tissue (Fig. 6). In contradiction, of the main en-
zymes responsible for collagen crosslinking, we only

found a significant difference in the expression of LOX,
which was higher in nodule, whereas the expression of
LOXL1-4 and PLOD1-3 was unchanged (Table 1).

Discussion
In this study, we showed that there are considerable dif-
ferences between cord and nodule at mRNA and protein
level, both in cell types present as well as in the extracel-
lular matrix composition. These differences are probably
interdependent and together are responsible for the dis-
ease phenotype as it develops in patients. To our know-
ledge, this is the first study comparing cell types, matrix
deposition, and the collagen biosynthesis pathway in
cord and nodule tissue concurrently.
In a previous study [13], a proliferative stage was

proposed to exist in Dupuytren’s disease, mainly in nod-
ules, which coincides with our findings of higher Ki-67

Fig. 1 Cell types in cord and nodule tissue. a Representative pictures and quantification of Ki-67 expression in cord and nodule tissue from ten
Dupuytren’s patients. b Representative pictures and quantification of α-smooth muscle actin expression in cord and nodule tissue from ten
Dupuytren’s patients. c Representative pictures and quantification of CD68 expression in cord and nodule tissue from ten Dupuytren’s patients.
d Representative pictures and quantification of CD31 expression in cord and nodule tissue from ten Dupuytren’s patients. *p < 0.05, **p < 0.01 as
determined by Wilcoxon paired rank test
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expression in nodule. In an extension on this system, Lam
et al. also found a correlation between collagen III expres-
sion and the stages proposed by Luck, with a higher pro-
portion of collagen III in the proliferative stage [16]. In
contrast, we did not find an increase in collagen III ex-
pression in nodule, which may be due to differences in the
method of determination, i.e., immunohistochemistry in
our study and a histochemical staining (Herovici’s stain-
ing) used by Lam et al. Additionally, differences may be
caused by the heterogeneity of cord tissue, which we
noticed especially in our immunohistochemical studies,
where sometimes we found small nodule-like structures
within the cords, as has also been reported by others [17].
These were however not large enough to obscure the dif-
ferences between the two types of tissue, although they
are undoubtedly partly responsible for the variation seen
between the samples.
In accordance with previous papers examining tissue

from Dupuytren’s patients, we found a significant amount
of CD68-positive macrophages in nodule tissue [18]. The
previous study also found significant levels of various
growth factors and cytokines in Dupuytren’s tissue, al-
though no comparison between cord and nodule was
made. In view of the differences in composition of ECM
between cord and nodule that we found, and the known
capacity for ECM components, such as fibronectin, to
serve as a repository for growth factors [19], we expect
that the profile of associated growth factors will be very
different in these types of tissue. Since nodule in addition
is a more “active” type of tissue, where more remodeling
might be occurring, a higher release of these growth fac-
tors is also to be expected.
We found that nodule tissue shows an active pro-

fibrotic phenotype, with a high percentage of α-SMA-
positive myofibroblasts, and some macrophages and high
expression of fibronectin, procollagen 1, and collagen V.
This profile bears a striking resemblance to the profile of
active fibrogenic tissue as published by Blaauboer et al.
[20]. In this study, the authors showed that the forma-
tion of new collagen in a mouse model for idiopathic
lung fibrosis was correlated with an increased expression
of type V collagen, elastin, tenascin C, lysyl oxidase, and
Wnt-1 inducible signaling pathway protein 1 (WISP1).
In our study, we found that in nodule, there is a high ex-
pression of type V collagen, elastin, tenascin C, and lysyl
oxidase on mRNA and/or protein level. Furthermore, in

Table 1 Median expression levels and fold change of all genes
analyzed in Dupuytren’s nodule and matching cord tissue. p
value determined by Wilcoxon paired rank test

Gene symbol N Mean cord Mean nodule Fold change
nodule/cord

p value

ADAMTS14 8 0.0041 0.0124 2.988 0.0234

ADAMTS2 8 0.2375 0.2983 1.256 n.s.

ADAMTS3 6 0.0025 0.0032 1.321 n.s.

