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Dichotomic differential inequalities and multi-agent coordination

Anton V. Proskurnikov and Ming Cao

Abstract— Distributed algorithms of multi-agent coordina-
tion have attracted substantial attention from the research
communities. The most investigated are Laplacian-type dy-
namics over time-varying weighted graphs, whose applications
include, but are not limited to, the problems of consensus,
opinion dynamics, aggregation and containment control, target
surrounding and distributed optimization. While the algorithms
solving these problems are similar, for their analysis different
mathematical techniques have been used. In this paper, we pro-
pose a novel approach, allowing to prove the stability of many
Laplacian-type algorithms, arising in multi-agent coordination
problems, in a unified elegant way. The key idea of this ap-
proach is to consider an associated linear differential inequality
with the Laplacian matrix, satisfied by some bounded outputs
of the agents (e.g. the distances to the desired set in aggregation
and containment control problems). Although such inequalities
have many unbounded solutions, under natural connectivity
conditions all their bounded solutions converge (and even reach
consensus), entailing the convergence of the original protocol.
The differential inequality thus admits only convergent but
not “oscillatory” bounded solutions. This property, referred
to as the dichotomy, has been long studied in the theory of
differential equations. We show that a number of recent results
from multi-agent control can be derived from the dichotomy
criteria for Laplacian differential inequalities, developed in this
paper, discarding also some technical restrictions.

I. INTRODUCTION

Problems of distributed multi-agent coordination, achieved
via local interaction among the agents, have attracted sub-
stantial attention from the research community. Besides
giving insight into many natural phenomena, multi-agent
control has found numerous applications in mobile robotics,
sensor networks, social network analysis and distributed
optimization; some relevant applications and main historical
milestones can be found in [1]–[3] and references therein.

Problems of consensus and synchronization, where the
agents aim to agree on some quantity of interest or syn-
chronize some outputs, are studied now up to a certain
exhaustiveness. The simplest consensus algorithms date back
to the iterative procedures of decision making [4]. A group
of agents, modeled by the continuous-time single integrators
and applying such a protocol, obeys the linear system

ẋ(t) = −L(t)x(t),
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where x(t) stands for the vector of agents’ states xi(t) ∈ R
and L(t) is the Laplacian matrix [1], [2] of their interaction
graph (in general, directed and weighted). This protocol and
its discrete-time counterpart has been thoroughly studied by
using Lyapunov methods [5]–[7] and matrix analysis [1],
[2], [8], paying special attention to the effects of time-
varying interaction topologies. For bidirectional and “cut-
balanced” graphs necessary and sufficient consensus criteria
have been obtained [9]–[11]. At the same time, for general
directed graph convergence to consensus is proved under the
sufficient (but not necessary) assumption of “uniform quasi-
strong connectivity (UQSC)” [5]–[7].

In this paper, we are interested in consensus properties of
differential inequalities, also employing the graph Laplacian

ẋ(t) ≤ −L(t)x(t) or ẋ(t) ≥ −L(t)x(t).

where the inequality is satisfied elementwise. It may seem
surprising that one-sided inequalities can imply consensus;
however, this can be proved for any bounded solution under
modest connectivity assumptions. Hence any solution of the
inequality either grows unbounded or converges to a finite
limit. This property, referred to as the system’s dichotomy,
has been thoroughly studied in the theory of differential
equations [12], being intimately related with absolute sta-
bility of nonlinear control systems [13].

As will be shown, the dichotomy property of the Lapla-
cian differential inequalities allows to prove convergence of
many distributed protocols, similar in structure to consensus
dynamics, however, providing more complicated behaviors
of the agents. Among them are the models of opinion
polarization [11], [14], containment control [3] and target ag-
gregation [15] algorithms, protocols over complex-weighted
graphs for target surrounding [16], [17] and some recent
algorithms on distributed optimization [18]. Dichotomy cri-
teria, elaborated in this paper, give a unified and elegant way
to derive these mentioned results, whose independent proofs
are different and non-trivial, relaxing or discarding also some
technical assumptions such as e.g. the existence of a positive
dwell-time between consecutive switches of the matrix L(t).

