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Gluon TMD studies at EIC

Daniël Boer1,a

1Van Swinderen Institute for Particle Physics and Gravity, University of Groningen
Nijenborgh 4, NL-9747 AG Groningen, The Netherlands

Abstract. A high-energy Electron-Ion Collider (EIC) would offer a most promising tool
to study in detail the transverse momentum distributions ofgluons inside hadrons. This
applies to unpolarized as well as linearly polarized gluonsinside unpolarized protons,
and to left-right asymmetric distributions of gluons inside transversely polarized protons,
the so-called gluon Sivers effect. The inherent process dependence of these distributions
can be studied by comparing to similar, but often complementary observables at LHC.

1 Introduction

Transverse momentum dependent parton distributions (TMDs) are currently under active investiga-
tion, both theoretically and experimentally. Typical TMD processes are semi-inclusive Deep Inelastic
Scattering (SIDIS) or the Drell-Yan process. The SIDIS process (e p → e′ h X) is sensitive to the
transverse momentum of quarks, while for instanceD-meson pair production (e p→ e′D D X) is sen-
sitive to the transverse momentum of gluons in the back-to-back correlation limit. For studies of the
gluon TMDs, higher energy (

√
s) or smallerx is required. A high-energy Electron-Ion Collider (EIC)

can offer clean probes of the distributions of unpolarized and linearly polarized gluons inside unpolar-
ized protons, and of the gluon Sivers effect for transversely polarized protons. These distributions and
what we can learn about them at an EIC will be reviewed here, with emphasis on the most promising
observables, the process dependence, and the expected small-x behavior of the distributions.

Describing the transverse momentum of partons in a process is not just a matter of adding a trans-
verse momentum dependence in collinear distributions, i.e. f1(x)→ f1(x, k2

T ), that appear in collinear
factorization expressions. Rather one has to deal with TMD factorization, in which new factors and
new distributions appear, such as the Sivers effect TMD that describes a correlation between the trans-
verse momentum and the proton spin.

For gluons there are eight leading twist TMDs [1] that parametrize the gluon correlator

Γ
µν [U,U′ ]
g (x, kT ) ≡

∫
d(ξ · P) d2ξT

(xP · n)2(2π)3
ei(xP+kT )·ξ〈P|Trc

[
Fnν(0)U[0,ξ] Fnµ(ξ)U′[ξ,0]

]
|P〉ξ·P′=0. (1)

The dependence on the gauge linksU andU′ will be discussed later on. For unpolarized hadrons the
correlatorΓg is parametrized by two gluon TMDs [1] (herek2

T = −k2
T ):

Γ
µν
g (x, kT ) = − 1

2x

{
g
µν
T f g1 −

(kµT kνT
M2
+ g

µν
T

k2
T

2M2

)
h⊥g1

}
. (2)
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The unpolarized gluon TMDf g1 and linearly polarized gluon TMDh⊥ g1 are both functions ofx and
k2

T . Nonzeroh⊥ g1 requires nonzero transverse momentum and stems from an interference between±1
gluon helicities. For positiveh⊥ g1 the gluon polarizationǫT is distributed aroundkT with a cos 2φ dis-
tribution (φ = ∠(kT , ǫT )). Linear gluon polarization modifies among others the transverse momentum
distribution of Higgs production (perturbatively at NNLO [2, 3] and nonperturbatively at LO in pQCD
[4, 5]), which can be studied at LHC. In TMD factorization thecross section takes the form [5]

E dσpp→HX

d3~q

∣∣∣∣
qT≪mH

∝
(
C

[
f g1 f g1

]
+ C

[
wH h⊥ g1 h⊥g1

])
+ O

(
qT

mH

)
, (3)

whereC denotes a convolution of TMDs andwH =
(
(k1T · k2T )2 − 1

2 k2
1T k2

2T

)
/2M4. Including resum-

mation of large logarithms the contribution of linearly polarized gluons relative to unpolarized gluons
is given by (for explanations cf. [5]):

R(QT ) ≡
C[wH h⊥ g1 h⊥ g1 ]