BGN 8 1.2588 1.5649 1.243 n.s.

BMP1 8 0.0424 0.0556 1.312 n.s.

COL1A1 8 4.2939 10.7051 2.493 0.0078

COL1A2 8 2.6263 4.7832 1.821 0.0078

COL3A1 8 3.7696 7.8217 2.075 n.s.

COL4A1 6 0.1868 0.1972 1.152 n.s.

COL5A1 8 0.3198 0.6450 2.017 0.0156

COL6A1 8 2.5967 4.1680 1.605 0.0234

COLGALT1 7 0.0386 0.0415 1.098 n.s.

CTSK 7 0.1254 0.1927 1.742 0.0313

DCN 8 0.7646 0.6807 0.890 n.s.

DDR1 6 0.0082 0.0068 0.768 n.s.

DDR2 8 0.0540 0.0421 0.780 0.0391

ELN 8 0.0959 0.1054 1.099 n.s.

FKBP10 8 0.1019 0.1440 1.414 0.0234

FMOD 8 0.1868 0.1334 0.714 n.s.

FN1 8 1.9316 3.4849 1.804 0.0078

LEPRE1 8 0.0140 0.0182 1.304 n.s.

LEPREL1 8 0.0023 0.0023 1.019 n.s.

LEPREL2 8 0.0154 0.0271 1.759 0.0156

LOX 7 0.0425 0.0603 1.597 0.0156

LOXL1 8 0.0400 0.0555 1.388 n.s.

LOXL2 8 0.1436 0.2461 1.714 n.s.

LOXL3 7 0.0067 0.0057 0.782 n.s.

LOXL4 8 0.0015 0.0009 0.574 n.s.

MMP1 4 0.0004 0.0003 0.839 n.s.

MMP13 6 0.0015 0.0023 1.302 n.s.

MMP14 8 0.3076 0.6230 2.026 n.s.

MRC2 7 0.1996 0.2784 1.378 0.0313

P4HA1 6 0.0094 0.0114 1.217 n.s.

P4HA2 5 0.0009 0.0012 1.363 n.s.

P4HA3 8 0.0171 0.0338 1.980 n.s.

P4HB 8 0.2390 0.3264 1.366 0.0234

PCOLCE 7 0.4790 0.5545 1.231 n.s.

PCOLCE2 7 0.0326 0.0107 0.224 0.0313

PLOD1 8 0.0730 0.0985 1.350 n.s.

PLOD2 8 0.0248 0.0380 1.533 n.s.

PLOD3 7 0.0423 0.0419 0.964 n.s.

Table 1 Median expression levels and fold change of all genes
analyzed in Dupuytren’s nodule and matching cord tissue. p
value determined by Wilcoxon paired rank test (Continued)

SERPINH1 8 0.1895 0.2439 1.287 n.s.

SLC39A13 6 0.0538 0.0505 1.022 n.s.

TIMP1 8 0.1956 0.1915 0.979 n.s.
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a previous study, we have also found high expression of
WISP1 in Dupuytren’s nodules [21]. An important differ-
ence is that in our study, the expression of the fibrotic
phenotype was not accompanied by the deposition of colla-
gen I, although we found a strong increase in COL1A1 and
COL1A2 mRNA and procollagen 1 protein expression.
We propose that the apparent discrepancy between

collagen mRNA and deposition is caused by a difference
in the expression of collagen processing molecules be-
tween cord and nodule. After the synthesis of procolla-
gen in the fibroblast, pro-peptides are cleaved off at the
N- and C-terminal by ADAMTSs and BMP1, respectively
(reviewed in [22, 23]). The cleavage of the C-terminal pro-
peptide is essential for collagen fibril formation. Although
we did not find any differences in BMP1 expression be-
tween cord and nodule at either mRNA or protein level,
we did find a significantly lower expression of PCOLCE2
in nodule. BMP1 has many different functions in the cell,
but only its effect on collagen processing is activated by
PCOLCE(2) [24, 25]. At this moment, there is no consen-
sus in literature about the relative contributions of the
two different isoforms of PCOLCE, although they appear
to have similar efficiency [26]. Intriguingly, in a study
characterizing the phenotype of amniotic fluid-derived
cells from fetuses with spina bifida, Hosper et al. found
that these cells did not deposit any collagen, despite nor-
mal or increased levels of BMP1. These cells were then
shown to have decreased levels of PCOLCE, PCOLCE2,
and ADAMTSs [27]. In another study, PCOLCE2-null
mice were shown to have decreased levels of collagen