II. PRELIMINARIES

In this section, we recall some concepts and results impor-
tant for the future considerations. Henceforth N stands for
the set {1, . . . , N} and 1N

∆
= (1, 1, . . . , 1)> ∈ RN . Given

two vectors x, y ∈ RN , we write x ≤ y (respectively x < y)
if xi ≤ yi ∀i (respectively, xi < yi). Given a vector x ∈ RN ,
|x| ∆

=
√
x>x denotes its Euclidean norm. The sign of a real

number x ∈ R is denoted by sgn x ∈ {±1, 0}. Given a
complex number z ∈ C, z̄ stands for its conjugate.
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A. Weighted graphs and Laplacian matrices

A weighted (directed) graph is a triple G = (V, E,A),
where V = {v1, . . . , vN} stands for the set of nodes, E ⊂
V × V is a set of (directed) arcs and A = (ajk) ∈ RN×N
stands for a non-negative adjacency matrix, whose positive
entries ajk > 0 correspond to arcs (vk, vj) ∈ E. We assume
that the set of nodes V is fixed and hence the graph G =
G[A] is uniquely defined by its adjacency matrix.

Given a weighted graph G[A], its Laplacian matrix is

L[A] = (lij)
N
i,j=1, lij

∆
=

−aij , i 6= j∑
j 6=i

aij , i = j. (1)

A walk connecting nodes v and v′ is a sequence of
nodes vi0 := v, vi1 , . . . , vin−1

, vin := v′ (n ≥ 1) such that
(vik−1

, vik) ∈ E for k ∈ 1 : n. A walk where vi0 = vin is
referred to as a cycle. A node is called a root if a walk from it
to any other node exists; a graph is strongly connected (SC) if
any of its nodes is a root and quasi-strongly connected (QSC)
or rooted if at least one root exists. The QSC condition is
equivalent to the existence of a (directed) spanning tree.

We also use a concept of δ-connectivity. Given an adja-
cency matrix A = (aij) and δ > 0, define its “truncation”
Aδ = (aδij) as follows: aδij = aij if aij ≥ δ and otherwise
aδij = 0. The graph G[A] is strongly (quasi-strongly) δ-
connected if its subgraph G[Aδ], obtained by removing
“light” arcs, is SC (respectively, QSC).

Consider now a time-varying adjacency matrix A(t) =

(aij(t)), defined for t ≥ 0. The graph G
[∫ t1
t0
A(s)ds

]
can be treated as the infinite union of the graphs G[A(t)]
over the interval [t0; t1]. We call the time-varying graph
G[A(·)] uniformly strongly connected (USC) if a period
T > 0 and a threshold δ > 0 exist such that any union
of the graphs G

[∫ t+T
t

A(s)ds
]

(where t ≥ 0) over the
period T is strongly δ-connected. The uniform quasi-strong
connectivity (UQSC) is defined similarly: G

[∫ t+T
t

A(s)ds
]

is quasi-strongly δ-connected for any t ≥ 0. Notice that
these definitions do not assume the piecewise-continuity of
the matrix A(t), whose entries aij(t) ≥ 0 can be arbitrary
Lebesgue measurable functions. A USC graph is a special
case of infinitely strongly connected (ISC) graphs. The ISC
condition (referred to also as the essential connectivity [10],
[11]) requires the graph G∞ = (V, E∞), where E∞ =
{(i, j) ∈ V :

∫∞
0
aij(t)dt =∞}, to be strongly connected.

Following [9], we call a time-varying graph (uniformly)
cut-balanced, if a constant K ≥ 1 exists such that

K−1
∑

i∈V1,j∈V2

aij(t) ≤
∑

i∈V1,j∈V2

aji(t) ≤ K
∑

i∈V1,j∈V2

aij(t)

for any t ≥ 0 and any partition V = V1∪V2, where V1,V2 6=
∅ and V1 ∩ V2 = ∅. Special cases of cut-balanced graphs
are weight-balanced graphs (

∑N
k=1 ajk =

∑N
k=1 akj ∀j) and

undirected graphs (which means that A = A>).