C[ f g1 f g1 ]
=

∫
d2b eib·qT e−S A(b∗ ,Q)−S NP(b,Q) h̃⊥ g1 (xA, b2

∗; µb∗ ) h̃⊥g1 (xB, b2
∗; µb∗ )∫

d2b eib·qT e−S A(b∗ ,Q)−S NP(b,Q) f̃ g1 (xA, b2
∗; µb∗ ) f̃ g1 (xB, b2

∗; µb∗ )
, (4)

where f̃ g1 denotes the Fourier transform off g1 and

h̃⊥ g1 (x, b2) ≡
∫

d2kT

(b·kT )2 − 1
2 b2k2

T

b2M2
e−ib·kT h⊥ g1 (x, k2

T ) = −π
∫

dk2
T

k2
T

2M2
J2(bkT )h⊥g1 (x, k2

T ). (5)

The integrand inb space has been split into a calculable perturbative part anda nonperturbative (NP)
part that should be obtained from fits to data. Although the nonperturbative Sudakov factorS NP for
gg→ H is unknown, at the Higgs scale it does not matter too much. What matters most is the small-b
part of the TMDs, which is perturbatively calculable [2, 4, 6]: f̃ g1 (x, b2; µb) = fg/P(x; µb) + O(αs),
while

h̃⊥ g1 (x, b2; µb) =
αs(µb)CA

2π

∫ 1

x

dx̂
x̂

(
x̂
x
− 1

)
fg/P(x̂; µb) + O(α2

s). (6)

Note that the perturbative tail ofh⊥g1 is driven by the unpolarized collinear gluon distributionfg/P(x; µ).
In [7] and [8] the above expressions were studied numerically (cf. [9] for the ranges of the predic-

tions). The conclusion from those studies is thatR(QT ) is on the order of 2-5% in Higgs production at
low QT . This probably means that the extraction ofh⊥ g1 from Higgs production will be too challeng-
ing. In [7] and [8] also heavy (pseudo-)scalarC = + quarkonium production,p p→ [QQ] X, has been
studied. Much larger effects from linear gluon polarization are possible in this case, but there are very
large uncertainties (cf. [9]). It is much more sensitive to the unknown NP part than Higgs production.
From this perspective the heavier bottomonium states are probably best to consider. Employing the
color singlet model [10] and LO NRQCD results [11, 12], the differential cross sections forηb, χb0

andχb2 production have been obtained in [13]. By forming ratios of ratios, in which the hadronic
uncertainties cancel, it becomes in principle possible to probeR(QT ) directly:

σ(χb2)
σ(χb0)

dσ(χb0)/d2qT

dσ(χb2)/d2qT
≈ 1+ R(QT ),

σ(χb0)
σ(ηb)

dσ(ηb)/d2qT

dσ(χb0)/d2qT
≈ 1− R(QT )

1+ R(QT )
. (7)

These are color singlet model expressions, which may be justified forC = + bottomonium states from
NRQCD considerations [12, 14] and by several numerical studies of color octet contributions [14–16].
TMD factorization for thep-wave statesχbJ has been called into question though [17]. Consistency
between the experimental results forR(QT ) from (7), e.g. at LHCb, can be used to assess the possible
factorization breaking contributions. Because of the small energy scale differences (mηb = 9.4 GeV,
mχb0 = 9.9 GeV,mχb2 = 10.3 GeV), evolution effects should be negligible in this comparison.
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2 EIC probes

At EIC h⊥ g1 can be probed in open charm and bottom quark pair electro-production,e p → e′ Q Q X,
whereQ andQ are almost back-to-back in the transverse plane. Unlike Higgs production one needs
to study angular distributions now, e.g. a cos 2φ asymmetry whereφ = φT −φ⊥ andφT/⊥ are the angles

of KQ
⊥ ± KQ

⊥ [18], under the restrictionqT ≡ (KQ
⊥ + KQ

⊥ ) ≪ K⊥ ≡ (KQ
⊥ − KQ

⊥ )/2. In the asymmetry
expression,h⊥g1 appears by itself, as opposed to in a product of two. Therefore, larger effects are
expected and the sign ofh⊥g1 can be determined. The asymmetry depends onQ2,K2

⊥ andM2
Q, but the

maximum of the asymmetry is to a large extent independent of these scales, and around 15% [19].
There are also angular asymmetries w.r.t. the lepton scattering plane that probeh⊥g1 . These are mostly
relevant at smaller|K⊥| [19]. Dijet DIS, e p → e′ jet jetX, is similar except that also quark TMDs
enter. The analogous processesp p→ Q Q X andp p→ jet jetX at RHIC or LHC are not expected to
be TMD factorizing [20].