deposition after transverse aortic constriction [28]. Both
studies give a clear indication of the essential role of these
proteins in the eventual deposition of collagen by the
cells.
In most studies into fibrotic conditions, the appear-

ance of α-SMA-positive myofibroblasts and the excessive
deposition of fibrillar collagen are seen as the hallmarks
of fibrosis [2]. In this study, we did not find a correlation
between the expression of α-SMA, which was higher in
nodule, and the deposition of collagen, which was higher
in cord. This may reflect the fact that all tissues were
from patients in a later stage of Dupuytren’s disease,
where α-SMA-positive myofibroblasts were originally
present, but may have disappeared from the cord. Colla-
gen, once deposited, may remain evident for a longer
period than myofibroblasts, based on α-SMA expression.
Whether these myofibroblasts have reverted to normal fi-
broblasts or been removed by apoptosis is not known, al-
though lower cell numbers in cord make it likely that
apoptosis must play a role. For this to be true, however, it
presupposes that the cells previously present in cord were
capable of depositing large amounts of collagen. These
therefore cannot have been equivalent to nodule myofi-
broblasts, which do not deposit the collagen they produce.
Apart from the differences in composition of ECM, we

also found qualitative differences in the collagen itself,
since significantly, more crosslinks per triple helix were
present in cord tissue than in nodule. Additionally, these
HP and LP crosslinks are more difficult to degrade by en-
dogenous MMPs, as described by van der Slot-Verhoeven

Fig. 2 Extracellular matrix mRNA profile. a Relative mRNA expression of COL1A2, COL1A2, COL3A1, COL4A1, COL5A1, and COL6A1 in cord and
nodule tissue from eight Dupuytren’s patients. b Relative mRNA expression of BGN, DCN, ELN, FMOD, and FN1 in cord and nodule tissue from
eight Dupuytren’s patients. *p < 0.05, **p < 0.01 as determined by Wilcoxon paired rank test
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et al. [29]. The higher crosslink levels in cord were in
contradiction to a higher level of LOX mRNA in nodule,
and no differences were found in the expression of
LOXL1-4 and PLOD1-3. This pattern suggests that cross-
links in the cord collagen were formed previously, and in
combination with the low levels of myofibroblasts and
macrophages, is a profile reminiscent of previously fi-
brotic, now quiescent tissue, as was suggested in a previ-
ous study [17].
This may furthermore suggest that the extracellular

matrix in the cord, once formed, is crosslinked and
thereafter not remodeled further, with the cells respon-
sible for the deposition of the matrix partly disappearing.
The question remaining in this model is which cells are
responsible for the contraction of the cord, leading to
the patients’ inability to extend the fingers. A previous
study has noted that nodule myofibroblasts possess an
inherently greater contractile ability in vitro and sug-
gested that these cells play a large role in contraction in
patients as well [5].

In other forms of fibrosis, such as liver fibrosis, it has
been shown that although few fibroblasts remain after
partial resolution of fibrosis, the remaining cells are
more prone to reacquire a fibrogenic phenotype after a
new insult [30]. This mechanism might also be present
in Dupuytren’s disease, where several comparative stud-
ies found that cord cells display an intermediate pheno-
type between nodule and normal fibroblasts [5, 6]. One
of these studies also showed that although cord cells in
normal culture show less α-SMA expression than nodule
myofibroblasts, upon stimulation with TGF-β1, α-SMA
expression was upregulated to the same extent as in
nodule myofibroblasts [6], suggesting that they retain
fibrogenic capacity.
If nodule is indeed the more active fibrogenic tissue,

and if cord remains prone to reactivation, these factors
have to be taken into account in one of the current
problems with the treatment of Dupuytren’s disease,
which is the high rate of recurrence. Recent papers
suggest a slightly lower durability of the result after