B. Consensus protocols and their convergence

The graph Laplacians are closely related to dynamical
systems over graphs, whose mathematical models are known
as consensus (or agreement) protocols [1]–[3]. Given a
time-varying graph G(t) = (V, E(t), A(t)), the associated
consensus dynamics is given by

ẋ(t) = −L[A(t)]x(t) ∈ RN , t ≥ 0. (2)

The system (2) obeys the dynamics of N independent agents
ẋi(t) = ui(t), whose aim is to “agree” on some quantity of
interest, where agreement means that

∃x0
i

∆
= lim
t→∞

xi(t) ∈ R and x0
1 = . . . = x0

N . (3)

Seeking for such an agreement, the agents apply a protocol

ui(t) =

N∑
k=1

ajk(t)(xk(t)− xj(t)), (4)

which, obviously, corresponds to the closed-loop system (2).
It can be noticed that any point x0 = c1N with c ∈ R is an
equilibrium point of (2). The extensive studies on consensus
protocols have mainly focused on the problem whether any
solution of (2) converges to one of these equilibria.

Henceforth we confine ourselves to bounded (almost ev-
erywhere) adjacency matrices, adopting the following.

Assumption 1: There exists a constant M > 0 such that
aij(t) ≤M ∀i, j for almost all t ≥ 0.

The standard criterion for consensus (3) is as follows.
Lemma 1: Suppose the graph G[A(t)] is UQSC or cut-

balanced and ISC. Then any solution of (2) reaches con-
sensus (3) and x0

i = ξ>x(0), where ξ 6= 0 is some
constant vector. In the UQSC graph case the convergence is
exponential: |xi(t)− x0

i | ≤ Ce−αtx(0) for some C,α > 0.
The case of cut-balanced ISC graph is proved in [9]

(alternative proofs can be found in [10], [11]). The case
of UQSC graph is usually examined under the assumption
of piecewise-continuous Laplacian with positive dwell time
between consecutive switches [1], [6], [7]. The proof in the
general situation is beyond the scope of this paper. However,
we will use Lemma 1 only in the special case, where the
graphs G

[∫ t+T
t

A(s) ds
]

are not only rooted, but have a
common root, e.g. all agents follow a dedicated “leader”. In
this special case Lemma 1 follows from [5, Theorem 1].

III. DIFFERENTIAL LAPLACIAN INEQUALITIES

In this paper, we examine dynamics similar to (2), replac-
ing the differential equation with the differential inequality

ẏ(t) ≤ −L[A(t)]y(t), y(t) ∈ RN , t ≥ 0. (5)

Unlike the differential equations (2), the solution of (5)
is not uniquely defined by the initial condition y(0), and
hence (5) cannot be used as a control algorithm. However, as
will be shown in the subsequent examples, the convergence
of many distributed algorithms for multi-agent coordination
boils down to analysis of the inequalities (5).

Besides consensus equilibria y(t) = c1N (with c ∈ R),
inequalities (5) have many other solutions. For instance,
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choose y(t) = y0 − tc1N where y0 ∈ RN and c > 0 is
sufficiently large, then ẏ(t) = −c1N ≤ −L(t)y0 when c > 0
is large due to Assumption 1. Similarly, choosing y0 < 0
and α > 0 sufficiently large, the function y(t) = y0eαt is a
solution of (5) since αy0 ≤ −Ly0. Notice, however, that in
these examples the solutions are unbounded.

In this paper we are primarily interested in the properties
of bounded solutions of (5). In fact, the solution boundedness
is equivalent to the existence of a finite lower bound, since
the upper bound is guaranteed by the following lemma.

Lemma 2: For any solution y(t) of (5), one has yi(t) ≤
maxj yj(0) for any t ≥ 0 and i ∈ V .

We are going to show that under some connectivity
assumptions, any bounded solution converges to a consensus
equilibrium. In particular, any solution is either convergent
to an equilibrium or unbounded. For differential equations
this property is referred to as dichotomy [12], [13].

Definition 1: We say the system of differential inequalities
(5) is dichotomic, if any of its solutions y(t) is either
unbounded or converges to a finite limit y0 ∆

= lim
t→∞

y(t).
A dichotomic system (5) is called consensus dichotomic, if
any limit y0 is a consensus equilibrium y0 = c01N, c0 ∈ R.

The problem we address in this paper is to disclose
conditions, which guarantee consensus dichotomy of the
system (5). Since any solution of (2) satisfies (5), con-
sensus dichotomy automatically implies consensus in the
network (2). The inverse, however, is not always the case.
As will be shown, the UQSC condition in general, is not
sufficient for consensus dichotomy, whereas a natural suffi-
cient condition is the uniform strong connectivity (USC). For
cut-balanced graphs, however, is necessary and sufficient for
both consensus dichotomy in (5) and consensus in (2).