At an EIC one also can consider transversely polarized protons, wheree p↑ → e′ Q Q X is a
very promising process for probing the gluon Sivers effect. For a review of the status and prospects
of the gluon Sivers distribution, cf. [21], and for specific model studies, cf. [22]. There are also
suggestions to measure the gluon Sivers effect in proton-proton/ioncollisions (RHIC, AFTER@LHC),
in processes for which TMD factorization may hold:p↑ p → γ jet X [23, 24], p↑ p → J/ψ γ X [25],
p↑ p → J/ψ J/ψ X [26, 27]. According to [25, 26], the color singlet contribution to a large extent
dominates over the color octet one in theJ/ψ production processes.

Such gluon Sivers effect measurements inp p collisions are complementary to EIC studies, be-
cause TMDs are actually process dependent, as will be discussed next. Although this process depen-
dence can be calculated, not all Sivers functions from all processes can be related to each other!

3 Process dependence

It has been realized that TMDs in general are not universal [28–30]. Gluon rescattering corrections
can be summed into path-ordered exponentialsUC in TMD correlators [31], where the gauge link
or Wilson line is along a pathC. The path in this Wilson line depends on whether color charges are
coming from the initial state or going into the final state [29, 30, 32–35]. Surprisingly, it has turned
out that in certain cases the shape of the Wilson lines affects observables, such as the Sivers effect
asymmetries. In SIDIS the quark TMD correlator has a future pointing staple-like Wilson line arising
from final state interactions (FSI), referred to as a+ link. In the Drell-Yan (DY) process it is past
pointing from initial state interactions (ISI), a− link. The quark Sivers functions with+ and− links
are related by parity and time reversal invariance by an overall minus sign: f⊥[SIDIS]

1T = − f⊥[DY]
1T [29].

In general, the more hadrons observed in a process, the more complicated the resulting Wilson lines
and the possible relations among TMDs of various processes [36–38]. Wilson lines may even become
entangled or trapped, leading to factorization breaking [20, 39].

The processes that allow access to the linearly polarized gluon distribution and the gluon Sivers
distribution depend on two gauge links as in Eq. (1). The subprocessγ∗ g → Q Q for e p→ e′ Q Q X
probes a gluon correlator with two+ links, i.e. both are future pointing. In the kinematic regime where
gluons in one proton inp p→ γ jet X dominate, one effectively selects the subprocessq g→ γ q. The
latter subprocess probes a gluon correlator with a+ and− link (future and past pointing), enclosing an
area. As a consequence, these two processes probe two distinct, independent gluon Sivers functions.
They correspond to antisymmetric (fabc) and symmetric (dabc) color structures as discussed in [40].

At LHC gg → H andgg → [QQ] both probe a gluon correlator with two− links. As h⊥ g [+,+]
1 =

h⊥g [−,−]
1 (andh⊥ g [+,−]

1 = h⊥g [−,+]
1 ), one concludes that EIC and LHC can probe the sameh⊥ g1 function.
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Table 1. List of processes that probe the WW and/or DP unpolarized gluon TMD at smallx [41].

DIS & DY SIDIS p A→ h X pA→ γ jet X Dijet in DIS Dijet in pA
f g [+,+]
1 (WW) × × × × √ √

f g [+,−]
1 (DP)

√ √ √ √ × √

But e.g.gg → Hg probes a more complicated link structure. On the other hand,for the gluon Sivers
function it holds thatf⊥ g [+,+]

1T = − f⊥ g [−,−]
1T and f⊥ g [+,−]

1T = − f⊥ g [−,+]
1T . One thus concludes that the

proposed gluon Sivers TMD studies at EIC and at RHIC or AFTER@LHC are complementary [21].
This TMD nonuniversality is not just a polarization issue. It was first realized in a small-x context

that this process dependence also applies to the unpolarized gluon TMD f g1 [41].

4 Small-x: a tale of two gluon distributions

At small x (and largeNc) there are two unpolarized gluon distributions that matter[41], the gluon
correlator with two+ links (for which f g [+,+]

1 = f g [−,−]
1 ) and the one with a+ and a− link (for

which f g [+,−]
1 = f g [−,+]