Fig. 3 Non-collagenous extracellular matrix proteins. a Representative pictures and quantification of fibronectin expression in cord and nodule
tissue from ten Dupuytren’s patients. b Representative pictures and quantification of tenascin C expression in cord and nodule tissue from ten
Dupuytren’s patients. c Representative pictures and quantification of elastin expression in cord and nodule tissue from ten Dupuytren’s patients.
*p < 0.05, **p < 0.01 as determined by Wilcoxon paired rank test
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Fig. 4 Collagenous extracellular matrix proteins. a Representative pictures and quantification of collagen I expression in cord and nodule tissue
from ten Dupuytren’s patients. b Representative pictures and quantification of collagen III expression in cord and nodule tissue from ten Dupuytren’s
patients. c Representative pictures and quantification of collagen V expression in cord and nodule tissue from ten Dupuytren’s patients. d Representative
pictures and quantification of procollagen 1 expression in cord and nodule tissue from ten Dupuytren’s patients. e Graph showing the ratio between
hydroxyproline and proline (Hyp/Pro) for matching cords and nodules from eight Dupuytren’s patients. Dots and whiskers on both sides represent
means and SEM, respectively. *p < 0.05, **p < 0.01 as determined by Wilcoxon paired rank test

van Beuge et al. Fibrogenesis & Tissue Repair  (2016) 9:9 Page 7 of 11



Fig. 5 (See legend on next page.)
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collagenase treatment, in which only the cord is tar-
geted, compared to fasciectomy, in which both nodule
and cord are removed [31]. Percutaneous needle fas-
ciotomy, in which only the cord is disrupted, was also
reported to have higher rates of recurrence than fas-
ciectomy [32]. Without examination of tissue from
patients with recurrent Dupuytren’s disease, however,
it is currently not possible to say whether reactivation
of cord tissue occurs and whether this is initiated by
cord fibroblasts reactivated by the procedure, by myo-
fibroblasts from the nodule or by a different process.

Conclusions
We have found that nodule is the more pro-fibrotic
tissue in Dupuytren’s disease, characterized by an RNA
profile consistent with fibrogenesis, but with lower
levels of actual collagen I deposition, possibly caused
by an abnormal collagen biosynthesis, as evidenced by
a lower expression of PCOLCE2. Cord tissue contains
more collagen I, which is additionally more heavily
crosslinked. These differences should be taken into account
when deciding the optimal treatment for Dupuytren’s
disease.

Methods
Ethics statement
Tissue samples were obtained following informed writ-
ten consent and approval of the Medical Ethics Commit-
tee of the University Medical Centre Groningen (2007/
067), in line with the Declaration of Helsinki.

Primary tissues
Dupuytren’s nodules and cords were obtained from pa-
tients undergoing limited fasciectomy or dermofasciect-
omy in the University Medical Centre Groningen. Tissue
from ten patients in total was used; nodules and cords of
eight patients were analyzed by low density array and
crosslink analysis; nodules and cords of ten patients
were analyzed using immunohistochemistry.

Gene expression analysis
The expression of genes known to be involved in colla-
gen biosynthesis and homeostasis was determined with a
custom-made microfluidic card-based low-density array
(Additional file 1: Table S1; Applied Biosystems, Foster
City, CA). This enables accurate measurement of gene
expression levels of 44 simultaneously, using a Taqman

(See figure on previous page.)
Fig. 5 Collagen biosynthesis. a Relative mRNA expression of LEPRE1, LEPREL1, LEPREL2, P4HA1, P4HA2, P4HA3, and P4HB in cord and nodule
tissue from eight Dupuytren’s patients. b Relative mRNA expression of ADAMTS2, ADAMTS3, and ADAMTS14 in cord and nodule tissue from eight
Dupuytren’s patients. c Relative mRNA expression of BMP1, PCOLCE, and PCOLCE2 in cord and nodule tissue from eight Dupuytren’s patients.
d Representative pictures and quantification of BMP1 expression in cord and nodule tissue from ten Dupuytren’s patients. e Representative
pictures and quantification of PCOLCE2 expression in cord and nodule tissue from ten Dupuytren’s patients. *p < 0.05, **p < 0.01 as determined
by Wilcoxon paired rank test