Remark 1: Instead of (5), the reverse inequality

ẏ(t) ≥ −L[A(t)]y(t), y(t) ∈ RN , t ≥ 0 (6)

can be considered. The solutions of (6) are bounded from
below; any bounded solution y(t) of (6) corresponds to a
bounded solution (−y(t)) of (5) and vice versa, hence the
inequality (6) is dichotomic (consensus dichotomic) if and
only if the corresponding condition holds for (5).

IV. DICHOTOMY CRITERIA

In this section we formulate general dichotomy criteria for
the Laplacian inequalities (5). We start with the case of cut-
balance graphs, where necessary and sufficient condition for
the consensus dichotomy is given by the following.

Theorem 1: Let the graph G[A(·)] be cut-balanced. Then
for any bounded solution of (5) and j, k ∈ N one has
ajk|yk − yj | ∈ L1[0;∞] and ẏj ∈ L1[0;∞], and thus the
inequality (5) is dichotomic. It is consensus dichotomic if
and only if the graph G[A(·)] is ISC.

In the case of a general time-varying graph the USC
condition is sufficient for consensus dichotomy.

Theorem 2: Let the graph G[A(·)] be USC. Then the
inequality (5) is consensus dichotomic. Moreover, for un-
bounded solutions y(t) one has maxi yi(t) −−−→

t→∞
−∞,

whereas for any bounded solution the function ∆(t)
∆
=

−L[A(t)]y(t)− ẏ(t) ≥ 0 satisfies the following condition∫ t+T0

t

∆(s) ds −−−→
t→∞

0 ∀T0 ≥ 0. (7)

As will be shown below (Section V), the USC condition
here cannot be relaxed to UQSC. Whereas UQSC guarantees
consensus in (2), the inequalities (5) can have periodic
solutions. At the same time, UQSC guarantees a “weaker”
dichotomy condition for graphs with special structures.

Definition 2: We say that a UQSC graph G(t) =
(V, E(t), A(t)) has a principal root v ∈ V if for any t ≥ 0
the node v has no incoming arcs {j : (j, v) ∈ E(t)} = ∅.

Since the definition of the UQSC requires the graphs
G
[∫ t+T
t

A(s)ds
]

to be QSC, the principal root v ∈ V (if
exists) is (the only) common root of these graphs. Deal-
ing with distributed protocols (4), the corresponding agent
(whose state remains constant) is usually referred to as the
(static) leader; in presence of such a leader consensus (3)
means that the states of all other agents converge to the
leader’s state: xj(t)→ xv as t→∞.

Theorem 3: Let the graph G[A(t)] be UQSC with a
principal root v. Then the following “relaxed” dichotomy
condition holds for (5): either lim

t→∞
mini yi(t) < yv(0) or

yi(t) −−−→
t→∞

yv(0) ∀i, and the convergence is exponential.
Notice that (5) does not imply that the leader’s state yv(t)

is static, entailing only that ẏv(t) ≤ 0.
Proofs of the main results will be given in Section VI. In

the next section we demonstrate their applications in several
problems of multi-agent coordination and opinion dynamics.

V. EXAMPLES AND APPLICATIONS

In this section we demonstrate that the results, formulated
in Section IV, allow to obtain a number of recent results in
a unified way, relaxing also some assumptions.

A. Opinion dynamics with antagonistic interactions
Social agents usually fail to reach consensus, but rather

exhibit clustering [19] of opinions or other types of persistent
disagreement. Whereas protocols, leading to consensus, have
been thoroughly studied up to certain exhaustiveness, it
remain a tough problem to obtain a realistic model of opinion
dynamics, “complex” enough to include the possibilities
of both consensus and disagreement and yet sufficiently
“simple” to admit rigorous analysis. The most studied in
literature are bounded confidence models [20], where the
agents ignore opinions outside their confidence intervals,
and hence the interaction graph may loose its connectivity.
Another reason for disagreement and clustering in social
networks is the agents heterogeneity, caused e.g. by their
“stubborness” [21]: some agents are “attached” to their initial
opinions and take them into account on each iteration of
opinion change (such agents are also called “informed” [19]).