1 ). In [41] these were denoted byG(1) andG(2), respectively. At smallx they
correspond to the Weizsäcker-Williams (WW) and dipole (DP)distributions, which are in general
different. The fact that there are two distinct but equally validdefinitions for the gluon distribution
was noted first in “A tale of two gluon distributions” by Kharzeev, Kovchegov & Tuchin (KKT) in
[42], where the authors say that they “cannot offer any simple physical explanation of this paradox”.
The explanation turns out to be the process dependence of thegluon distribution, in other words,
its sensitivity to the ISI/FSI in a process. Here it is not so much the direction, but rather whether
a process is only sensitive toeither ISI or FSI or toboth ISI and FSI. The difference between the
WW and DP distributions would disappear without ISI/FSI. In the MV model considered by KKT,
one may not notice the origin for the difference, because the two gluon distributions become related:

xG(2)(x, q⊥)
MV∝ q2

⊥∇2
q⊥ xG(1)(x, q⊥) [41, 42]. For instance, the processγ A → Q Q X has been studied

in [43] in the MV model, where the cross sectiondσT/dydk⊥ is expressed in terms ofC(k⊥) =∫
d2x⊥eik⊥·x⊥〈U(0)U†(x⊥)〉 ∼ G(2) which is the DP distribution, whereas the process rather probes the

WW distributionG(1) ([+,+]).
Different processes probeG(1) or G(2) or a mixture, as listed in Table 1. For dijet production inp A

collisions, the result requires largeNc, otherwise (four) additional functions appear (cf. [44]).
This process dependence of TMDs implies that also theirpT -widths are process dependent, and

as a consequence, it gives an additional process dependenceto pT -broadening [45].
The WW and DPh⊥ g1 distributions will be different too. Within the MV model [46] the DP

h⊥g1 distribution is found to be maximal for all transverse momenta, while the WWh⊥ g1 distribution
is maximal only at largekT (≫ Qs) and suppressed w.r.t.f g1 in the saturation region (kT ≪ Qs).
Maximal (positive) linear polarization also arises in the small-x “kT -factorization” approach [47]:

Γ
µν
g (x, kT )max pol=

1
x

kµT kνT
k2

T

f g1 (x, k2
T ). (8)

Finally, the perturbative tail ofh⊥g1 in Eq. (6) has a 1/x growth, which keeps up withf g1 towards
small x. Clearly there is no theoretical reason whyh⊥g1 should be small, especially at smallx. In
analogy tof g1 , in Table 2 we list processes where the WW and DPh⊥ g1 distributions enter (or not).
It turns out that the processes DIS, DY, SIDIS, hadron andγ + jet production inpA collisions do
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Table 2. List of processes that probe the WW and/or DP linearly polarized gluon TMD at smallx.

DIS & DY SIDIS p A→ h X pA→ γ jet X Dijet in DIS Dijet in pA
h⊥ g [+,+]

1 (WW) × × × × √ √

h⊥ g [+,−]
1 (DP) × × × × × √

not probeh⊥g1 in leading power [48]. Dijet production inep andeA collisions at smallx probes the
WW distribution. Since there are different expectations inside and outside the saturation region, it
would thus be very interesting to studyh⊥ g1 (via the cos 2φ asymmetries discussed earlier) in dijet
DIS at a high-energy EIC. The relevant expressions for general x can be found in [19] and small-
x expressions in [46, 49]. As said, these expressions involveonly the WW-type distributions (at
any Nc). In contrast, dijet and open heavy quark pair production inp p and p A collisions suffer
from factorization breaking [20]. Although at smallx the factorization breaking contributions may
become suppressed, effectively restoring TMD factorization [44, 50], still a combination of six distinct
distributions is probed, complicating the analysis considerably, probably too much.

5 Summary

Production of (pseudo-)scalar particles at LHC is a good wayto probe gluon distributions, but unfor-
tunately the effect of linear gluon polarization on Higgs production is small (2-5% level), smaller than
the current theoretical uncertainty in the perturbative treatment (NNLL+NNLO). C = + quarkonium
states may offer alternative probes, but in this case the predictions havelarge theoretical uncertainties.
Future LHC data on bottomonium statesχb0/2 andηb are most promising. Linear gluon polarization
is expected to lead to large differences between these three states.

Heavy quark pair and dijet production in DIS at a high-energyEIC offer clean channels for probing
linearly polarized gluons and the gluon Sivers effect. Specific cos 2φ asymmetries may exhibit large
h⊥g1 effects, allowing to study its sign, its small-x behavior. It may even show saturation effects,
as it probes the WW orf -type ([+,+]) distribution, which is expected to show a significant change
in behavior aroundk⊥ ∼ Qs. This same distribution happens to appear in Higgs orJPC = 0±+

quarkonium production at LHC. In contrast, for the gluon Sivers TMD the cleanest probes at EIC and
at RHIC and/or AFTER@LHC are actually entirely complementary.
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