Fig. 6 Collagen crosslinks. Number of hydroxylysylpyridinoline (HP) and lysylpyridinoline (LP) residues per triple helix. *p < 0.05, as determined by
Wilcoxon paired rank test
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probe system. RNA was isolated from tissue using the
RNeasy Fibrous Tissue Mini Kit (Qiagen), according to
the manufacturer’s instructions and quantified using a
NanoDrop-1000 spectrophotometer (NanoDrop Tech-
nologies, Wilmington, DE). Reverse transcription was
carried out using the first-strand complementary DNA
(cDNA) synthesis kit (Fermentas, St. Leon-Rot, Germany).
For each sample, 100 ng cDNA was diluted in 50 μL of
distilled water and mixed with 50 μL of TaqMan PCR
master mix (Applied Biosystems). Standard recommended
PCR protocols were performed (50 °C for 2 min, 95 °C for
10 min, and the next two steps were repeated for 40 cycles:
95 °C for 12 s and 60 °C for 1 min) using the ViiA™ 7
Real-Time PCR System (Applied Biosystems). Threshold
cycle numbers higher than 35 were set to 35 and consid-
ered not detectable. Patients were removed from the ana-
lysis if there was no detectable expression in both cord
and nodule; numbers of patients included per gene are
shown in Table 1. Gene expression was calculated normal-
ized to the geometric mean of four reference genes (β-
actin, β2-macroglobulin, GAPDH, and YWHAZ).

Immunohistochemistry
Tissue for staining was stored at −80 °C and cut into 5 μm
cryosections. The sections were air-dried for 30 min and
fixated for 10 min in acetone. Washing and blocking of
aspecific binding sites, endogenous peroxidases, and en-
dogenous biotin was performed according to standard
procedures. The sections were incubated for 60 min at RT
with primary antibody (see Additional file 2: Table S2),
and with species specific HRP- or biotinylated secondary
antibodies (DAKO and Southern Biotech). Stainings were
visualized using VECTOR Red Alkaline Phosphatase
(AP) Substrate or ImmPACT DAB Peroxidase (SK5100
or SK4105, respectively, Vector Laboratories, Burlingame,
CA) according to the manufacturer’s instructions. All im-
munohistochemical stainings were counterstained with
hematoxylin (Merck, Darmstadt, Germany) and mounted
in Kaiser’s glycerin-gelatin (Merck).

Quantification of stainings
Immunohistochemical stainings were evaluated using a
Leica DM 2000 microscope. For morphometric quantifi-
cation of immunohistochemistry, five representative pho-
tomicrographs at 40× magnification were taken per tissue
section, using a Multispectral Imaging Camera (Perkin
Elmer, Cambridge, UK). Photomicrographs were analyzed
using Nuance 3.0 software (Perkin Elmer). Stained areas
were quantified and expressed as square micrometer per
high power field (μm2/HPF).

Crosslink analysis
Hydroxyproline (Hyp), proline (Pro), and the crosslinks
hydroxylysylpyridinoline (HP) and lysylpyridinoline (LP)

were measured in acid hydrolysates of unreduced sam-
ples by reversed-phase high-performance liquid chroma-
tography [33, 34]. The Hyp/Pro ratio was used as a
measure to estimate the ratio of collagen towards non-
collagenous proteins: the lower the Hyp/Pro ratio, the
more non-collagenous proteins are present in the tissue
[15]. The crosslinks HP and LP are expressed as the
total amount of residues per collagen molecule, assum-
ing 300 Hyp residues per triple helix.

Statistics
Statistical analysis was performed using GraphPad Prism
5.0 using a Wilcoxon paired rank test. In all analyses,
p < 0.05 was considered to be statistically significant.

Additional files

Additional file 1: Set up of custom made microfluidic card-based low
density array (Applied Biosystems, Foster City, CA). (DOCX 14 kb)

Additional file 2: Primary antibodies used. (DOCX 12 kb)
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