A completely different type of opinion dynamics was
suggested in [14], dealing with protocols over signed graphs

ẋi(t) =

N∑
j=1

|wij(t)|(xj(t) sgnwij(t)−xi(t)) ∈ R, ∀i. (8)
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Here W = (wij) is a signed “adjacency” matrix that may
be time-varying, the coupling term |wij |(xj sgnwij −xi) =
wijxj−|wij |xi infinitesimally drives xi to xj when wij > 0
and to −xj if wij < 0. Thus arcs of positive weight
correspond to “collaboration” or “trust” among the agents,
whereas negative weights stand for their “competition” or
“distrust”. Under assumptions of strongly connected static
graph (wij(t) = const) the structural balance [14] of
positive and negative arcs implies polarization of opinions,
whereas structural imbalance entails exponential stability of
the system, where all the opinions converge to 0 independent
of the initial condition. In both situations modulus consensus
is established, where opinions agree in modulus but their
signs can differ. In the recent papers [11], [22] the results
from [14] are extended to time-varying case.

To formulate a rigorous criterion of “modulus consen-
sus”, assume that aij(t) = |wij(t)| are bounded and let
yi(t)

∆
= |xi(t)|. As was noticed in [11], denoting εij(t)

∆
=

sgnwij(t) sgn xj(t) sgnxi(t), (8) implies that

ẏi(t) =

N∑
j=1

aij(t)(εij(t)yj(t)− yi(t)). (9)

By noticing that εij(t)yj(t) ≤ yj(t), one easily shows that
y(t) is a solution of (5). On the other hand, by definition
y(t) ≥ 0. Applying Theorem 1 and 2, we arrive at the
following criterion of modulus consensus, obtained in [11].

Theorem 4: Let the graph G[A(·)] be either USC or cut-
balanced and ISC. Then the protocol (8) establishes modulus
consensus: the common limit x∗

∆
= lim
t→∞

|xi(t)| ≥ 0 exists.
It should be noticed that in general modulus consensus

does not exclude the “degenerate” case where the system (8)
is globally asymptotically stable. In the case of cut-balanced
graph and static graph it is possible to refine the results of
Theorem 4 and obtain necessary and sufficient conditions for
stability and non-degenerate opinion polarization [11], [22].

Remark 2: As demonstrated by [11, Example 2], the as-
sumptions of Theorem 4 cannot be relaxed to the UQSC con-
dition. Namely, there exist periodic UQSC graphs G[A(t)]
leading to non-constant periodic solutions x(t). Hence the
UQSC condition does not provide the dichotomy of (5).

B. Networks with complex-valued Laplacians

Further extension of (8) was proposed in [17] and deals
with complex-valued agents ẋi = ui ∈ C and the protocol

ui(t) =

N∑
j=1

(wij(t)xj(t)− |wij(t)|xi(t)) ∈ C, ∀i. (10)

Here wij(t) ∈ C are complex weights; the model (8)
corresponds to a special case where wij(t) ∈ R. A special
case of this model was also addressed in [16] (Section III-C).

Let aij(t)
∆
= |wij(t)| ≥ 0. Notice that for any z1, z2 ∈ C

one has z̄1z2 = |z1||z2| cosϕ, where ϕ = ∠(z1, z2) is the
angle between z1,z2; for technical reasons it is convenient
to put ϕ = π/2 when |z1| = 0 or |z2| = 0. It now can
be easily shown that functions yj(t) = |xj(t)| obey (5). Let

θjk = ∠(wjkxk, xj). Since yi(t) is locally Lipschitz, ẏ(t)
exists for almost all t ≥ 0. Assuming that yi(t) > 0, one has

ẏj = Re
x̄j ẋj
yj

=

N∑
k=1

ajk(yk cos θjk − yj). (11)

Notice now that if yi(t) = 0 at some t > 0, then t is the
global minimum point and thus ẏi(t) = 0. In both cases it
is obvious that (5) is valid, and we arrive at the following.

Theorem 5: Theorem 4 retains its validity, replacing the
Altafini protocol (8) with its complex counterpart (10).

A natural question arises whether the limit modulus x∗ =
lim
t→∞

|xi(t)| can be positive, which situation is called in [17]
complex consensus. In the case of constant graph W (t) ≡W
this is equivalent to the existence of a spanning tree in G[A]
and the “essential nonnegativity” of the matrix W . The latter
property, referred in [16] to as consistency, implies that the
product of weights wjk over any cycle is a positive real
number (in the case of real signed weights this condition is
referred to as the structural balance [11], [14]). Equivalently,
there exist complex numbers p1, . . . , pN such that |pi| = 1
and wjk = ajkpkp̄j (the construction of such numbers is
discussed in [16, Section III-B]).

Assuming now that the matrix W (t) is consistent for any
t ≥ 0 and the numbers pj(t) ≡ pj are constant, the system
(10) converges to a circular formation [16], [17].

Theorem 6: Assume that wij(t) = aij(t)pj p̄i, where
aij(t) ≥ 0, pi are constant and |pi| = 1 ∀i. If the graph
G[A(t)] is UQSC or cut-balanced and ISC, then a vector
η ∈ CN \ {0} exists such that xi(t)→ p̄iη

>x(0).
The proof is immediate from Lemma 1 since zi = pixi,

obviously, obey the usual consensus protocol (4) (formally
Lemma 1 provides consensus for scalar agents, but one can
apply it independently to the real and imaginary parts).

C. Problem of a target set surrounding

Further extension of the models (8),(10) was suggested
in [16] (see also [23] for some important extensions and
detailed proofs). A convex compact set X ⊂ C is fixed,
which is known by all of agents. Furthermore, the agents
are able to calculate their projections PX(xi(t)), where
xi(t) ∈ C stands for the state of the ith agent and PX is the
projection operator. A well-known property of the projector
PX , defining it uniquely and valid in any dimension, is that
〈x − PX(x), y − PX(x)〉 ≤ 0 for any y ∈ X and hence
〈x−PX(x), x− y〉 ≥ |x−PX(x)|2. Here 〈, 〉 stands for the
scalar product 〈z1, z2〉 = Re z̄1z2. The main concern of the
paper [16] is the convergence of the distributed protocol

ẋj(t) =

N∑
k=1

ajk(t)(wjkx
p
k(t)− xpj (t)), (12)

where xpj
∆
= xj − PX(xj), ajk(t) ∈ {0; 1} is an adjacency

matrix, defining a time-varying interaction topology, and
W = (wjk) ∈ CN×N is a constant matrix, |wjk| ∈ {0; 1}.
In the case of X = {0} the protocol (12) is a special case
of (10). In general, the whole set X consists of equilibria
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points, but there are other equilibria, corresponding to agents’
arrangements, equidistant from the set X: |xp1| = . . . = |xpN |.

As was proved in [16], under the USC condition (and
positive dwell time) the protocol (12) always renders the
agents equidistant from X . This result is a special case
of Theorem 2, since, as was shown in [16], the distances
yj(t) = |xpj (t)| satisfy (11) with the only difference that
x̄j ẋj in the second expression has to be replaced with x̄pj ẋj
and θjk(t) denotes the angle between wjkx

p
k(t) and xpj (t). In

particular, yj(t) obey (5), which allows to apply Theorem 1
or Theorem 2. Furthermore, these theorems guarantee that
t+T0∫
t

ajk(t)yk(t)(1− cos θjk(t)) −−−→
t→∞

0 ∀T0 ≥ 0 ∀j, k,

which can be transformed, assuming the graph is USC, into
the so-called target surrounding condition [16]

|wjkxpk(t)− xpj (t)|
2 −−−→
t→∞

0. (13)

The alternative proof of (13) under additional assumptions
of piecewise-continuous matrix A(t) and positive dwell-time
between its consecutive switches is available in [16], [23].

The condition (13) implies that xi(t) → X unless the
matrix W is “consistent” [16], that is, the product of wij over
any cycle in the graph G[W ] equals to 1. In the consistent
case nonzero entries are decomposed as wij = pip̄j , where
|pi| = 1∀i, and the convergence wjkx

p
k(t)− xpj (t)→ 0 can

be treated as surrounding of the target set X: the agents
are equidistant from the set X and angles between xpj (t)
converge to some fixed values [16].

Theorem 7: Suppose the graph G[A(t)] is either USC or
cut-balanced and ISC. Then the protocol (8) deploys the
agents’ at equal distances from the set X: there exists a
limit d∗

∆
= lim

t→∞
|xpi (t)| ≥ 0, which is independent of i ∈ V .

If the graph is USC, then the set is surrounded (13).
Some conditions providing non-trivial set surrounding

(d∗ > 0) can be found in [16]. Notice that Theorem 7
remains valid for arbitrary bounded adjacency matrix A(t),
does not require the dwell time positivity and partially
extends the result from [16] to cut-balanced ISC graphs.

D. Containment control with multiple leaders

In the previous example all of the agents are aware of
the target set position, so they could gather in it without
distributed control. In this subsection we consider the so-
called containment control problem [3], where the desired
set is pointed out by multiple static leaders, and the others
have to converge into the convex hull, spanned by their states.

Hence, besides the N agents indexed 1 through N we
consider L leaders ẋi(t) = 0, where i = N + 1, . . . , N +
L. The distributed protocol for the “followers”, obeying the
model ẋj = uj , is similar to (4) but involves some extra
terms, attracting the agents towards the desired convex hull

uj(t) =

N+L∑
k=1

ajk(t)(xk(t)− xj(t)) ∈ Rd, j = 1, . . . , N.

(14)

Let X be the convex hull, spanned by the leaders’ states,
following the notation from the previous section, we put
xpi = xi−PX(xi). We are going to find conditions providing
that yj(t) = |xpj (t)| → 0 for any j = 1, . . . , N . As was
noticed, for each y ∈ X one has 〈x − y, xp〉 ≥ |xp|2. In
particular, 〈xk−xj , xpj 〉 ≤ −|x

p
j |2 for any j ≤ N and k > N .

Furthermore, for k ≤ N we have 〈xk − xj , x
p
j 〉 ≤ 〈x

p
k −

xpj , x
p
j 〉, as shown in [15], [18]. Since d

dty
2
j (t) = 〈xpj , ẋj〉

(see [15]), the “outputs” yj(t) obey the inequalities

ẏj(t) ≤
N∑
k=1

ajk(t)(yk(t)− yj(t))− aj0(t)yj(t). (15)

Here aj0
∆
=

N+L∑
k=N+1

ajk(t) for j = 1, . . . , N and we put

a0j
∆
= 0 for any j. Considering an extended vector ŷ(t) =

(0, y1(t), . . . , yN (t)) and extended adjacency matrix Â(t) =
(aij(t))

N
i,j=0, (15) shapes into

d

dt
ŷ(t) ≤ −L[Â(t)]ŷ(t). (16)

Since yj(t) ≥ y0(0), Theorem 3 now implies the following.
Theorem 8: Suppose that G[Â(t)] is a UQSC graph (ob-

viously, 0 is its principal root). Then all the agents’ states
exponentially converge to the set X .

Theorem 8 was proved in [3] (Theorem 5.3) under stronger
condition of the “united spanning tree” existence and piece-
wise constant graph; result from [3] also does not guarantee
exponential convergence. In the case of cut-balance graphs
conditions can be further relaxed. Applying Theorem 1 to the
vector y(t), (15), one proves that the limits y0

i = lim
t→∞

yj(t)

exist and coincide y0
1 = . . . = y0

N = y0, and, moreover,∫∞
0
aj0(t)yj(t) < ∞. This implies that y0 = 0 unless∫∞

0
ai0(t)dt <∞∀i ∈ V , which yields in the following.

Theorem 9: Suppose that G[A(t)] is a cut-balanced ISC
graph and

∫∞
0
aj0(t)dt =∞ for at least one j = 1, . . . , N .

Then all the agents’ states converge to the set X .
Similarly, our results allow to prove in a unified manner

the convergence of protocols for target aggregation control
[15] and distributed optimization algorithms from [18].

VI. PROOFS OF THEOREMS 1-3

In this section we give outlines of the proofs of the main
results. The proof of Lemma 2 is standard and omitted due
to space limitations. We start with Theorem 3, being fully
independent of the other criteria, and then introduce some
techniques, enabling us to cope with the other results.

A. Proof of Theorem 3

Consider the consensus protocol (2) and let Φ(t; s) stands
for the Cauchy evolutionary matrix of the linear system (2),
which is known to be stochastic [1]. Furthermore, since
v ∈ V is a principal root, consensus means that xi(t) →
xv independent of the initial condition, which means that
lim
t→∞

Φ(t; 0) is a matrix, whose entries are zeros except for
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the vth column, equal to 1N . If y(t) is a solution of (5) and
yi(t) ≥ yv(0) ∀i ∈ V , then ẏ(t) ≤ −L(t)y(t) leads to

yv(0)1N ≤ y(t) ≤ Φ(t; 0)y(0) −−−→
t→∞

yv(0)1N ,

where the convergence is exponential by Lemma 1. �

B. Proof of Theorem 1

We introduce an ordering ξ1(t) ≤ . . . ≤ ξN (t) of the val-
ues y1(t), . . . , yN (t); let ξk(t) = yik(t))(t). Although ik(t)
are defined non-uniquely, one can always choose them ik(t)
Lebesgue measurable [11]. Moreover, ξk(t) are absolutely
continuous and ξ̇k(t) = ẏik(t)(t) for almost all t ≥ 0.

For technical reasons it is easier to consider the inverted
inequality (6). Let bjk(t)

∆
= aij(t)ik(t)(t). It can be shown

that G[B(·)] is a cut-balanced graph. Since ξ̇k(t) = ẏik(t)(t),
one has ξj(t) ≥ ξj(0) +

∫ t
0
bjk(t)(xk(t)− xj(t)). Retracing

now the proof of Theorem 1 in [9], one shows that if ξi(t)
are bounded from above, then

∑N
j,k=1

∫∞
0
bjk(t)|ξk(t) −

ξj(t)|dt =
∑N
j,k=1

∫∞
0
ajk(t)|yk(t)−yj(t)|dt <∞ and ẏj ∈

L1[0;∞], i.e. yj(t) converge to finite limits and yj(t) →
y0
j , which limits coincide under the ISC condition. Since

ISC condition is necessary [9], [10] for consensus under
protocol (2), it is necessary for the consensus dichotomy.�

C. Proof of Theorem 2

The proof is based on the following technical lemma,
proved similarly to Lemmas 14 and 15 in [11].

Lemma 3: Let y(t) obey (5) and y∗ = max
i
yi(t0). For

any T > 0 there exists θ = θ(T ) ∈ [0; 1] such that

yi(t) ≤ θyi(t0) + (1− θ)y∗, ∀i ∈ V, ∀t ∈ [t0; t0 + T ].

Furthermore, for any δ > 0 there exists θ0 = θ0(T, δ) ∈ [0; 1]

such that if
∫ t0+T

t0
ajk(t)dt ≥ δ for some j and k, then

yj(t0 + T0) ≤ θ0yk(t0) + (1− θ0)y∗.
Proof of Theorem 2 is now similar to the proof of

Theorem 2 in [11]. We again use the ordering ξ1 ≤ . . . ≤
ξN . If ξN (t) is bounded from below then the limit ξ∗

∆
=

lim
t→∞

ξN (t) > −∞ exists. We are going to show via induction
on j that ξ∗ = lim

t→∞
ξj(t). For j = N this claim is obvious.

Suppose the claim is proved for j = s+ 1, . . . , N . To prove
it for j = s, assume on the contrary that lim ξs(t) < ξ∗,
that is, there exist q < ξ∗ and sequence tn ↑ ∞ such that
ξs(tn) ≤ q. Consider two sets In = {i1(tn), . . . , is(tn)} and
Jn = {is+1(tn), . . . , iN (tn)}. Let T, δ be the constants from
the definition of USC, then jn ∈ Jn, kn ∈ In exist such that∫ tN+T

tn
ajnkn(t) ≥ δ. Using Lemma 3, we prove that

yi(tn + T ) ≤ θ1q + (1− θ1)ξN (tn), ∀i ∈ In ∩ {jn},

where θ1
∆
= max(θ0, θ). By definition this implies that

ξs+1(tn+T ) ≤ θ1q+(1−θ1)ξN (tn). Passing to the limit as
n → ∞, we arrive at the contradiction with the induction
hypothesis ξ∗ = lim

t→∞
ξs+1(t). This proves our claim for

j = s and finishes the proof of the consensus dichotomy.
The convergence of yi(t) to finite limits also implies (7).�

VII. CONCLUSIONS

In this paper, we study properties of linear differential
inequalities with time-varying Laplacian matrices. An impor-
tant property of such inequalities, valid under mild connec-
tivity assumptions, is their dichotomy: any bounded solution
converges to a consensus equilibrium point. The dichotomy
criteria allow to prove convergence of many Laplacian-type
protocols for multi-agent coordination in a unified way.
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